solanum-vs-hackint-and-char.../libcharybdis/tools.h

379 lines
8.2 KiB
C
Raw Normal View History

/*
* ircd-ratbox: A slightly useful ircd.
* tools.h: Header for the various tool functions.
*
* Copyright (C) 1990 Jarkko Oikarinen and University of Oulu, Co Center
* Copyright (C) 1996-2002 Hybrid Development Team
* Copyright (C) 2002-2004 ircd-ratbox development team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA
*
* $Id: tools.h 3201 2007-02-04 01:59:38Z jilles $
*/
#ifndef __TOOLS_H__
#define __TOOLS_H__
/*
* double-linked-list stuff
*/
typedef struct _dlink_node dlink_node;
typedef struct _dlink_list dlink_list;
struct _dlink_node
{
void *data;
dlink_node *prev;
dlink_node *next;
};
struct _dlink_list
{
dlink_node *head;
dlink_node *tail;
unsigned long length;
};
dlink_node *make_dlink_node(void);
void free_dlink_node(dlink_node * lp);
void init_dlink_nodes(void);
#ifndef NDEBUG
void mem_frob(void *data, int len);
#else
#define mem_frob(x, y)
#endif
/* This macros are basically swiped from the linux kernel
* they are simple yet effective
*/
/*
* Walks forward of a list.
* pos is your node
* head is your list head
*/
#define DLINK_FOREACH(pos, head) for (pos = (head); pos != NULL; pos = pos->next)
/*
* Walks forward of a list safely while removing nodes
* pos is your node
* n is another list head for temporary storage
* head is your list head
*/
#define DLINK_FOREACH_SAFE(pos, n, head) for (pos = (head), n = pos ? pos->next : NULL; pos != NULL; pos = n, n = pos ? pos->next : NULL)
#define DLINK_FOREACH_PREV(pos, head) for (pos = (head); pos != NULL; pos = pos->prev)
/* Returns the list length */
#define dlink_list_length(list) (list)->length
#define dlink_move_list(oldlist, newlist, node)
#define dlinkAddAlloc(data, list) dlinkAdd(data, make_dlink_node(), list)
#define dlinkAddTailAlloc(data, list) dlinkAddTail(data, make_dlink_node(), list)
#define dlinkDestroy(node, list) do { dlinkDelete(node, list); free_dlink_node(node); } while(0)
/*
* The functions below are included for the sake of inlining
* hopefully this will speed up things just a bit
*
*/
/*
* dlink_ routines are stolen from squid, except for dlinkAddBefore,
* which is mine.
* -- adrian
*/
/* I hate C sometimes */
#if defined __OPTIMIZE__ && !defined __OPTIMIZE_SIZE__ && !defined __NO_INLINE__
#define INLINE_FUNC extern inline
#define NEED_INLINES
#else
#undef INLINE_FUNC
#define INLINE_FUNC
#endif
#ifdef TOOLS_C
#undef INLINE_FUNC
#define INLINE_FUNC
#endif
void dlinkMoveNode(dlink_node * m, dlink_list * oldlist, dlink_list * newlist);
void dlinkAdd(void *data, dlink_node * m, dlink_list * list);
void dlinkAddBefore(dlink_node * b, void *data, dlink_node * m, dlink_list * list);
void dlinkMoveTail(dlink_node *m, dlink_list *list);
void dlinkAddTail(void *data, dlink_node * m, dlink_list * list);
void dlinkDelete(dlink_node * m, dlink_list * list);
dlink_node *dlinkFindDelete(void *data, dlink_list *list);
int dlinkFindDestroy(void *data, dlink_list *list);
dlink_node *dlinkFind(void *data, dlink_list *list);
void dlinkMoveList(dlink_list * from, dlink_list * to);
#if defined(NEED_INLINES) || defined(TOOLS_C)
INLINE_FUNC void
dlinkMoveNode(dlink_node * m, dlink_list * oldlist, dlink_list * newlist)
{
/* Assumption: If m->next == NULL, then list->tail == m
* and: If m->prev == NULL, then list->head == m
*/
assert(m != NULL);
assert(oldlist != NULL);
assert(newlist != NULL);
if(m->next)
m->next->prev = m->prev;
else
oldlist->tail = m->prev;
if(m->prev)
m->prev->next = m->next;
else
oldlist->head = m->next;
m->prev = NULL;
m->next = newlist->head;
if(newlist->head != NULL)
newlist->head->prev = m;
else if(newlist->tail == NULL)
newlist->tail = m;
newlist->head = m;
oldlist->length--;
newlist->length++;
}
INLINE_FUNC void
dlinkAdd(void *data, dlink_node * m, dlink_list * list)
{
assert(data != NULL);
assert(m != NULL);
assert(list != NULL);
m->data = data;
m->prev = NULL;
m->next = list->head;
/* Assumption: If list->tail != NULL, list->head != NULL */
if(list->head != NULL)
list->head->prev = m;
else if(list->tail == NULL)
list->tail = m;
list->head = m;
list->length++;
}
INLINE_FUNC void
dlinkAddBefore(dlink_node * b, void *data, dlink_node * m, dlink_list * list)
{
assert(b != NULL);
assert(data != NULL);
assert(m != NULL);
assert(list != NULL);
/* Shortcut - if its the first one, call dlinkAdd only */
if(b == list->head)
{
dlinkAdd(data, m, list);
}
else
{
m->data = data;
b->prev->next = m;
m->prev = b->prev;
b->prev = m;
m->next = b;
list->length++;
}
}
INLINE_FUNC void
dlinkMoveTail(dlink_node *m, dlink_list *list)
{
if(list->tail == m)
return;
/* From here assume that m->next != NULL as that can only
* be at the tail and assume that the node is on the list
*/
m->next->prev = m->prev;
if(m->prev != NULL)
m->prev->next = m->next;
else
list->head = m->next;
list->tail->next = m;
m->prev = list->tail;
m->next = NULL;
list->tail = m;
}
INLINE_FUNC void
dlinkAddTail(void *data, dlink_node * m, dlink_list * list)
{
assert(m != NULL);
assert(list != NULL);
assert(data != NULL);
m->data = data;
m->next = NULL;
m->prev = list->tail;
/* Assumption: If list->tail != NULL, list->head != NULL */
if(list->tail != NULL)
list->tail->next = m;
else if(list->head == NULL)
list->head = m;
list->tail = m;
list->length++;
}
/* Execution profiles show that this function is called the most
* often of all non-spontaneous functions. So it had better be
* efficient. */
INLINE_FUNC void
dlinkDelete(dlink_node * m, dlink_list * list)
{
assert(m != NULL);
assert(list != NULL);
/* Assumption: If m->next == NULL, then list->tail == m
* and: If m->prev == NULL, then list->head == m
*/
if(m->next)
m->next->prev = m->prev;
else
list->tail = m->prev;
if(m->prev)
m->prev->next = m->next;
else
list->head = m->next;
m->next = m->prev = NULL;
list->length--;
}
INLINE_FUNC dlink_node *
dlinkFindDelete(void *data, dlink_list *list)
{
dlink_node *m;
assert(list != NULL);
assert(data != NULL);
DLINK_FOREACH(m, list->head)
{
if(m->data != data)
continue;
if(m->next)
m->next->prev = m->prev;
else
list->tail = m->prev;
if(m->prev)
m->prev->next = m->next;
else
list->head = m->next;
m->next = m->prev = NULL;
list->length--;
return m;
}
return NULL;
}
INLINE_FUNC int
dlinkFindDestroy(void *data, dlink_list *list)
{
void *ptr;
assert(list != NULL);
assert(data != NULL);
ptr = dlinkFindDelete(data, list);
if(ptr != NULL)
{
free_dlink_node(ptr);
return 1;
}
return 0;
}
/*
* dlinkFind
* inputs - list to search
* - data
* output - pointer to link or NULL if not found
* side effects - Look for ptr in the linked listed pointed to by link.
*/
INLINE_FUNC dlink_node *
dlinkFind(void *data, dlink_list *list)
{
dlink_node *ptr;
assert(list != NULL);
assert(data != NULL);
DLINK_FOREACH(ptr, list->head)
{
if(ptr->data == data)
return (ptr);
}
return (NULL);
}
INLINE_FUNC void
dlinkMoveList(dlink_list * from, dlink_list * to)
{
assert(from != NULL);
assert(to != NULL);
/* There are three cases */
/* case one, nothing in from list */
if(from->head == NULL)
return;
/* case two, nothing in to list */
if(to->head == NULL)
{
to->head = from->head;
to->tail = from->tail;
from->head = from->tail = NULL;
to->length = from->length;
from->length = 0;
return;
}
/* third case play with the links */
from->tail->next = to->head;
to->head->prev = from->tail;
to->head = from->head;
from->head = from->tail = NULL;
to->length += from->length;
from->length = 0;
}
#endif
#endif /* __TOOLS_H__ */