/* * crypt.c: Implements unix style crypt() for platforms that don't have it * This version has both an md5 and des crypt. * This was pretty much catted together from uclibc. */ /* * crypt() for uClibc * * Copyright (C) 2000 by Lineo, inc. and Erik Andersen * Copyright (C) 2000,2001 by Erik Andersen * Written by Erik Andersen * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU Library General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License * for more details. * * You should have received a copy of the GNU Library General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #ifndef NEED_CRYPT extern char *crypt(const char *key, const char *salt); char * rb_crypt(const char *key, const char *salt) { return (crypt(key, salt)); } #else static char *__md5_crypt(const char *pw, const char *salt); static char *__des_crypt(const char *pw, const char *salt); char * rb_crypt(const char *key, const char *salt) { /* First, check if we are supposed to be using the MD5 replacement * instead of DES... */ if(salt[0] == '$' && salt[1] == '1' && salt[2] == '$') return __md5_crypt(key, salt); else return __des_crypt(key, salt); } /* Here is the des crypt() stuff */ /* * FreeSec: libcrypt for NetBSD * * Copyright (c) 1994 David Burren * All rights reserved. * * Adapted for FreeBSD-2.0 by Geoffrey M. Rehmet * this file should now *only* export crypt(), in order to make * binaries of libcrypt exportable from the USA * * Adapted for FreeBSD-4.0 by Mark R V Murray * this file should now *only* export crypt_des(), in order to make * a module that can be optionally included in libcrypt. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the author nor the names of other contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * This is an original implementation of the DES and the crypt(3) interfaces * by David Burren . * * An excellent reference on the underlying algorithm (and related * algorithms) is: * * B. Schneier, Applied Cryptography: protocols, algorithms, * and source code in C, John Wiley & Sons, 1994. * * Note that in that book's description of DES the lookups for the initial, * pbox, and final permutations are inverted (this has been brought to the * attention of the author). A list of errata for this book has been * posted to the sci.crypt newsgroup by the author and is available for FTP. * * ARCHITECTURE ASSUMPTIONS: * It is assumed that the 8-byte arrays passed by reference can be * addressed as arrays of uint32_t's (ie. the CPU is not picky about * alignment). */ /* Re-entrantify me -- all this junk needs to be in * struct crypt_data to make this really reentrant... */ static uint8_t inv_key_perm[64]; static uint8_t inv_comp_perm[56]; static uint8_t u_sbox[8][64]; static uint8_t un_pbox[32]; static uint32_t en_keysl[16], en_keysr[16]; static uint32_t de_keysl[16], de_keysr[16]; static uint32_t ip_maskl[8][256], ip_maskr[8][256]; static uint32_t fp_maskl[8][256], fp_maskr[8][256]; static uint32_t key_perm_maskl[8][128], key_perm_maskr[8][128]; static uint32_t comp_maskl[8][128], comp_maskr[8][128]; static uint32_t saltbits; static uint32_t old_salt; static uint32_t old_rawkey0, old_rawkey1; /* Static stuff that stays resident and doesn't change after * being initialized, and therefore doesn't need to be made * reentrant. */ static uint8_t init_perm[64], final_perm[64]; static uint8_t m_sbox[4][4096]; static uint32_t psbox[4][256]; /* A pile of data */ static const uint8_t ascii64[] = "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; static const uint8_t IP[64] = { 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4, 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8, 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3, 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7 }; static const uint8_t key_perm[56] = { 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36, 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22, 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4 }; static const uint8_t key_shifts[16] = { 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 }; static const uint8_t comp_perm[48] = { 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10, 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2, 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48, 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32 }; /* * No E box is used, as it's replaced by some ANDs, shifts, and ORs. */ static const uint8_t sbox[8][64] = { { 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7, 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8, 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0, 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13}, { 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10, 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5, 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15, 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9}, { 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8, 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1, 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7, 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12}, { 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15, 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9, 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4, 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14}, { 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9, 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6, 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14, 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3}, { 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11, 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8, 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6, 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13}, { 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1, 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6, 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2, 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12}, { 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7, 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2, 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8, 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11} }; static const uint8_t pbox[32] = { 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10, 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25 }; static const uint32_t bits32[32] = { 0x80000000, 0x40000000, 0x20000000, 0x10000000, 0x08000000, 0x04000000, 0x02000000, 0x01000000, 0x00800000, 0x00400000, 0x00200000, 0x00100000, 0x00080000, 0x00040000, 0x00020000, 0x00010000, 0x00008000, 0x00004000, 0x00002000, 0x00001000, 0x00000800, 0x00000400, 0x00000200, 0x00000100, 0x00000080, 0x00000040, 0x00000020, 0x00000010, 0x00000008, 0x00000004, 0x00000002, 0x00000001 }; static const uint8_t bits8[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 }; static const uint32_t *bits28, *bits24; static int ascii_to_bin(char ch) { if(ch > 'z') return (0); if(ch >= 'a') return (ch - 'a' + 38); if(ch > 'Z') return (0); if(ch >= 'A') return (ch - 'A' + 12); if(ch > '9') return (0); if(ch >= '.') return (ch - '.'); return (0); } static void des_init(void) { int i, j, b, k, inbit, obit; uint32_t *p, *il, *ir, *fl, *fr; static int des_initialised = 0; if(des_initialised == 1) return; old_rawkey0 = old_rawkey1 = 0L; saltbits = 0L; old_salt = 0L; bits24 = (bits28 = bits32 + 4) + 4; /* * Invert the S-boxes, reordering the input bits. */ for(i = 0; i < 8; i++) for(j = 0; j < 64; j++) { b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf); u_sbox[i][j] = sbox[i][b]; } /* * Convert the inverted S-boxes into 4 arrays of 8 bits. * Each will handle 12 bits of the S-box input. */ for(b = 0; b < 4; b++) for(i = 0; i < 64; i++) for(j = 0; j < 64; j++) m_sbox[b][(i << 6) | j] = (uint8_t)((u_sbox[(b << 1)][i] << 4) | u_sbox[(b << 1) + 1][j]); /* * Set up the initial & final permutations into a useful form, and * initialise the inverted key permutation. */ for(i = 0; i < 64; i++) { init_perm[final_perm[i] = IP[i] - 1] = (uint8_t)i; inv_key_perm[i] = 255; } /* * Invert the key permutation and initialise the inverted key * compression permutation. */ for(i = 0; i < 56; i++) { inv_key_perm[key_perm[i] - 1] = (uint8_t)i; inv_comp_perm[i] = 255; } /* * Invert the key compression permutation. */ for(i = 0; i < 48; i++) { inv_comp_perm[comp_perm[i] - 1] = (uint8_t)i; } /* * Set up the OR-mask arrays for the initial and final permutations, * and for the key initial and compression permutations. */ for(k = 0; k < 8; k++) { for(i = 0; i < 256; i++) { *(il = &ip_maskl[k][i]) = 0L; *(ir = &ip_maskr[k][i]) = 0L; *(fl = &fp_maskl[k][i]) = 0L; *(fr = &fp_maskr[k][i]) = 0L; for(j = 0; j < 8; j++) { inbit = 8 * k + j; if(i & bits8[j]) { if((obit = init_perm[inbit]) < 32) *il |= bits32[obit]; else *ir |= bits32[obit - 32]; if((obit = final_perm[inbit]) < 32) *fl |= bits32[obit]; else *fr |= bits32[obit - 32]; } } } for(i = 0; i < 128; i++) { *(il = &key_perm_maskl[k][i]) = 0L; *(ir = &key_perm_maskr[k][i]) = 0L; for(j = 0; j < 7; j++) { inbit = 8 * k + j; if(i & bits8[j + 1]) { if((obit = inv_key_perm[inbit]) == 255) continue; if(obit < 28) *il |= bits28[obit]; else *ir |= bits28[obit - 28]; } } *(il = &comp_maskl[k][i]) = 0L; *(ir = &comp_maskr[k][i]) = 0L; for(j = 0; j < 7; j++) { inbit = 7 * k + j; if(i & bits8[j + 1]) { if((obit = inv_comp_perm[inbit]) == 255) continue; if(obit < 24) *il |= bits24[obit]; else *ir |= bits24[obit - 24]; } } } } /* * Invert the P-box permutation, and convert into OR-masks for * handling the output of the S-box arrays setup above. */ for(i = 0; i < 32; i++) un_pbox[pbox[i] - 1] = (uint8_t)i; for(b = 0; b < 4; b++) for(i = 0; i < 256; i++) { *(p = &psbox[b][i]) = 0L; for(j = 0; j < 8; j++) { if(i & bits8[j]) *p |= bits32[un_pbox[8 * b + j]]; } } des_initialised = 1; } static void setup_salt(long salt) { uint32_t obit, saltbit; int i; if(salt == (long)old_salt) return; old_salt = salt; saltbits = 0L; saltbit = 1; obit = 0x800000; for(i = 0; i < 24; i++) { if(salt & saltbit) saltbits |= obit; saltbit <<= 1; obit >>= 1; } } static int des_setkey(const char *key) { uint32_t k0, k1, rawkey0, rawkey1; int shifts, round; des_init(); rawkey0 = ntohl(*(const uint32_t *)key); rawkey1 = ntohl(*(const uint32_t *)(key + 4)); if((rawkey0 | rawkey1) && rawkey0 == old_rawkey0 && rawkey1 == old_rawkey1) { /* * Already setup for this key. * This optimisation fails on a zero key (which is weak and * has bad parity anyway) in order to simplify the starting * conditions. */ return (0); } old_rawkey0 = rawkey0; old_rawkey1 = rawkey1; /* * Do key permutation and split into two 28-bit subkeys. */ k0 = key_perm_maskl[0][rawkey0 >> 25] | key_perm_maskl[1][(rawkey0 >> 17) & 0x7f] | key_perm_maskl[2][(rawkey0 >> 9) & 0x7f] | key_perm_maskl[3][(rawkey0 >> 1) & 0x7f] | key_perm_maskl[4][rawkey1 >> 25] | key_perm_maskl[5][(rawkey1 >> 17) & 0x7f] | key_perm_maskl[6][(rawkey1 >> 9) & 0x7f] | key_perm_maskl[7][(rawkey1 >> 1) & 0x7f]; k1 = key_perm_maskr[0][rawkey0 >> 25] | key_perm_maskr[1][(rawkey0 >> 17) & 0x7f] | key_perm_maskr[2][(rawkey0 >> 9) & 0x7f] | key_perm_maskr[3][(rawkey0 >> 1) & 0x7f] | key_perm_maskr[4][rawkey1 >> 25] | key_perm_maskr[5][(rawkey1 >> 17) & 0x7f] | key_perm_maskr[6][(rawkey1 >> 9) & 0x7f] | key_perm_maskr[7][(rawkey1 >> 1) & 0x7f]; /* * Rotate subkeys and do compression permutation. */ shifts = 0; for(round = 0; round < 16; round++) { uint32_t t0, t1; shifts += key_shifts[round]; t0 = (k0 << shifts) | (k0 >> (28 - shifts)); t1 = (k1 << shifts) | (k1 >> (28 - shifts)); de_keysl[15 - round] = en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f] | comp_maskl[1][(t0 >> 14) & 0x7f] | comp_maskl[2][(t0 >> 7) & 0x7f] | comp_maskl[3][t0 & 0x7f] | comp_maskl[4][(t1 >> 21) & 0x7f] | comp_maskl[5][(t1 >> 14) & 0x7f] | comp_maskl[6][(t1 >> 7) & 0x7f] | comp_maskl[7][t1 & 0x7f]; de_keysr[15 - round] = en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f] | comp_maskr[1][(t0 >> 14) & 0x7f] | comp_maskr[2][(t0 >> 7) & 0x7f] | comp_maskr[3][t0 & 0x7f] | comp_maskr[4][(t1 >> 21) & 0x7f] | comp_maskr[5][(t1 >> 14) & 0x7f] | comp_maskr[6][(t1 >> 7) & 0x7f] | comp_maskr[7][t1 & 0x7f]; } return (0); } static int do_des(uint32_t l_in, uint32_t r_in, uint32_t *l_out, uint32_t *r_out, int count) { /* * l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format. */ uint32_t l, r, *kl, *kr, *kl1, *kr1; uint32_t f, r48l, r48r; int round; if(count == 0) { return (1); } else if(count > 0) { /* * Encrypting */ kl1 = en_keysl; kr1 = en_keysr; } else { /* * Decrypting */ count = -count; kl1 = de_keysl; kr1 = de_keysr; } /* * Do initial permutation (IP). */ l = ip_maskl[0][l_in >> 24] | ip_maskl[1][(l_in >> 16) & 0xff] | ip_maskl[2][(l_in >> 8) & 0xff] | ip_maskl[3][l_in & 0xff] | ip_maskl[4][r_in >> 24] | ip_maskl[5][(r_in >> 16) & 0xff] | ip_maskl[6][(r_in >> 8) & 0xff] | ip_maskl[7][r_in & 0xff]; r = ip_maskr[0][l_in >> 24] | ip_maskr[1][(l_in >> 16) & 0xff] | ip_maskr[2][(l_in >> 8) & 0xff] | ip_maskr[3][l_in & 0xff] | ip_maskr[4][r_in >> 24] | ip_maskr[5][(r_in >> 16) & 0xff] | ip_maskr[6][(r_in >> 8) & 0xff] | ip_maskr[7][r_in & 0xff]; while(count--) { /* * Do each round. */ kl = kl1; kr = kr1; round = 16; while(round--) { /* * Expand R to 48 bits (simulate the E-box). */ r48l = ((r & 0x00000001) << 23) | ((r & 0xf8000000) >> 9) | ((r & 0x1f800000) >> 11) | ((r & 0x01f80000) >> 13) | ((r & 0x001f8000) >> 15); r48r = ((r & 0x0001f800) << 7) | ((r & 0x00001f80) << 5) | ((r & 0x000001f8) << 3) | ((r & 0x0000001f) << 1) | ((r & 0x80000000) >> 31); /* * Do salting for crypt() and friends, and * XOR with the permuted key. */ f = (r48l ^ r48r) & saltbits; r48l ^= f ^ *kl++; r48r ^= f ^ *kr++; /* * Do sbox lookups (which shrink it back to 32 bits) * and do the pbox permutation at the same time. */ f = psbox[0][m_sbox[0][r48l >> 12]] | psbox[1][m_sbox[1][r48l & 0xfff]] | psbox[2][m_sbox[2][r48r >> 12]] | psbox[3][m_sbox[3][r48r & 0xfff]]; /* * Now that we've permuted things, complete f(). */ f ^= l; l = r; r = f; } r = l; l = f; } /* * Do final permutation (inverse of IP). */ *l_out = fp_maskl[0][l >> 24] | fp_maskl[1][(l >> 16) & 0xff] | fp_maskl[2][(l >> 8) & 0xff] | fp_maskl[3][l & 0xff] | fp_maskl[4][r >> 24] | fp_maskl[5][(r >> 16) & 0xff] | fp_maskl[6][(r >> 8) & 0xff] | fp_maskl[7][r & 0xff]; *r_out = fp_maskr[0][l >> 24] | fp_maskr[1][(l >> 16) & 0xff] | fp_maskr[2][(l >> 8) & 0xff] | fp_maskr[3][l & 0xff] | fp_maskr[4][r >> 24] | fp_maskr[5][(r >> 16) & 0xff] | fp_maskr[6][(r >> 8) & 0xff] | fp_maskr[7][r & 0xff]; return (0); } #if 0 static int des_cipher(const char *in, char *out, uint32_t salt, int count) { uint32_t l_out, r_out, rawl, rawr; int retval; union { uint32_t *ui32; const char *c; } trans; des_init(); setup_salt(salt); trans.c = in; rawl = ntohl(*trans.ui32++); rawr = ntohl(*trans.ui32); retval = do_des(rawl, rawr, &l_out, &r_out, count); trans.c = out; *trans.ui32++ = htonl(l_out); *trans.ui32 = htonl(r_out); return (retval); } #endif #if 0 void setkey(const char *key) { int i, j; uint32_t packed_keys[2]; uint8_t *p; p = (uint8_t *)packed_keys; for(i = 0; i < 8; i++) { p[i] = 0; for(j = 0; j < 8; j++) if(*key++ & 1) p[i] |= bits8[j]; } des_setkey((char *)p); } void encrypt(char *block, int flag) { uint32_t io[2]; uint8_t *p; int i, j; des_init(); setup_salt(0L); p = (uint8_t *)block; for(i = 0; i < 2; i++) { io[i] = 0L; for(j = 0; j < 32; j++) if(*p++ & 1) io[i] |= bits32[j]; } do_des(io[0], io[1], io, io + 1, flag ? -1 : 1); for(i = 0; i < 2; i++) for(j = 0; j < 32; j++) block[(i << 5) | j] = (io[i] & bits32[j]) ? 1 : 0; } #endif static char * __des_crypt(const char *key, const char *setting) { uint32_t count, salt, l, r0, r1, keybuf[2]; uint8_t *p, *q; static char output[21]; des_init(); /* * Copy the key, shifting each character up by one bit * and padding with zeros. */ q = (uint8_t *)keybuf; while(q - (uint8_t *)keybuf - 8) { *q++ = *key << 1; if(*(q - 1)) key++; } if(des_setkey((char *)keybuf)) return (NULL); #if 0 if(*setting == _PASSWORD_EFMT1) { int i; /* * "new"-style: * setting - underscore, 4 bytes of count, 4 bytes of salt * key - unlimited characters */ for(i = 1, count = 0L; i < 5; i++) count |= ascii_to_bin(setting[i]) << ((i - 1) * 6); for(i = 5, salt = 0L; i < 9; i++) salt |= ascii_to_bin(setting[i]) << ((i - 5) * 6); while(*key) { /* * Encrypt the key with itself. */ if(des_cipher((char *)keybuf, (char *)keybuf, 0L, 1)) return (NULL); /* * And XOR with the next 8 characters of the key. */ q = (uint8_t *)keybuf; while(q - (uint8_t *)keybuf - 8 && *key) *q++ ^= *key++ << 1; if(des_setkey((char *)keybuf)) return (NULL); } strncpy(output, setting, 9); /* * Double check that we weren't given a short setting. * If we were, the above code will probably have created * wierd values for count and salt, but we don't really care. * Just make sure the output string doesn't have an extra * NUL in it. */ output[9] = '\0'; p = (uint8_t *)output + strlen(output); } else #endif { /* * "old"-style: * setting - 2 bytes of salt * key - up to 8 characters */ count = 25; salt = (ascii_to_bin(setting[1]) << 6) | ascii_to_bin(setting[0]); output[0] = setting[0]; /* * If the encrypted password that the salt was extracted from * is only 1 character long, the salt will be corrupted. We * need to ensure that the output string doesn't have an extra * NUL in it! */ output[1] = setting[1] ? setting[1] : output[0]; p = (uint8_t *)output + 2; } setup_salt(salt); /* * Do it. */ if(do_des(0L, 0L, &r0, &r1, (int)count)) return (NULL); /* * Now encode the result... */ l = (r0 >> 8); *p++ = ascii64[(l >> 18) & 0x3f]; *p++ = ascii64[(l >> 12) & 0x3f]; *p++ = ascii64[(l >> 6) & 0x3f]; *p++ = ascii64[l & 0x3f]; l = (r0 << 16) | ((r1 >> 16) & 0xffff); *p++ = ascii64[(l >> 18) & 0x3f]; *p++ = ascii64[(l >> 12) & 0x3f]; *p++ = ascii64[(l >> 6) & 0x3f]; *p++ = ascii64[l & 0x3f]; l = r1 << 2; *p++ = ascii64[(l >> 12) & 0x3f]; *p++ = ascii64[(l >> 6) & 0x3f]; *p++ = ascii64[l & 0x3f]; *p = 0; return (output); } /* Now md5 crypt */ /* * MD5C.C - RSA Data Security, Inc., MD5 message-digest algorithm * * Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All * rights reserved. * * License to copy and use this software is granted provided that it * is identified as the "RSA Data Security, Inc. MD5 Message-Digest * Algorithm" in all material mentioning or referencing this software * or this function. * * License is also granted to make and use derivative works provided * that such works are identified as "derived from the RSA Data * Security, Inc. MD5 Message-Digest Algorithm" in all material * mentioning or referencing the derived work. * * RSA Data Security, Inc. makes no representations concerning either * the merchantability of this software or the suitability of this * software for any particular purpose. It is provided "as is" * without express or implied warranty of any kind. * * These notices must be retained in any copies of any part of this * documentation and/or software. * * $FreeBSD: src/lib/libmd/md5c.c,v 1.9.2.1 1999/08/29 14:57:12 peter Exp $ * * This code is the same as the code published by RSA Inc. It has been * edited for clarity and style only. * * ---------------------------------------------------------------------------- * The md5_crypt() function was taken from freeBSD's libcrypt and contains * this license: * "THE BEER-WARE LICENSE" (Revision 42): * wrote this file. As long as you retain this notice you * can do whatever you want with this stuff. If we meet some day, and you think * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp * * $FreeBSD: src/lib/libcrypt/crypt.c,v 1.7.2.1 1999/08/29 14:56:33 peter Exp $ * * ---------------------------------------------------------------------------- * On April 19th, 2001 md5_crypt() was modified to make it reentrant * by Erik Andersen * * * June 28, 2001 Manuel Novoa III * * "Un-inlined" code using loops and static const tables in order to * reduce generated code size (on i386 from approx 4k to approx 2.5k). * * June 29, 2001 Manuel Novoa III * * Completely removed static PADDING array. * * Reintroduced the loop unrolling in MD5_Transform and added the * MD5_SIZE_OVER_SPEED option for configurability. Define below as: * 0 fully unrolled loops * 1 partially unrolled (4 ops per loop) * 2 no unrolling -- introduces the need to swap 4 variables (slow) * 3 no unrolling and all 4 loops merged into one with switch * in each loop (glacial) * On i386, sizes are roughly (-Os -fno-builtin): * 0: 3k 1: 2.5k 2: 2.2k 3: 2k * * * Since SuSv3 does not require crypt_r, modified again August 7, 2002 * by Erik Andersen to remove reentrance stuff... */ /* * Valid values are 1 (fastest/largest) to 3 (smallest/slowest). */ #define MD5_SIZE_OVER_SPEED 1 /**********************************************************************/ /* MD5 context. */ struct MD5Context { uint32_t state[4]; /* state (ABCD) */ uint32_t count[2]; /* number of bits, modulo 2^64 (lsb first) */ unsigned char buffer[64]; /* input buffer */ }; static void __md5_Init(struct MD5Context *); static void __md5_Update(struct MD5Context *, const char *, unsigned int); static void __md5_Pad(struct MD5Context *); static void __md5_Final(char[16], struct MD5Context *); static void __md5_Transform(uint32_t[4], const unsigned char[64]); static const char __md5__magic[] = "$1$"; /* This string is magic for this algorithm. Having it this way, we can get better later on */ static const unsigned char __md5_itoa64[] = /* 0 ... 63 => ascii - 64 */ "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; #ifdef i386 #define __md5_Encode memcpy #define __md5_Decode memcpy #else /* i386 */ /* * __md5_Encodes input (uint32_t) into output (unsigned char). Assumes len is * a multiple of 4. */ static void __md5_Encode(unsigned char *output, uint32_t *input, unsigned int len) { unsigned int i, j; for(i = 0, j = 0; j < len; i++, j += 4) { output[j] = (unsigned char)(input[i] & 0xff); output[j + 1] = (unsigned char)((input[i] >> 8) & 0xff); output[j + 2] = (unsigned char)((input[i] >> 16) & 0xff); output[j + 3] = (unsigned char)((input[i] >> 24) & 0xff); } } /* * __md5_Decodes input (unsigned char) into output (uint32_t). Assumes len is * a multiple of 4. */ static void __md5_Decode(uint32_t *output, const unsigned char *input, unsigned int len) { unsigned int i, j; for(i = 0, j = 0; j < len; i++, j += 4) output[i] = ((uint32_t)input[j]) | (((uint32_t)input[j + 1]) << 8) | (((uint32_t)input[j + 2]) << 16) | (((uint32_t)input[j + 3]) << 24); } #endif /* i386 */ /* F, G, H and I are basic MD5 functions. */ #define F(x, y, z) (((x) & (y)) | ((~x) & (z))) #define G(x, y, z) (((x) & (z)) | ((y) & (~z))) #define H(x, y, z) ((x) ^ (y) ^ (z)) #define I(x, y, z) ((y) ^ ((x) | (~z))) /* ROTATE_LEFT rotates x left n bits. */ #define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n)))) /* * FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4. * Rotation is separate from addition to prevent recomputation. */ #define FF(a, b, c, d, x, s, ac) { \ (a) += F ((b), (c), (d)) + (x) + (uint32_t)(ac); \ (a) = ROTATE_LEFT ((a), (s)); \ (a) += (b); \ } #define GG(a, b, c, d, x, s, ac) { \ (a) += G ((b), (c), (d)) + (x) + (uint32_t)(ac); \ (a) = ROTATE_LEFT ((a), (s)); \ (a) += (b); \ } #define HH(a, b, c, d, x, s, ac) { \ (a) += H ((b), (c), (d)) + (x) + (uint32_t)(ac); \ (a) = ROTATE_LEFT ((a), (s)); \ (a) += (b); \ } #define II(a, b, c, d, x, s, ac) { \ (a) += I ((b), (c), (d)) + (x) + (uint32_t)(ac); \ (a) = ROTATE_LEFT ((a), (s)); \ (a) += (b); \ } /* MD5 initialization. Begins an MD5 operation, writing a new context. */ static void __md5_Init(struct MD5Context *context) { context->count[0] = context->count[1] = 0; /* Load magic initialization constants. */ context->state[0] = 0x67452301; context->state[1] = 0xefcdab89; context->state[2] = 0x98badcfe; context->state[3] = 0x10325476; } /* * MD5 block update operation. Continues an MD5 message-digest * operation, processing another message block, and updating the * context. */ static void __md5_Update(struct MD5Context *context, const char *xinput, unsigned int inputLen) { unsigned int i, lindex, partLen; const unsigned char *input = (const unsigned char *)xinput; /* i hate gcc */ /* Compute number of bytes mod 64 */ lindex = (unsigned int)((context->count[0] >> 3) & 0x3F); /* Update number of bits */ if((context->count[0] += ((uint32_t)inputLen << 3)) < ((uint32_t)inputLen << 3)) context->count[1]++; context->count[1] += ((uint32_t)inputLen >> 29); partLen = 64 - lindex; /* Transform as many times as possible. */ if(inputLen >= partLen) { memcpy(&context->buffer[lindex], input, partLen); __md5_Transform(context->state, context->buffer); for(i = partLen; i + 63 < inputLen; i += 64) __md5_Transform(context->state, &input[i]); lindex = 0; } else i = 0; /* Buffer remaining input */ memcpy(&context->buffer[lindex], &input[i], inputLen - i); } /* * MD5 padding. Adds padding followed by original length. */ static void __md5_Pad(struct MD5Context *context) { char bits[8]; unsigned int lindex, padLen; char PADDING[64]; memset(PADDING, 0, sizeof(PADDING)); PADDING[0] = 0x80; /* Save number of bits */ __md5_Encode(bits, context->count, 8); /* Pad out to 56 mod 64. */ lindex = (unsigned int)((context->count[0] >> 3) & 0x3f); padLen = (lindex < 56) ? (56 - lindex) : (120 - lindex); __md5_Update(context, PADDING, padLen); /* Append length (before padding) */ __md5_Update(context, bits, 8); } /* * MD5 finalization. Ends an MD5 message-digest operation, writing the * the message digest and zeroizing the context. */ static void __md5_Final(char xdigest[16], struct MD5Context *context) { unsigned char *digest = (unsigned char *)xdigest; /* Do padding. */ __md5_Pad(context); /* Store state in digest */ __md5_Encode(digest, context->state, 16); /* Zeroize sensitive information. */ memset(context, 0, sizeof(*context)); } /* MD5 basic transformation. Transforms state based on block. */ static void __md5_Transform(state, block) uint32_t state[4]; const unsigned char block[64]; { uint32_t a, b, c, d, x[16]; #if MD5_SIZE_OVER_SPEED > 1 uint32_t temp; const char *ps; static const char S[] = { 7, 12, 17, 22, 5, 9, 14, 20, 4, 11, 16, 23, 6, 10, 15, 21 }; #endif /* MD5_SIZE_OVER_SPEED > 1 */ #if MD5_SIZE_OVER_SPEED > 0 const uint32_t *pc; const char *pp; int i; static const uint32_t C[] = { /* round 1 */ 0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee, 0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501, 0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be, 0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821, /* round 2 */ 0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa, 0xd62f105d, 0x2441453, 0xd8a1e681, 0xe7d3fbc8, 0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed, 0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a, /* round 3 */ 0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c, 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70, 0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x4881d05, 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665, /* round 4 */ 0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039, 0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1, 0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1, 0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391 }; static const char P[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 1 */ 1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, /* 2 */ 5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2, /* 3 */ 0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9 /* 4 */ }; #endif /* MD5_SIZE_OVER_SPEED > 0 */ __md5_Decode(x, block, 64); a = state[0]; b = state[1]; c = state[2]; d = state[3]; #if MD5_SIZE_OVER_SPEED > 2 pc = C; pp = P; ps = S - 4; for(i = 0; i < 64; i++) { if((i & 0x0f) == 0) ps += 4; temp = a; switch (i >> 4) { case 0: temp += F(b, c, d); break; case 1: temp += G(b, c, d); break; case 2: temp += H(b, c, d); break; case 3: temp += I(b, c, d); break; } temp += x[(int)(*pp++)] + *pc++; temp = ROTATE_LEFT(temp, ps[i & 3]); temp += b; a = d; d = c; c = b; b = temp; } #elif MD5_SIZE_OVER_SPEED > 1 pc = C; pp = P; ps = S; /* Round 1 */ for(i = 0; i < 16; i++) { FF(a, b, c, d, x[(int)(*pp++)], ps[i & 0x3], *pc++); temp = d; d = c; c = b; b = a; a = temp; } /* Round 2 */ ps += 4; for(; i < 32; i++) { GG(a, b, c, d, x[(int)(*pp++)], ps[i & 0x3], *pc++); temp = d; d = c; c = b; b = a; a = temp; } /* Round 3 */ ps += 4; for(; i < 48; i++) { HH(a, b, c, d, x[(int)(*pp++)], ps[i & 0x3], *pc++); temp = d; d = c; c = b; b = a; a = temp; } /* Round 4 */ ps += 4; for(; i < 64; i++) { II(a, b, c, d, x[(int)(*pp++)], ps[i & 0x3], *pc++); temp = d; d = c; c = b; b = a; a = temp; } #elif MD5_SIZE_OVER_SPEED > 0 pc = C; pp = P; /* Round 1 */ for(i = 0; i < 4; i++) { FF(a, b, c, d, x[(int)(*pp++)], 7, *pc++); FF(d, a, b, c, x[(int)(*pp++)], 12, *pc++); FF(c, d, a, b, x[(int)(*pp++)], 17, *pc++); FF(b, c, d, a, x[(int)(*pp++)], 22, *pc++); } /* Round 2 */ for(i = 0; i < 4; i++) { GG(a, b, c, d, x[(int)(*pp++)], 5, *pc++); GG(d, a, b, c, x[(int)(*pp++)], 9, *pc++); GG(c, d, a, b, x[(int)(*pp++)], 14, *pc++); GG(b, c, d, a, x[(int)(*pp++)], 20, *pc++); } /* Round 3 */ for(i = 0; i < 4; i++) { HH(a, b, c, d, x[(int)(*pp++)], 4, *pc++); HH(d, a, b, c, x[(int)(*pp++)], 11, *pc++); HH(c, d, a, b, x[(int)(*pp++)], 16, *pc++); HH(b, c, d, a, x[(int)(*pp++)], 23, *pc++); } /* Round 4 */ for(i = 0; i < 4; i++) { II(a, b, c, d, x[(int)(*pp++)], 6, *pc++); II(d, a, b, c, x[(int)(*pp++)], 10, *pc++); II(c, d, a, b, x[(int)(*pp++)], 15, *pc++); II(b, c, d, a, x[(int)(*pp++)], 21, *pc++); } #else /* Round 1 */ #define S11 7 #define S12 12 #define S13 17 #define S14 22 FF(a, b, c, d, x[0], S11, 0xd76aa478); /* 1 */ FF(d, a, b, c, x[1], S12, 0xe8c7b756); /* 2 */ FF(c, d, a, b, x[2], S13, 0x242070db); /* 3 */ FF(b, c, d, a, x[3], S14, 0xc1bdceee); /* 4 */ FF(a, b, c, d, x[4], S11, 0xf57c0faf); /* 5 */ FF(d, a, b, c, x[5], S12, 0x4787c62a); /* 6 */ FF(c, d, a, b, x[6], S13, 0xa8304613); /* 7 */ FF(b, c, d, a, x[7], S14, 0xfd469501); /* 8 */ FF(a, b, c, d, x[8], S11, 0x698098d8); /* 9 */ FF(d, a, b, c, x[9], S12, 0x8b44f7af); /* 10 */ FF(c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */ FF(b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */ FF(a, b, c, d, x[12], S11, 0x6b901122); /* 13 */ FF(d, a, b, c, x[13], S12, 0xfd987193); /* 14 */ FF(c, d, a, b, x[14], S13, 0xa679438e); /* 15 */ FF(b, c, d, a, x[15], S14, 0x49b40821); /* 16 */ /* Round 2 */ #define S21 5 #define S22 9 #define S23 14 #define S24 20 GG(a, b, c, d, x[1], S21, 0xf61e2562); /* 17 */ GG(d, a, b, c, x[6], S22, 0xc040b340); /* 18 */ GG(c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */ GG(b, c, d, a, x[0], S24, 0xe9b6c7aa); /* 20 */ GG(a, b, c, d, x[5], S21, 0xd62f105d); /* 21 */ GG(d, a, b, c, x[10], S22, 0x2441453); /* 22 */ GG(c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */ GG(b, c, d, a, x[4], S24, 0xe7d3fbc8); /* 24 */ GG(a, b, c, d, x[9], S21, 0x21e1cde6); /* 25 */ GG(d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */ GG(c, d, a, b, x[3], S23, 0xf4d50d87); /* 27 */ GG(b, c, d, a, x[8], S24, 0x455a14ed); /* 28 */ GG(a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */ GG(d, a, b, c, x[2], S22, 0xfcefa3f8); /* 30 */ GG(c, d, a, b, x[7], S23, 0x676f02d9); /* 31 */ GG(b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */ /* Round 3 */ #define S31 4 #define S32 11 #define S33 16 #define S34 23 HH(a, b, c, d, x[5], S31, 0xfffa3942); /* 33 */ HH(d, a, b, c, x[8], S32, 0x8771f681); /* 34 */ HH(c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */ HH(b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */ HH(a, b, c, d, x[1], S31, 0xa4beea44); /* 37 */ HH(d, a, b, c, x[4], S32, 0x4bdecfa9); /* 38 */ HH(c, d, a, b, x[7], S33, 0xf6bb4b60); /* 39 */ HH(b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */ HH(a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */ HH(d, a, b, c, x[0], S32, 0xeaa127fa); /* 42 */ HH(c, d, a, b, x[3], S33, 0xd4ef3085); /* 43 */ HH(b, c, d, a, x[6], S34, 0x4881d05); /* 44 */ HH(a, b, c, d, x[9], S31, 0xd9d4d039); /* 45 */ HH(d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */ HH(c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */ HH(b, c, d, a, x[2], S34, 0xc4ac5665); /* 48 */ /* Round 4 */ #define S41 6 #define S42 10 #define S43 15 #define S44 21 II(a, b, c, d, x[0], S41, 0xf4292244); /* 49 */ II(d, a, b, c, x[7], S42, 0x432aff97); /* 50 */ II(c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */ II(b, c, d, a, x[5], S44, 0xfc93a039); /* 52 */ II(a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */ II(d, a, b, c, x[3], S42, 0x8f0ccc92); /* 54 */ II(c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */ II(b, c, d, a, x[1], S44, 0x85845dd1); /* 56 */ II(a, b, c, d, x[8], S41, 0x6fa87e4f); /* 57 */ II(d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */ II(c, d, a, b, x[6], S43, 0xa3014314); /* 59 */ II(b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */ II(a, b, c, d, x[4], S41, 0xf7537e82); /* 61 */ II(d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */ II(c, d, a, b, x[2], S43, 0x2ad7d2bb); /* 63 */ II(b, c, d, a, x[9], S44, 0xeb86d391); /* 64 */ #endif state[0] += a; state[1] += b; state[2] += c; state[3] += d; /* Zeroize sensitive information. */ memset(x, 0, sizeof(x)); } static void __md5_to64(char *s, unsigned long v, int n) { while(--n >= 0) { *s++ = __md5_itoa64[v & 0x3f]; v >>= 6; } } /* * UNIX password * * Use MD5 for what it is best at... */ static char * __md5_crypt(const char *pw, const char *salt) { /* Static stuff */ static const char *sp, *ep; static char passwd[120], *p; char final[17]; /* final[16] exists only to aid in looping */ int sl, pl, i, __md5__magic_len, pw_len; struct MD5Context ctx, ctx1; unsigned long l; /* Refine the Salt first */ sp = salt; /* If it starts with the magic string, then skip that */ __md5__magic_len = strlen(__md5__magic); if(!strncmp(sp, __md5__magic, __md5__magic_len)) sp += __md5__magic_len; /* It stops at the first '$', max 8 chars */ for(ep = sp; *ep && *ep != '$' && ep < (sp + 8); ep++) continue; /* get the length of the true salt */ sl = ep - sp; __md5_Init(&ctx); /* The password first, since that is what is most unknown */ pw_len = strlen(pw); __md5_Update(&ctx, pw, pw_len); /* Then our magic string */ __md5_Update(&ctx, __md5__magic, __md5__magic_len); /* Then the raw salt */ __md5_Update(&ctx, sp, sl); /* Then just as many characters of the MD5(pw,salt,pw) */ __md5_Init(&ctx1); __md5_Update(&ctx1, pw, pw_len); __md5_Update(&ctx1, sp, sl); __md5_Update(&ctx1, pw, pw_len); __md5_Final(final, &ctx1); for(pl = pw_len; pl > 0; pl -= 16) __md5_Update(&ctx, final, pl > 16 ? 16 : pl); /* Don't leave anything around in vm they could use. */ memset(final, 0, sizeof final); /* Then something really weird... */ for(i = pw_len; i; i >>= 1) { __md5_Update(&ctx, ((i & 1) ? final : pw), 1); } /* Now make the output string */ strcpy(passwd, __md5__magic); strncat(passwd, sp, sl); strcat(passwd, "$"); __md5_Final(final, &ctx); /* * and now, just to make sure things don't run too fast * On a 60 Mhz Pentium this takes 34 msec, so you would * need 30 seconds to build a 1000 entry dictionary... */ for(i = 0; i < 1000; i++) { __md5_Init(&ctx1); if(i & 1) __md5_Update(&ctx1, pw, pw_len); else __md5_Update(&ctx1, final, 16); if(i % 3) __md5_Update(&ctx1, sp, sl); if(i % 7) __md5_Update(&ctx1, pw, pw_len); if(i & 1) __md5_Update(&ctx1, final, 16); else __md5_Update(&ctx1, pw, pw_len); __md5_Final(final, &ctx1); } p = passwd + strlen(passwd); final[16] = final[5]; for(i = 0; i < 5; i++) { l = (final[i] << 16) | (final[i + 6] << 8) | final[i + 12]; __md5_to64(p, l, 4); p += 4; } l = final[11]; __md5_to64(p, l, 2); p += 2; *p = '\0'; /* Don't leave anything around in vm they could use. */ memset(final, 0, sizeof final); return passwd; } #endif /* NEED_CRYPT */