solanum-vs-hackint-and-char.../librb/src/kqueue.c
2019-09-15 11:28:48 +01:00

409 lines
8.1 KiB
C

/*
* ircd-ratbox: A slightly useful ircd.
* kqueue.c: FreeBSD kqueue compatible network routines.
*
* Copyright (C) 1990 Jarkko Oikarinen and University of Oulu, Co Center
* Copyright (C) 1996-2002 Hybrid Development Team
* Copyright (C) 2001 Adrian Chadd <adrian@creative.net.au>
* Copyright (C) 2002-2005 ircd-ratbox development team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301
* USA
*
*/
#include <librb_config.h>
#include <rb_lib.h>
#include <commio-int.h>
#include <event-int.h>
#if defined(HAVE_SYS_EVENT_H) && (HAVE_KEVENT)
#include <sys/event.h>
/* jlemon goofed up and didn't add EV_SET until fbsd 4.3 */
#ifndef EV_SET
#define EV_SET(kevp, a, b, c, d, e, f) do { \
(kevp)->ident = (a); \
(kevp)->filter = (b); \
(kevp)->flags = (c); \
(kevp)->fflags = (d); \
(kevp)->data = (e); \
(kevp)->udata = (f); \
} while(0)
#endif
#ifdef EVFILT_TIMER
#define KQUEUE_SCHED_EVENT
#endif
static void kq_update_events(rb_fde_t *, short, PF *);
static int kq;
static struct timespec zero_timespec;
static struct kevent *kqlst; /* kevent buffer */
static struct kevent *kqout; /* kevent output buffer */
static int kqmax; /* max structs to buffer */
static int kqoff; /* offset into the buffer */
int
rb_setup_fd_kqueue(rb_fde_t *F)
{
return 0;
}
static void
kq_update_events(rb_fde_t *F, short filter, PF * handler)
{
PF *cur_handler;
int kep_flags;
switch (filter)
{
case EVFILT_READ:
cur_handler = F->read_handler;
break;
case EVFILT_WRITE:
cur_handler = F->write_handler;
break;
default:
/* XXX bad! -- adrian */
return;
break;
}
if((cur_handler == NULL && handler != NULL) || (cur_handler != NULL && handler == NULL))
{
struct kevent *kep;
kep = kqlst + kqoff;
if(handler != NULL)
{
kep_flags = EV_ADD | EV_ONESHOT;
}
else
{
kep_flags = EV_DELETE;
}
EV_SET(kep, F->fd, filter, kep_flags, 0, 0, F);
if(++kqoff == kqmax)
{
int ret, i;
/* Add them one at a time, because there may be
* already closed fds in it. The kernel will try
* to report invalid fds in the output; if there
* is no space, it silently stops processing the
* array at that point. We cannot give output space
* because that would also return events we cannot
* process at this point.
*/
for(i = 0; i < kqoff; i++)
{
ret = kevent(kq, kqlst + i, 1, NULL, 0, &zero_timespec);
/* jdc -- someone needs to do error checking... */
/* EBADF is normal here -- jilles */
if(ret == -1 && errno != EBADF)
rb_lib_log("kq_update_events(): kevent(): %s",
strerror(errno));
}
kqoff = 0;
}
}
}
/* XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX */
/* Public functions */
/*
* rb_init_netio
*
* This is a needed exported function which will be called to initialise
* the network loop code.
*/
int
rb_init_netio_kqueue(void)
{
kq = kqueue();
if(kq < 0)
{
return errno;
}
kqmax = getdtablesize();
kqlst = rb_malloc(sizeof(struct kevent) * kqmax);
kqout = rb_malloc(sizeof(struct kevent) * kqmax);
rb_open(kq, RB_FD_UNKNOWN, "kqueue fd");
zero_timespec.tv_sec = 0;
zero_timespec.tv_nsec = 0;
return 0;
}
/*
* rb_setselect
*
* This is a needed exported function which will be called to register
* and deregister interest in a pending IO state for a given FD.
*/
void
rb_setselect_kqueue(rb_fde_t *F, unsigned int type, PF * handler, void *client_data)
{
lrb_assert(IsFDOpen(F));
if(type & RB_SELECT_READ)
{
kq_update_events(F, EVFILT_READ, handler);
F->read_handler = handler;
F->read_data = client_data;
}
if(type & RB_SELECT_WRITE)
{
kq_update_events(F, EVFILT_WRITE, handler);
F->write_handler = handler;
F->write_data = client_data;
}
}
/*
* Check all connections for new connections and input data that is to be
* processed. Also check for connections with data queued and whether we can
* write it out.
*/
/*
* rb_select
*
* Called to do the new-style IO, courtesy of squid (like most of this
* new IO code). This routine handles the stuff we've hidden in
* rb_setselect and fd_table[] and calls callbacks for IO ready
* events.
*/
int
rb_select_kqueue(long delay)
{
int num, i;
struct timespec poll_time;
struct timespec *pt;
rb_fde_t *F;
if(delay < 0)
{
pt = NULL;
}
else
{
pt = &poll_time;
poll_time.tv_sec = delay / 1000;
poll_time.tv_nsec = (delay % 1000) * 1000000;
}
for(;;)
{
num = kevent(kq, kqlst, kqoff, kqout, kqmax, pt);
kqoff = 0;
if(num >= 0)
break;
if(rb_ignore_errno(errno))
break;
rb_set_time();
return RB_ERROR;
/* NOTREACHED */
}
rb_set_time();
if(num == 0)
return RB_OK; /* No error.. */
for(i = 0; i < num; i++)
{
PF *hdl = NULL;
if(kqout[i].flags & EV_ERROR)
{
errno = kqout[i].data;
/* XXX error == bad! -- adrian */
continue; /* XXX! */
}
switch (kqout[i].filter)
{
case EVFILT_READ:
F = kqout[i].udata;
if((hdl = F->read_handler) != NULL)
{
F->read_handler = NULL;
hdl(F, F->read_data);
}
break;
case EVFILT_WRITE:
F = kqout[i].udata;
if((hdl = F->write_handler) != NULL)
{
F->write_handler = NULL;
hdl(F, F->write_data);
}
break;
#if defined(EVFILT_TIMER)
case EVFILT_TIMER:
rb_run_one_event(kqout[i].udata);
break;
#endif
default:
/* Bad! -- adrian */
break;
}
}
return RB_OK;
}
#if defined(KQUEUE_SCHED_EVENT)
static int can_do_event = 0;
int
rb_kqueue_supports_event(void)
{
struct kevent kv;
struct timespec ts;
int xkq;
if(can_do_event == 1)
return 1;
if(can_do_event == -1)
return 0;
xkq = kqueue();
ts.tv_sec = 0;
ts.tv_nsec = 1000;
EV_SET(&kv, (uintptr_t)0x0, EVFILT_TIMER, EV_ADD | EV_ONESHOT, 0, 1, 0);
if(kevent(xkq, &kv, 1, NULL, 0, NULL) < 0)
{
can_do_event = -1;
close(xkq);
return 0;
}
close(xkq);
can_do_event = 1;
return 1;
}
int
rb_kqueue_sched_event(struct ev_entry *event, int when)
{
struct kevent kev;
int kep_flags;
kep_flags = EV_ADD;
if(event->frequency == 0)
kep_flags |= EV_ONESHOT;
EV_SET(&kev, (uintptr_t)event, EVFILT_TIMER, kep_flags, 0, when * 1000, event);
if(kevent(kq, &kev, 1, NULL, 0, NULL) < 0)
return 0;
return 1;
}
void
rb_kqueue_unsched_event(struct ev_entry *event)
{
struct kevent kev;
EV_SET(&kev, (uintptr_t)event, EVFILT_TIMER, EV_DELETE, 0, 0, event);
kevent(kq, &kev, 1, NULL, 0, NULL);
}
void
rb_kqueue_init_event(void)
{
return;
}
#endif /* KQUEUE_SCHED_EVENT */
#else /* kqueue not supported */
int
rb_init_netio_kqueue(void)
{
errno = ENOSYS;
return -1;
}
void
rb_setselect_kqueue(rb_fde_t *F __attribute__((unused)), unsigned int type __attribute__((unused)), PF * handler __attribute__((unused)), void *client_data __attribute__((unused)))
{
errno = ENOSYS;
return;
}
int
rb_select_kqueue(long delay __attribute__((unused)))
{
errno = ENOSYS;
return -1;
}
int
rb_setup_fd_kqueue(rb_fde_t *F __attribute__((unused)))
{
errno = ENOSYS;
return -1;
}
#endif
#if !defined(HAVE_KEVENT) || !defined(KQUEUE_SCHED_EVENT)
void
rb_kqueue_init_event(void)
{
return;
}
int
rb_kqueue_sched_event(struct ev_entry *event __attribute__((unused)), int when __attribute__((unused)))
{
errno = ENOSYS;
return -1;
}
void
rb_kqueue_unsched_event(struct ev_entry *event __attribute__((unused)))
{
return;
}
int
rb_kqueue_supports_event(void)
{
errno = ENOSYS;
return 0;
}
#endif /* !HAVE_KEVENT || !KQUEUE_SCHED_EVENT */