1505 lines
39 KiB
C
1505 lines
39 KiB
C
/*
|
|
* crypt.c: Implements unix style crypt() for platforms that don't have it
|
|
* This version has both an md5 and des crypt.
|
|
* This was pretty much catted together from uclibc.
|
|
*/
|
|
|
|
/*
|
|
* crypt() for uClibc
|
|
*
|
|
* Copyright (C) 2000 by Lineo, inc. and Erik Andersen
|
|
* Copyright (C) 2000,2001 by Erik Andersen <andersen@uclibc.org>
|
|
* Written by Erik Andersen <andersen@uclibc.org>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU Library General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or (at your
|
|
* option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU Library General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#include <libratbox_config.h>
|
|
#include <ratbox_lib.h>
|
|
|
|
|
|
#ifndef NEED_CRYPT
|
|
extern char *crypt(const char *key, const char *salt);
|
|
|
|
char *
|
|
rb_crypt(const char *key, const char *salt)
|
|
{
|
|
return (crypt(key, salt));
|
|
}
|
|
#else
|
|
|
|
static char *__md5_crypt(const char *pw, const char *salt);
|
|
static char *__des_crypt(const char *pw, const char *salt);
|
|
|
|
char *
|
|
rb_crypt(const char *key, const char *salt)
|
|
{
|
|
/* First, check if we are supposed to be using the MD5 replacement
|
|
* instead of DES... */
|
|
if(salt[0] == '$' && salt[1] == '1' && salt[2] == '$')
|
|
return __md5_crypt(key, salt);
|
|
else
|
|
return __des_crypt(key, salt);
|
|
}
|
|
|
|
/* Here is the des crypt() stuff */
|
|
|
|
/*
|
|
* FreeSec: libcrypt for NetBSD
|
|
*
|
|
* Copyright (c) 1994 David Burren
|
|
* All rights reserved.
|
|
*
|
|
* Adapted for FreeBSD-2.0 by Geoffrey M. Rehmet
|
|
* this file should now *only* export crypt(), in order to make
|
|
* binaries of libcrypt exportable from the USA
|
|
*
|
|
* Adapted for FreeBSD-4.0 by Mark R V Murray
|
|
* this file should now *only* export crypt_des(), in order to make
|
|
* a module that can be optionally included in libcrypt.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the author nor the names of other contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* This is an original implementation of the DES and the crypt(3) interfaces
|
|
* by David Burren <davidb@werj.com.au>.
|
|
*
|
|
* An excellent reference on the underlying algorithm (and related
|
|
* algorithms) is:
|
|
*
|
|
* B. Schneier, Applied Cryptography: protocols, algorithms,
|
|
* and source code in C, John Wiley & Sons, 1994.
|
|
*
|
|
* Note that in that book's description of DES the lookups for the initial,
|
|
* pbox, and final permutations are inverted (this has been brought to the
|
|
* attention of the author). A list of errata for this book has been
|
|
* posted to the sci.crypt newsgroup by the author and is available for FTP.
|
|
*
|
|
* ARCHITECTURE ASSUMPTIONS:
|
|
* It is assumed that the 8-byte arrays passed by reference can be
|
|
* addressed as arrays of uint32_t's (ie. the CPU is not picky about
|
|
* alignment).
|
|
*/
|
|
|
|
|
|
/* Re-entrantify me -- all this junk needs to be in
|
|
* struct crypt_data to make this really reentrant... */
|
|
static uint8_t inv_key_perm[64];
|
|
static uint8_t inv_comp_perm[56];
|
|
static uint8_t u_sbox[8][64];
|
|
static uint8_t un_pbox[32];
|
|
static uint32_t en_keysl[16], en_keysr[16];
|
|
static uint32_t de_keysl[16], de_keysr[16];
|
|
static uint32_t ip_maskl[8][256], ip_maskr[8][256];
|
|
static uint32_t fp_maskl[8][256], fp_maskr[8][256];
|
|
static uint32_t key_perm_maskl[8][128], key_perm_maskr[8][128];
|
|
static uint32_t comp_maskl[8][128], comp_maskr[8][128];
|
|
static uint32_t saltbits;
|
|
static uint32_t old_salt;
|
|
static uint32_t old_rawkey0, old_rawkey1;
|
|
|
|
|
|
/* Static stuff that stays resident and doesn't change after
|
|
* being initialized, and therefore doesn't need to be made
|
|
* reentrant. */
|
|
static uint8_t init_perm[64], final_perm[64];
|
|
static uint8_t m_sbox[4][4096];
|
|
static uint32_t psbox[4][256];
|
|
|
|
|
|
|
|
|
|
/* A pile of data */
|
|
static const uint8_t ascii64[] = "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
|
|
|
|
static const uint8_t IP[64] = {
|
|
58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
|
|
62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
|
|
57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
|
|
61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
|
|
};
|
|
|
|
static const uint8_t key_perm[56] = {
|
|
57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
|
|
10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
|
|
63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
|
|
14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
|
|
};
|
|
|
|
static const uint8_t key_shifts[16] = {
|
|
1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
|
|
};
|
|
|
|
static const uint8_t comp_perm[48] = {
|
|
14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
|
|
23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
|
|
41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
|
|
44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
|
|
};
|
|
|
|
/*
|
|
* No E box is used, as it's replaced by some ANDs, shifts, and ORs.
|
|
*/
|
|
|
|
static const uint8_t sbox[8][64] = {
|
|
{
|
|
14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
|
|
0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
|
|
4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
|
|
15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13},
|
|
{
|
|
15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
|
|
3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
|
|
0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
|
|
13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9},
|
|
{
|
|
10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
|
|
13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
|
|
13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
|
|
1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12},
|
|
{
|
|
7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
|
|
13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
|
|
10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
|
|
3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14},
|
|
{
|
|
2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
|
|
14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
|
|
4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
|
|
11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3},
|
|
{
|
|
12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
|
|
10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
|
|
9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
|
|
4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13},
|
|
{
|
|
4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
|
|
13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
|
|
1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
|
|
6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12},
|
|
{
|
|
13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
|
|
1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
|
|
7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
|
|
2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11}
|
|
};
|
|
|
|
static const uint8_t pbox[32] = {
|
|
16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
|
|
2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
|
|
};
|
|
|
|
static const uint32_t bits32[32] = {
|
|
0x80000000, 0x40000000, 0x20000000, 0x10000000,
|
|
0x08000000, 0x04000000, 0x02000000, 0x01000000,
|
|
0x00800000, 0x00400000, 0x00200000, 0x00100000,
|
|
0x00080000, 0x00040000, 0x00020000, 0x00010000,
|
|
0x00008000, 0x00004000, 0x00002000, 0x00001000,
|
|
0x00000800, 0x00000400, 0x00000200, 0x00000100,
|
|
0x00000080, 0x00000040, 0x00000020, 0x00000010,
|
|
0x00000008, 0x00000004, 0x00000002, 0x00000001
|
|
};
|
|
|
|
static const uint8_t bits8[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 };
|
|
|
|
static const uint32_t *bits28, *bits24;
|
|
|
|
|
|
static int
|
|
ascii_to_bin(char ch)
|
|
{
|
|
if(ch > 'z')
|
|
return (0);
|
|
if(ch >= 'a')
|
|
return (ch - 'a' + 38);
|
|
if(ch > 'Z')
|
|
return (0);
|
|
if(ch >= 'A')
|
|
return (ch - 'A' + 12);
|
|
if(ch > '9')
|
|
return (0);
|
|
if(ch >= '.')
|
|
return (ch - '.');
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
des_init(void)
|
|
{
|
|
int i, j, b, k, inbit, obit;
|
|
uint32_t *p, *il, *ir, *fl, *fr;
|
|
static int des_initialised = 0;
|
|
|
|
if(des_initialised == 1)
|
|
return;
|
|
|
|
old_rawkey0 = old_rawkey1 = 0L;
|
|
saltbits = 0L;
|
|
old_salt = 0L;
|
|
bits24 = (bits28 = bits32 + 4) + 4;
|
|
|
|
/*
|
|
* Invert the S-boxes, reordering the input bits.
|
|
*/
|
|
for(i = 0; i < 8; i++)
|
|
for(j = 0; j < 64; j++)
|
|
{
|
|
b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf);
|
|
u_sbox[i][j] = sbox[i][b];
|
|
}
|
|
|
|
/*
|
|
* Convert the inverted S-boxes into 4 arrays of 8 bits.
|
|
* Each will handle 12 bits of the S-box input.
|
|
*/
|
|
for(b = 0; b < 4; b++)
|
|
for(i = 0; i < 64; i++)
|
|
for(j = 0; j < 64; j++)
|
|
m_sbox[b][(i << 6) | j] =
|
|
(uint8_t)((u_sbox[(b << 1)][i] << 4) |
|
|
u_sbox[(b << 1) + 1][j]);
|
|
|
|
/*
|
|
* Set up the initial & final permutations into a useful form, and
|
|
* initialise the inverted key permutation.
|
|
*/
|
|
for(i = 0; i < 64; i++)
|
|
{
|
|
init_perm[final_perm[i] = IP[i] - 1] = (uint8_t)i;
|
|
inv_key_perm[i] = 255;
|
|
}
|
|
|
|
/*
|
|
* Invert the key permutation and initialise the inverted key
|
|
* compression permutation.
|
|
*/
|
|
for(i = 0; i < 56; i++)
|
|
{
|
|
inv_key_perm[key_perm[i] - 1] = (uint8_t)i;
|
|
inv_comp_perm[i] = 255;
|
|
}
|
|
|
|
/*
|
|
* Invert the key compression permutation.
|
|
*/
|
|
for(i = 0; i < 48; i++)
|
|
{
|
|
inv_comp_perm[comp_perm[i] - 1] = (uint8_t)i;
|
|
}
|
|
|
|
/*
|
|
* Set up the OR-mask arrays for the initial and final permutations,
|
|
* and for the key initial and compression permutations.
|
|
*/
|
|
for(k = 0; k < 8; k++)
|
|
{
|
|
for(i = 0; i < 256; i++)
|
|
{
|
|
*(il = &ip_maskl[k][i]) = 0L;
|
|
*(ir = &ip_maskr[k][i]) = 0L;
|
|
*(fl = &fp_maskl[k][i]) = 0L;
|
|
*(fr = &fp_maskr[k][i]) = 0L;
|
|
for(j = 0; j < 8; j++)
|
|
{
|
|
inbit = 8 * k + j;
|
|
if(i & bits8[j])
|
|
{
|
|
if((obit = init_perm[inbit]) < 32)
|
|
*il |= bits32[obit];
|
|
else
|
|
*ir |= bits32[obit - 32];
|
|
if((obit = final_perm[inbit]) < 32)
|
|
*fl |= bits32[obit];
|
|
else
|
|
*fr |= bits32[obit - 32];
|
|
}
|
|
}
|
|
}
|
|
for(i = 0; i < 128; i++)
|
|
{
|
|
*(il = &key_perm_maskl[k][i]) = 0L;
|
|
*(ir = &key_perm_maskr[k][i]) = 0L;
|
|
for(j = 0; j < 7; j++)
|
|
{
|
|
inbit = 8 * k + j;
|
|
if(i & bits8[j + 1])
|
|
{
|
|
if((obit = inv_key_perm[inbit]) == 255)
|
|
continue;
|
|
if(obit < 28)
|
|
*il |= bits28[obit];
|
|
else
|
|
*ir |= bits28[obit - 28];
|
|
}
|
|
}
|
|
*(il = &comp_maskl[k][i]) = 0L;
|
|
*(ir = &comp_maskr[k][i]) = 0L;
|
|
for(j = 0; j < 7; j++)
|
|
{
|
|
inbit = 7 * k + j;
|
|
if(i & bits8[j + 1])
|
|
{
|
|
if((obit = inv_comp_perm[inbit]) == 255)
|
|
continue;
|
|
if(obit < 24)
|
|
*il |= bits24[obit];
|
|
else
|
|
*ir |= bits24[obit - 24];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Invert the P-box permutation, and convert into OR-masks for
|
|
* handling the output of the S-box arrays setup above.
|
|
*/
|
|
for(i = 0; i < 32; i++)
|
|
un_pbox[pbox[i] - 1] = (uint8_t)i;
|
|
|
|
for(b = 0; b < 4; b++)
|
|
for(i = 0; i < 256; i++)
|
|
{
|
|
*(p = &psbox[b][i]) = 0L;
|
|
for(j = 0; j < 8; j++)
|
|
{
|
|
if(i & bits8[j])
|
|
*p |= bits32[un_pbox[8 * b + j]];
|
|
}
|
|
}
|
|
|
|
des_initialised = 1;
|
|
}
|
|
|
|
|
|
static void
|
|
setup_salt(long salt)
|
|
{
|
|
uint32_t obit, saltbit;
|
|
int i;
|
|
|
|
if(salt == (long)old_salt)
|
|
return;
|
|
old_salt = salt;
|
|
|
|
saltbits = 0L;
|
|
saltbit = 1;
|
|
obit = 0x800000;
|
|
for(i = 0; i < 24; i++)
|
|
{
|
|
if(salt & saltbit)
|
|
saltbits |= obit;
|
|
saltbit <<= 1;
|
|
obit >>= 1;
|
|
}
|
|
}
|
|
|
|
|
|
static int
|
|
des_setkey(const char *key)
|
|
{
|
|
uint32_t k0, k1, rawkey0, rawkey1;
|
|
int shifts, round;
|
|
|
|
des_init();
|
|
|
|
rawkey0 = ntohl(*(const uint32_t *)key);
|
|
rawkey1 = ntohl(*(const uint32_t *)(key + 4));
|
|
|
|
if((rawkey0 | rawkey1) && rawkey0 == old_rawkey0 && rawkey1 == old_rawkey1)
|
|
{
|
|
/*
|
|
* Already setup for this key.
|
|
* This optimisation fails on a zero key (which is weak and
|
|
* has bad parity anyway) in order to simplify the starting
|
|
* conditions.
|
|
*/
|
|
return (0);
|
|
}
|
|
old_rawkey0 = rawkey0;
|
|
old_rawkey1 = rawkey1;
|
|
|
|
/*
|
|
* Do key permutation and split into two 28-bit subkeys.
|
|
*/
|
|
k0 = key_perm_maskl[0][rawkey0 >> 25]
|
|
| key_perm_maskl[1][(rawkey0 >> 17) & 0x7f]
|
|
| key_perm_maskl[2][(rawkey0 >> 9) & 0x7f]
|
|
| key_perm_maskl[3][(rawkey0 >> 1) & 0x7f]
|
|
| key_perm_maskl[4][rawkey1 >> 25]
|
|
| key_perm_maskl[5][(rawkey1 >> 17) & 0x7f]
|
|
| key_perm_maskl[6][(rawkey1 >> 9) & 0x7f]
|
|
| key_perm_maskl[7][(rawkey1 >> 1) & 0x7f];
|
|
k1 = key_perm_maskr[0][rawkey0 >> 25]
|
|
| key_perm_maskr[1][(rawkey0 >> 17) & 0x7f]
|
|
| key_perm_maskr[2][(rawkey0 >> 9) & 0x7f]
|
|
| key_perm_maskr[3][(rawkey0 >> 1) & 0x7f]
|
|
| key_perm_maskr[4][rawkey1 >> 25]
|
|
| key_perm_maskr[5][(rawkey1 >> 17) & 0x7f]
|
|
| key_perm_maskr[6][(rawkey1 >> 9) & 0x7f]
|
|
| key_perm_maskr[7][(rawkey1 >> 1) & 0x7f];
|
|
/*
|
|
* Rotate subkeys and do compression permutation.
|
|
*/
|
|
shifts = 0;
|
|
for(round = 0; round < 16; round++)
|
|
{
|
|
uint32_t t0, t1;
|
|
|
|
shifts += key_shifts[round];
|
|
|
|
t0 = (k0 << shifts) | (k0 >> (28 - shifts));
|
|
t1 = (k1 << shifts) | (k1 >> (28 - shifts));
|
|
|
|
de_keysl[15 - round] =
|
|
en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f]
|
|
| comp_maskl[1][(t0 >> 14) & 0x7f]
|
|
| comp_maskl[2][(t0 >> 7) & 0x7f]
|
|
| comp_maskl[3][t0 & 0x7f]
|
|
| comp_maskl[4][(t1 >> 21) & 0x7f]
|
|
| comp_maskl[5][(t1 >> 14) & 0x7f]
|
|
| comp_maskl[6][(t1 >> 7) & 0x7f] | comp_maskl[7][t1 & 0x7f];
|
|
|
|
de_keysr[15 - round] =
|
|
en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f]
|
|
| comp_maskr[1][(t0 >> 14) & 0x7f]
|
|
| comp_maskr[2][(t0 >> 7) & 0x7f]
|
|
| comp_maskr[3][t0 & 0x7f]
|
|
| comp_maskr[4][(t1 >> 21) & 0x7f]
|
|
| comp_maskr[5][(t1 >> 14) & 0x7f]
|
|
| comp_maskr[6][(t1 >> 7) & 0x7f] | comp_maskr[7][t1 & 0x7f];
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
|
|
static int
|
|
do_des(uint32_t l_in, uint32_t r_in, uint32_t *l_out, uint32_t *r_out, int count)
|
|
{
|
|
/*
|
|
* l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format.
|
|
*/
|
|
uint32_t l, r, *kl, *kr, *kl1, *kr1;
|
|
uint32_t f, r48l, r48r;
|
|
int round;
|
|
|
|
if(count == 0)
|
|
{
|
|
return (1);
|
|
}
|
|
else if(count > 0)
|
|
{
|
|
/*
|
|
* Encrypting
|
|
*/
|
|
kl1 = en_keysl;
|
|
kr1 = en_keysr;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* Decrypting
|
|
*/
|
|
count = -count;
|
|
kl1 = de_keysl;
|
|
kr1 = de_keysr;
|
|
}
|
|
|
|
/*
|
|
* Do initial permutation (IP).
|
|
*/
|
|
l = ip_maskl[0][l_in >> 24]
|
|
| ip_maskl[1][(l_in >> 16) & 0xff]
|
|
| ip_maskl[2][(l_in >> 8) & 0xff]
|
|
| ip_maskl[3][l_in & 0xff]
|
|
| ip_maskl[4][r_in >> 24]
|
|
| ip_maskl[5][(r_in >> 16) & 0xff]
|
|
| ip_maskl[6][(r_in >> 8) & 0xff] | ip_maskl[7][r_in & 0xff];
|
|
r = ip_maskr[0][l_in >> 24]
|
|
| ip_maskr[1][(l_in >> 16) & 0xff]
|
|
| ip_maskr[2][(l_in >> 8) & 0xff]
|
|
| ip_maskr[3][l_in & 0xff]
|
|
| ip_maskr[4][r_in >> 24]
|
|
| ip_maskr[5][(r_in >> 16) & 0xff]
|
|
| ip_maskr[6][(r_in >> 8) & 0xff] | ip_maskr[7][r_in & 0xff];
|
|
|
|
while(count--)
|
|
{
|
|
/*
|
|
* Do each round.
|
|
*/
|
|
kl = kl1;
|
|
kr = kr1;
|
|
round = 16;
|
|
while(round--)
|
|
{
|
|
/*
|
|
* Expand R to 48 bits (simulate the E-box).
|
|
*/
|
|
r48l = ((r & 0x00000001) << 23)
|
|
| ((r & 0xf8000000) >> 9)
|
|
| ((r & 0x1f800000) >> 11)
|
|
| ((r & 0x01f80000) >> 13) | ((r & 0x001f8000) >> 15);
|
|
|
|
r48r = ((r & 0x0001f800) << 7)
|
|
| ((r & 0x00001f80) << 5)
|
|
| ((r & 0x000001f8) << 3)
|
|
| ((r & 0x0000001f) << 1) | ((r & 0x80000000) >> 31);
|
|
/*
|
|
* Do salting for crypt() and friends, and
|
|
* XOR with the permuted key.
|
|
*/
|
|
f = (r48l ^ r48r) & saltbits;
|
|
r48l ^= f ^ *kl++;
|
|
r48r ^= f ^ *kr++;
|
|
/*
|
|
* Do sbox lookups (which shrink it back to 32 bits)
|
|
* and do the pbox permutation at the same time.
|
|
*/
|
|
f = psbox[0][m_sbox[0][r48l >> 12]]
|
|
| psbox[1][m_sbox[1][r48l & 0xfff]]
|
|
| psbox[2][m_sbox[2][r48r >> 12]]
|
|
| psbox[3][m_sbox[3][r48r & 0xfff]];
|
|
/*
|
|
* Now that we've permuted things, complete f().
|
|
*/
|
|
f ^= l;
|
|
l = r;
|
|
r = f;
|
|
}
|
|
r = l;
|
|
l = f;
|
|
}
|
|
/*
|
|
* Do final permutation (inverse of IP).
|
|
*/
|
|
*l_out = fp_maskl[0][l >> 24]
|
|
| fp_maskl[1][(l >> 16) & 0xff]
|
|
| fp_maskl[2][(l >> 8) & 0xff]
|
|
| fp_maskl[3][l & 0xff]
|
|
| fp_maskl[4][r >> 24]
|
|
| fp_maskl[5][(r >> 16) & 0xff]
|
|
| fp_maskl[6][(r >> 8) & 0xff] | fp_maskl[7][r & 0xff];
|
|
*r_out = fp_maskr[0][l >> 24]
|
|
| fp_maskr[1][(l >> 16) & 0xff]
|
|
| fp_maskr[2][(l >> 8) & 0xff]
|
|
| fp_maskr[3][l & 0xff]
|
|
| fp_maskr[4][r >> 24]
|
|
| fp_maskr[5][(r >> 16) & 0xff]
|
|
| fp_maskr[6][(r >> 8) & 0xff] | fp_maskr[7][r & 0xff];
|
|
return (0);
|
|
}
|
|
|
|
|
|
#if 0
|
|
static int
|
|
des_cipher(const char *in, char *out, uint32_t salt, int count)
|
|
{
|
|
uint32_t l_out, r_out, rawl, rawr;
|
|
int retval;
|
|
union
|
|
{
|
|
uint32_t *ui32;
|
|
const char *c;
|
|
} trans;
|
|
|
|
des_init();
|
|
|
|
setup_salt(salt);
|
|
|
|
trans.c = in;
|
|
rawl = ntohl(*trans.ui32++);
|
|
rawr = ntohl(*trans.ui32);
|
|
|
|
retval = do_des(rawl, rawr, &l_out, &r_out, count);
|
|
|
|
trans.c = out;
|
|
*trans.ui32++ = htonl(l_out);
|
|
*trans.ui32 = htonl(r_out);
|
|
return (retval);
|
|
}
|
|
#endif
|
|
|
|
#if 0
|
|
void
|
|
setkey(const char *key)
|
|
{
|
|
int i, j;
|
|
uint32_t packed_keys[2];
|
|
uint8_t *p;
|
|
|
|
p = (uint8_t *)packed_keys;
|
|
|
|
for(i = 0; i < 8; i++)
|
|
{
|
|
p[i] = 0;
|
|
for(j = 0; j < 8; j++)
|
|
if(*key++ & 1)
|
|
p[i] |= bits8[j];
|
|
}
|
|
des_setkey((char *)p);
|
|
}
|
|
|
|
|
|
void
|
|
encrypt(char *block, int flag)
|
|
{
|
|
uint32_t io[2];
|
|
uint8_t *p;
|
|
int i, j;
|
|
|
|
des_init();
|
|
|
|
setup_salt(0L);
|
|
p = (uint8_t *)block;
|
|
for(i = 0; i < 2; i++)
|
|
{
|
|
io[i] = 0L;
|
|
for(j = 0; j < 32; j++)
|
|
if(*p++ & 1)
|
|
io[i] |= bits32[j];
|
|
}
|
|
do_des(io[0], io[1], io, io + 1, flag ? -1 : 1);
|
|
for(i = 0; i < 2; i++)
|
|
for(j = 0; j < 32; j++)
|
|
block[(i << 5) | j] = (io[i] & bits32[j]) ? 1 : 0;
|
|
}
|
|
#endif
|
|
|
|
static char *
|
|
__des_crypt(const char *key, const char *setting)
|
|
{
|
|
uint32_t count, salt, l, r0, r1, keybuf[2];
|
|
uint8_t *p, *q;
|
|
static char output[21];
|
|
|
|
des_init();
|
|
|
|
/*
|
|
* Copy the key, shifting each character up by one bit
|
|
* and padding with zeros.
|
|
*/
|
|
q = (uint8_t *)keybuf;
|
|
while(q - (uint8_t *)keybuf - 8)
|
|
{
|
|
*q++ = *key << 1;
|
|
if(*(q - 1))
|
|
key++;
|
|
}
|
|
if(des_setkey((char *)keybuf))
|
|
return (NULL);
|
|
|
|
#if 0
|
|
if(*setting == _PASSWORD_EFMT1)
|
|
{
|
|
int i;
|
|
/*
|
|
* "new"-style:
|
|
* setting - underscore, 4 bytes of count, 4 bytes of salt
|
|
* key - unlimited characters
|
|
*/
|
|
for(i = 1, count = 0L; i < 5; i++)
|
|
count |= ascii_to_bin(setting[i]) << ((i - 1) * 6);
|
|
|
|
for(i = 5, salt = 0L; i < 9; i++)
|
|
salt |= ascii_to_bin(setting[i]) << ((i - 5) * 6);
|
|
|
|
while(*key)
|
|
{
|
|
/*
|
|
* Encrypt the key with itself.
|
|
*/
|
|
if(des_cipher((char *)keybuf, (char *)keybuf, 0L, 1))
|
|
return (NULL);
|
|
/*
|
|
* And XOR with the next 8 characters of the key.
|
|
*/
|
|
q = (uint8_t *)keybuf;
|
|
while(q - (uint8_t *)keybuf - 8 && *key)
|
|
*q++ ^= *key++ << 1;
|
|
|
|
if(des_setkey((char *)keybuf))
|
|
return (NULL);
|
|
}
|
|
strncpy(output, setting, 9);
|
|
|
|
/*
|
|
* Double check that we weren't given a short setting.
|
|
* If we were, the above code will probably have created
|
|
* wierd values for count and salt, but we don't really care.
|
|
* Just make sure the output string doesn't have an extra
|
|
* NUL in it.
|
|
*/
|
|
output[9] = '\0';
|
|
p = (uint8_t *)output + strlen(output);
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
/*
|
|
* "old"-style:
|
|
* setting - 2 bytes of salt
|
|
* key - up to 8 characters
|
|
*/
|
|
count = 25;
|
|
|
|
salt = (ascii_to_bin(setting[1]) << 6) | ascii_to_bin(setting[0]);
|
|
|
|
output[0] = setting[0];
|
|
/*
|
|
* If the encrypted password that the salt was extracted from
|
|
* is only 1 character long, the salt will be corrupted. We
|
|
* need to ensure that the output string doesn't have an extra
|
|
* NUL in it!
|
|
*/
|
|
output[1] = setting[1] ? setting[1] : output[0];
|
|
|
|
p = (uint8_t *)output + 2;
|
|
}
|
|
setup_salt(salt);
|
|
/*
|
|
* Do it.
|
|
*/
|
|
if(do_des(0L, 0L, &r0, &r1, (int)count))
|
|
return (NULL);
|
|
/*
|
|
* Now encode the result...
|
|
*/
|
|
l = (r0 >> 8);
|
|
*p++ = ascii64[(l >> 18) & 0x3f];
|
|
*p++ = ascii64[(l >> 12) & 0x3f];
|
|
*p++ = ascii64[(l >> 6) & 0x3f];
|
|
*p++ = ascii64[l & 0x3f];
|
|
|
|
l = (r0 << 16) | ((r1 >> 16) & 0xffff);
|
|
*p++ = ascii64[(l >> 18) & 0x3f];
|
|
*p++ = ascii64[(l >> 12) & 0x3f];
|
|
*p++ = ascii64[(l >> 6) & 0x3f];
|
|
*p++ = ascii64[l & 0x3f];
|
|
|
|
l = r1 << 2;
|
|
*p++ = ascii64[(l >> 12) & 0x3f];
|
|
*p++ = ascii64[(l >> 6) & 0x3f];
|
|
*p++ = ascii64[l & 0x3f];
|
|
*p = 0;
|
|
|
|
return (output);
|
|
}
|
|
|
|
/* Now md5 crypt */
|
|
|
|
/*
|
|
* MD5C.C - RSA Data Security, Inc., MD5 message-digest algorithm
|
|
*
|
|
* Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All
|
|
* rights reserved.
|
|
*
|
|
* License to copy and use this software is granted provided that it
|
|
* is identified as the "RSA Data Security, Inc. MD5 Message-Digest
|
|
* Algorithm" in all material mentioning or referencing this software
|
|
* or this function.
|
|
*
|
|
* License is also granted to make and use derivative works provided
|
|
* that such works are identified as "derived from the RSA Data
|
|
* Security, Inc. MD5 Message-Digest Algorithm" in all material
|
|
* mentioning or referencing the derived work.
|
|
*
|
|
* RSA Data Security, Inc. makes no representations concerning either
|
|
* the merchantability of this software or the suitability of this
|
|
* software for any particular purpose. It is provided "as is"
|
|
* without express or implied warranty of any kind.
|
|
*
|
|
* These notices must be retained in any copies of any part of this
|
|
* documentation and/or software.
|
|
*
|
|
* $FreeBSD: src/lib/libmd/md5c.c,v 1.9.2.1 1999/08/29 14:57:12 peter Exp $
|
|
*
|
|
* This code is the same as the code published by RSA Inc. It has been
|
|
* edited for clarity and style only.
|
|
*
|
|
* ----------------------------------------------------------------------------
|
|
* The md5_crypt() function was taken from freeBSD's libcrypt and contains
|
|
* this license:
|
|
* "THE BEER-WARE LICENSE" (Revision 42):
|
|
* <phk@login.dknet.dk> wrote this file. As long as you retain this notice you
|
|
* can do whatever you want with this stuff. If we meet some day, and you think
|
|
* this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
|
|
*
|
|
* $FreeBSD: src/lib/libcrypt/crypt.c,v 1.7.2.1 1999/08/29 14:56:33 peter Exp $
|
|
*
|
|
* ----------------------------------------------------------------------------
|
|
* On April 19th, 2001 md5_crypt() was modified to make it reentrant
|
|
* by Erik Andersen <andersen@uclibc.org>
|
|
*
|
|
*
|
|
* June 28, 2001 Manuel Novoa III
|
|
*
|
|
* "Un-inlined" code using loops and static const tables in order to
|
|
* reduce generated code size (on i386 from approx 4k to approx 2.5k).
|
|
*
|
|
* June 29, 2001 Manuel Novoa III
|
|
*
|
|
* Completely removed static PADDING array.
|
|
*
|
|
* Reintroduced the loop unrolling in MD5_Transform and added the
|
|
* MD5_SIZE_OVER_SPEED option for configurability. Define below as:
|
|
* 0 fully unrolled loops
|
|
* 1 partially unrolled (4 ops per loop)
|
|
* 2 no unrolling -- introduces the need to swap 4 variables (slow)
|
|
* 3 no unrolling and all 4 loops merged into one with switch
|
|
* in each loop (glacial)
|
|
* On i386, sizes are roughly (-Os -fno-builtin):
|
|
* 0: 3k 1: 2.5k 2: 2.2k 3: 2k
|
|
*
|
|
*
|
|
* Since SuSv3 does not require crypt_r, modified again August 7, 2002
|
|
* by Erik Andersen to remove reentrance stuff...
|
|
*/
|
|
|
|
/*
|
|
* Valid values are 1 (fastest/largest) to 3 (smallest/slowest).
|
|
*/
|
|
#define MD5_SIZE_OVER_SPEED 1
|
|
|
|
/**********************************************************************/
|
|
|
|
/* MD5 context. */
|
|
struct MD5Context
|
|
{
|
|
uint32_t state[4]; /* state (ABCD) */
|
|
uint32_t count[2]; /* number of bits, modulo 2^64 (lsb first) */
|
|
unsigned char buffer[64]; /* input buffer */
|
|
};
|
|
|
|
static void __md5_Init(struct MD5Context *);
|
|
static void __md5_Update(struct MD5Context *, const char *, unsigned int);
|
|
static void __md5_Pad(struct MD5Context *);
|
|
static void __md5_Final(char[16], struct MD5Context *);
|
|
static void __md5_Transform(uint32_t[4], const unsigned char[64]);
|
|
|
|
|
|
static const char __md5__magic[] = "$1$"; /* This string is magic for this algorithm. Having
|
|
it this way, we can get better later on */
|
|
static const unsigned char __md5_itoa64[] = /* 0 ... 63 => ascii - 64 */
|
|
"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
|
|
|
|
|
|
|
|
#ifdef i386
|
|
#define __md5_Encode memcpy
|
|
#define __md5_Decode memcpy
|
|
#else /* i386 */
|
|
|
|
/*
|
|
* __md5_Encodes input (uint32_t) into output (unsigned char). Assumes len is
|
|
* a multiple of 4.
|
|
*/
|
|
|
|
static void
|
|
__md5_Encode(unsigned char *output, uint32_t *input, unsigned int len)
|
|
{
|
|
unsigned int i, j;
|
|
|
|
for(i = 0, j = 0; j < len; i++, j += 4)
|
|
{
|
|
output[j] = (unsigned char)(input[i] & 0xff);
|
|
output[j + 1] = (unsigned char)((input[i] >> 8) & 0xff);
|
|
output[j + 2] = (unsigned char)((input[i] >> 16) & 0xff);
|
|
output[j + 3] = (unsigned char)((input[i] >> 24) & 0xff);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* __md5_Decodes input (unsigned char) into output (uint32_t). Assumes len is
|
|
* a multiple of 4.
|
|
*/
|
|
|
|
static void
|
|
__md5_Decode(uint32_t *output, const unsigned char *input, unsigned int len)
|
|
{
|
|
unsigned int i, j;
|
|
|
|
for(i = 0, j = 0; j < len; i++, j += 4)
|
|
output[i] = ((uint32_t)input[j]) | (((uint32_t)input[j + 1]) << 8) |
|
|
(((uint32_t)input[j + 2]) << 16) | (((uint32_t)input[j + 3]) << 24);
|
|
}
|
|
#endif /* i386 */
|
|
|
|
/* F, G, H and I are basic MD5 functions. */
|
|
#define F(x, y, z) (((x) & (y)) | ((~x) & (z)))
|
|
#define G(x, y, z) (((x) & (z)) | ((y) & (~z)))
|
|
#define H(x, y, z) ((x) ^ (y) ^ (z))
|
|
#define I(x, y, z) ((y) ^ ((x) | (~z)))
|
|
|
|
/* ROTATE_LEFT rotates x left n bits. */
|
|
#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n))))
|
|
|
|
/*
|
|
* FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4.
|
|
* Rotation is separate from addition to prevent recomputation.
|
|
*/
|
|
#define FF(a, b, c, d, x, s, ac) { \
|
|
(a) += F ((b), (c), (d)) + (x) + (uint32_t)(ac); \
|
|
(a) = ROTATE_LEFT ((a), (s)); \
|
|
(a) += (b); \
|
|
}
|
|
#define GG(a, b, c, d, x, s, ac) { \
|
|
(a) += G ((b), (c), (d)) + (x) + (uint32_t)(ac); \
|
|
(a) = ROTATE_LEFT ((a), (s)); \
|
|
(a) += (b); \
|
|
}
|
|
#define HH(a, b, c, d, x, s, ac) { \
|
|
(a) += H ((b), (c), (d)) + (x) + (uint32_t)(ac); \
|
|
(a) = ROTATE_LEFT ((a), (s)); \
|
|
(a) += (b); \
|
|
}
|
|
#define II(a, b, c, d, x, s, ac) { \
|
|
(a) += I ((b), (c), (d)) + (x) + (uint32_t)(ac); \
|
|
(a) = ROTATE_LEFT ((a), (s)); \
|
|
(a) += (b); \
|
|
}
|
|
|
|
/* MD5 initialization. Begins an MD5 operation, writing a new context. */
|
|
|
|
static void
|
|
__md5_Init(struct MD5Context *context)
|
|
{
|
|
context->count[0] = context->count[1] = 0;
|
|
|
|
/* Load magic initialization constants. */
|
|
context->state[0] = 0x67452301;
|
|
context->state[1] = 0xefcdab89;
|
|
context->state[2] = 0x98badcfe;
|
|
context->state[3] = 0x10325476;
|
|
}
|
|
|
|
/*
|
|
* MD5 block update operation. Continues an MD5 message-digest
|
|
* operation, processing another message block, and updating the
|
|
* context.
|
|
*/
|
|
|
|
static void
|
|
__md5_Update(struct MD5Context *context, const char *xinput, unsigned int inputLen)
|
|
{
|
|
unsigned int i, lindex, partLen;
|
|
const unsigned char *input = (const unsigned char *)xinput; /* i hate gcc */
|
|
/* Compute number of bytes mod 64 */
|
|
lindex = (unsigned int)((context->count[0] >> 3) & 0x3F);
|
|
|
|
/* Update number of bits */
|
|
if((context->count[0] += ((uint32_t)inputLen << 3)) < ((uint32_t)inputLen << 3))
|
|
context->count[1]++;
|
|
context->count[1] += ((uint32_t)inputLen >> 29);
|
|
|
|
partLen = 64 - lindex;
|
|
|
|
/* Transform as many times as possible. */
|
|
if(inputLen >= partLen)
|
|
{
|
|
memcpy(&context->buffer[lindex], input, partLen);
|
|
__md5_Transform(context->state, context->buffer);
|
|
|
|
for(i = partLen; i + 63 < inputLen; i += 64)
|
|
__md5_Transform(context->state, &input[i]);
|
|
|
|
lindex = 0;
|
|
}
|
|
else
|
|
i = 0;
|
|
|
|
/* Buffer remaining input */
|
|
memcpy(&context->buffer[lindex], &input[i], inputLen - i);
|
|
}
|
|
|
|
/*
|
|
* MD5 padding. Adds padding followed by original length.
|
|
*/
|
|
|
|
static void
|
|
__md5_Pad(struct MD5Context *context)
|
|
{
|
|
char bits[8];
|
|
unsigned int lindex, padLen;
|
|
char PADDING[64];
|
|
|
|
memset(PADDING, 0, sizeof(PADDING));
|
|
PADDING[0] = 0x80;
|
|
|
|
/* Save number of bits */
|
|
__md5_Encode(bits, context->count, 8);
|
|
|
|
/* Pad out to 56 mod 64. */
|
|
lindex = (unsigned int)((context->count[0] >> 3) & 0x3f);
|
|
padLen = (lindex < 56) ? (56 - lindex) : (120 - lindex);
|
|
__md5_Update(context, PADDING, padLen);
|
|
|
|
/* Append length (before padding) */
|
|
__md5_Update(context, bits, 8);
|
|
}
|
|
|
|
/*
|
|
* MD5 finalization. Ends an MD5 message-digest operation, writing the
|
|
* the message digest and zeroizing the context.
|
|
*/
|
|
|
|
static void
|
|
__md5_Final(char xdigest[16], struct MD5Context *context)
|
|
{
|
|
unsigned char *digest = (unsigned char *)xdigest;
|
|
/* Do padding. */
|
|
__md5_Pad(context);
|
|
|
|
/* Store state in digest */
|
|
__md5_Encode(digest, context->state, 16);
|
|
|
|
/* Zeroize sensitive information. */
|
|
memset(context, 0, sizeof(*context));
|
|
}
|
|
|
|
/* MD5 basic transformation. Transforms state based on block. */
|
|
|
|
static void
|
|
__md5_Transform(state, block)
|
|
uint32_t state[4];
|
|
const unsigned char block[64];
|
|
{
|
|
uint32_t a, b, c, d, x[16];
|
|
|
|
#if MD5_SIZE_OVER_SPEED > 1
|
|
uint32_t temp;
|
|
const char *ps;
|
|
|
|
static const char S[] = {
|
|
7, 12, 17, 22,
|
|
5, 9, 14, 20,
|
|
4, 11, 16, 23,
|
|
6, 10, 15, 21
|
|
};
|
|
#endif /* MD5_SIZE_OVER_SPEED > 1 */
|
|
|
|
#if MD5_SIZE_OVER_SPEED > 0
|
|
const uint32_t *pc;
|
|
const char *pp;
|
|
int i;
|
|
|
|
static const uint32_t C[] = {
|
|
/* round 1 */
|
|
0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee,
|
|
0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501,
|
|
0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be,
|
|
0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821,
|
|
/* round 2 */
|
|
0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa,
|
|
0xd62f105d, 0x2441453, 0xd8a1e681, 0xe7d3fbc8,
|
|
0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed,
|
|
0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a,
|
|
/* round 3 */
|
|
0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c,
|
|
0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70,
|
|
0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x4881d05,
|
|
0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665,
|
|
/* round 4 */
|
|
0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039,
|
|
0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1,
|
|
0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1,
|
|
0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391
|
|
};
|
|
|
|
static const char P[] = {
|
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 1 */
|
|
1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, /* 2 */
|
|
5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2, /* 3 */
|
|
0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9 /* 4 */
|
|
};
|
|
|
|
#endif /* MD5_SIZE_OVER_SPEED > 0 */
|
|
|
|
__md5_Decode(x, block, 64);
|
|
|
|
a = state[0];
|
|
b = state[1];
|
|
c = state[2];
|
|
d = state[3];
|
|
|
|
#if MD5_SIZE_OVER_SPEED > 2
|
|
pc = C;
|
|
pp = P;
|
|
ps = S - 4;
|
|
|
|
for(i = 0; i < 64; i++)
|
|
{
|
|
if((i & 0x0f) == 0)
|
|
ps += 4;
|
|
temp = a;
|
|
switch (i >> 4)
|
|
{
|
|
case 0:
|
|
temp += F(b, c, d);
|
|
break;
|
|
case 1:
|
|
temp += G(b, c, d);
|
|
break;
|
|
case 2:
|
|
temp += H(b, c, d);
|
|
break;
|
|
case 3:
|
|
temp += I(b, c, d);
|
|
break;
|
|
}
|
|
temp += x[(int)(*pp++)] + *pc++;
|
|
temp = ROTATE_LEFT(temp, ps[i & 3]);
|
|
temp += b;
|
|
a = d;
|
|
d = c;
|
|
c = b;
|
|
b = temp;
|
|
}
|
|
#elif MD5_SIZE_OVER_SPEED > 1
|
|
pc = C;
|
|
pp = P;
|
|
ps = S;
|
|
|
|
/* Round 1 */
|
|
for(i = 0; i < 16; i++)
|
|
{
|
|
FF(a, b, c, d, x[(int)(*pp++)], ps[i & 0x3], *pc++);
|
|
temp = d;
|
|
d = c;
|
|
c = b;
|
|
b = a;
|
|
a = temp;
|
|
}
|
|
|
|
/* Round 2 */
|
|
ps += 4;
|
|
for(; i < 32; i++)
|
|
{
|
|
GG(a, b, c, d, x[(int)(*pp++)], ps[i & 0x3], *pc++);
|
|
temp = d;
|
|
d = c;
|
|
c = b;
|
|
b = a;
|
|
a = temp;
|
|
}
|
|
/* Round 3 */
|
|
ps += 4;
|
|
for(; i < 48; i++)
|
|
{
|
|
HH(a, b, c, d, x[(int)(*pp++)], ps[i & 0x3], *pc++);
|
|
temp = d;
|
|
d = c;
|
|
c = b;
|
|
b = a;
|
|
a = temp;
|
|
}
|
|
|
|
/* Round 4 */
|
|
ps += 4;
|
|
for(; i < 64; i++)
|
|
{
|
|
II(a, b, c, d, x[(int)(*pp++)], ps[i & 0x3], *pc++);
|
|
temp = d;
|
|
d = c;
|
|
c = b;
|
|
b = a;
|
|
a = temp;
|
|
}
|
|
#elif MD5_SIZE_OVER_SPEED > 0
|
|
pc = C;
|
|
pp = P;
|
|
|
|
/* Round 1 */
|
|
for(i = 0; i < 4; i++)
|
|
{
|
|
FF(a, b, c, d, x[(int)(*pp++)], 7, *pc++);
|
|
FF(d, a, b, c, x[(int)(*pp++)], 12, *pc++);
|
|
FF(c, d, a, b, x[(int)(*pp++)], 17, *pc++);
|
|
FF(b, c, d, a, x[(int)(*pp++)], 22, *pc++);
|
|
}
|
|
|
|
/* Round 2 */
|
|
for(i = 0; i < 4; i++)
|
|
{
|
|
GG(a, b, c, d, x[(int)(*pp++)], 5, *pc++);
|
|
GG(d, a, b, c, x[(int)(*pp++)], 9, *pc++);
|
|
GG(c, d, a, b, x[(int)(*pp++)], 14, *pc++);
|
|
GG(b, c, d, a, x[(int)(*pp++)], 20, *pc++);
|
|
}
|
|
/* Round 3 */
|
|
for(i = 0; i < 4; i++)
|
|
{
|
|
HH(a, b, c, d, x[(int)(*pp++)], 4, *pc++);
|
|
HH(d, a, b, c, x[(int)(*pp++)], 11, *pc++);
|
|
HH(c, d, a, b, x[(int)(*pp++)], 16, *pc++);
|
|
HH(b, c, d, a, x[(int)(*pp++)], 23, *pc++);
|
|
}
|
|
|
|
/* Round 4 */
|
|
for(i = 0; i < 4; i++)
|
|
{
|
|
II(a, b, c, d, x[(int)(*pp++)], 6, *pc++);
|
|
II(d, a, b, c, x[(int)(*pp++)], 10, *pc++);
|
|
II(c, d, a, b, x[(int)(*pp++)], 15, *pc++);
|
|
II(b, c, d, a, x[(int)(*pp++)], 21, *pc++);
|
|
}
|
|
#else
|
|
/* Round 1 */
|
|
#define S11 7
|
|
#define S12 12
|
|
#define S13 17
|
|
#define S14 22
|
|
FF(a, b, c, d, x[0], S11, 0xd76aa478); /* 1 */
|
|
FF(d, a, b, c, x[1], S12, 0xe8c7b756); /* 2 */
|
|
FF(c, d, a, b, x[2], S13, 0x242070db); /* 3 */
|
|
FF(b, c, d, a, x[3], S14, 0xc1bdceee); /* 4 */
|
|
FF(a, b, c, d, x[4], S11, 0xf57c0faf); /* 5 */
|
|
FF(d, a, b, c, x[5], S12, 0x4787c62a); /* 6 */
|
|
FF(c, d, a, b, x[6], S13, 0xa8304613); /* 7 */
|
|
FF(b, c, d, a, x[7], S14, 0xfd469501); /* 8 */
|
|
FF(a, b, c, d, x[8], S11, 0x698098d8); /* 9 */
|
|
FF(d, a, b, c, x[9], S12, 0x8b44f7af); /* 10 */
|
|
FF(c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */
|
|
FF(b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */
|
|
FF(a, b, c, d, x[12], S11, 0x6b901122); /* 13 */
|
|
FF(d, a, b, c, x[13], S12, 0xfd987193); /* 14 */
|
|
FF(c, d, a, b, x[14], S13, 0xa679438e); /* 15 */
|
|
FF(b, c, d, a, x[15], S14, 0x49b40821); /* 16 */
|
|
|
|
/* Round 2 */
|
|
#define S21 5
|
|
#define S22 9
|
|
#define S23 14
|
|
#define S24 20
|
|
GG(a, b, c, d, x[1], S21, 0xf61e2562); /* 17 */
|
|
GG(d, a, b, c, x[6], S22, 0xc040b340); /* 18 */
|
|
GG(c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */
|
|
GG(b, c, d, a, x[0], S24, 0xe9b6c7aa); /* 20 */
|
|
GG(a, b, c, d, x[5], S21, 0xd62f105d); /* 21 */
|
|
GG(d, a, b, c, x[10], S22, 0x2441453); /* 22 */
|
|
GG(c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */
|
|
GG(b, c, d, a, x[4], S24, 0xe7d3fbc8); /* 24 */
|
|
GG(a, b, c, d, x[9], S21, 0x21e1cde6); /* 25 */
|
|
GG(d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */
|
|
GG(c, d, a, b, x[3], S23, 0xf4d50d87); /* 27 */
|
|
GG(b, c, d, a, x[8], S24, 0x455a14ed); /* 28 */
|
|
GG(a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */
|
|
GG(d, a, b, c, x[2], S22, 0xfcefa3f8); /* 30 */
|
|
GG(c, d, a, b, x[7], S23, 0x676f02d9); /* 31 */
|
|
GG(b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */
|
|
|
|
/* Round 3 */
|
|
#define S31 4
|
|
#define S32 11
|
|
#define S33 16
|
|
#define S34 23
|
|
HH(a, b, c, d, x[5], S31, 0xfffa3942); /* 33 */
|
|
HH(d, a, b, c, x[8], S32, 0x8771f681); /* 34 */
|
|
HH(c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */
|
|
HH(b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */
|
|
HH(a, b, c, d, x[1], S31, 0xa4beea44); /* 37 */
|
|
HH(d, a, b, c, x[4], S32, 0x4bdecfa9); /* 38 */
|
|
HH(c, d, a, b, x[7], S33, 0xf6bb4b60); /* 39 */
|
|
HH(b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */
|
|
HH(a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */
|
|
HH(d, a, b, c, x[0], S32, 0xeaa127fa); /* 42 */
|
|
HH(c, d, a, b, x[3], S33, 0xd4ef3085); /* 43 */
|
|
HH(b, c, d, a, x[6], S34, 0x4881d05); /* 44 */
|
|
HH(a, b, c, d, x[9], S31, 0xd9d4d039); /* 45 */
|
|
HH(d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */
|
|
HH(c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */
|
|
HH(b, c, d, a, x[2], S34, 0xc4ac5665); /* 48 */
|
|
|
|
/* Round 4 */
|
|
#define S41 6
|
|
#define S42 10
|
|
#define S43 15
|
|
#define S44 21
|
|
II(a, b, c, d, x[0], S41, 0xf4292244); /* 49 */
|
|
II(d, a, b, c, x[7], S42, 0x432aff97); /* 50 */
|
|
II(c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */
|
|
II(b, c, d, a, x[5], S44, 0xfc93a039); /* 52 */
|
|
II(a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */
|
|
II(d, a, b, c, x[3], S42, 0x8f0ccc92); /* 54 */
|
|
II(c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */
|
|
II(b, c, d, a, x[1], S44, 0x85845dd1); /* 56 */
|
|
II(a, b, c, d, x[8], S41, 0x6fa87e4f); /* 57 */
|
|
II(d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */
|
|
II(c, d, a, b, x[6], S43, 0xa3014314); /* 59 */
|
|
II(b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */
|
|
II(a, b, c, d, x[4], S41, 0xf7537e82); /* 61 */
|
|
II(d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */
|
|
II(c, d, a, b, x[2], S43, 0x2ad7d2bb); /* 63 */
|
|
II(b, c, d, a, x[9], S44, 0xeb86d391); /* 64 */
|
|
#endif
|
|
|
|
state[0] += a;
|
|
state[1] += b;
|
|
state[2] += c;
|
|
state[3] += d;
|
|
|
|
/* Zeroize sensitive information. */
|
|
memset(x, 0, sizeof(x));
|
|
}
|
|
|
|
|
|
static void
|
|
__md5_to64(char *s, unsigned long v, int n)
|
|
{
|
|
while(--n >= 0)
|
|
{
|
|
*s++ = __md5_itoa64[v & 0x3f];
|
|
v >>= 6;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* UNIX password
|
|
*
|
|
* Use MD5 for what it is best at...
|
|
*/
|
|
|
|
static char *
|
|
__md5_crypt(const char *pw, const char *salt)
|
|
{
|
|
/* Static stuff */
|
|
static const char *sp, *ep;
|
|
static char passwd[120], *p;
|
|
|
|
char final[17]; /* final[16] exists only to aid in looping */
|
|
int sl, pl, i, __md5__magic_len, pw_len;
|
|
struct MD5Context ctx, ctx1;
|
|
unsigned long l;
|
|
|
|
/* Refine the Salt first */
|
|
sp = salt;
|
|
|
|
/* If it starts with the magic string, then skip that */
|
|
__md5__magic_len = strlen(__md5__magic);
|
|
if(!strncmp(sp, __md5__magic, __md5__magic_len))
|
|
sp += __md5__magic_len;
|
|
|
|
/* It stops at the first '$', max 8 chars */
|
|
for(ep = sp; *ep && *ep != '$' && ep < (sp + 8); ep++)
|
|
continue;
|
|
|
|
/* get the length of the true salt */
|
|
sl = ep - sp;
|
|
|
|
__md5_Init(&ctx);
|
|
|
|
/* The password first, since that is what is most unknown */
|
|
pw_len = strlen(pw);
|
|
__md5_Update(&ctx, pw, pw_len);
|
|
|
|
/* Then our magic string */
|
|
__md5_Update(&ctx, __md5__magic, __md5__magic_len);
|
|
|
|
/* Then the raw salt */
|
|
__md5_Update(&ctx, sp, sl);
|
|
|
|
/* Then just as many characters of the MD5(pw,salt,pw) */
|
|
__md5_Init(&ctx1);
|
|
__md5_Update(&ctx1, pw, pw_len);
|
|
__md5_Update(&ctx1, sp, sl);
|
|
__md5_Update(&ctx1, pw, pw_len);
|
|
__md5_Final(final, &ctx1);
|
|
for(pl = pw_len; pl > 0; pl -= 16)
|
|
__md5_Update(&ctx, final, pl > 16 ? 16 : pl);
|
|
|
|
/* Don't leave anything around in vm they could use. */
|
|
memset(final, 0, sizeof final);
|
|
|
|
/* Then something really weird... */
|
|
for(i = pw_len; i; i >>= 1)
|
|
{
|
|
__md5_Update(&ctx, ((i & 1) ? final : pw), 1);
|
|
}
|
|
|
|
/* Now make the output string */
|
|
rb_strlcpy(passwd, __md5__magic, sizeof(passwd));
|
|
strncat(passwd, sp, sl);
|
|
rb_strlcat(passwd, "$", sizeof(passwd));
|
|
|
|
__md5_Final(final, &ctx);
|
|
|
|
/*
|
|
* and now, just to make sure things don't run too fast
|
|
* On a 60 Mhz Pentium this takes 34 msec, so you would
|
|
* need 30 seconds to build a 1000 entry dictionary...
|
|
*/
|
|
for(i = 0; i < 1000; i++)
|
|
{
|
|
__md5_Init(&ctx1);
|
|
if(i & 1)
|
|
__md5_Update(&ctx1, pw, pw_len);
|
|
else
|
|
__md5_Update(&ctx1, final, 16);
|
|
|
|
if(i % 3)
|
|
__md5_Update(&ctx1, sp, sl);
|
|
|
|
if(i % 7)
|
|
__md5_Update(&ctx1, pw, pw_len);
|
|
|
|
if(i & 1)
|
|
__md5_Update(&ctx1, final, 16);
|
|
else
|
|
__md5_Update(&ctx1, pw, pw_len);
|
|
__md5_Final(final, &ctx1);
|
|
}
|
|
|
|
p = passwd + strlen(passwd);
|
|
|
|
final[16] = final[5];
|
|
for(i = 0; i < 5; i++)
|
|
{
|
|
l = (final[i] << 16) | (final[i + 6] << 8) | final[i + 12];
|
|
__md5_to64(p, l, 4);
|
|
p += 4;
|
|
}
|
|
l = final[11];
|
|
__md5_to64(p, l, 2);
|
|
p += 2;
|
|
*p = '\0';
|
|
|
|
/* Don't leave anything around in vm they could use. */
|
|
memset(final, 0, sizeof final);
|
|
|
|
return passwd;
|
|
}
|
|
|
|
#endif /* NEED_CRYPT */
|