solanum-vs-hackint-and-char.../bandb/sqlite3.c
Elizabeth Myers cbeab4bc34 Remove $Id tags from everything.
These are obsolete and none have changed since 10 years gao...
2016-03-06 02:47:27 -06:00

99221 lines
2.7 MiB

/******************************************************************************
** This file is an amalgamation of many separate C source files from SQLite
** version 3.5.9. By combining all the individual C code files into this
** single large file, the entire code can be compiled as a one translation
** unit. This allows many compilers to do optimizations that would not be
** possible if the files were compiled separately. Performance improvements
** of 5% are more are commonly seen when SQLite is compiled as a single
** translation unit.
**
** This file is all you need to compile SQLite. To use SQLite in other
** programs, you need this file and the "sqlite3.h" header file that defines
** the programming interface to the SQLite library. (If you do not have
** the "sqlite3.h" header file at hand, you will find a copy in the first
** 5638 lines past this header comment.) Additional code files may be
** needed if you want a wrapper to interface SQLite with your choice of
** programming language. The code for the "sqlite3" command-line shell
** is also in a separate file. This file contains only code for the core
** SQLite library.
**
** This amalgamation was generated on 2008-05-14 16:30:52 UTC.
*/
#define SQLITE_CORE 1
#define SQLITE_AMALGAMATION 1
#ifndef SQLITE_PRIVATE
# define SQLITE_PRIVATE static
#endif
#ifndef SQLITE_API
# define SQLITE_API
#endif
/************** Begin file sqliteInt.h ***************************************/
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** Internal interface definitions for SQLite.
**
*/
#ifndef _SQLITEINT_H_
#define _SQLITEINT_H_
/*
** Include the configuration header output by 'configure' if we're using the
** autoconf-based build
*/
#ifdef _HAVE_SQLITE_CONFIG_H
#include "config.h"
#endif
/************** Include sqliteLimit.h in the middle of sqliteInt.h ***********/
/************** Begin file sqliteLimit.h *************************************/
/*
** 2007 May 7
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file defines various limits of what SQLite can process.
**
*/
/*
** The maximum length of a TEXT or BLOB in bytes. This also
** limits the size of a row in a table or index.
**
** The hard limit is the ability of a 32-bit signed integer
** to count the size: 2^31-1 or 2147483647.
*/
#ifndef SQLITE_MAX_LENGTH
# define SQLITE_MAX_LENGTH 1000000000
#endif
/*
** This is the maximum number of
**
** * Columns in a table
** * Columns in an index
** * Columns in a view
** * Terms in the SET clause of an UPDATE statement
** * Terms in the result set of a SELECT statement
** * Terms in the GROUP BY or ORDER BY clauses of a SELECT statement.
** * Terms in the VALUES clause of an INSERT statement
**
** The hard upper limit here is 32676. Most database people will
** tell you that in a well-normalized database, you usually should
** not have more than a dozen or so columns in any table. And if
** that is the case, there is no point in having more than a few
** dozen values in any of the other situations described above.
*/
#ifndef SQLITE_MAX_COLUMN
# define SQLITE_MAX_COLUMN 2000
#endif
/*
** The maximum length of a single SQL statement in bytes.
**
** It used to be the case that setting this value to zero would
** turn the limit off. That is no longer true. It is not possible
** to turn this limit off.
*/
#ifndef SQLITE_MAX_SQL_LENGTH
# define SQLITE_MAX_SQL_LENGTH 1000000000
#endif
/*
** The maximum depth of an expression tree. This is limited to
** some extent by SQLITE_MAX_SQL_LENGTH. But sometime you might
** want to place more severe limits on the complexity of an
** expression.
**
** A value of 0 used to mean that the limit was not enforced.
** But that is no longer true. The limit is now strictly enforced
** at all times.
*/
#ifndef SQLITE_MAX_EXPR_DEPTH
# define SQLITE_MAX_EXPR_DEPTH 1000
#endif
/*
** The maximum number of terms in a compound SELECT statement.
** The code generator for compound SELECT statements does one
** level of recursion for each term. A stack overflow can result
** if the number of terms is too large. In practice, most SQL
** never has more than 3 or 4 terms. Use a value of 0 to disable
** any limit on the number of terms in a compount SELECT.
*/
#ifndef SQLITE_MAX_COMPOUND_SELECT
# define SQLITE_MAX_COMPOUND_SELECT 500
#endif
/*
** The maximum number of opcodes in a VDBE program.
** Not currently enforced.
*/
#ifndef SQLITE_MAX_VDBE_OP
# define SQLITE_MAX_VDBE_OP 25000
#endif
/*
** The maximum number of arguments to an SQL function.
*/
#ifndef SQLITE_MAX_FUNCTION_ARG
# define SQLITE_MAX_FUNCTION_ARG 100
#endif
/*
** The maximum number of in-memory pages to use for the main database
** table and for temporary tables. The SQLITE_DEFAULT_CACHE_SIZE
*/
#ifndef SQLITE_DEFAULT_CACHE_SIZE
# define SQLITE_DEFAULT_CACHE_SIZE 2000
#endif
#ifndef SQLITE_DEFAULT_TEMP_CACHE_SIZE
# define SQLITE_DEFAULT_TEMP_CACHE_SIZE 500
#endif
/*
** The maximum number of attached databases. This must be between 0
** and 30. The upper bound on 30 is because a 32-bit integer bitmap
** is used internally to track attached databases.
*/
#ifndef SQLITE_MAX_ATTACHED
# define SQLITE_MAX_ATTACHED 10
#endif
/*
** The maximum value of a ?nnn wildcard that the parser will accept.
*/
#ifndef SQLITE_MAX_VARIABLE_NUMBER
# define SQLITE_MAX_VARIABLE_NUMBER 999
#endif
/* Maximum page size. The upper bound on this value is 32768. This a limit
** imposed by the necessity of storing the value in a 2-byte unsigned integer
** and the fact that the page size must be a power of 2.
*/
#ifndef SQLITE_MAX_PAGE_SIZE
# define SQLITE_MAX_PAGE_SIZE 32768
#endif
/*
** The default size of a database page.
*/
#ifndef SQLITE_DEFAULT_PAGE_SIZE
# define SQLITE_DEFAULT_PAGE_SIZE 1024
#endif
#if SQLITE_DEFAULT_PAGE_SIZE>SQLITE_MAX_PAGE_SIZE
# undef SQLITE_DEFAULT_PAGE_SIZE
# define SQLITE_DEFAULT_PAGE_SIZE SQLITE_MAX_PAGE_SIZE
#endif
/*
** Ordinarily, if no value is explicitly provided, SQLite creates databases
** with page size SQLITE_DEFAULT_PAGE_SIZE. However, based on certain
** device characteristics (sector-size and atomic write() support),
** SQLite may choose a larger value. This constant is the maximum value
** SQLite will choose on its own.
*/
#ifndef SQLITE_MAX_DEFAULT_PAGE_SIZE
# define SQLITE_MAX_DEFAULT_PAGE_SIZE 8192
#endif
#if SQLITE_MAX_DEFAULT_PAGE_SIZE>SQLITE_MAX_PAGE_SIZE
# undef SQLITE_MAX_DEFAULT_PAGE_SIZE
# define SQLITE_MAX_DEFAULT_PAGE_SIZE SQLITE_MAX_PAGE_SIZE
#endif
/*
** Maximum number of pages in one database file.
**
** This is really just the default value for the max_page_count pragma.
** This value can be lowered (or raised) at run-time using that the
** max_page_count macro.
*/
#ifndef SQLITE_MAX_PAGE_COUNT
# define SQLITE_MAX_PAGE_COUNT 1073741823
#endif
/*
** Maximum length (in bytes) of the pattern in a LIKE or GLOB
** operator.
*/
#ifndef SQLITE_MAX_LIKE_PATTERN_LENGTH
# define SQLITE_MAX_LIKE_PATTERN_LENGTH 50000
#endif
/************** End of sqliteLimit.h *****************************************/
/************** Continuing where we left off in sqliteInt.h ******************/
/* Disable nuisance warnings on Borland compilers */
#if defined(__BORLANDC__)
#pragma warn -rch /* unreachable code */
#pragma warn -ccc /* Condition is always true or false */
#pragma warn -aus /* Assigned value is never used */
#pragma warn -csu /* Comparing signed and unsigned */
#pragma warn -spa /* Suspicous pointer arithmetic */
#endif
/* Needed for various definitions... */
#define _GNU_SOURCE
/*
** Include standard header files as necessary
*/
#ifdef HAVE_STDINT_H
#include <stdint.h>
#endif
#ifdef HAVE_INTTYPES_H
#include <inttypes.h>
#endif
/*
** A macro used to aid in coverage testing. When doing coverage
** testing, the condition inside the argument must be evaluated
** both true and false in order to get full branch coverage.
** This macro can be inserted to ensure adequate test coverage
** in places where simple condition/decision coverage is inadequate.
*/
#ifdef SQLITE_COVERAGE_TEST
SQLITE_PRIVATE void sqlite3Coverage(int);
# define testcase(X) if( X ){ sqlite3Coverage(__LINE__); }
#else
# define testcase(X)
#endif
/*
** The macro unlikely() is a hint that surrounds a boolean
** expression that is usually false. Macro likely() surrounds
** a boolean expression that is usually true. GCC is able to
** use these hints to generate better code, sometimes.
*/
#if defined(__GNUC__) && 0
# define likely(X) __builtin_expect((X),1)
# define unlikely(X) __builtin_expect((X),0)
#else
# define likely(X) !!(X)
# define unlikely(X) !!(X)
#endif
/*
** These #defines should enable >2GB file support on Posix if the
** underlying operating system supports it. If the OS lacks
** large file support, or if the OS is windows, these should be no-ops.
**
** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any
** system #includes. Hence, this block of code must be the very first
** code in all source files.
**
** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
** on the compiler command line. This is necessary if you are compiling
** on a recent machine (ex: RedHat 7.2) but you want your code to work
** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2
** without this option, LFS is enable. But LFS does not exist in the kernel
** in RedHat 6.0, so the code won't work. Hence, for maximum binary
** portability you should omit LFS.
**
** Similar is true for MacOS. LFS is only supported on MacOS 9 and later.
*/
#ifndef SQLITE_DISABLE_LFS
# define _LARGE_FILE 1
# ifndef _FILE_OFFSET_BITS
# define _FILE_OFFSET_BITS 64
# endif
# define _LARGEFILE_SOURCE 1
#endif
/*
** The SQLITE_THREADSAFE macro must be defined as either 0 or 1.
** Older versions of SQLite used an optional THREADSAFE macro.
** We support that for legacy
*/
#if !defined(SQLITE_THREADSAFE)
#if defined(THREADSAFE)
# define SQLITE_THREADSAFE THREADSAFE
#else
# define SQLITE_THREADSAFE 1
#endif
#endif
/*
** Exactly one of the following macros must be defined in order to
** specify which memory allocation subsystem to use.
**
** SQLITE_SYSTEM_MALLOC // Use normal system malloc()
** SQLITE_MEMDEBUG // Debugging version of system malloc()
** SQLITE_MEMORY_SIZE // internal allocator #1
** SQLITE_MMAP_HEAP_SIZE // internal mmap() allocator
** SQLITE_POW2_MEMORY_SIZE // internal power-of-two allocator
**
** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as
** the default.
*/
#if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)+\
defined(SQLITE_MEMORY_SIZE)+defined(SQLITE_MMAP_HEAP_SIZE)+\
defined(SQLITE_POW2_MEMORY_SIZE)>1
# error "At most one of the following compile-time configuration options\
is allows: SQLITE_SYSTEM_MALLOC, SQLITE_MEMDEBUG, SQLITE_MEMORY_SIZE,\
SQLITE_MMAP_HEAP_SIZE, SQLITE_POW2_MEMORY_SIZE"
#endif
#if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)+\
defined(SQLITE_MEMORY_SIZE)+defined(SQLITE_MMAP_HEAP_SIZE)+\
defined(SQLITE_POW2_MEMORY_SIZE)==0
# define SQLITE_SYSTEM_MALLOC 1
#endif
/*
** If SQLITE_MALLOC_SOFT_LIMIT is defined, then try to keep the
** sizes of memory allocations below this value where possible.
*/
#if defined(SQLITE_POW2_MEMORY_SIZE) && !defined(SQLITE_MALLOC_SOFT_LIMIT)
# define SQLITE_MALLOC_SOFT_LIMIT 1024
#endif
/*
** We need to define _XOPEN_SOURCE as follows in order to enable
** recursive mutexes on most unix systems. But Mac OS X is different.
** The _XOPEN_SOURCE define causes problems for Mac OS X we are told,
** so it is omitted there. See ticket #2673.
**
** Later we learn that _XOPEN_SOURCE is poorly or incorrectly
** implemented on some systems. So we avoid defining it at all
** if it is already defined or if it is unneeded because we are
** not doing a threadsafe build. Ticket #2681.
**
** See also ticket #2741.
*/
#if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) && SQLITE_THREADSAFE
# define _XOPEN_SOURCE 500 /* Needed to enable pthread recursive mutexes */
#endif
#if defined(SQLITE_TCL) || defined(TCLSH)
# include <tcl.h>
#endif
/*
** Many people are failing to set -DNDEBUG=1 when compiling SQLite.
** Setting NDEBUG makes the code smaller and run faster. So the following
** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1
** option is set. Thus NDEBUG becomes an opt-in rather than an opt-out
** feature.
*/
#if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
# define NDEBUG 1
#endif
/************** Include sqlite3.h in the middle of sqliteInt.h ***************/
/************** Begin file sqlite3.h *****************************************/
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This header file defines the interface that the SQLite library
** presents to client programs. If a C-function, structure, datatype,
** or constant definition does not appear in this file, then it is
** not a published API of SQLite, is subject to change without
** notice, and should not be referenced by programs that use SQLite.
**
** Some of the definitions that are in this file are marked as
** "experimental". Experimental interfaces are normally new
** features recently added to SQLite. We do not anticipate changes
** to experimental interfaces but reserve to make minor changes if
** experience from use "in the wild" suggest such changes are prudent.
**
** The official C-language API documentation for SQLite is derived
** from comments in this file. This file is the authoritative source
** on how SQLite interfaces are suppose to operate.
**
** The name of this file under configuration management is "sqlite.h.in".
** The makefile makes some minor changes to this file (such as inserting
** the version number) and changes its name to "sqlite3.h" as
** part of the build process.
**
*/
#ifndef _SQLITE3_H_
#define _SQLITE3_H_
#include <stdarg.h> /* Needed for the definition of va_list */
#include <stdint.h>
/*
** Make sure we can call this stuff from C++.
*/
#if 0
extern "C"
{
#endif
/*
** Add the ability to override 'extern'
*/
#ifndef SQLITE_EXTERN
# define SQLITE_EXTERN extern
#endif
/*
** Make sure these symbols where not defined by some previous header
** file.
*/
#ifdef SQLITE_VERSION
# undef SQLITE_VERSION
#endif
#ifdef SQLITE_VERSION_NUMBER
# undef SQLITE_VERSION_NUMBER
#endif
/*
** CAPI3REF: Compile-Time Library Version Numbers {F10010}
**
** The SQLITE_VERSION and SQLITE_VERSION_NUMBER #defines in
** the sqlite3.h file specify the version of SQLite with which
** that header file is associated.
**
** The "version" of SQLite is a string of the form "X.Y.Z".
** The phrase "alpha" or "beta" might be appended after the Z.
** The X value is major version number always 3 in SQLite3.
** The X value only changes when backwards compatibility is
** broken and we intend to never break
** backwards compatibility. The Y value is the minor version
** number and only changes when
** there are major feature enhancements that are forwards compatible
** but not backwards compatible. The Z value is release number
** and is incremented with
** each release but resets back to 0 when Y is incremented.
**
** See also: [sqlite3_libversion()] and [sqlite3_libversion_number()].
**
** INVARIANTS:
**
** {F10011} The SQLITE_VERSION #define in the sqlite3.h header file
** evaluates to a string literal that is the SQLite version
** with which the header file is associated.
**
** {F10014} The SQLITE_VERSION_NUMBER #define resolves to an integer
** with the value (X*1000000 + Y*1000 + Z) where X, Y, and
** Z are the major version, minor version, and release number.
*/
#define SQLITE_VERSION "3.5.9"
#define SQLITE_VERSION_NUMBER 3005009
/*
** CAPI3REF: Run-Time Library Version Numbers {F10020}
** KEYWORDS: sqlite3_version
**
** These features provide the same information as the [SQLITE_VERSION]
** and [SQLITE_VERSION_NUMBER] #defines in the header, but are associated
** with the library instead of the header file. Cautious programmers might
** include a check in their application to verify that
** sqlite3_libversion_number() always returns the value
** [SQLITE_VERSION_NUMBER].
**
** The sqlite3_libversion() function returns the same information as is
** in the sqlite3_version[] string constant. The function is provided
** for use in DLLs since DLL users usually do not have direct access to string
** constants within the DLL.
**
** INVARIANTS:
**
** {F10021} The [sqlite3_libversion_number()] interface returns an integer
** equal to [SQLITE_VERSION_NUMBER].
**
** {F10022} The [sqlite3_version] string constant contains the text of the
** [SQLITE_VERSION] string.
**
** {F10023} The [sqlite3_libversion()] function returns
** a pointer to the [sqlite3_version] string constant.
*/
SQLITE_API const char sqlite3_version[];
SQLITE_API const char *sqlite3_libversion(void);
SQLITE_API int sqlite3_libversion_number(void);
/*
** CAPI3REF: Test To See If The Library Is Threadsafe {F10100}
**
** SQLite can be compiled with or without mutexes. When
** the SQLITE_THREADSAFE C preprocessor macro is true, mutexes
** are enabled and SQLite is threadsafe. When that macro is false,
** the mutexes are omitted. Without the mutexes, it is not safe
** to use SQLite from more than one thread.
**
** There is a measurable performance penalty for enabling mutexes.
** So if speed is of utmost importance, it makes sense to disable
** the mutexes. But for maximum safety, mutexes should be enabled.
** The default behavior is for mutexes to be enabled.
**
** This interface can be used by a program to make sure that the
** version of SQLite that it is linking against was compiled with
** the desired setting of the SQLITE_THREADSAFE macro.
**
** INVARIANTS:
**
** {F10101} The [sqlite3_threadsafe()] function returns nonzero if
** SQLite was compiled with its mutexes enabled or zero
** if SQLite was compiled with mutexes disabled.
*/
SQLITE_API int sqlite3_threadsafe(void);
/*
** CAPI3REF: Database Connection Handle {F12000}
** KEYWORDS: {database connection} {database connections}
**
** Each open SQLite database is represented by pointer to an instance of the
** opaque structure named "sqlite3". It is useful to think of an sqlite3
** pointer as an object. The [sqlite3_open()], [sqlite3_open16()], and
** [sqlite3_open_v2()] interfaces are its constructors
** and [sqlite3_close()] is its destructor. There are many other interfaces
** (such as [sqlite3_prepare_v2()], [sqlite3_create_function()], and
** [sqlite3_busy_timeout()] to name but three) that are methods on this
** object.
*/
typedef struct sqlite3 sqlite3;
/*
** CAPI3REF: 64-Bit Integer Types {F10200}
** KEYWORDS: sqlite_int64 sqlite_uint64
**
** Because there is no cross-platform way to specify 64-bit integer types
** SQLite includes typedefs for 64-bit signed and unsigned integers.
**
** The sqlite3_int64 and sqlite3_uint64 are the preferred type
** definitions. The sqlite_int64 and sqlite_uint64 types are
** supported for backwards compatibility only.
**
** INVARIANTS:
**
** {F10201} The [sqlite_int64] and [sqlite3_int64] types specify a
** 64-bit signed integer.
**
** {F10202} The [sqlite_uint64] and [sqlite3_uint64] types specify
** a 64-bit unsigned integer.
*/
#ifdef SQLITE_INT64_TYPE
typedef SQLITE_INT64_TYPE sqlite_int64;
typedef unsigned SQLITE_INT64_TYPE sqlite_uint64;
#elif defined(_MSC_VER) || defined(__BORLANDC__)
typedef __int64 sqlite_int64;
typedef unsigned __int64 sqlite_uint64;
#else
typedef long long int sqlite_int64;
typedef unsigned long long int sqlite_uint64;
#endif
typedef sqlite_int64 sqlite3_int64;
typedef sqlite_uint64 sqlite3_uint64;
/*
** If compiling for a processor that lacks floating point support,
** substitute integer for floating-point
*/
#ifdef SQLITE_OMIT_FLOATING_POINT
# define double sqlite3_int64
#endif
/*
** CAPI3REF: Closing A Database Connection {F12010}
**
** This routine is the destructor for the [sqlite3] object.
**
** Applications should [sqlite3_finalize | finalize] all
** [prepared statements] and
** [sqlite3_blob_close | close] all [sqlite3_blob | BLOBs]
** associated with the [sqlite3] object prior
** to attempting to close the [sqlite3] object.
**
** <todo>What happens to pending transactions? Are they
** rolled back, or abandoned?</todo>
**
** INVARIANTS:
**
** {F12011} The [sqlite3_close()] interface destroys an [sqlite3] object
** allocated by a prior call to [sqlite3_open()],
** [sqlite3_open16()], or [sqlite3_open_v2()].
**
** {F12012} The [sqlite3_close()] function releases all memory used by the
** connection and closes all open files.
**
** {F12013} If the database connection contains
** [prepared statements] that have not been
** finalized by [sqlite3_finalize()], then [sqlite3_close()]
** returns [SQLITE_BUSY] and leaves the connection open.
**
** {F12014} Giving sqlite3_close() a NULL pointer is a harmless no-op.
**
** LIMITATIONS:
**
** {U12015} The parameter to [sqlite3_close()] must be an [sqlite3] object
** pointer previously obtained from [sqlite3_open()] or the
** equivalent, or NULL.
**
** {U12016} The parameter to [sqlite3_close()] must not have been previously
** closed.
*/
SQLITE_API int sqlite3_close(sqlite3 *);
/*
** The type for a callback function.
** This is legacy and deprecated. It is included for historical
** compatibility and is not documented.
*/
typedef int (*sqlite3_callback) (void *, int, char **, char **);
/*
** CAPI3REF: One-Step Query Execution Interface {F12100}
**
** The sqlite3_exec() interface is a convenient way of running
** one or more SQL statements without a lot of C code. The
** SQL statements are passed in as the second parameter to
** sqlite3_exec(). The statements are evaluated one by one
** until either an error or an interrupt is encountered or
** until they are all done. The 3rd parameter is an optional
** callback that is invoked once for each row of any query results
** produced by the SQL statements. The 5th parameter tells where
** to write any error messages.
**
** The sqlite3_exec() interface is implemented in terms of
** [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()].
** The sqlite3_exec() routine does nothing that cannot be done
** by [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()].
** The sqlite3_exec() is just a convenient wrapper.
**
** INVARIANTS:
**
** {F12101} The [sqlite3_exec()] interface evaluates zero or more UTF-8
** encoded, semicolon-separated, SQL statements in the
** zero-terminated string of its 2nd parameter within the
** context of the [sqlite3] object given in the 1st parameter.
**
** {F12104} The return value of [sqlite3_exec()] is SQLITE_OK if all
** SQL statements run successfully.
**
** {F12105} The return value of [sqlite3_exec()] is an appropriate
** non-zero error code if any SQL statement fails.
**
** {F12107} If one or more of the SQL statements handed to [sqlite3_exec()]
** return results and the 3rd parameter is not NULL, then
** the callback function specified by the 3rd parameter is
** invoked once for each row of result.
**
** {F12110} If the callback returns a non-zero value then [sqlite3_exec()]
** will aborted the SQL statement it is currently evaluating,
** skip all subsequent SQL statements, and return [SQLITE_ABORT].
** <todo>What happens to *errmsg here? Does the result code for
** sqlite3_errcode() get set?</todo>
**
** {F12113} The [sqlite3_exec()] routine will pass its 4th parameter through
** as the 1st parameter of the callback.
**
** {F12116} The [sqlite3_exec()] routine sets the 2nd parameter of its
** callback to be the number of columns in the current row of
** result.
**
** {F12119} The [sqlite3_exec()] routine sets the 3rd parameter of its
** callback to be an array of pointers to strings holding the
** values for each column in the current result set row as
** obtained from [sqlite3_column_text()].
**
** {F12122} The [sqlite3_exec()] routine sets the 4th parameter of its
** callback to be an array of pointers to strings holding the
** names of result columns as obtained from [sqlite3_column_name()].
**
** {F12125} If the 3rd parameter to [sqlite3_exec()] is NULL then
** [sqlite3_exec()] never invokes a callback. All query
** results are silently discarded.
**
** {F12128} If an error occurs while parsing or evaluating any of the SQL
** statements handed to [sqlite3_exec()] then [sqlite3_exec()] will
** return an [error code] other than [SQLITE_OK].
**
** {F12131} If an error occurs while parsing or evaluating any of the SQL
** handed to [sqlite3_exec()] and if the 5th parameter (errmsg)
** to [sqlite3_exec()] is not NULL, then an error message is
** allocated using the equivalent of [sqlite3_mprintf()] and
** *errmsg is made to point to that message.
**
** {F12134} The [sqlite3_exec()] routine does not change the value of
** *errmsg if errmsg is NULL or if there are no errors.
**
** {F12137} The [sqlite3_exec()] function sets the error code and message
** accessible via [sqlite3_errcode()], [sqlite3_errmsg()], and
** [sqlite3_errmsg16()].
**
** LIMITATIONS:
**
** {U12141} The first parameter to [sqlite3_exec()] must be an valid and open
** [database connection].
**
** {U12142} The database connection must not be closed while
** [sqlite3_exec()] is running.
**
** {U12143} The calling function is should use [sqlite3_free()] to free
** the memory that *errmsg is left pointing at once the error
** message is no longer needed.
**
** {U12145} The SQL statement text in the 2nd parameter to [sqlite3_exec()]
** must remain unchanged while [sqlite3_exec()] is running.
*/
SQLITE_API int sqlite3_exec(sqlite3 *, /* An open database */
const char *sql, /* SQL to be evaluted */
int (*callback) (void *, int, char **, char **), /* Callback function */
void *, /* 1st argument to callback */
char **errmsg /* Error msg written here */
);
/*
** CAPI3REF: Result Codes {F10210}
** KEYWORDS: SQLITE_OK {error code} {error codes}
**
** Many SQLite functions return an integer result code from the set shown
** here in order to indicates success or failure.
**
** See also: [SQLITE_IOERR_READ | extended result codes]
*/
#define SQLITE_OK 0 /* Successful result */
/* beginning-of-error-codes */
#define SQLITE_ERROR 1 /* SQL error or missing database */
#define SQLITE_INTERNAL 2 /* Internal logic error in SQLite */
#define SQLITE_PERM 3 /* Access permission denied */
#define SQLITE_ABORT 4 /* Callback routine requested an abort */
#define SQLITE_BUSY 5 /* The database file is locked */
#define SQLITE_LOCKED 6 /* A table in the database is locked */
#define SQLITE_NOMEM 7 /* A malloc() failed */
#define SQLITE_READONLY 8 /* Attempt to write a readonly database */
#define SQLITE_INTERRUPT 9 /* Operation terminated by sqlite3_interrupt() */
#define SQLITE_IOERR 10 /* Some kind of disk I/O error occurred */
#define SQLITE_CORRUPT 11 /* The database disk image is malformed */
#define SQLITE_NOTFOUND 12 /* NOT USED. Table or record not found */
#define SQLITE_FULL 13 /* Insertion failed because database is full */
#define SQLITE_CANTOPEN 14 /* Unable to open the database file */
#define SQLITE_PROTOCOL 15 /* NOT USED. Database lock protocol error */
#define SQLITE_EMPTY 16 /* Database is empty */
#define SQLITE_SCHEMA 17 /* The database schema changed */
#define SQLITE_TOOBIG 18 /* String or BLOB exceeds size limit */
#define SQLITE_CONSTRAINT 19 /* Abort due to constraint violation */
#define SQLITE_MISMATCH 20 /* Data type mismatch */
#define SQLITE_MISUSE 21 /* Library used incorrectly */
#define SQLITE_NOLFS 22 /* Uses OS features not supported on host */
#define SQLITE_AUTH 23 /* Authorization denied */
#define SQLITE_FORMAT 24 /* Auxiliary database format error */
#define SQLITE_RANGE 25 /* 2nd parameter to sqlite3_bind out of range */
#define SQLITE_NOTADB 26 /* File opened that is not a database file */
#define SQLITE_ROW 100 /* sqlite3_step() has another row ready */
#define SQLITE_DONE 101 /* sqlite3_step() has finished executing */
/* end-of-error-codes */
/*
** CAPI3REF: Extended Result Codes {F10220}
** KEYWORDS: {extended error code} {extended error codes}
** KEYWORDS: {extended result codes}
**
** In its default configuration, SQLite API routines return one of 26 integer
** [SQLITE_OK | result codes]. However, experience has shown that
** many of these result codes are too course-grained. They do not provide as
** much information about problems as programmers might like. In an effort to
** address this, newer versions of SQLite (version 3.3.8 and later) include
** support for additional result codes that provide more detailed information
** about errors. The extended result codes are enabled or disabled
** for each database connection using the [sqlite3_extended_result_codes()]
** API.
**
** Some of the available extended result codes are listed here.
** One may expect the number of extended result codes will be expand
** over time. Software that uses extended result codes should expect
** to see new result codes in future releases of SQLite.
**
** The SQLITE_OK result code will never be extended. It will always
** be exactly zero.
**
** INVARIANTS:
**
** {F10223} The symbolic name for an extended result code always contains
** a related primary result code as a prefix.
**
** {F10224} Primary result code names contain a single "_" character.
**
** {F10225} Extended result code names contain two or more "_" characters.
**
** {F10226} The numeric value of an extended result code contains the
** numeric value of its corresponding primary result code in
** its least significant 8 bits.
*/
#define SQLITE_IOERR_READ (SQLITE_IOERR | (1<<8))
#define SQLITE_IOERR_SHORT_READ (SQLITE_IOERR | (2<<8))
#define SQLITE_IOERR_WRITE (SQLITE_IOERR | (3<<8))
#define SQLITE_IOERR_FSYNC (SQLITE_IOERR | (4<<8))
#define SQLITE_IOERR_DIR_FSYNC (SQLITE_IOERR | (5<<8))
#define SQLITE_IOERR_TRUNCATE (SQLITE_IOERR | (6<<8))
#define SQLITE_IOERR_FSTAT (SQLITE_IOERR | (7<<8))
#define SQLITE_IOERR_UNLOCK (SQLITE_IOERR | (8<<8))
#define SQLITE_IOERR_RDLOCK (SQLITE_IOERR | (9<<8))
#define SQLITE_IOERR_DELETE (SQLITE_IOERR | (10<<8))
#define SQLITE_IOERR_BLOCKED (SQLITE_IOERR | (11<<8))
#define SQLITE_IOERR_NOMEM (SQLITE_IOERR | (12<<8))
/*
** CAPI3REF: Flags For File Open Operations {F10230}
**
** These bit values are intended for use in the
** 3rd parameter to the [sqlite3_open_v2()] interface and
** in the 4th parameter to the xOpen method of the
** [sqlite3_vfs] object.
*/
#define SQLITE_OPEN_READONLY 0x00000001
#define SQLITE_OPEN_READWRITE 0x00000002
#define SQLITE_OPEN_CREATE 0x00000004
#define SQLITE_OPEN_DELETEONCLOSE 0x00000008
#define SQLITE_OPEN_EXCLUSIVE 0x00000010
#define SQLITE_OPEN_MAIN_DB 0x00000100
#define SQLITE_OPEN_TEMP_DB 0x00000200
#define SQLITE_OPEN_TRANSIENT_DB 0x00000400
#define SQLITE_OPEN_MAIN_JOURNAL 0x00000800
#define SQLITE_OPEN_TEMP_JOURNAL 0x00001000
#define SQLITE_OPEN_SUBJOURNAL 0x00002000
#define SQLITE_OPEN_MASTER_JOURNAL 0x00004000
/*
** CAPI3REF: Device Characteristics {F10240}
**
** The xDeviceCapabilities method of the [sqlite3_io_methods]
** object returns an integer which is a vector of the these
** bit values expressing I/O characteristics of the mass storage
** device that holds the file that the [sqlite3_io_methods]
** refers to.
**
** The SQLITE_IOCAP_ATOMIC property means that all writes of
** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values
** mean that writes of blocks that are nnn bytes in size and
** are aligned to an address which is an integer multiple of
** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means
** that when data is appended to a file, the data is appended
** first then the size of the file is extended, never the other
** way around. The SQLITE_IOCAP_SEQUENTIAL property means that
** information is written to disk in the same order as calls
** to xWrite().
*/
#define SQLITE_IOCAP_ATOMIC 0x00000001
#define SQLITE_IOCAP_ATOMIC512 0x00000002
#define SQLITE_IOCAP_ATOMIC1K 0x00000004
#define SQLITE_IOCAP_ATOMIC2K 0x00000008
#define SQLITE_IOCAP_ATOMIC4K 0x00000010
#define SQLITE_IOCAP_ATOMIC8K 0x00000020
#define SQLITE_IOCAP_ATOMIC16K 0x00000040
#define SQLITE_IOCAP_ATOMIC32K 0x00000080
#define SQLITE_IOCAP_ATOMIC64K 0x00000100
#define SQLITE_IOCAP_SAFE_APPEND 0x00000200
#define SQLITE_IOCAP_SEQUENTIAL 0x00000400
/*
** CAPI3REF: File Locking Levels {F10250}
**
** SQLite uses one of these integer values as the second
** argument to calls it makes to the xLock() and xUnlock() methods
** of an [sqlite3_io_methods] object.
*/
#define SQLITE_LOCK_NONE 0
#define SQLITE_LOCK_SHARED 1
#define SQLITE_LOCK_RESERVED 2
#define SQLITE_LOCK_PENDING 3
#define SQLITE_LOCK_EXCLUSIVE 4
/*
** CAPI3REF: Synchronization Type Flags {F10260}
**
** When SQLite invokes the xSync() method of an
** [sqlite3_io_methods] object it uses a combination of
** these integer values as the second argument.
**
** When the SQLITE_SYNC_DATAONLY flag is used, it means that the
** sync operation only needs to flush data to mass storage. Inode
** information need not be flushed. The SQLITE_SYNC_NORMAL flag means
** to use normal fsync() semantics. The SQLITE_SYNC_FULL flag means
** to use Mac OS-X style fullsync instead of fsync().
*/
#define SQLITE_SYNC_NORMAL 0x00002
#define SQLITE_SYNC_FULL 0x00003
#define SQLITE_SYNC_DATAONLY 0x00010
/*
** CAPI3REF: OS Interface Open File Handle {F11110}
**
** An [sqlite3_file] object represents an open file in the OS
** interface layer. Individual OS interface implementations will
** want to subclass this object by appending additional fields
** for their own use. The pMethods entry is a pointer to an
** [sqlite3_io_methods] object that defines methods for performing
** I/O operations on the open file.
*/
typedef struct sqlite3_file sqlite3_file;
struct sqlite3_file
{
const struct sqlite3_io_methods *pMethods; /* Methods for an open file */
};
/*
** CAPI3REF: OS Interface File Virtual Methods Object {F11120}
**
** Every file opened by the [sqlite3_vfs] xOpen method contains a pointer to
** an instance of this object. This object defines the
** methods used to perform various operations against the open file.
**
** The flags argument to xSync may be one of [SQLITE_SYNC_NORMAL] or
** [SQLITE_SYNC_FULL]. The first choice is the normal fsync().
* The second choice is an
** OS-X style fullsync. The SQLITE_SYNC_DATA flag may be ORed in to
** indicate that only the data of the file and not its inode needs to be
** synced.
**
** The integer values to xLock() and xUnlock() are one of
** <ul>
** <li> [SQLITE_LOCK_NONE],
** <li> [SQLITE_LOCK_SHARED],
** <li> [SQLITE_LOCK_RESERVED],
** <li> [SQLITE_LOCK_PENDING], or
** <li> [SQLITE_LOCK_EXCLUSIVE].
** </ul>
** xLock() increases the lock. xUnlock() decreases the lock.
** The xCheckReservedLock() method looks
** to see if any database connection, either in this
** process or in some other process, is holding an RESERVED,
** PENDING, or EXCLUSIVE lock on the file. It returns true
** if such a lock exists and false if not.
**
** The xFileControl() method is a generic interface that allows custom
** VFS implementations to directly control an open file using the
** [sqlite3_file_control()] interface. The second "op" argument
** is an integer opcode. The third
** argument is a generic pointer which is intended to be a pointer
** to a structure that may contain arguments or space in which to
** write return values. Potential uses for xFileControl() might be
** functions to enable blocking locks with timeouts, to change the
** locking strategy (for example to use dot-file locks), to inquire
** about the status of a lock, or to break stale locks. The SQLite
** core reserves opcodes less than 100 for its own use.
** A [SQLITE_FCNTL_LOCKSTATE | list of opcodes] less than 100 is available.
** Applications that define a custom xFileControl method should use opcodes
** greater than 100 to avoid conflicts.
**
** The xSectorSize() method returns the sector size of the
** device that underlies the file. The sector size is the
** minimum write that can be performed without disturbing
** other bytes in the file. The xDeviceCharacteristics()
** method returns a bit vector describing behaviors of the
** underlying device:
**
** <ul>
** <li> [SQLITE_IOCAP_ATOMIC]
** <li> [SQLITE_IOCAP_ATOMIC512]
** <li> [SQLITE_IOCAP_ATOMIC1K]
** <li> [SQLITE_IOCAP_ATOMIC2K]
** <li> [SQLITE_IOCAP_ATOMIC4K]
** <li> [SQLITE_IOCAP_ATOMIC8K]
** <li> [SQLITE_IOCAP_ATOMIC16K]
** <li> [SQLITE_IOCAP_ATOMIC32K]
** <li> [SQLITE_IOCAP_ATOMIC64K]
** <li> [SQLITE_IOCAP_SAFE_APPEND]
** <li> [SQLITE_IOCAP_SEQUENTIAL]
** </ul>
**
** The SQLITE_IOCAP_ATOMIC property means that all writes of
** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values
** mean that writes of blocks that are nnn bytes in size and
** are aligned to an address which is an integer multiple of
** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means
** that when data is appended to a file, the data is appended
** first then the size of the file is extended, never the other
** way around. The SQLITE_IOCAP_SEQUENTIAL property means that
** information is written to disk in the same order as calls
** to xWrite().
*/
typedef struct sqlite3_io_methods sqlite3_io_methods;
struct sqlite3_io_methods
{
int iVersion;
int (*xClose) (sqlite3_file *);
int (*xRead) (sqlite3_file *, void *, int iAmt, sqlite3_int64 iOfst);
int (*xWrite) (sqlite3_file *, const void *, int iAmt, sqlite3_int64 iOfst);
int (*xTruncate) (sqlite3_file *, sqlite3_int64 size);
int (*xSync) (sqlite3_file *, int flags);
int (*xFileSize) (sqlite3_file *, sqlite3_int64 * pSize);
int (*xLock) (sqlite3_file *, int);
int (*xUnlock) (sqlite3_file *, int);
int (*xCheckReservedLock) (sqlite3_file *);
int (*xFileControl) (sqlite3_file *, int op, void *pArg);
int (*xSectorSize) (sqlite3_file *);
int (*xDeviceCharacteristics) (sqlite3_file *);
/* Additional methods may be added in future releases */
};
/*
** CAPI3REF: Standard File Control Opcodes {F11310}
**
** These integer constants are opcodes for the xFileControl method
** of the [sqlite3_io_methods] object and to the [sqlite3_file_control()]
** interface.
**
** The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging. This
** opcode causes the xFileControl method to write the current state of
** the lock (one of [SQLITE_LOCK_NONE], [SQLITE_LOCK_SHARED],
** [SQLITE_LOCK_RESERVED], [SQLITE_LOCK_PENDING], or [SQLITE_LOCK_EXCLUSIVE])
** into an integer that the pArg argument points to. This capability
** is used during testing and only needs to be supported when SQLITE_TEST
** is defined.
*/
#define SQLITE_FCNTL_LOCKSTATE 1
/*
** CAPI3REF: Mutex Handle {F17110}
**
** The mutex module within SQLite defines [sqlite3_mutex] to be an
** abstract type for a mutex object. The SQLite core never looks
** at the internal representation of an [sqlite3_mutex]. It only
** deals with pointers to the [sqlite3_mutex] object.
**
** Mutexes are created using [sqlite3_mutex_alloc()].
*/
typedef struct sqlite3_mutex sqlite3_mutex;
/*
** CAPI3REF: OS Interface Object {F11140}
**
** An instance of this object defines the interface between the
** SQLite core and the underlying operating system. The "vfs"
** in the name of the object stands for "virtual file system".
**
** The iVersion field is initially 1 but may be larger for future
** versions of SQLite. Additional fields may be appended to this
** object when the iVersion value is increased.
**
** The szOsFile field is the size of the subclassed [sqlite3_file]
** structure used by this VFS. mxPathname is the maximum length of
** a pathname in this VFS.
**
** Registered sqlite3_vfs objects are kept on a linked list formed by
** the pNext pointer. The [sqlite3_vfs_register()]
** and [sqlite3_vfs_unregister()] interfaces manage this list
** in a thread-safe way. The [sqlite3_vfs_find()] interface
** searches the list.
**
** The pNext field is the only field in the sqlite3_vfs
** structure that SQLite will ever modify. SQLite will only access
** or modify this field while holding a particular static mutex.
** The application should never modify anything within the sqlite3_vfs
** object once the object has been registered.
**
** The zName field holds the name of the VFS module. The name must
** be unique across all VFS modules.
**
** {F11141} SQLite will guarantee that the zFilename string passed to
** xOpen() is a full pathname as generated by xFullPathname() and
** that the string will be valid and unchanged until xClose() is
** called. {END} So the [sqlite3_file] can store a pointer to the
** filename if it needs to remember the filename for some reason.
**
** {F11142} The flags argument to xOpen() includes all bits set in
** the flags argument to [sqlite3_open_v2()]. Or if [sqlite3_open()]
** or [sqlite3_open16()] is used, then flags includes at least
** [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]. {END}
** If xOpen() opens a file read-only then it sets *pOutFlags to
** include [SQLITE_OPEN_READONLY]. Other bits in *pOutFlags may be
** set.
**
** {F11143} SQLite will also add one of the following flags to the xOpen()
** call, depending on the object being opened:
**
** <ul>
** <li> [SQLITE_OPEN_MAIN_DB]
** <li> [SQLITE_OPEN_MAIN_JOURNAL]
** <li> [SQLITE_OPEN_TEMP_DB]
** <li> [SQLITE_OPEN_TEMP_JOURNAL]
** <li> [SQLITE_OPEN_TRANSIENT_DB]
** <li> [SQLITE_OPEN_SUBJOURNAL]
** <li> [SQLITE_OPEN_MASTER_JOURNAL]
** </ul> {END}
**
** The file I/O implementation can use the object type flags to
** changes the way it deals with files. For example, an application
** that does not care about crash recovery or rollback might make
** the open of a journal file a no-op. Writes to this journal would
** also be no-ops, and any attempt to read the journal would return
** SQLITE_IOERR. Or the implementation might recognize that a database
** file will be doing page-aligned sector reads and writes in a random
** order and set up its I/O subsystem accordingly.
**
** SQLite might also add one of the following flags to the xOpen
** method:
**
** <ul>
** <li> [SQLITE_OPEN_DELETEONCLOSE]
** <li> [SQLITE_OPEN_EXCLUSIVE]
** </ul>
**
** {F11145} The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be
** deleted when it is closed. {F11146} The [SQLITE_OPEN_DELETEONCLOSE]
** will be set for TEMP databases, journals and for subjournals.
** {F11147} The [SQLITE_OPEN_EXCLUSIVE] flag means the file should be opened
** for exclusive access. This flag is set for all files except
** for the main database file. {END}
**
** {F11148} At least szOsFile bytes of memory are allocated by SQLite
** to hold the [sqlite3_file] structure passed as the third
** argument to xOpen. {END} The xOpen method does not have to
** allocate the structure; it should just fill it in.
**
** {F11149} The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS]
** to test for the existance of a file,
** or [SQLITE_ACCESS_READWRITE] to test to see
** if a file is readable and writable, or [SQLITE_ACCESS_READ]
** to test to see if a file is at least readable. {END} The file can be a
** directory.
**
** {F11150} SQLite will always allocate at least mxPathname+1 bytes for
** the output buffers for xGetTempname and xFullPathname. {F11151} The exact
** size of the output buffer is also passed as a parameter to both
** methods. {END} If the output buffer is not large enough, SQLITE_CANTOPEN
** should be returned. As this is handled as a fatal error by SQLite,
** vfs implementations should endeavor to prevent this by setting
** mxPathname to a sufficiently large value.
**
** The xRandomness(), xSleep(), and xCurrentTime() interfaces
** are not strictly a part of the filesystem, but they are
** included in the VFS structure for completeness.
** The xRandomness() function attempts to return nBytes bytes
** of good-quality randomness into zOut. The return value is
** the actual number of bytes of randomness obtained. The
** xSleep() method causes the calling thread to sleep for at
** least the number of microseconds given. The xCurrentTime()
** method returns a Julian Day Number for the current date and
** time.
*/
typedef struct sqlite3_vfs sqlite3_vfs;
struct sqlite3_vfs
{
int iVersion; /* Structure version number */
int szOsFile; /* Size of subclassed sqlite3_file */
int mxPathname; /* Maximum file pathname length */
sqlite3_vfs *pNext; /* Next registered VFS */
const char *zName; /* Name of this virtual file system */
void *pAppData; /* Pointer to application-specific data */
int (*xOpen) (sqlite3_vfs *, const char *zName, sqlite3_file *,
int flags, int *pOutFlags);
int (*xDelete) (sqlite3_vfs *, const char *zName, int syncDir);
int (*xAccess) (sqlite3_vfs *, const char *zName, int flags);
int (*xGetTempname) (sqlite3_vfs *, int nOut, char *zOut);
int (*xFullPathname) (sqlite3_vfs *, const char *zName, int nOut, char *zOut);
void *(*xDlOpen) (sqlite3_vfs *, const char *zFilename);
void (*xDlError) (sqlite3_vfs *, int nByte, char *zErrMsg);
void *(*xDlSym) (sqlite3_vfs *, void *, const char *zSymbol);
void (*xDlClose) (sqlite3_vfs *, void *);
int (*xRandomness) (sqlite3_vfs *, int nByte, char *zOut);
int (*xSleep) (sqlite3_vfs *, int microseconds);
int (*xCurrentTime) (sqlite3_vfs *, double *);
/* New fields may be appended in figure versions. The iVersion
** value will increment whenever this happens. */
};
/*
** CAPI3REF: Flags for the xAccess VFS method {F11190}
**
** {F11191} These integer constants can be used as the third parameter to
** the xAccess method of an [sqlite3_vfs] object. {END} They determine
** what kind of permissions the xAccess method is
** looking for. {F11192} With SQLITE_ACCESS_EXISTS, the xAccess method
** simply checks to see if the file exists. {F11193} With
** SQLITE_ACCESS_READWRITE, the xAccess method checks to see
** if the file is both readable and writable. {F11194} With
** SQLITE_ACCESS_READ the xAccess method
** checks to see if the file is readable.
*/
#define SQLITE_ACCESS_EXISTS 0
#define SQLITE_ACCESS_READWRITE 1
#define SQLITE_ACCESS_READ 2
/*
** CAPI3REF: Enable Or Disable Extended Result Codes {F12200}
**
** The sqlite3_extended_result_codes() routine enables or disables the
** [SQLITE_IOERR_READ | extended result codes] feature of SQLite.
** The extended result codes are disabled by default for historical
** compatibility.
**
** INVARIANTS:
**
** {F12201} Each new [database connection] has the
** [extended result codes] feature
** disabled by default.
**
** {F12202} The [sqlite3_extended_result_codes(D,F)] interface will enable
** [extended result codes] for the
** [database connection] D if the F parameter
** is true, or disable them if F is false.
*/
SQLITE_API int sqlite3_extended_result_codes(sqlite3 *, int onoff);
/*
** CAPI3REF: Last Insert Rowid {F12220}
**
** Each entry in an SQLite table has a unique 64-bit signed
** integer key called the "rowid". The rowid is always available
** as an undeclared column named ROWID, OID, or _ROWID_ as long as those
** names are not also used by explicitly declared columns. If
** the table has a column of type INTEGER PRIMARY KEY then that column
** is another alias for the rowid.
**
** This routine returns the rowid of the most recent
** successful INSERT into the database from the database connection
** shown in the first argument. If no successful inserts
** have ever occurred on this database connection, zero is returned.
**
** If an INSERT occurs within a trigger, then the rowid of the
** inserted row is returned by this routine as long as the trigger
** is running. But once the trigger terminates, the value returned
** by this routine reverts to the last value inserted before the
** trigger fired.
**
** An INSERT that fails due to a constraint violation is not a
** successful insert and does not change the value returned by this
** routine. Thus INSERT OR FAIL, INSERT OR IGNORE, INSERT OR ROLLBACK,
** and INSERT OR ABORT make no changes to the return value of this
** routine when their insertion fails. When INSERT OR REPLACE
** encounters a constraint violation, it does not fail. The
** INSERT continues to completion after deleting rows that caused
** the constraint problem so INSERT OR REPLACE will always change
** the return value of this interface.
**
** For the purposes of this routine, an insert is considered to
** be successful even if it is subsequently rolled back.
**
** INVARIANTS:
**
** {F12221} The [sqlite3_last_insert_rowid()] function returns the
** rowid of the most recent successful insert done
** on the same database connection and within the same
** trigger context, or zero if there have
** been no qualifying inserts on that connection.
**
** {F12223} The [sqlite3_last_insert_rowid()] function returns
** same value when called from the same trigger context
** immediately before and after a ROLLBACK.
**
** LIMITATIONS:
**
** {U12232} If a separate thread does a new insert on the same
** database connection while the [sqlite3_last_insert_rowid()]
** function is running and thus changes the last insert rowid,
** then the value returned by [sqlite3_last_insert_rowid()] is
** unpredictable and might not equal either the old or the new
** last insert rowid.
*/
SQLITE_API sqlite3_int64 sqlite3_last_insert_rowid(sqlite3 *);
/*
** CAPI3REF: Count The Number Of Rows Modified {F12240}
**
** This function returns the number of database rows that were changed
** or inserted or deleted by the most recently completed SQL statement
** on the connection specified by the first parameter. Only
** changes that are directly specified by the INSERT, UPDATE, or
** DELETE statement are counted. Auxiliary changes caused by
** triggers are not counted. Use the [sqlite3_total_changes()] function
** to find the total number of changes including changes caused by triggers.
**
** A "row change" is a change to a single row of a single table
** caused by an INSERT, DELETE, or UPDATE statement. Rows that
** are changed as side effects of REPLACE constraint resolution,
** rollback, ABORT processing, DROP TABLE, or by any other
** mechanisms do not count as direct row changes.
**
** A "trigger context" is a scope of execution that begins and
** ends with the script of a trigger. Most SQL statements are
** evaluated outside of any trigger. This is the "top level"
** trigger context. If a trigger fires from the top level, a
** new trigger context is entered for the duration of that one
** trigger. Subtriggers create subcontexts for their duration.
**
** Calling [sqlite3_exec()] or [sqlite3_step()] recursively does
** not create a new trigger context.
**
** This function returns the number of direct row changes in the
** most recent INSERT, UPDATE, or DELETE statement within the same
** trigger context.
**
** So when called from the top level, this function returns the
** number of changes in the most recent INSERT, UPDATE, or DELETE
** that also occurred at the top level.
** Within the body of a trigger, the sqlite3_changes() interface
** can be called to find the number of
** changes in the most recently completed INSERT, UPDATE, or DELETE
** statement within the body of the same trigger.
** However, the number returned does not include in changes
** caused by subtriggers since they have their own context.
**
** SQLite implements the command "DELETE FROM table" without
** a WHERE clause by dropping and recreating the table. (This is much
** faster than going through and deleting individual elements from the
** table.) Because of this optimization, the deletions in
** "DELETE FROM table" are not row changes and will not be counted
** by the sqlite3_changes() or [sqlite3_total_changes()] functions.
** To get an accurate count of the number of rows deleted, use
** "DELETE FROM table WHERE 1" instead.
**
** INVARIANTS:
**
** {F12241} The [sqlite3_changes()] function returns the number of
** row changes caused by the most recent INSERT, UPDATE,
** or DELETE statement on the same database connection and
** within the same trigger context, or zero if there have
** not been any qualifying row changes.
**
** LIMITATIONS:
**
** {U12252} If a separate thread makes changes on the same database connection
** while [sqlite3_changes()] is running then the value returned
** is unpredictable and unmeaningful.
*/
SQLITE_API int sqlite3_changes(sqlite3 *);
/*
** CAPI3REF: Total Number Of Rows Modified {F12260}
***
** This function returns the number of row changes caused
** by INSERT, UPDATE or DELETE statements since the database handle
** was opened. The count includes all changes from all trigger
** contexts. But the count does not include changes used to
** implement REPLACE constraints, do rollbacks or ABORT processing,
** or DROP table processing.
** The changes
** are counted as soon as the statement that makes them is completed
** (when the statement handle is passed to [sqlite3_reset()] or
** [sqlite3_finalize()]).
**
** SQLite implements the command "DELETE FROM table" without
** a WHERE clause by dropping and recreating the table. (This is much
** faster than going
** through and deleting individual elements from the table.) Because of
** this optimization, the change count for "DELETE FROM table" will be
** zero regardless of the number of elements that were originally in the
** table. To get an accurate count of the number of rows deleted, use
** "DELETE FROM table WHERE 1" instead.
**
** See also the [sqlite3_changes()] interface.
**
** INVARIANTS:
**
** {F12261} The [sqlite3_total_changes()] returns the total number
** of row changes caused by INSERT, UPDATE, and/or DELETE
** statements on the same [database connection], in any
** trigger context, since the database connection was
** created.
**
** LIMITATIONS:
**
** {U12264} If a separate thread makes changes on the same database connection
** while [sqlite3_total_changes()] is running then the value
** returned is unpredictable and unmeaningful.
*/
SQLITE_API int sqlite3_total_changes(sqlite3 *);
/*
** CAPI3REF: Interrupt A Long-Running Query {F12270}
**
** This function causes any pending database operation to abort and
** return at its earliest opportunity. This routine is typically
** called in response to a user action such as pressing "Cancel"
** or Ctrl-C where the user wants a long query operation to halt
** immediately.
**
** It is safe to call this routine from a thread different from the
** thread that is currently running the database operation. But it
** is not safe to call this routine with a database connection that
** is closed or might close before sqlite3_interrupt() returns.
**
** If an SQL is very nearly finished at the time when sqlite3_interrupt()
** is called, then it might not have an opportunity to be interrupted.
** It might continue to completion.
** An SQL operation that is interrupted will return
** [SQLITE_INTERRUPT]. If the interrupted SQL operation is an
** INSERT, UPDATE, or DELETE that is inside an explicit transaction,
** then the entire transaction will be rolled back automatically.
** A call to sqlite3_interrupt() has no effect on SQL statements
** that are started after sqlite3_interrupt() returns.
**
** INVARIANTS:
**
** {F12271} The [sqlite3_interrupt()] interface will force all running
** SQL statements associated with the same database connection
** to halt after processing at most one additional row of
** data.
**
** {F12272} Any SQL statement that is interrupted by [sqlite3_interrupt()]
** will return [SQLITE_INTERRUPT].
**
** LIMITATIONS:
**
** {U12279} If the database connection closes while [sqlite3_interrupt()]
** is running then bad things will likely happen.
*/
SQLITE_API void sqlite3_interrupt(sqlite3 *);
/*
** CAPI3REF: Determine If An SQL Statement Is Complete {F10510}
**
** These routines are useful for command-line input to determine if the
** currently entered text seems to form complete a SQL statement or
** if additional input is needed before sending the text into
** SQLite for parsing. These routines return true if the input string
** appears to be a complete SQL statement. A statement is judged to be
** complete if it ends with a semicolon token and is not a fragment of a
** CREATE TRIGGER statement. Semicolons that are embedded within
** string literals or quoted identifier names or comments are not
** independent tokens (they are part of the token in which they are
** embedded) and thus do not count as a statement terminator.
**
** These routines do not parse the SQL and
** so will not detect syntactically incorrect SQL.
**
** INVARIANTS:
**
** {F10511} The sqlite3_complete() and sqlite3_complete16() functions
** return true (non-zero) if and only if the last
** non-whitespace token in their input is a semicolon that
** is not in between the BEGIN and END of a CREATE TRIGGER
** statement.
**
** LIMITATIONS:
**
** {U10512} The input to sqlite3_complete() must be a zero-terminated
** UTF-8 string.
**
** {U10513} The input to sqlite3_complete16() must be a zero-terminated
** UTF-16 string in native byte order.
*/
SQLITE_API int sqlite3_complete(const char *sql);
SQLITE_API int sqlite3_complete16(const void *sql);
/*
** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors {F12310}
**
** This routine identifies a callback function that might be
** invoked whenever an attempt is made to open a database table
** that another thread or process has locked.
** If the busy callback is NULL, then [SQLITE_BUSY]
** or [SQLITE_IOERR_BLOCKED]
** is returned immediately upon encountering the lock.
** If the busy callback is not NULL, then the
** callback will be invoked with two arguments. The
** first argument to the handler is a copy of the void* pointer which
** is the third argument to this routine. The second argument to
** the handler is the number of times that the busy handler has
** been invoked for this locking event. If the
** busy callback returns 0, then no additional attempts are made to
** access the database and [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED] is returned.
** If the callback returns non-zero, then another attempt
** is made to open the database for reading and the cycle repeats.
**
** The presence of a busy handler does not guarantee that
** it will be invoked when there is lock contention.
** If SQLite determines that invoking the busy handler could result in
** a deadlock, it will go ahead and return [SQLITE_BUSY] or
** [SQLITE_IOERR_BLOCKED] instead of invoking the
** busy handler.
** Consider a scenario where one process is holding a read lock that
** it is trying to promote to a reserved lock and
** a second process is holding a reserved lock that it is trying
** to promote to an exclusive lock. The first process cannot proceed
** because it is blocked by the second and the second process cannot
** proceed because it is blocked by the first. If both processes
** invoke the busy handlers, neither will make any progress. Therefore,
** SQLite returns [SQLITE_BUSY] for the first process, hoping that this
** will induce the first process to release its read lock and allow
** the second process to proceed.
**
** The default busy callback is NULL.
**
** The [SQLITE_BUSY] error is converted to [SQLITE_IOERR_BLOCKED]
** when SQLite is in the middle of a large transaction where all the
** changes will not fit into the in-memory cache. SQLite will
** already hold a RESERVED lock on the database file, but it needs
** to promote this lock to EXCLUSIVE so that it can spill cache
** pages into the database file without harm to concurrent
** readers. If it is unable to promote the lock, then the in-memory
** cache will be left in an inconsistent state and so the error
** code is promoted from the relatively benign [SQLITE_BUSY] to
** the more severe [SQLITE_IOERR_BLOCKED]. This error code promotion
** forces an automatic rollback of the changes. See the
** <a href="http://www.sqlite.org/cvstrac/wiki?p=CorruptionFollowingBusyError">
** CorruptionFollowingBusyError</a> wiki page for a discussion of why
** this is important.
**
** There can only be a single busy handler defined for each database
** connection. Setting a new busy handler clears any previous one.
** Note that calling [sqlite3_busy_timeout()] will also set or clear
** the busy handler.
**
** INVARIANTS:
**
** {F12311} The [sqlite3_busy_handler()] function replaces the busy handler
** callback in the database connection identified by the 1st
** parameter with a new busy handler identified by the 2nd and 3rd
** parameters.
**
** {F12312} The default busy handler for new database connections is NULL.
**
** {F12314} When two or more database connection share a common cache,
** the busy handler for the database connection currently using
** the cache is invoked when the cache encounters a lock.
**
** {F12316} If a busy handler callback returns zero, then the SQLite
** interface that provoked the locking event will return
** [SQLITE_BUSY].
**
** {F12318} SQLite will invokes the busy handler with two argument which
** are a copy of the pointer supplied by the 3rd parameter to
** [sqlite3_busy_handler()] and a count of the number of prior
** invocations of the busy handler for the same locking event.
**
** LIMITATIONS:
**
** {U12319} A busy handler should not call close the database connection
** or prepared statement that invoked the busy handler.
*/
SQLITE_API int sqlite3_busy_handler(sqlite3 *, int (*)(void *, int), void *);
/*
** CAPI3REF: Set A Busy Timeout {F12340}
**
** This routine sets a [sqlite3_busy_handler | busy handler]
** that sleeps for a while when a
** table is locked. The handler will sleep multiple times until
** at least "ms" milliseconds of sleeping have been done. {F12343} After
** "ms" milliseconds of sleeping, the handler returns 0 which
** causes [sqlite3_step()] to return [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED].
**
** Calling this routine with an argument less than or equal to zero
** turns off all busy handlers.
**
** There can only be a single busy handler for a particular database
** connection. If another busy handler was defined
** (using [sqlite3_busy_handler()]) prior to calling
** this routine, that other busy handler is cleared.
**
** INVARIANTS:
**
** {F12341} The [sqlite3_busy_timeout()] function overrides any prior
** [sqlite3_busy_timeout()] or [sqlite3_busy_handler()] setting
** on the same database connection.
**
** {F12343} If the 2nd parameter to [sqlite3_busy_timeout()] is less than
** or equal to zero, then the busy handler is cleared so that
** all subsequent locking events immediately return [SQLITE_BUSY].
**
** {F12344} If the 2nd parameter to [sqlite3_busy_timeout()] is a positive
** number N, then a busy handler is set that repeatedly calls
** the xSleep() method in the VFS interface until either the
** lock clears or until the cumulative sleep time reported back
** by xSleep() exceeds N milliseconds.
*/
SQLITE_API int sqlite3_busy_timeout(sqlite3 *, int ms);
/*
** CAPI3REF: Convenience Routines For Running Queries {F12370}
**
** Definition: A <b>result table</b> is memory data structure created by the
** [sqlite3_get_table()] interface. A result table records the
** complete query results from one or more queries.
**
** The table conceptually has a number of rows and columns. But
** these numbers are not part of the result table itself. These
** numbers are obtained separately. Let N be the number of rows
** and M be the number of columns.
**
** A result table is an array of pointers to zero-terminated
** UTF-8 strings. There are (N+1)*M elements in the array.
** The first M pointers point to zero-terminated strings that
** contain the names of the columns.
** The remaining entries all point to query results. NULL
** values are give a NULL pointer. All other values are in
** their UTF-8 zero-terminated string representation as returned by
** [sqlite3_column_text()].
**
** A result table might consists of one or more memory allocations.
** It is not safe to pass a result table directly to [sqlite3_free()].
** A result table should be deallocated using [sqlite3_free_table()].
**
** As an example of the result table format, suppose a query result
** is as follows:
**
** <blockquote><pre>
** Name | Age
** -----------------------
** Alice | 43
** Bob | 28
** Cindy | 21
** </pre></blockquote>
**
** There are two column (M==2) and three rows (N==3). Thus the
** result table has 8 entries. Suppose the result table is stored
** in an array names azResult. Then azResult holds this content:
**
** <blockquote><pre>
** azResult&#91;0] = "Name";
** azResult&#91;1] = "Age";
** azResult&#91;2] = "Alice";
** azResult&#91;3] = "43";
** azResult&#91;4] = "Bob";
** azResult&#91;5] = "28";
** azResult&#91;6] = "Cindy";
** azResult&#91;7] = "21";
** </pre></blockquote>
**
** The sqlite3_get_table() function evaluates one or more
** semicolon-separated SQL statements in the zero-terminated UTF-8
** string of its 2nd parameter. It returns a result table to the
** pointer given in its 3rd parameter.
**
** After the calling function has finished using the result, it should
** pass the pointer to the result table to sqlite3_free_table() in order to
** release the memory that was malloc-ed. Because of the way the
** [sqlite3_malloc()] happens within sqlite3_get_table(), the calling
** function must not try to call [sqlite3_free()] directly. Only
** [sqlite3_free_table()] is able to release the memory properly and safely.
**
** The sqlite3_get_table() interface is implemented as a wrapper around
** [sqlite3_exec()]. The sqlite3_get_table() routine does not have access
** to any internal data structures of SQLite. It uses only the public
** interface defined here. As a consequence, errors that occur in the
** wrapper layer outside of the internal [sqlite3_exec()] call are not
** reflected in subsequent calls to [sqlite3_errcode()] or
** [sqlite3_errmsg()].
**
** INVARIANTS:
**
** {F12371} If a [sqlite3_get_table()] fails a memory allocation, then
** it frees the result table under construction, aborts the
** query in process, skips any subsequent queries, sets the
** *resultp output pointer to NULL and returns [SQLITE_NOMEM].
**
** {F12373} If the ncolumn parameter to [sqlite3_get_table()] is not NULL
** then [sqlite3_get_table()] write the number of columns in the
** result set of the query into *ncolumn if the query is
** successful (if the function returns SQLITE_OK).
**
** {F12374} If the nrow parameter to [sqlite3_get_table()] is not NULL
** then [sqlite3_get_table()] write the number of rows in the
** result set of the query into *nrow if the query is
** successful (if the function returns SQLITE_OK).
**
** {F12376} The [sqlite3_get_table()] function sets its *ncolumn value
** to the number of columns in the result set of the query in the
** sql parameter, or to zero if the query in sql has an empty
** result set.
*/
SQLITE_API int sqlite3_get_table(sqlite3 *, /* An open database */
const char *sql, /* SQL to be evaluated */
char ***pResult, /* Results of the query */
int *nrow, /* Number of result rows written here */
int *ncolumn, /* Number of result columns written here */
char **errmsg /* Error msg written here */
);
SQLITE_API void sqlite3_free_table(char **result);
/*
** CAPI3REF: Formatted String Printing Functions {F17400}
**
** These routines are workalikes of the "printf()" family of functions
** from the standard C library.
**
** The sqlite3_mprintf() and sqlite3_vmprintf() routines write their
** results into memory obtained from [sqlite3_malloc()].
** The strings returned by these two routines should be
** released by [sqlite3_free()]. Both routines return a
** NULL pointer if [sqlite3_malloc()] is unable to allocate enough
** memory to hold the resulting string.
**
** In sqlite3_snprintf() routine is similar to "snprintf()" from
** the standard C library. The result is written into the
** buffer supplied as the second parameter whose size is given by
** the first parameter. Note that the order of the
** first two parameters is reversed from snprintf(). This is an
** historical accident that cannot be fixed without breaking
** backwards compatibility. Note also that sqlite3_snprintf()
** returns a pointer to its buffer instead of the number of
** characters actually written into the buffer. We admit that
** the number of characters written would be a more useful return
** value but we cannot change the implementation of sqlite3_snprintf()
** now without breaking compatibility.
**
** As long as the buffer size is greater than zero, sqlite3_snprintf()
** guarantees that the buffer is always zero-terminated. The first
** parameter "n" is the total size of the buffer, including space for
** the zero terminator. So the longest string that can be completely
** written will be n-1 characters.
**
** These routines all implement some additional formatting
** options that are useful for constructing SQL statements.
** All of the usual printf formatting options apply. In addition, there
** is are "%q", "%Q", and "%z" options.
**
** The %q option works like %s in that it substitutes a null-terminated
** string from the argument list. But %q also doubles every '\'' character.
** %q is designed for use inside a string literal. By doubling each '\''
** character it escapes that character and allows it to be inserted into
** the string.
**
** For example, so some string variable contains text as follows:
**
** <blockquote><pre>
** char *zText = "It's a happy day!";
** </pre></blockquote>
**
** One can use this text in an SQL statement as follows:
**
** <blockquote><pre>
** char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES('%q')", zText);
** sqlite3_exec(db, zSQL, 0, 0, 0);
** sqlite3_free(zSQL);
** </pre></blockquote>
**
** Because the %q format string is used, the '\'' character in zText
** is escaped and the SQL generated is as follows:
**
** <blockquote><pre>
** INSERT INTO table1 VALUES('It''s a happy day!')
** </pre></blockquote>
**
** This is correct. Had we used %s instead of %q, the generated SQL
** would have looked like this:
**
** <blockquote><pre>
** INSERT INTO table1 VALUES('It's a happy day!');
** </pre></blockquote>
**
** This second example is an SQL syntax error. As a general rule you
** should always use %q instead of %s when inserting text into a string
** literal.
**
** The %Q option works like %q except it also adds single quotes around
** the outside of the total string. Or if the parameter in the argument
** list is a NULL pointer, %Q substitutes the text "NULL" (without single
** quotes) in place of the %Q option. {END} So, for example, one could say:
**
** <blockquote><pre>
** char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES(%Q)", zText);
** sqlite3_exec(db, zSQL, 0, 0, 0);
** sqlite3_free(zSQL);
** </pre></blockquote>
**
** The code above will render a correct SQL statement in the zSQL
** variable even if the zText variable is a NULL pointer.
**
** The "%z" formatting option works exactly like "%s" with the
** addition that after the string has been read and copied into
** the result, [sqlite3_free()] is called on the input string. {END}
**
** INVARIANTS:
**
** {F17403} The [sqlite3_mprintf()] and [sqlite3_vmprintf()] interfaces
** return either pointers to zero-terminated UTF-8 strings held in
** memory obtained from [sqlite3_malloc()] or NULL pointers if
** a call to [sqlite3_malloc()] fails.
**
** {F17406} The [sqlite3_snprintf()] interface writes a zero-terminated
** UTF-8 string into the buffer pointed to by the second parameter
** provided that the first parameter is greater than zero.
**
** {F17407} The [sqlite3_snprintf()] interface does not writes slots of
** its output buffer (the second parameter) outside the range
** of 0 through N-1 (where N is the first parameter)
** regardless of the length of the string
** requested by the format specification.
**
*/
SQLITE_API char *sqlite3_mprintf(const char *, ...);
SQLITE_API char *sqlite3_vmprintf(const char *, va_list);
SQLITE_API char *sqlite3_snprintf(int, char *, const char *, ...);
/*
** CAPI3REF: Memory Allocation Subsystem {F17300}
**
** The SQLite core uses these three routines for all of its own
** internal memory allocation needs. "Core" in the previous sentence
** does not include operating-system specific VFS implementation. The
** windows VFS uses native malloc and free for some operations.
**
** The sqlite3_malloc() routine returns a pointer to a block
** of memory at least N bytes in length, where N is the parameter.
** If sqlite3_malloc() is unable to obtain sufficient free
** memory, it returns a NULL pointer. If the parameter N to
** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns
** a NULL pointer.
**
** Calling sqlite3_free() with a pointer previously returned
** by sqlite3_malloc() or sqlite3_realloc() releases that memory so
** that it might be reused. The sqlite3_free() routine is
** a no-op if is called with a NULL pointer. Passing a NULL pointer
** to sqlite3_free() is harmless. After being freed, memory
** should neither be read nor written. Even reading previously freed
** memory might result in a segmentation fault or other severe error.
** Memory corruption, a segmentation fault, or other severe error
** might result if sqlite3_free() is called with a non-NULL pointer that
** was not obtained from sqlite3_malloc() or sqlite3_free().
**
** The sqlite3_realloc() interface attempts to resize a
** prior memory allocation to be at least N bytes, where N is the
** second parameter. The memory allocation to be resized is the first
** parameter. If the first parameter to sqlite3_realloc()
** is a NULL pointer then its behavior is identical to calling
** sqlite3_malloc(N) where N is the second parameter to sqlite3_realloc().
** If the second parameter to sqlite3_realloc() is zero or
** negative then the behavior is exactly the same as calling
** sqlite3_free(P) where P is the first parameter to sqlite3_realloc().
** Sqlite3_realloc() returns a pointer to a memory allocation
** of at least N bytes in size or NULL if sufficient memory is unavailable.
** If M is the size of the prior allocation, then min(N,M) bytes
** of the prior allocation are copied into the beginning of buffer returned
** by sqlite3_realloc() and the prior allocation is freed.
** If sqlite3_realloc() returns NULL, then the prior allocation
** is not freed.
**
** The memory returned by sqlite3_malloc() and sqlite3_realloc()
** is always aligned to at least an 8 byte boundary. {END}
**
** The default implementation
** of the memory allocation subsystem uses the malloc(), realloc()
** and free() provided by the standard C library. {F17382} However, if
** SQLite is compiled with the following C preprocessor macro
**
** <blockquote> SQLITE_MEMORY_SIZE=<i>NNN</i> </blockquote>
**
** where <i>NNN</i> is an integer, then SQLite create a static
** array of at least <i>NNN</i> bytes in size and use that array
** for all of its dynamic memory allocation needs. {END} Additional
** memory allocator options may be added in future releases.
**
** In SQLite version 3.5.0 and 3.5.1, it was possible to define
** the SQLITE_OMIT_MEMORY_ALLOCATION which would cause the built-in
** implementation of these routines to be omitted. That capability
** is no longer provided. Only built-in memory allocators can be
** used.
**
** The windows OS interface layer calls
** the system malloc() and free() directly when converting
** filenames between the UTF-8 encoding used by SQLite
** and whatever filename encoding is used by the particular windows
** installation. Memory allocation errors are detected, but
** they are reported back as [SQLITE_CANTOPEN] or
** [SQLITE_IOERR] rather than [SQLITE_NOMEM].
**
** INVARIANTS:
**
** {F17303} The [sqlite3_malloc(N)] interface returns either a pointer to
** newly checked-out block of at least N bytes of memory
** that is 8-byte aligned,
** or it returns NULL if it is unable to fulfill the request.
**
** {F17304} The [sqlite3_malloc(N)] interface returns a NULL pointer if
** N is less than or equal to zero.
**
** {F17305} The [sqlite3_free(P)] interface releases memory previously
** returned from [sqlite3_malloc()] or [sqlite3_realloc()],
** making it available for reuse.
**
** {F17306} A call to [sqlite3_free(NULL)] is a harmless no-op.
**
** {F17310} A call to [sqlite3_realloc(0,N)] is equivalent to a call
** to [sqlite3_malloc(N)].
**
** {F17312} A call to [sqlite3_realloc(P,0)] is equivalent to a call
** to [sqlite3_free(P)].
**
** {F17315} The SQLite core uses [sqlite3_malloc()], [sqlite3_realloc()],
** and [sqlite3_free()] for all of its memory allocation and
** deallocation needs.
**
** {F17318} The [sqlite3_realloc(P,N)] interface returns either a pointer
** to a block of checked-out memory of at least N bytes in size
** that is 8-byte aligned, or a NULL pointer.
**
** {F17321} When [sqlite3_realloc(P,N)] returns a non-NULL pointer, it first
** copies the first K bytes of content from P into the newly allocated
** where K is the lessor of N and the size of the buffer P.
**
** {F17322} When [sqlite3_realloc(P,N)] returns a non-NULL pointer, it first
** releases the buffer P.
**
** {F17323} When [sqlite3_realloc(P,N)] returns NULL, the buffer P is
** not modified or released.
**
** LIMITATIONS:
**
** {U17350} The pointer arguments to [sqlite3_free()] and [sqlite3_realloc()]
** must be either NULL or else a pointer obtained from a prior
** invocation of [sqlite3_malloc()] or [sqlite3_realloc()] that has
** not been released.
**
** {U17351} The application must not read or write any part of
** a block of memory after it has been released using
** [sqlite3_free()] or [sqlite3_realloc()].
**
*/
SQLITE_API void *sqlite3_malloc(int);
SQLITE_API void *sqlite3_realloc(void *, int);
SQLITE_API void sqlite3_free(void *);
/*
** CAPI3REF: Memory Allocator Statistics {F17370}
**
** SQLite provides these two interfaces for reporting on the status
** of the [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()]
** the memory allocation subsystem included within the SQLite.
**
** INVARIANTS:
**
** {F17371} The [sqlite3_memory_used()] routine returns the
** number of bytes of memory currently outstanding
** (malloced but not freed).
**
** {F17373} The [sqlite3_memory_highwater()] routine returns the maximum
** value of [sqlite3_memory_used()]
** since the highwater mark was last reset.
**
** {F17374} The values returned by [sqlite3_memory_used()] and
** [sqlite3_memory_highwater()] include any overhead
** added by SQLite in its implementation of [sqlite3_malloc()],
** but not overhead added by the any underlying system library
** routines that [sqlite3_malloc()] may call.
**
** {F17375} The memory highwater mark is reset to the current value of
** [sqlite3_memory_used()] if and only if the parameter to
** [sqlite3_memory_highwater()] is true. The value returned
** by [sqlite3_memory_highwater(1)] is the highwater mark
** prior to the reset.
*/
SQLITE_API sqlite3_int64 sqlite3_memory_used(void);
SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag);
/*
** CAPI3REF: Pseudo-Random Number Generator {F17390}
**
** SQLite contains a high-quality pseudo-random number generator (PRNG) used to
** select random ROWIDs when inserting new records into a table that
** already uses the largest possible ROWID. The PRNG is also used for
** the build-in random() and randomblob() SQL functions. This interface allows
** appliations to access the same PRNG for other purposes.
**
** A call to this routine stores N bytes of randomness into buffer P.
**
** The first time this routine is invoked (either internally or by
** the application) the PRNG is seeded using randomness obtained
** from the xRandomness method of the default [sqlite3_vfs] object.
** On all subsequent invocations, the pseudo-randomness is generated
** internally and without recourse to the [sqlite3_vfs] xRandomness
** method.
**
** INVARIANTS:
**
** {F17392} The [sqlite3_randomness(N,P)] interface writes N bytes of
** high-quality pseudo-randomness into buffer P.
*/
SQLITE_API void sqlite3_randomness(int N, void *P);
/*
** CAPI3REF: Compile-Time Authorization Callbacks {F12500}
**
** This routine registers a authorizer callback with a particular
** [database connection], supplied in the first argument.
** The authorizer callback is invoked as SQL statements are being compiled
** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()],
** [sqlite3_prepare16()] and [sqlite3_prepare16_v2()]. At various
** points during the compilation process, as logic is being created
** to perform various actions, the authorizer callback is invoked to
** see if those actions are allowed. The authorizer callback should
** return [SQLITE_OK] to allow the action, [SQLITE_IGNORE] to disallow the
** specific action but allow the SQL statement to continue to be
** compiled, or [SQLITE_DENY] to cause the entire SQL statement to be
** rejected with an error. If the authorizer callback returns
** any value other than [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY]
** then [sqlite3_prepare_v2()] or equivalent call that triggered
** the authorizer will fail with an error message.
**
** When the callback returns [SQLITE_OK], that means the operation
** requested is ok. When the callback returns [SQLITE_DENY], the
** [sqlite3_prepare_v2()] or equivalent call that triggered the
** authorizer will fail with an error message explaining that
** access is denied. If the authorizer code is [SQLITE_READ]
** and the callback returns [SQLITE_IGNORE] then the
** [prepared statement] statement is constructed to substitute
** a NULL value in place of the table column that would have
** been read if [SQLITE_OK] had been returned. The [SQLITE_IGNORE]
** return can be used to deny an untrusted user access to individual
** columns of a table.
**
** The first parameter to the authorizer callback is a copy of
** the third parameter to the sqlite3_set_authorizer() interface.
** The second parameter to the callback is an integer
** [SQLITE_COPY | action code] that specifies the particular action
** to be authorized. The third through sixth
** parameters to the callback are zero-terminated strings that contain
** additional details about the action to be authorized.
**
** An authorizer is used when [sqlite3_prepare | preparing]
** SQL statements from an untrusted
** source, to ensure that the SQL statements do not try to access data
** that they are not allowed to see, or that they do not try to
** execute malicious statements that damage the database. For
** example, an application may allow a user to enter arbitrary
** SQL queries for evaluation by a database. But the application does
** not want the user to be able to make arbitrary changes to the
** database. An authorizer could then be put in place while the
** user-entered SQL is being [sqlite3_prepare | prepared] that
** disallows everything except [SELECT] statements.
**
** Applications that need to process SQL from untrusted sources
** might also consider lowering resource limits using [sqlite3_limit()]
** and limiting database size using the [max_page_count] [PRAGMA]
** in addition to using an authorizer.
**
** Only a single authorizer can be in place on a database connection
** at a time. Each call to sqlite3_set_authorizer overrides the
** previous call. Disable the authorizer by installing a NULL callback.
** The authorizer is disabled by default.
**
** Note that the authorizer callback is invoked only during
** [sqlite3_prepare()] or its variants. Authorization is not
** performed during statement evaluation in [sqlite3_step()].
**
** INVARIANTS:
**
** {F12501} The [sqlite3_set_authorizer(D,...)] interface registers a
** authorizer callback with database connection D.
**
** {F12502} The authorizer callback is invoked as SQL statements are
** being compiled
**
** {F12503} If the authorizer callback returns any value other than
** [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY] then
** the [sqlite3_prepare_v2()] or equivalent call that caused
** the authorizer callback to run shall fail with an
** [SQLITE_ERROR] error code and an appropriate error message.
**
** {F12504} When the authorizer callback returns [SQLITE_OK], the operation
** described is coded normally.
**
** {F12505} When the authorizer callback returns [SQLITE_DENY], the
** [sqlite3_prepare_v2()] or equivalent call that caused the
** authorizer callback to run shall fail
** with an [SQLITE_ERROR] error code and an error message
** explaining that access is denied.
**
** {F12506} If the authorizer code (the 2nd parameter to the authorizer
** callback) is [SQLITE_READ] and the authorizer callback returns
** [SQLITE_IGNORE] then the prepared statement is constructed to
** insert a NULL value in place of the table column that would have
** been read if [SQLITE_OK] had been returned.
**
** {F12507} If the authorizer code (the 2nd parameter to the authorizer
** callback) is anything other than [SQLITE_READ], then
** a return of [SQLITE_IGNORE] has the same effect as [SQLITE_DENY].
**
** {F12510} The first parameter to the authorizer callback is a copy of
** the third parameter to the [sqlite3_set_authorizer()] interface.
**
** {F12511} The second parameter to the callback is an integer
** [SQLITE_COPY | action code] that specifies the particular action
** to be authorized.
**
** {F12512} The third through sixth parameters to the callback are
** zero-terminated strings that contain
** additional details about the action to be authorized.
**
** {F12520} Each call to [sqlite3_set_authorizer()] overrides the
** any previously installed authorizer.
**
** {F12521} A NULL authorizer means that no authorization
** callback is invoked.
**
** {F12522} The default authorizer is NULL.
*/
SQLITE_API int sqlite3_set_authorizer(sqlite3 *,
int (*xAuth) (void *, int, const char *, const char *,
const char *, const char *),
void *pUserData);
/*
** CAPI3REF: Authorizer Return Codes {F12590}
**
** The [sqlite3_set_authorizer | authorizer callback function] must
** return either [SQLITE_OK] or one of these two constants in order
** to signal SQLite whether or not the action is permitted. See the
** [sqlite3_set_authorizer | authorizer documentation] for additional
** information.
*/
#define SQLITE_DENY 1 /* Abort the SQL statement with an error */
#define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */
/*
** CAPI3REF: Authorizer Action Codes {F12550}
**
** The [sqlite3_set_authorizer()] interface registers a callback function
** that is invoked to authorizer certain SQL statement actions. The
** second parameter to the callback is an integer code that specifies
** what action is being authorized. These are the integer action codes that
** the authorizer callback may be passed.
**
** These action code values signify what kind of operation is to be
** authorized. The 3rd and 4th parameters to the authorization
** callback function will be parameters or NULL depending on which of these
** codes is used as the second parameter. The 5th parameter to the
** authorizer callback is the name of the database ("main", "temp",
** etc.) if applicable. The 6th parameter to the authorizer callback
** is the name of the inner-most trigger or view that is responsible for
** the access attempt or NULL if this access attempt is directly from
** top-level SQL code.
**
** INVARIANTS:
**
** {F12551} The second parameter to an
** [sqlite3_set_authorizer | authorizer callback is always an integer
** [SQLITE_COPY | authorizer code] that specifies what action
** is being authorized.
**
** {F12552} The 3rd and 4th parameters to the
** [sqlite3_set_authorizer | authorization callback function]
** will be parameters or NULL depending on which
** [SQLITE_COPY | authorizer code] is used as the second parameter.
**
** {F12553} The 5th parameter to the
** [sqlite3_set_authorizer | authorizer callback] is the name
** of the database (example: "main", "temp", etc.) if applicable.
**
** {F12554} The 6th parameter to the
** [sqlite3_set_authorizer | authorizer callback] is the name
** of the inner-most trigger or view that is responsible for
** the access attempt or NULL if this access attempt is directly from
** top-level SQL code.
*/
/******************************************* 3rd ************ 4th ***********/
#define SQLITE_CREATE_INDEX 1 /* Index Name Table Name */
#define SQLITE_CREATE_TABLE 2 /* Table Name NULL */
#define SQLITE_CREATE_TEMP_INDEX 3 /* Index Name Table Name */
#define SQLITE_CREATE_TEMP_TABLE 4 /* Table Name NULL */
#define SQLITE_CREATE_TEMP_TRIGGER 5 /* Trigger Name Table Name */
#define SQLITE_CREATE_TEMP_VIEW 6 /* View Name NULL */
#define SQLITE_CREATE_TRIGGER 7 /* Trigger Name Table Name */
#define SQLITE_CREATE_VIEW 8 /* View Name NULL */
#define SQLITE_DELETE 9 /* Table Name NULL */
#define SQLITE_DROP_INDEX 10 /* Index Name Table Name */
#define SQLITE_DROP_TABLE 11 /* Table Name NULL */
#define SQLITE_DROP_TEMP_INDEX 12 /* Index Name Table Name */
#define SQLITE_DROP_TEMP_TABLE 13 /* Table Name NULL */
#define SQLITE_DROP_TEMP_TRIGGER 14 /* Trigger Name Table Name */
#define SQLITE_DROP_TEMP_VIEW 15 /* View Name NULL */
#define SQLITE_DROP_TRIGGER 16 /* Trigger Name Table Name */
#define SQLITE_DROP_VIEW 17 /* View Name NULL */
#define SQLITE_INSERT 18 /* Table Name NULL */
#define SQLITE_PRAGMA 19 /* Pragma Name 1st arg or NULL */
#define SQLITE_READ 20 /* Table Name Column Name */
#define SQLITE_SELECT 21 /* NULL NULL */
#define SQLITE_TRANSACTION 22 /* NULL NULL */
#define SQLITE_UPDATE 23 /* Table Name Column Name */
#define SQLITE_ATTACH 24 /* Filename NULL */
#define SQLITE_DETACH 25 /* Database Name NULL */
#define SQLITE_ALTER_TABLE 26 /* Database Name Table Name */
#define SQLITE_REINDEX 27 /* Index Name NULL */
#define SQLITE_ANALYZE 28 /* Table Name NULL */
#define SQLITE_CREATE_VTABLE 29 /* Table Name Module Name */
#define SQLITE_DROP_VTABLE 30 /* Table Name Module Name */
#define SQLITE_FUNCTION 31 /* Function Name NULL */
#define SQLITE_COPY 0 /* No longer used */
/*
** CAPI3REF: Tracing And Profiling Functions {F12280}
**
** These routines register callback functions that can be used for
** tracing and profiling the execution of SQL statements.
**
** The callback function registered by sqlite3_trace() is invoked at
** various times when an SQL statement is being run by [sqlite3_step()].
** The callback returns a UTF-8 rendering of the SQL statement text
** as the statement first begins executing. Additional callbacks occur
** as each triggersubprogram is entered. The callbacks for triggers
** contain a UTF-8 SQL comment that identifies the trigger.
**
** The callback function registered by sqlite3_profile() is invoked
** as each SQL statement finishes. The profile callback contains
** the original statement text and an estimate of wall-clock time
** of how long that statement took to run.
**
** The sqlite3_profile() API is currently considered experimental and
** is subject to change or removal in a future release.
**
** The trigger reporting feature of the trace callback is considered
** experimental and is subject to change or removal in future releases.
** Future versions of SQLite might also add new trace callback
** invocations.
**
** INVARIANTS:
**
** {F12281} The callback function registered by [sqlite3_trace()] is
** whenever an SQL statement first begins to execute and
** whenever a trigger subprogram first begins to run.
**
** {F12282} Each call to [sqlite3_trace()] overrides the previously
** registered trace callback.
**
** {F12283} A NULL trace callback disables tracing.
**
** {F12284} The first argument to the trace callback is a copy of
** the pointer which was the 3rd argument to [sqlite3_trace()].
**
** {F12285} The second argument to the trace callback is a
** zero-terminated UTF8 string containing the original text
** of the SQL statement as it was passed into [sqlite3_prepare_v2()]
** or the equivalent, or an SQL comment indicating the beginning
** of a trigger subprogram.
**
** {F12287} The callback function registered by [sqlite3_profile()] is invoked
** as each SQL statement finishes.
**
** {F12288} The first parameter to the profile callback is a copy of
** the 3rd parameter to [sqlite3_profile()].
**
** {F12289} The second parameter to the profile callback is a
** zero-terminated UTF-8 string that contains the complete text of
** the SQL statement as it was processed by [sqlite3_prepare_v2()]
** or the equivalent.
**
** {F12290} The third parameter to the profile callback is an estimate
** of the number of nanoseconds of wall-clock time required to
** run the SQL statement from start to finish.
*/
SQLITE_API void *sqlite3_trace(sqlite3 *, void (*xTrace) (void *, const char *), void *);
SQLITE_API void *sqlite3_profile(sqlite3 *,
void (*xProfile) (void *, const char *, sqlite3_uint64),
void *);
/*
** CAPI3REF: Query Progress Callbacks {F12910}
**
** This routine configures a callback function - the
** progress callback - that is invoked periodically during long
** running calls to [sqlite3_exec()], [sqlite3_step()] and
** [sqlite3_get_table()]. An example use for this
** interface is to keep a GUI updated during a large query.
**
** If the progress callback returns non-zero, the opertion is
** interrupted. This feature can be used to implement a
** "Cancel" button on a GUI dialog box.
**
** INVARIANTS:
**
** {F12911} The callback function registered by [sqlite3_progress_handler()]
** is invoked periodically during long running calls to
** [sqlite3_step()].
**
** {F12912} The progress callback is invoked once for every N virtual
** machine opcodes, where N is the second argument to
** the [sqlite3_progress_handler()] call that registered
** the callback. <todo>What if N is less than 1?</todo>
**
** {F12913} The progress callback itself is identified by the third
** argument to [sqlite3_progress_handler()].
**
** {F12914} The fourth argument [sqlite3_progress_handler()] is a
*** void pointer passed to the progress callback
** function each time it is invoked.
**
** {F12915} If a call to [sqlite3_step()] results in fewer than
** N opcodes being executed,
** then the progress callback is never invoked. {END}
**
** {F12916} Every call to [sqlite3_progress_handler()]
** overwrites any previously registere progress handler.
**
** {F12917} If the progress handler callback is NULL then no progress
** handler is invoked.
**
** {F12918} If the progress callback returns a result other than 0, then
** the behavior is a if [sqlite3_interrupt()] had been called.
*/
SQLITE_API void sqlite3_progress_handler(sqlite3 *, int, int (*)(void *), void *);
/*
** CAPI3REF: Opening A New Database Connection {F12700}
**
** These routines open an SQLite database file whose name
** is given by the filename argument.
** The filename argument is interpreted as UTF-8
** for [sqlite3_open()] and [sqlite3_open_v2()] and as UTF-16
** in the native byte order for [sqlite3_open16()].
** An [sqlite3*] handle is usually returned in *ppDb, even
** if an error occurs. The only exception is if SQLite is unable
** to allocate memory to hold the [sqlite3] object, a NULL will
** be written into *ppDb instead of a pointer to the [sqlite3] object.
** If the database is opened (and/or created)
** successfully, then [SQLITE_OK] is returned. Otherwise an
** error code is returned. The
** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain
** an English language description of the error.
**
** The default encoding for the database will be UTF-8 if
** [sqlite3_open()] or [sqlite3_open_v2()] is called and
** UTF-16 in the native byte order if [sqlite3_open16()] is used.
**
** Whether or not an error occurs when it is opened, resources
** associated with the [sqlite3*] handle should be released by passing it
** to [sqlite3_close()] when it is no longer required.
**
** The [sqlite3_open_v2()] interface works like [sqlite3_open()]
** except that it acccepts two additional parameters for additional control
** over the new database connection. The flags parameter can be
** one of:
**
** <ol>
** <li> [SQLITE_OPEN_READONLY]
** <li> [SQLITE_OPEN_READWRITE]
** <li> [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]
** </ol>
**
** The first value opens the database read-only.
** If the database does not previously exist, an error is returned.
** The second option opens
** the database for reading and writing if possible, or reading only if
** if the file is write protected. In either case the database
** must already exist or an error is returned. The third option
** opens the database for reading and writing and creates it if it does
** not already exist.
** The third options is behavior that is always used for [sqlite3_open()]
** and [sqlite3_open16()].
**
** If the 3rd parameter to [sqlite3_open_v2()] is not one of the
** combinations shown above then the behavior is undefined.
**
** If the filename is ":memory:", then an private
** in-memory database is created for the connection. This in-memory
** database will vanish when the database connection is closed. Future
** version of SQLite might make use of additional special filenames
** that begin with the ":" character. It is recommended that
** when a database filename really does begin with
** ":" that you prefix the filename with a pathname like "./" to
** avoid ambiguity.
**
** If the filename is an empty string, then a private temporary
** on-disk database will be created. This private database will be
** automatically deleted as soon as the database connection is closed.
**
** The fourth parameter to sqlite3_open_v2() is the name of the
** [sqlite3_vfs] object that defines the operating system
** interface that the new database connection should use. If the
** fourth parameter is a NULL pointer then the default [sqlite3_vfs]
** object is used.
**
** <b>Note to windows users:</b> The encoding used for the filename argument
** of [sqlite3_open()] and [sqlite3_open_v2()] must be UTF-8, not whatever
** codepage is currently defined. Filenames containing international
** characters must be converted to UTF-8 prior to passing them into
** [sqlite3_open()] or [sqlite3_open_v2()].
**
** INVARIANTS:
**
** {F12701} The [sqlite3_open()], [sqlite3_open16()], and
** [sqlite3_open_v2()] interfaces create a new
** [database connection] associated with
** the database file given in their first parameter.
**
** {F12702} The filename argument is interpreted as UTF-8
** for [sqlite3_open()] and [sqlite3_open_v2()] and as UTF-16
** in the native byte order for [sqlite3_open16()].
**
** {F12703} A successful invocation of [sqlite3_open()], [sqlite3_open16()],
** or [sqlite3_open_v2()] writes a pointer to a new
** [database connection] into *ppDb.
**
** {F12704} The [sqlite3_open()], [sqlite3_open16()], and
** [sqlite3_open_v2()] interfaces return [SQLITE_OK] upon success,
** or an appropriate [error code] on failure.
**
** {F12706} The default text encoding for a new database created using
** [sqlite3_open()] or [sqlite3_open_v2()] will be UTF-8.
**
** {F12707} The default text encoding for a new database created using
** [sqlite3_open16()] will be UTF-16.
**
** {F12709} The [sqlite3_open(F,D)] interface is equivalent to
** [sqlite3_open_v2(F,D,G,0)] where the G parameter is
** [SQLITE_OPEN_READWRITE]|[SQLITE_OPEN_CREATE].
**
** {F12711} If the G parameter to [sqlite3_open_v2(F,D,G,V)] contains the
** bit value [SQLITE_OPEN_READONLY] then the database is opened
** for reading only.
**
** {F12712} If the G parameter to [sqlite3_open_v2(F,D,G,V)] contains the
** bit value [SQLITE_OPEN_READWRITE] then the database is opened
** reading and writing if possible, or for reading only if the
** file is write protected by the operating system.
**
** {F12713} If the G parameter to [sqlite3_open(v2(F,D,G,V)] omits the
** bit value [SQLITE_OPEN_CREATE] and the database does not
** previously exist, an error is returned.
**
** {F12714} If the G parameter to [sqlite3_open(v2(F,D,G,V)] contains the
** bit value [SQLITE_OPEN_CREATE] and the database does not
** previously exist, then an attempt is made to create and
** initialize the database.
**
** {F12717} If the filename argument to [sqlite3_open()], [sqlite3_open16()],
** or [sqlite3_open_v2()] is ":memory:", then an private,
** ephemeral, in-memory database is created for the connection.
** <todo>Is SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE required
** in sqlite3_open_v2()?</todo>
**
** {F12719} If the filename is NULL or an empty string, then a private,
** ephermeral on-disk database will be created.
** <todo>Is SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE required
** in sqlite3_open_v2()?</todo>
**
** {F12721} The [database connection] created by
** [sqlite3_open_v2(F,D,G,V)] will use the
** [sqlite3_vfs] object identified by the V parameter, or
** the default [sqlite3_vfs] object is V is a NULL pointer.
*/
SQLITE_API int sqlite3_open(const char *filename, /* Database filename (UTF-8) */
sqlite3 ** ppDb /* OUT: SQLite db handle */
);
SQLITE_API int sqlite3_open16(const void *filename, /* Database filename (UTF-16) */
sqlite3 ** ppDb /* OUT: SQLite db handle */
);
SQLITE_API int sqlite3_open_v2(const char *filename, /* Database filename (UTF-8) */
sqlite3 ** ppDb, /* OUT: SQLite db handle */
int flags, /* Flags */
const char *zVfs /* Name of VFS module to use */
);
/*
** CAPI3REF: Error Codes And Messages {F12800}
**
** The sqlite3_errcode() interface returns the numeric
** [SQLITE_OK | result code] or [SQLITE_IOERR_READ | extended result code]
** for the most recent failed sqlite3_* API call associated
** with [sqlite3] handle 'db'. If a prior API call failed but the
** most recent API call succeeded, the return value from sqlite3_errcode()
** is undefined.
**
** The sqlite3_errmsg() and sqlite3_errmsg16() return English-language
** text that describes the error, as either UTF8 or UTF16 respectively.
** Memory to hold the error message string is managed internally.
** The application does not need to worry with freeing the result.
** However, the error string might be overwritten or deallocated by
** subsequent calls to other SQLite interface functions.
**
** INVARIANTS:
**
** {F12801} The [sqlite3_errcode(D)] interface returns the numeric
** [SQLITE_OK | result code] or
** [SQLITE_IOERR_READ | extended result code]
** for the most recently failed interface call associated
** with [database connection] D.
**
** {F12803} The [sqlite3_errmsg(D)] and [sqlite3_errmsg16(D)]
** interfaces return English-language text that describes
** the error in the mostly recently failed interface call,
** encoded as either UTF8 or UTF16 respectively.
**
** {F12807} The strings returned by [sqlite3_errmsg()] and [sqlite3_errmsg16()]
** are valid until the next SQLite interface call.
**
** {F12808} Calls to API routines that do not return an error code
** (example: [sqlite3_data_count()]) do not
** change the error code or message returned by
** [sqlite3_errcode()], [sqlite3_errmsg()], or [sqlite3_errmsg16()].
**
** {F12809} Interfaces that are not associated with a specific
** [database connection] (examples:
** [sqlite3_mprintf()] or [sqlite3_enable_shared_cache()]
** do not change the values returned by
** [sqlite3_errcode()], [sqlite3_errmsg()], or [sqlite3_errmsg16()].
*/
SQLITE_API int sqlite3_errcode(sqlite3 * db);
SQLITE_API const char *sqlite3_errmsg(sqlite3 *);
SQLITE_API const void *sqlite3_errmsg16(sqlite3 *);
/*
** CAPI3REF: SQL Statement Object {F13000}
** KEYWORDS: {prepared statement} {prepared statements}
**
** An instance of this object represent single SQL statements. This
** object is variously known as a "prepared statement" or a
** "compiled SQL statement" or simply as a "statement".
**
** The life of a statement object goes something like this:
**
** <ol>
** <li> Create the object using [sqlite3_prepare_v2()] or a related
** function.
** <li> Bind values to host parameters using
** [sqlite3_bind_blob | sqlite3_bind_* interfaces].
** <li> Run the SQL by calling [sqlite3_step()] one or more times.
** <li> Reset the statement using [sqlite3_reset()] then go back
** to step 2. Do this zero or more times.
** <li> Destroy the object using [sqlite3_finalize()].
** </ol>
**
** Refer to documentation on individual methods above for additional
** information.
*/
typedef struct sqlite3_stmt sqlite3_stmt;
/*
** CAPI3REF: Run-time Limits {F12760}
**
** This interface allows the size of various constructs to be limited
** on a connection by connection basis. The first parameter is the
** [database connection] whose limit is to be set or queried. The
** second parameter is one of the [limit categories] that define a
** class of constructs to be size limited. The third parameter is the
** new limit for that construct. The function returns the old limit.
**
** If the new limit is a negative number, the limit is unchanged.
** For the limit category of SQLITE_LIMIT_XYZ there is a hard upper
** bound set by a compile-time C-preprocess macro named SQLITE_MAX_XYZ.
** (The "_LIMIT_" in the name is changed to "_MAX_".)
** Attempts to increase a limit above its hard upper bound are
** silently truncated to the hard upper limit.
**
** Run time limits are intended for use in applications that manage
** both their own internal database and also databases that are controlled
** by untrusted external sources. An example application might be a
** webbrowser that has its own databases for storing history and
** separate databases controlled by javascript applications downloaded
** off the internet. The internal databases can be given the
** large, default limits. Databases managed by external sources can
** be given much smaller limits designed to prevent a denial of service
** attach. Developers might also want to use the [sqlite3_set_authorizer()]
** interface to further control untrusted SQL. The size of the database
** created by an untrusted script can be contained using the
** [max_page_count] [PRAGMA].
**
** This interface is currently considered experimental and is subject
** to change or removal without prior notice.
**
** INVARIANTS:
**
** {F12762} A successful call to [sqlite3_limit(D,C,V)] where V is
** positive changes the
** limit on the size of construct C in [database connection] D
** to the lessor of V and the hard upper bound on the size
** of C that is set at compile-time.
**
** {F12766} A successful call to [sqlite3_limit(D,C,V)] where V is negative
** leaves the state of [database connection] D unchanged.
**
** {F12769} A successful call to [sqlite3_limit(D,C,V)] returns the
** value of the limit on the size of construct C in
** in [database connection] D as it was prior to the call.
*/
SQLITE_API int sqlite3_limit(sqlite3 *, int id, int newVal);
/*
** CAPI3REF: Run-Time Limit Categories {F12790}
** KEYWORDS: {limit category} {limit categories}
**
** These constants define various aspects of a [database connection]
** that can be limited in size by calls to [sqlite3_limit()].
** The meanings of the various limits are as follows:
**
** <dl>
** <dt>SQLITE_LIMIT_LENGTH</dt>
** <dd>The maximum size of any
** string or blob or table row.<dd>
**
** <dt>SQLITE_LIMIT_SQL_LENGTH</dt>
** <dd>The maximum length of an SQL statement.</dd>
**
** <dt>SQLITE_LIMIT_COLUMN</dt>
** <dd>The maximum number of columns in a table definition or in the
** result set of a SELECT or the maximum number of columns in an index
** or in an ORDER BY or GROUP BY clause.</dd>
**
** <dt>SQLITE_LIMIT_EXPR_DEPTH</dt>
** <dd>The maximum depth of the parse tree on any expression.</dd>
**
** <dt>SQLITE_LIMIT_COMPOUND_SELECT</dt>
** <dd>The maximum number of terms in a compound SELECT statement.</dd>
**
** <dt>SQLITE_LIMIT_VDBE_OP</dt>
** <dd>The maximum number of instructions in a virtual machine program
** used to implement an SQL statement.</dd>
**
** <dt>SQLITE_LIMIT_FUNCTION_ARG</dt>
** <dd>The maximum number of arguments on a function.</dd>
**
** <dt>SQLITE_LIMIT_ATTACHED</dt>
** <dd>The maximum number of attached databases.</dd>
**
** <dt>SQLITE_LIMIT_LIKE_PATTERN_LENGTH</dt>
** <dd>The maximum length of the pattern argument to the LIKE or
** GLOB operators.</dd>
**
** <dt>SQLITE_LIMIT_VARIABLE_NUMBER</dt>
** <dd>The maximum number of variables in an SQL statement that can
** be bound.</dd>
** </dl>
*/
#define SQLITE_LIMIT_LENGTH 0
#define SQLITE_LIMIT_SQL_LENGTH 1
#define SQLITE_LIMIT_COLUMN 2
#define SQLITE_LIMIT_EXPR_DEPTH 3
#define SQLITE_LIMIT_COMPOUND_SELECT 4
#define SQLITE_LIMIT_VDBE_OP 5
#define SQLITE_LIMIT_FUNCTION_ARG 6
#define SQLITE_LIMIT_ATTACHED 7
#define SQLITE_LIMIT_LIKE_PATTERN_LENGTH 8
#define SQLITE_LIMIT_VARIABLE_NUMBER 9
/*
** CAPI3REF: Compiling An SQL Statement {F13010}
**
** To execute an SQL query, it must first be compiled into a byte-code
** program using one of these routines.
**
** The first argument "db" is an [database connection]
** obtained from a prior call to [sqlite3_open()], [sqlite3_open_v2()]
** or [sqlite3_open16()].
** The second argument "zSql" is the statement to be compiled, encoded
** as either UTF-8 or UTF-16. The sqlite3_prepare() and sqlite3_prepare_v2()
** interfaces uses UTF-8 and sqlite3_prepare16() and sqlite3_prepare16_v2()
** use UTF-16. {END}
**
** If the nByte argument is less
** than zero, then zSql is read up to the first zero terminator.
** If nByte is non-negative, then it is the maximum number of
** bytes read from zSql. When nByte is non-negative, the
** zSql string ends at either the first '\000' or '\u0000' character or
** the nByte-th byte, whichever comes first. If the caller knows
** that the supplied string is nul-terminated, then there is a small
** performance advantage to be had by passing an nByte parameter that
** is equal to the number of bytes in the input string <i>including</i>
** the nul-terminator bytes.{END}
**
** *pzTail is made to point to the first byte past the end of the
** first SQL statement in zSql. These routines only compiles the first
** statement in zSql, so *pzTail is left pointing to what remains
** uncompiled.
**
** *ppStmt is left pointing to a compiled [prepared statement] that can be
** executed using [sqlite3_step()]. Or if there is an error, *ppStmt is
** set to NULL. If the input text contains no SQL (if the input
** is and empty string or a comment) then *ppStmt is set to NULL.
** {U13018} The calling procedure is responsible for deleting the
** compiled SQL statement
** using [sqlite3_finalize()] after it has finished with it.
**
** On success, [SQLITE_OK] is returned. Otherwise an
** [error code] is returned.
**
** The sqlite3_prepare_v2() and sqlite3_prepare16_v2() interfaces are
** recommended for all new programs. The two older interfaces are retained
** for backwards compatibility, but their use is discouraged.
** In the "v2" interfaces, the prepared statement
** that is returned (the [sqlite3_stmt] object) contains a copy of the
** original SQL text. {END} This causes the [sqlite3_step()] interface to
** behave a differently in two ways:
**
** <ol>
** <li>
** If the database schema changes, instead of returning [SQLITE_SCHEMA] as it
** always used to do, [sqlite3_step()] will automatically recompile the SQL
** statement and try to run it again. If the schema has changed in
** a way that makes the statement no longer valid, [sqlite3_step()] will still
** return [SQLITE_SCHEMA]. But unlike the legacy behavior,
** [SQLITE_SCHEMA] is now a fatal error. Calling
** [sqlite3_prepare_v2()] again will not make the
** error go away. Note: use [sqlite3_errmsg()] to find the text
** of the parsing error that results in an [SQLITE_SCHEMA] return. {END}
** </li>
**
** <li>
** When an error occurs,
** [sqlite3_step()] will return one of the detailed
** [error codes] or [extended error codes].
** The legacy behavior was that [sqlite3_step()] would only return a generic
** [SQLITE_ERROR] result code and you would have to make a second call to
** [sqlite3_reset()] in order to find the underlying cause of the problem.
** With the "v2" prepare interfaces, the underlying reason for the error is
** returned immediately.
** </li>
** </ol>
**
** INVARIANTS:
**
** {F13011} The [sqlite3_prepare(db,zSql,...)] and
** [sqlite3_prepare_v2(db,zSql,...)] interfaces interpret the
** text in their zSql parameter as UTF-8.
**
** {F13012} The [sqlite3_prepare16(db,zSql,...)] and
** [sqlite3_prepare16_v2(db,zSql,...)] interfaces interpret the
** text in their zSql parameter as UTF-16 in the native byte order.
**
** {F13013} If the nByte argument to [sqlite3_prepare_v2(db,zSql,nByte,...)]
** and its variants is less than zero, then SQL text is
** read from zSql is read up to the first zero terminator.
**
** {F13014} If the nByte argument to [sqlite3_prepare_v2(db,zSql,nByte,...)]
** and its variants is non-negative, then at most nBytes bytes
** SQL text is read from zSql.
**
** {F13015} In [sqlite3_prepare_v2(db,zSql,N,P,pzTail)] and its variants
** if the zSql input text contains more than one SQL statement
** and pzTail is not NULL, then *pzTail is made to point to the
** first byte past the end of the first SQL statement in zSql.
** <todo>What does *pzTail point to if there is one statement?</todo>
**
** {F13016} A successful call to [sqlite3_prepare_v2(db,zSql,N,ppStmt,...)]
** or one of its variants writes into *ppStmt a pointer to a new
** [prepared statement] or a pointer to NULL
** if zSql contains nothing other than whitespace or comments.
**
** {F13019} The [sqlite3_prepare_v2()] interface and its variants return
** [SQLITE_OK] or an appropriate [error code] upon failure.
**
** {F13021} Before [sqlite3_prepare(db,zSql,nByte,ppStmt,pzTail)] or its
** variants returns an error (any value other than [SQLITE_OK])
** it first sets *ppStmt to NULL.
*/
SQLITE_API int sqlite3_prepare(sqlite3 * db, /* Database handle */
const char *zSql, /* SQL statement, UTF-8 encoded */
int nByte, /* Maximum length of zSql in bytes. */
sqlite3_stmt ** ppStmt, /* OUT: Statement handle */
const char **pzTail /* OUT: Pointer to unused portion of zSql */
);
SQLITE_API int sqlite3_prepare_v2(sqlite3 * db, /* Database handle */
const char *zSql, /* SQL statement, UTF-8 encoded */
int nByte, /* Maximum length of zSql in bytes. */
sqlite3_stmt ** ppStmt, /* OUT: Statement handle */
const char **pzTail /* OUT: Pointer to unused portion of zSql */
);
SQLITE_API int sqlite3_prepare16(sqlite3 * db, /* Database handle */
const void *zSql, /* SQL statement, UTF-16 encoded */
int nByte, /* Maximum length of zSql in bytes. */
sqlite3_stmt ** ppStmt, /* OUT: Statement handle */
const void **pzTail /* OUT: Pointer to unused portion of zSql */
);
SQLITE_API int sqlite3_prepare16_v2(sqlite3 * db, /* Database handle */
const void *zSql, /* SQL statement, UTF-16 encoded */
int nByte, /* Maximum length of zSql in bytes. */
sqlite3_stmt ** ppStmt, /* OUT: Statement handle */
const void **pzTail /* OUT: Pointer to unused portion of zSql */
);
/*
** CAPIREF: Retrieving Statement SQL {F13100}
**
** This intereface can be used to retrieve a saved copy of the original
** SQL text used to create a [prepared statement].
**
** INVARIANTS:
**
** {F13101} If the [prepared statement] passed as
** the an argument to [sqlite3_sql()] was compiled
** compiled using either [sqlite3_prepare_v2()] or
** [sqlite3_prepare16_v2()],
** then [sqlite3_sql()] function returns a pointer to a
** zero-terminated string containing a UTF-8 rendering
** of the original SQL statement.
**
** {F13102} If the [prepared statement] passed as
** the an argument to [sqlite3_sql()] was compiled
** compiled using either [sqlite3_prepare()] or
** [sqlite3_prepare16()],
** then [sqlite3_sql()] function returns a NULL pointer.
**
** {F13103} The string returned by [sqlite3_sql(S)] is valid until the
** [prepared statement] S is deleted using [sqlite3_finalize(S)].
*/
SQLITE_API const char *sqlite3_sql(sqlite3_stmt * pStmt);
/*
** CAPI3REF: Dynamically Typed Value Object {F15000}
** KEYWORDS: {protected sqlite3_value} {unprotected sqlite3_value}
**
** SQLite uses the sqlite3_value object to represent all values
** that can be stored in a database table.
** SQLite uses dynamic typing for the values it stores.
** Values stored in sqlite3_value objects can be
** be integers, floating point values, strings, BLOBs, or NULL.
**
** An sqlite3_value object may be either "protected" or "unprotected".
** Some interfaces require a protected sqlite3_value. Other interfaces
** will accept either a protected or an unprotected sqlite3_value.
** Every interface that accepts sqlite3_value arguments specifies
** whether or not it requires a protected sqlite3_value.
**
** The terms "protected" and "unprotected" refer to whether or not
** a mutex is held. A internal mutex is held for a protected
** sqlite3_value object but no mutex is held for an unprotected
** sqlite3_value object. If SQLite is compiled to be single-threaded
** (with SQLITE_THREADSAFE=0 and with [sqlite3_threadsafe()] returning 0)
** then there is no distinction between
** protected and unprotected sqlite3_value objects and they can be
** used interchangable. However, for maximum code portability it
** is recommended that applications make the distinction between
** between protected and unprotected sqlite3_value objects even if
** they are single threaded.
**
** The sqlite3_value objects that are passed as parameters into the
** implementation of application-defined SQL functions are protected.
** The sqlite3_value object returned by
** [sqlite3_column_value()] is unprotected.
** Unprotected sqlite3_value objects may only be used with
** [sqlite3_result_value()] and [sqlite3_bind_value()]. All other
** interfaces that use sqlite3_value require protected sqlite3_value objects.
*/
typedef struct Mem sqlite3_value;
/*
** CAPI3REF: SQL Function Context Object {F16001}
**
** The context in which an SQL function executes is stored in an
** sqlite3_context object. A pointer to an sqlite3_context
** object is always first parameter to application-defined SQL functions.
*/
typedef struct sqlite3_context sqlite3_context;
/*
** CAPI3REF: Binding Values To Prepared Statements {F13500}
**
** In the SQL strings input to [sqlite3_prepare_v2()] and its
** variants, literals may be replace by a parameter in one
** of these forms:
**
** <ul>
** <li> ?
** <li> ?NNN
** <li> :VVV
** <li> @VVV
** <li> $VVV
** </ul>
**
** In the parameter forms shown above NNN is an integer literal,
** VVV alpha-numeric parameter name.
** The values of these parameters (also called "host parameter names"
** or "SQL parameters")
** can be set using the sqlite3_bind_*() routines defined here.
**
** The first argument to the sqlite3_bind_*() routines always
** is a pointer to the [sqlite3_stmt] object returned from
** [sqlite3_prepare_v2()] or its variants. The second
** argument is the index of the parameter to be set. The
** first parameter has an index of 1. When the same named
** parameter is used more than once, second and subsequent
** occurrences have the same index as the first occurrence.
** The index for named parameters can be looked up using the
** [sqlite3_bind_parameter_name()] API if desired. The index
** for "?NNN" parameters is the value of NNN.
** The NNN value must be between 1 and the compile-time
** parameter SQLITE_MAX_VARIABLE_NUMBER (default value: 999).
**
** The third argument is the value to bind to the parameter.
**
** In those
** routines that have a fourth argument, its value is the number of bytes
** in the parameter. To be clear: the value is the number of <u>bytes</u>
** in the value, not the number of characters.
** If the fourth parameter is negative, the length of the string is
** number of bytes up to the first zero terminator.
**
** The fifth argument to sqlite3_bind_blob(), sqlite3_bind_text(), and
** sqlite3_bind_text16() is a destructor used to dispose of the BLOB or
** string after SQLite has finished with it. If the fifth argument is
** the special value [SQLITE_STATIC], then SQLite assumes that the
** information is in static, unmanaged space and does not need to be freed.
** If the fifth argument has the value [SQLITE_TRANSIENT], then
** SQLite makes its own private copy of the data immediately, before
** the sqlite3_bind_*() routine returns.
**
** The sqlite3_bind_zeroblob() routine binds a BLOB of length N that
** is filled with zeros. A zeroblob uses a fixed amount of memory
** (just an integer to hold it size) while it is being processed.
** Zeroblobs are intended to serve as place-holders for BLOBs whose
** content is later written using
** [sqlite3_blob_open | increment BLOB I/O] routines. A negative
** value for the zeroblob results in a zero-length BLOB.
**
** The sqlite3_bind_*() routines must be called after
** [sqlite3_prepare_v2()] (and its variants) or [sqlite3_reset()] and
** before [sqlite3_step()].
** Bindings are not cleared by the [sqlite3_reset()] routine.
** Unbound parameters are interpreted as NULL.
**
** These routines return [SQLITE_OK] on success or an error code if
** anything goes wrong. [SQLITE_RANGE] is returned if the parameter
** index is out of range. [SQLITE_NOMEM] is returned if malloc fails.
** [SQLITE_MISUSE] might be returned if these routines are called on a
** virtual machine that is the wrong state or which has already been finalized.
** Detection of misuse is unreliable. Applications should not depend
** on SQLITE_MISUSE returns. SQLITE_MISUSE is intended to indicate a
** a logic error in the application. Future versions of SQLite might
** panic rather than return SQLITE_MISUSE.
**
** See also: [sqlite3_bind_parameter_count()],
** [sqlite3_bind_parameter_name()], and
** [sqlite3_bind_parameter_index()].
**
** INVARIANTS:
**
** {F13506} The [sqlite3_prepare | SQL statement compiler] recognizes
** tokens of the forms "?", "?NNN", "$VVV", ":VVV", and "@VVV"
** as SQL parameters, where NNN is any sequence of one or more
** digits and where VVV is any sequence of one or more
** alphanumeric characters or "::" optionally followed by
** a string containing no spaces and contained within parentheses.
**
** {F13509} The initial value of an SQL parameter is NULL.
**
** {F13512} The index of an "?" SQL parameter is one larger than the
** largest index of SQL parameter to the left, or 1 if
** the "?" is the leftmost SQL parameter.
**
** {F13515} The index of an "?NNN" SQL parameter is the integer NNN.
**
** {F13518} The index of an ":VVV", "$VVV", or "@VVV" SQL parameter is
** the same as the index of leftmost occurances of the same
** parameter, or one more than the largest index over all
** parameters to the left if this is the first occurrance
** of this parameter, or 1 if this is the leftmost parameter.
**
** {F13521} The [sqlite3_prepare | SQL statement compiler] fail with
** an [SQLITE_RANGE] error if the index of an SQL parameter
** is less than 1 or greater than SQLITE_MAX_VARIABLE_NUMBER.
**
** {F13524} Calls to [sqlite3_bind_text | sqlite3_bind(S,N,V,...)]
** associate the value V with all SQL parameters having an
** index of N in the [prepared statement] S.
**
** {F13527} Calls to [sqlite3_bind_text | sqlite3_bind(S,N,...)]
** override prior calls with the same values of S and N.
**
** {F13530} Bindings established by [sqlite3_bind_text | sqlite3_bind(S,...)]
** persist across calls to [sqlite3_reset(S)].
**
** {F13533} In calls to [sqlite3_bind_blob(S,N,V,L,D)],
** [sqlite3_bind_text(S,N,V,L,D)], or
** [sqlite3_bind_text16(S,N,V,L,D)] SQLite binds the first L
** bytes of the blob or string pointed to by V, when L
** is non-negative.
**
** {F13536} In calls to [sqlite3_bind_text(S,N,V,L,D)] or
** [sqlite3_bind_text16(S,N,V,L,D)] SQLite binds characters
** from V through the first zero character when L is negative.
**
** {F13539} In calls to [sqlite3_bind_blob(S,N,V,L,D)],
** [sqlite3_bind_text(S,N,V,L,D)], or
** [sqlite3_bind_text16(S,N,V,L,D)] when D is the special
** constant [SQLITE_STATIC], SQLite assumes that the value V
** is held in static unmanaged space that will not change
** during the lifetime of the binding.
**
** {F13542} In calls to [sqlite3_bind_blob(S,N,V,L,D)],
** [sqlite3_bind_text(S,N,V,L,D)], or
** [sqlite3_bind_text16(S,N,V,L,D)] when D is the special
** constant [SQLITE_TRANSIENT], the routine makes a
** private copy of V value before it returns.
**
** {F13545} In calls to [sqlite3_bind_blob(S,N,V,L,D)],
** [sqlite3_bind_text(S,N,V,L,D)], or
** [sqlite3_bind_text16(S,N,V,L,D)] when D is a pointer to
** a function, SQLite invokes that function to destroy the
** V value after it has finished using the V value.
**
** {F13548} In calls to [sqlite3_bind_zeroblob(S,N,V,L)] the value bound
** is a blob of L bytes, or a zero-length blob if L is negative.
**
** {F13551} In calls to [sqlite3_bind_value(S,N,V)] the V argument may
** be either a [protected sqlite3_value] object or an
** [unprotected sqlite3_value] object.
*/
SQLITE_API int sqlite3_bind_blob(sqlite3_stmt *, int, const void *, int n,
void (*)(void *));
SQLITE_API int sqlite3_bind_double(sqlite3_stmt *, int, double);
SQLITE_API int sqlite3_bind_int(sqlite3_stmt *, int, int);
SQLITE_API int sqlite3_bind_int64(sqlite3_stmt *, int, sqlite3_int64);
SQLITE_API int sqlite3_bind_null(sqlite3_stmt *, int);
SQLITE_API int sqlite3_bind_text(sqlite3_stmt *, int, const char *, int n,
void (*)(void *));
SQLITE_API int sqlite3_bind_text16(sqlite3_stmt *, int, const void *, int,
void (*)(void *));
SQLITE_API int sqlite3_bind_value(sqlite3_stmt *, int, const sqlite3_value *);
SQLITE_API int sqlite3_bind_zeroblob(sqlite3_stmt *, int, int n);
/*
** CAPI3REF: Number Of SQL Parameters {F13600}
**
** This routine can be used to find the number of SQL parameters
** in a prepared statement. SQL parameters are tokens of the
** form "?", "?NNN", ":AAA", "$AAA", or "@AAA" that serve as
** place-holders for values that are [sqlite3_bind_blob | bound]
** to the parameters at a later time.
**
** This routine actually returns the index of the largest parameter.
** For all forms except ?NNN, this will correspond to the number of
** unique parameters. If parameters of the ?NNN are used, there may
** be gaps in the list.
**
** See also: [sqlite3_bind_blob|sqlite3_bind()],
** [sqlite3_bind_parameter_name()], and
** [sqlite3_bind_parameter_index()].
**
** INVARIANTS:
**
** {F13601} The [sqlite3_bind_parameter_count(S)] interface returns
** the largest index of all SQL parameters in the
** [prepared statement] S, or 0 if S
** contains no SQL parameters.
*/
SQLITE_API int sqlite3_bind_parameter_count(sqlite3_stmt *);
/*
** CAPI3REF: Name Of A Host Parameter {F13620}
**
** This routine returns a pointer to the name of the n-th
** SQL parameter in a [prepared statement].
** SQL parameters of the form "?NNN" or ":AAA" or "@AAA" or "$AAA"
** have a name which is the string "?NNN" or ":AAA" or "@AAA" or "$AAA"
** respectively.
** In other words, the initial ":" or "$" or "@" or "?"
** is included as part of the name.
** Parameters of the form "?" without a following integer have no name.
**
** The first host parameter has an index of 1, not 0.
**
** If the value n is out of range or if the n-th parameter is
** nameless, then NULL is returned. The returned string is
** always in the UTF-8 encoding even if the named parameter was
** originally specified as UTF-16 in [sqlite3_prepare16()] or
** [sqlite3_prepare16_v2()].
**
** See also: [sqlite3_bind_blob|sqlite3_bind()],
** [sqlite3_bind_parameter_count()], and
** [sqlite3_bind_parameter_index()].
**
** INVARIANTS:
**
** {F13621} The [sqlite3_bind_parameter_name(S,N)] interface returns
** a UTF-8 rendering of the name of the SQL parameter in
** [prepared statement] S having index N, or
** NULL if there is no SQL parameter with index N or if the
** parameter with index N is an anonymous parameter "?".
*/
SQLITE_API const char *sqlite3_bind_parameter_name(sqlite3_stmt *, int);
/*
** CAPI3REF: Index Of A Parameter With A Given Name {F13640}
**
** Return the index of an SQL parameter given its name. The
** index value returned is suitable for use as the second
** parameter to [sqlite3_bind_blob|sqlite3_bind()]. A zero
** is returned if no matching parameter is found. The parameter
** name must be given in UTF-8 even if the original statement
** was prepared from UTF-16 text using [sqlite3_prepare16_v2()].
**
** See also: [sqlite3_bind_blob|sqlite3_bind()],
** [sqlite3_bind_parameter_count()], and
** [sqlite3_bind_parameter_index()].
**
** INVARIANTS:
**
** {F13641} The [sqlite3_bind_parameter_index(S,N)] interface returns
** the index of SQL parameter in [prepared statement]
** S whose name matches the UTF-8 string N, or 0 if there is
** no match.
*/
SQLITE_API int sqlite3_bind_parameter_index(sqlite3_stmt *, const char *zName);
/*
** CAPI3REF: Reset All Bindings On A Prepared Statement {F13660}
**
** Contrary to the intuition of many, [sqlite3_reset()] does not
** reset the [sqlite3_bind_blob | bindings] on a
** [prepared statement]. Use this routine to
** reset all host parameters to NULL.
**
** INVARIANTS:
**
** {F13661} The [sqlite3_clear_bindings(S)] interface resets all
** SQL parameter bindings in [prepared statement] S
** back to NULL.
*/
SQLITE_API int sqlite3_clear_bindings(sqlite3_stmt *);
/*
** CAPI3REF: Number Of Columns In A Result Set {F13710}
**
** Return the number of columns in the result set returned by the
** [prepared statement]. This routine returns 0
** if pStmt is an SQL statement that does not return data (for
** example an UPDATE).
**
** INVARIANTS:
**
** {F13711} The [sqlite3_column_count(S)] interface returns the number of
** columns in the result set generated by the
** [prepared statement] S, or 0 if S does not generate
** a result set.
*/
SQLITE_API int sqlite3_column_count(sqlite3_stmt * pStmt);
/*
** CAPI3REF: Column Names In A Result Set {F13720}
**
** These routines return the name assigned to a particular column
** in the result set of a SELECT statement. The sqlite3_column_name()
** interface returns a pointer to a zero-terminated UTF8 string
** and sqlite3_column_name16() returns a pointer to a zero-terminated
** UTF16 string. The first parameter is the
** [prepared statement] that implements the SELECT statement.
** The second parameter is the column number. The left-most column is
** number 0.
**
** The returned string pointer is valid until either the
** [prepared statement] is destroyed by [sqlite3_finalize()]
** or until the next call sqlite3_column_name() or sqlite3_column_name16()
** on the same column.
**
** If sqlite3_malloc() fails during the processing of either routine
** (for example during a conversion from UTF-8 to UTF-16) then a
** NULL pointer is returned.
**
** The name of a result column is the value of the "AS" clause for
** that column, if there is an AS clause. If there is no AS clause
** then the name of the column is unspecified and may change from
** one release of SQLite to the next.
**
** INVARIANTS:
**
** {F13721} A successful invocation of the [sqlite3_column_name(S,N)]
** interface returns the name
** of the Nth column (where 0 is the left-most column) for the
** result set of [prepared statement] S as a
** zero-terminated UTF-8 string.
**
** {F13723} A successful invocation of the [sqlite3_column_name16(S,N)]
** interface returns the name
** of the Nth column (where 0 is the left-most column) for the
** result set of [prepared statement] S as a
** zero-terminated UTF-16 string in the native byte order.
**
** {F13724} The [sqlite3_column_name()] and [sqlite3_column_name16()]
** interfaces return a NULL pointer if they are unable to
** allocate memory memory to hold there normal return strings.
**
** {F13725} If the N parameter to [sqlite3_column_name(S,N)] or
** [sqlite3_column_name16(S,N)] is out of range, then the
** interfaces returns a NULL pointer.
**
** {F13726} The strings returned by [sqlite3_column_name(S,N)] and
** [sqlite3_column_name16(S,N)] are valid until the next
** call to either routine with the same S and N parameters
** or until [sqlite3_finalize(S)] is called.
**
** {F13727} When a result column of a [SELECT] statement contains
** an AS clause, the name of that column is the indentifier
** to the right of the AS keyword.
*/
SQLITE_API const char *sqlite3_column_name(sqlite3_stmt *, int N);
SQLITE_API const void *sqlite3_column_name16(sqlite3_stmt *, int N);
/*
** CAPI3REF: Source Of Data In A Query Result {F13740}
**
** These routines provide a means to determine what column of what
** table in which database a result of a SELECT statement comes from.
** The name of the database or table or column can be returned as
** either a UTF8 or UTF16 string. The _database_ routines return
** the database name, the _table_ routines return the table name, and
** the origin_ routines return the column name.
** The returned string is valid until
** the [prepared statement] is destroyed using
** [sqlite3_finalize()] or until the same information is requested
** again in a different encoding.
**
** The names returned are the original un-aliased names of the
** database, table, and column.
**
** The first argument to the following calls is a [prepared statement].
** These functions return information about the Nth column returned by
** the statement, where N is the second function argument.
**
** If the Nth column returned by the statement is an expression
** or subquery and is not a column value, then all of these functions
** return NULL. These routine might also return NULL if a memory
** allocation error occurs. Otherwise, they return the
** name of the attached database, table and column that query result
** column was extracted from.
**
** As with all other SQLite APIs, those postfixed with "16" return
** UTF-16 encoded strings, the other functions return UTF-8. {END}
**
** These APIs are only available if the library was compiled with the
** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined.
**
** {U13751}
** If two or more threads call one or more of these routines against the same
** prepared statement and column at the same time then the results are
** undefined.
**
** INVARIANTS:
**
** {F13741} The [sqlite3_column_database_name(S,N)] interface returns either
** the UTF-8 zero-terminated name of the database from which the
** Nth result column of [prepared statement] S
** is extracted, or NULL if the the Nth column of S is a
** general expression or if unable to allocate memory
** to store the name.
**
** {F13742} The [sqlite3_column_database_name16(S,N)] interface returns either
** the UTF-16 native byte order
** zero-terminated name of the database from which the
** Nth result column of [prepared statement] S
** is extracted, or NULL if the the Nth column of S is a
** general expression or if unable to allocate memory
** to store the name.
**
** {F13743} The [sqlite3_column_table_name(S,N)] interface returns either
** the UTF-8 zero-terminated name of the table from which the
** Nth result column of [prepared statement] S
** is extracted, or NULL if the the Nth column of S is a
** general expression or if unable to allocate memory
** to store the name.
**
** {F13744} The [sqlite3_column_table_name16(S,N)] interface returns either
** the UTF-16 native byte order
** zero-terminated name of the table from which the
** Nth result column of [prepared statement] S
** is extracted, or NULL if the the Nth column of S is a
** general expression or if unable to allocate memory
** to store the name.
**
** {F13745} The [sqlite3_column_origin_name(S,N)] interface returns either
** the UTF-8 zero-terminated name of the table column from which the
** Nth result column of [prepared statement] S
** is extracted, or NULL if the the Nth column of S is a
** general expression or if unable to allocate memory
** to store the name.
**
** {F13746} The [sqlite3_column_origin_name16(S,N)] interface returns either
** the UTF-16 native byte order
** zero-terminated name of the table column from which the
** Nth result column of [prepared statement] S
** is extracted, or NULL if the the Nth column of S is a
** general expression or if unable to allocate memory
** to store the name.
**
** {F13748} The return values from
** [sqlite3_column_database_name|column metadata interfaces]
** are valid
** for the lifetime of the [prepared statement]
** or until the encoding is changed by another metadata
** interface call for the same prepared statement and column.
**
** LIMITATIONS:
**
** {U13751} If two or more threads call one or more
** [sqlite3_column_database_name|column metadata interfaces]
** the same [prepared statement] and result column
** at the same time then the results are undefined.
*/
SQLITE_API const char *sqlite3_column_database_name(sqlite3_stmt *, int);
SQLITE_API const void *sqlite3_column_database_name16(sqlite3_stmt *, int);
SQLITE_API const char *sqlite3_column_table_name(sqlite3_stmt *, int);
SQLITE_API const void *sqlite3_column_table_name16(sqlite3_stmt *, int);
SQLITE_API const char *sqlite3_column_origin_name(sqlite3_stmt *, int);
SQLITE_API const void *sqlite3_column_origin_name16(sqlite3_stmt *, int);
/*
** CAPI3REF: Declared Datatype Of A Query Result {F13760}
**
** The first parameter is a [prepared statement].
** If this statement is a SELECT statement and the Nth column of the
** returned result set of that SELECT is a table column (not an
** expression or subquery) then the declared type of the table
** column is returned. If the Nth column of the result set is an
** expression or subquery, then a NULL pointer is returned.
** The returned string is always UTF-8 encoded. {END}
** For example, in the database schema:
**
** CREATE TABLE t1(c1 VARIANT);
**
** And the following statement compiled:
**
** SELECT c1 + 1, c1 FROM t1;
**
** Then this routine would return the string "VARIANT" for the second
** result column (i==1), and a NULL pointer for the first result column
** (i==0).
**
** SQLite uses dynamic run-time typing. So just because a column
** is declared to contain a particular type does not mean that the
** data stored in that column is of the declared type. SQLite is
** strongly typed, but the typing is dynamic not static. Type
** is associated with individual values, not with the containers
** used to hold those values.
**
** INVARIANTS:
**
** {F13761} A successful call to [sqlite3_column_decltype(S,N)]
** returns a zero-terminated UTF-8 string containing the
** the declared datatype of the table column that appears
** as the Nth column (numbered from 0) of the result set to the
** [prepared statement] S.
**
** {F13762} A successful call to [sqlite3_column_decltype16(S,N)]
** returns a zero-terminated UTF-16 native byte order string
** containing the declared datatype of the table column that appears
** as the Nth column (numbered from 0) of the result set to the
** [prepared statement] S.
**
** {F13763} If N is less than 0 or N is greater than or equal to
** the number of columns in [prepared statement] S
** or if the Nth column of S is an expression or subquery rather
** than a table column or if a memory allocation failure
** occurs during encoding conversions, then
** calls to [sqlite3_column_decltype(S,N)] or
** [sqlite3_column_decltype16(S,N)] return NULL.
*/
SQLITE_API const char *sqlite3_column_decltype(sqlite3_stmt *, int);
SQLITE_API const void *sqlite3_column_decltype16(sqlite3_stmt *, int);
/*
** CAPI3REF: Evaluate An SQL Statement {F13200}
**
** After an [prepared statement] has been prepared with a call
** to either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] or to one of
** the legacy interfaces [sqlite3_prepare()] or [sqlite3_prepare16()],
** then this function must be called one or more times to evaluate the
** statement.
**
** The details of the behavior of this sqlite3_step() interface depend
** on whether the statement was prepared using the newer "v2" interface
** [sqlite3_prepare_v2()] and [sqlite3_prepare16_v2()] or the older legacy
** interface [sqlite3_prepare()] and [sqlite3_prepare16()]. The use of the
** new "v2" interface is recommended for new applications but the legacy
** interface will continue to be supported.
**
** In the legacy interface, the return value will be either [SQLITE_BUSY],
** [SQLITE_DONE], [SQLITE_ROW], [SQLITE_ERROR], or [SQLITE_MISUSE].
** With the "v2" interface, any of the other [SQLITE_OK | result code]
** or [SQLITE_IOERR_READ | extended result code] might be returned as
** well.
**
** [SQLITE_BUSY] means that the database engine was unable to acquire the
** database locks it needs to do its job. If the statement is a COMMIT
** or occurs outside of an explicit transaction, then you can retry the
** statement. If the statement is not a COMMIT and occurs within a
** explicit transaction then you should rollback the transaction before
** continuing.
**
** [SQLITE_DONE] means that the statement has finished executing
** successfully. sqlite3_step() should not be called again on this virtual
** machine without first calling [sqlite3_reset()] to reset the virtual
** machine back to its initial state.
**
** If the SQL statement being executed returns any data, then
** [SQLITE_ROW] is returned each time a new row of data is ready
** for processing by the caller. The values may be accessed using
** the [sqlite3_column_int | column access functions].
** sqlite3_step() is called again to retrieve the next row of data.
**
** [SQLITE_ERROR] means that a run-time error (such as a constraint
** violation) has occurred. sqlite3_step() should not be called again on
** the VM. More information may be found by calling [sqlite3_errmsg()].
** With the legacy interface, a more specific error code (example:
** [SQLITE_INTERRUPT], [SQLITE_SCHEMA], [SQLITE_CORRUPT], and so forth)
** can be obtained by calling [sqlite3_reset()] on the
** [prepared statement]. In the "v2" interface,
** the more specific error code is returned directly by sqlite3_step().
**
** [SQLITE_MISUSE] means that the this routine was called inappropriately.
** Perhaps it was called on a [prepared statement] that has
** already been [sqlite3_finalize | finalized] or on one that had
** previously returned [SQLITE_ERROR] or [SQLITE_DONE]. Or it could
** be the case that the same database connection is being used by two or
** more threads at the same moment in time.
**
** <b>Goofy Interface Alert:</b>
** In the legacy interface,
** the sqlite3_step() API always returns a generic error code,
** [SQLITE_ERROR], following any error other than [SQLITE_BUSY]
** and [SQLITE_MISUSE]. You must call [sqlite3_reset()] or
** [sqlite3_finalize()] in order to find one of the specific
** [error codes] that better describes the error.
** We admit that this is a goofy design. The problem has been fixed
** with the "v2" interface. If you prepare all of your SQL statements
** using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] instead
** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()], then the
** more specific [error codes] are returned directly
** by sqlite3_step(). The use of the "v2" interface is recommended.
**
** INVARIANTS:
**
** {F13202} If [prepared statement] S is ready to be
** run, then [sqlite3_step(S)] advances that prepared statement
** until to completion or until it is ready to return another
** row of the result set or an interrupt or run-time error occurs.
**
** {F15304} When a call to [sqlite3_step(S)] causes the
** [prepared statement] S to run to completion,
** the function returns [SQLITE_DONE].
**
** {F15306} When a call to [sqlite3_step(S)] stops because it is ready
** to return another row of the result set, it returns
** [SQLITE_ROW].
**
** {F15308} If a call to [sqlite3_step(S)] encounters an
** [sqlite3_interrupt|interrupt] or a run-time error,
** it returns an appropraite error code that is not one of
** [SQLITE_OK], [SQLITE_ROW], or [SQLITE_DONE].
**
** {F15310} If an [sqlite3_interrupt|interrupt] or run-time error
** occurs during a call to [sqlite3_step(S)]
** for a [prepared statement] S created using
** legacy interfaces [sqlite3_prepare()] or
** [sqlite3_prepare16()] then the function returns either
** [SQLITE_ERROR], [SQLITE_BUSY], or [SQLITE_MISUSE].
*/
SQLITE_API int sqlite3_step(sqlite3_stmt *);
/*
** CAPI3REF: Number of columns in a result set {F13770}
**
** Return the number of values in the current row of the result set.
**
** INVARIANTS:
**
** {F13771} After a call to [sqlite3_step(S)] that returns
** [SQLITE_ROW], the [sqlite3_data_count(S)] routine
** will return the same value as the
** [sqlite3_column_count(S)] function.
**
** {F13772} After [sqlite3_step(S)] has returned any value other than
** [SQLITE_ROW] or before [sqlite3_step(S)] has been
** called on the [prepared statement] for
** the first time since it was [sqlite3_prepare|prepared]
** or [sqlite3_reset|reset], the [sqlite3_data_count(S)]
** routine returns zero.
*/
SQLITE_API int sqlite3_data_count(sqlite3_stmt * pStmt);
/*
** CAPI3REF: Fundamental Datatypes {F10265}
** KEYWORDS: SQLITE_TEXT
**
** {F10266}Every value in SQLite has one of five fundamental datatypes:
**
** <ul>
** <li> 64-bit signed integer
** <li> 64-bit IEEE floating point number
** <li> string
** <li> BLOB
** <li> NULL
** </ul> {END}
**
** These constants are codes for each of those types.
**
** Note that the SQLITE_TEXT constant was also used in SQLite version 2
** for a completely different meaning. Software that links against both
** SQLite version 2 and SQLite version 3 should use SQLITE3_TEXT not
** SQLITE_TEXT.
*/
#define SQLITE_INTEGER 1
#define SQLITE_FLOAT 2
#define SQLITE_BLOB 4
#define SQLITE_NULL 5
#ifdef SQLITE_TEXT
# undef SQLITE_TEXT
#else
# define SQLITE_TEXT 3
#endif
#define SQLITE3_TEXT 3
/*
** CAPI3REF: Results Values From A Query {F13800}
**
** These routines form the "result set query" interface.
**
** These routines return information about
** a single column of the current result row of a query. In every
** case the first argument is a pointer to the
** [prepared statement] that is being
** evaluated (the [sqlite3_stmt*] that was returned from
** [sqlite3_prepare_v2()] or one of its variants) and
** the second argument is the index of the column for which information
** should be returned. The left-most column of the result set
** has an index of 0.
**
** If the SQL statement is not currently point to a valid row, or if the
** the column index is out of range, the result is undefined.
** These routines may only be called when the most recent call to
** [sqlite3_step()] has returned [SQLITE_ROW] and neither
** [sqlite3_reset()] nor [sqlite3_finalize()] has been call subsequently.
** If any of these routines are called after [sqlite3_reset()] or
** [sqlite3_finalize()] or after [sqlite3_step()] has returned
** something other than [SQLITE_ROW], the results are undefined.
** If [sqlite3_step()] or [sqlite3_reset()] or [sqlite3_finalize()]
** are called from a different thread while any of these routines
** are pending, then the results are undefined.
**
** The sqlite3_column_type() routine returns
** [SQLITE_INTEGER | datatype code] for the initial data type
** of the result column. The returned value is one of [SQLITE_INTEGER],
** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL]. The value
** returned by sqlite3_column_type() is only meaningful if no type
** conversions have occurred as described below. After a type conversion,
** the value returned by sqlite3_column_type() is undefined. Future
** versions of SQLite may change the behavior of sqlite3_column_type()
** following a type conversion.
**
** If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes()
** routine returns the number of bytes in that BLOB or string.
** If the result is a UTF-16 string, then sqlite3_column_bytes() converts
** the string to UTF-8 and then returns the number of bytes.
** If the result is a numeric value then sqlite3_column_bytes() uses
** [sqlite3_snprintf()] to convert that value to a UTF-8 string and returns
** the number of bytes in that string.
** The value returned does not include the zero terminator at the end
** of the string. For clarity: the value returned is the number of
** bytes in the string, not the number of characters.
**
** Strings returned by sqlite3_column_text() and sqlite3_column_text16(),
** even empty strings, are always zero terminated. The return
** value from sqlite3_column_blob() for a zero-length blob is an arbitrary
** pointer, possibly even a NULL pointer.
**
** The sqlite3_column_bytes16() routine is similar to sqlite3_column_bytes()
** but leaves the result in UTF-16 in native byte order instead of UTF-8.
** The zero terminator is not included in this count.
**
** The object returned by [sqlite3_column_value()] is an
** [unprotected sqlite3_value] object. An unprotected sqlite3_value object
** may only be used with [sqlite3_bind_value()] and [sqlite3_result_value()].
** If the [unprotected sqlite3_value] object returned by
** [sqlite3_column_value()] is used in any other way, including calls
** to routines like
** [sqlite3_value_int()], [sqlite3_value_text()], or [sqlite3_value_bytes()],
** then the behavior is undefined.
**
** These routines attempt to convert the value where appropriate. For
** example, if the internal representation is FLOAT and a text result
** is requested, [sqlite3_snprintf()] is used internally to do the conversion
** automatically. The following table details the conversions that
** are applied:
**
** <blockquote>
** <table border="1">
** <tr><th> Internal<br>Type <th> Requested<br>Type <th> Conversion
**
** <tr><td> NULL <td> INTEGER <td> Result is 0
** <tr><td> NULL <td> FLOAT <td> Result is 0.0
** <tr><td> NULL <td> TEXT <td> Result is NULL pointer
** <tr><td> NULL <td> BLOB <td> Result is NULL pointer
** <tr><td> INTEGER <td> FLOAT <td> Convert from integer to float
** <tr><td> INTEGER <td> TEXT <td> ASCII rendering of the integer
** <tr><td> INTEGER <td> BLOB <td> Same as for INTEGER->TEXT
** <tr><td> FLOAT <td> INTEGER <td> Convert from float to integer
** <tr><td> FLOAT <td> TEXT <td> ASCII rendering of the float
** <tr><td> FLOAT <td> BLOB <td> Same as FLOAT->TEXT
** <tr><td> TEXT <td> INTEGER <td> Use atoi()
** <tr><td> TEXT <td> FLOAT <td> Use atof()
** <tr><td> TEXT <td> BLOB <td> No change
** <tr><td> BLOB <td> INTEGER <td> Convert to TEXT then use atoi()
** <tr><td> BLOB <td> FLOAT <td> Convert to TEXT then use atof()
** <tr><td> BLOB <td> TEXT <td> Add a zero terminator if needed
** </table>
** </blockquote>
**
** The table above makes reference to standard C library functions atoi()
** and atof(). SQLite does not really use these functions. It has its
** on equavalent internal routines. The atoi() and atof() names are
** used in the table for brevity and because they are familiar to most
** C programmers.
**
** Note that when type conversions occur, pointers returned by prior
** calls to sqlite3_column_blob(), sqlite3_column_text(), and/or
** sqlite3_column_text16() may be invalidated.
** Type conversions and pointer invalidations might occur
** in the following cases:
**
** <ul>
** <li><p> The initial content is a BLOB and sqlite3_column_text()
** or sqlite3_column_text16() is called. A zero-terminator might
** need to be added to the string.</p></li>
**
** <li><p> The initial content is UTF-8 text and sqlite3_column_bytes16() or
** sqlite3_column_text16() is called. The content must be converted
** to UTF-16.</p></li>
**
** <li><p> The initial content is UTF-16 text and sqlite3_column_bytes() or
** sqlite3_column_text() is called. The content must be converted
** to UTF-8.</p></li>
** </ul>
**
** Conversions between UTF-16be and UTF-16le are always done in place and do
** not invalidate a prior pointer, though of course the content of the buffer
** that the prior pointer points to will have been modified. Other kinds
** of conversion are done in place when it is possible, but sometime it is
** not possible and in those cases prior pointers are invalidated.
**
** The safest and easiest to remember policy is to invoke these routines
** in one of the following ways:
**
** <ul>
** <li>sqlite3_column_text() followed by sqlite3_column_bytes()</li>
** <li>sqlite3_column_blob() followed by sqlite3_column_bytes()</li>
** <li>sqlite3_column_text16() followed by sqlite3_column_bytes16()</li>
** </ul>
**
** In other words, you should call sqlite3_column_text(), sqlite3_column_blob(),
** or sqlite3_column_text16() first to force the result into the desired
** format, then invoke sqlite3_column_bytes() or sqlite3_column_bytes16() to
** find the size of the result. Do not mix call to sqlite3_column_text() or
** sqlite3_column_blob() with calls to sqlite3_column_bytes16(). And do not
** mix calls to sqlite3_column_text16() with calls to sqlite3_column_bytes().
**
** The pointers returned are valid until a type conversion occurs as
** described above, or until [sqlite3_step()] or [sqlite3_reset()] or
** [sqlite3_finalize()] is called. The memory space used to hold strings
** and blobs is freed automatically. Do <b>not</b> pass the pointers returned
** [sqlite3_column_blob()], [sqlite3_column_text()], etc. into
** [sqlite3_free()].
**
** If a memory allocation error occurs during the evaluation of any
** of these routines, a default value is returned. The default value
** is either the integer 0, the floating point number 0.0, or a NULL
** pointer. Subsequent calls to [sqlite3_errcode()] will return
** [SQLITE_NOMEM].
**
** INVARIANTS:
**
** {F13803} The [sqlite3_column_blob(S,N)] interface converts the
** Nth column in the current row of the result set for
** [prepared statement] S into a blob and then returns a
** pointer to the converted value.
**
** {F13806} The [sqlite3_column_bytes(S,N)] interface returns the
** number of bytes in the blob or string (exclusive of the
** zero terminator on the string) that was returned by the
** most recent call to [sqlite3_column_blob(S,N)] or
** [sqlite3_column_text(S,N)].
**
** {F13809} The [sqlite3_column_bytes16(S,N)] interface returns the
** number of bytes in the string (exclusive of the
** zero terminator on the string) that was returned by the
** most recent call to [sqlite3_column_text16(S,N)].
**
** {F13812} The [sqlite3_column_double(S,N)] interface converts the
** Nth column in the current row of the result set for
** [prepared statement] S into a floating point value and
** returns a copy of that value.
**
** {F13815} The [sqlite3_column_int(S,N)] interface converts the
** Nth column in the current row of the result set for
** [prepared statement] S into a 64-bit signed integer and
** returns the lower 32 bits of that integer.
**
** {F13818} The [sqlite3_column_int64(S,N)] interface converts the
** Nth column in the current row of the result set for
** [prepared statement] S into a 64-bit signed integer and
** returns a copy of that integer.
**
** {F13821} The [sqlite3_column_text(S,N)] interface converts the
** Nth column in the current row of the result set for
** [prepared statement] S into a zero-terminated UTF-8
** string and returns a pointer to that string.
**
** {F13824} The [sqlite3_column_text16(S,N)] interface converts the
** Nth column in the current row of the result set for
** [prepared statement] S into a zero-terminated 2-byte
** aligned UTF-16 native byte order
** string and returns a pointer to that string.
**
** {F13827} The [sqlite3_column_type(S,N)] interface returns
** one of [SQLITE_NULL], [SQLITE_INTEGER], [SQLITE_FLOAT],
** [SQLITE_TEXT], or [SQLITE_BLOB] as appropriate for
** the Nth column in the current row of the result set for
** [prepared statement] S.
**
** {F13830} The [sqlite3_column_value(S,N)] interface returns a
** pointer to an [unprotected sqlite3_value] object for the
** Nth column in the current row of the result set for
** [prepared statement] S.
*/
SQLITE_API const void *sqlite3_column_blob(sqlite3_stmt *, int iCol);
SQLITE_API int sqlite3_column_bytes(sqlite3_stmt *, int iCol);
SQLITE_API int sqlite3_column_bytes16(sqlite3_stmt *, int iCol);
SQLITE_API double sqlite3_column_double(sqlite3_stmt *, int iCol);
SQLITE_API int sqlite3_column_int(sqlite3_stmt *, int iCol);
SQLITE_API sqlite3_int64 sqlite3_column_int64(sqlite3_stmt *, int iCol);
SQLITE_API const unsigned char *sqlite3_column_text(sqlite3_stmt *, int iCol);
SQLITE_API const void *sqlite3_column_text16(sqlite3_stmt *, int iCol);
SQLITE_API int sqlite3_column_type(sqlite3_stmt *, int iCol);
SQLITE_API sqlite3_value *sqlite3_column_value(sqlite3_stmt *, int iCol);
/*
** CAPI3REF: Destroy A Prepared Statement Object {F13300}
**
** The sqlite3_finalize() function is called to delete a
** [prepared statement]. If the statement was
** executed successfully, or not executed at all, then SQLITE_OK is returned.
** If execution of the statement failed then an
** [error code] or [extended error code]
** is returned.
**
** This routine can be called at any point during the execution of the
** [prepared statement]. If the virtual machine has not
** completed execution when this routine is called, that is like
** encountering an error or an interrupt. (See [sqlite3_interrupt()].)
** Incomplete updates may be rolled back and transactions cancelled,
** depending on the circumstances, and the
** [error code] returned will be [SQLITE_ABORT].
**
** INVARIANTS:
**
** {F11302} The [sqlite3_finalize(S)] interface destroys the
** [prepared statement] S and releases all
** memory and file resources held by that object.
**
** {F11304} If the most recent call to [sqlite3_step(S)] for the
** [prepared statement] S returned an error,
** then [sqlite3_finalize(S)] returns that same error.
*/
SQLITE_API int sqlite3_finalize(sqlite3_stmt * pStmt);
/*
** CAPI3REF: Reset A Prepared Statement Object {F13330}
**
** The sqlite3_reset() function is called to reset a
** [prepared statement] object.
** back to its initial state, ready to be re-executed.
** Any SQL statement variables that had values bound to them using
** the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values.
** Use [sqlite3_clear_bindings()] to reset the bindings.
**
** {F11332} The [sqlite3_reset(S)] interface resets the [prepared statement] S
** back to the beginning of its program.
**
** {F11334} If the most recent call to [sqlite3_step(S)] for
** [prepared statement] S returned [SQLITE_ROW] or [SQLITE_DONE],
** or if [sqlite3_step(S)] has never before been called on S,
** then [sqlite3_reset(S)] returns [SQLITE_OK].
**
** {F11336} If the most recent call to [sqlite3_step(S)] for
** [prepared statement] S indicated an error, then
** [sqlite3_reset(S)] returns an appropriate [error code].
**
** {F11338} The [sqlite3_reset(S)] interface does not change the values
** of any [sqlite3_bind_blob|bindings] on [prepared statement] S.
*/
SQLITE_API int sqlite3_reset(sqlite3_stmt * pStmt);
/*
** CAPI3REF: Create Or Redefine SQL Functions {F16100}
** KEYWORDS: {function creation routines}
**
** These two functions (collectively known as
** "function creation routines") are used to add SQL functions or aggregates
** or to redefine the behavior of existing SQL functions or aggregates. The
** difference only between the two is that the second parameter, the
** name of the (scalar) function or aggregate, is encoded in UTF-8 for
** sqlite3_create_function() and UTF-16 for sqlite3_create_function16().
**
** The first parameter is the [database connection] to which the SQL
** function is to be added. If a single
** program uses more than one [database connection] internally, then SQL
** functions must be added individually to each [database connection].
**
** The second parameter is the name of the SQL function to be created
** or redefined.
** The length of the name is limited to 255 bytes, exclusive of the
** zero-terminator. Note that the name length limit is in bytes, not
** characters. Any attempt to create a function with a longer name
** will result in an SQLITE_ERROR error.
**
** The third parameter is the number of arguments that the SQL function or
** aggregate takes. If this parameter is negative, then the SQL function or
** aggregate may take any number of arguments.
**
** The fourth parameter, eTextRep, specifies what
** [SQLITE_UTF8 | text encoding] this SQL function prefers for
** its parameters. Any SQL function implementation should be able to work
** work with UTF-8, UTF-16le, or UTF-16be. But some implementations may be
** more efficient with one encoding than another. It is allowed to
** invoke sqlite3_create_function() or sqlite3_create_function16() multiple
** times with the same function but with different values of eTextRep.
** When multiple implementations of the same function are available, SQLite
** will pick the one that involves the least amount of data conversion.
** If there is only a single implementation which does not care what
** text encoding is used, then the fourth argument should be
** [SQLITE_ANY].
**
** The fifth parameter is an arbitrary pointer. The implementation
** of the function can gain access to this pointer using
** [sqlite3_user_data()].
**
** The seventh, eighth and ninth parameters, xFunc, xStep and xFinal, are
** pointers to C-language functions that implement the SQL
** function or aggregate. A scalar SQL function requires an implementation of
** the xFunc callback only, NULL pointers should be passed as the xStep
** and xFinal parameters. An aggregate SQL function requires an implementation
** of xStep and xFinal and NULL should be passed for xFunc. To delete an
** existing SQL function or aggregate, pass NULL for all three function
** callback.
**
** It is permitted to register multiple implementations of the same
** functions with the same name but with either differing numbers of
** arguments or differing perferred text encodings. SQLite will use
** the implementation most closely matches the way in which the
** SQL function is used.
**
** INVARIANTS:
**
** {F16103} The [sqlite3_create_function16()] interface behaves exactly
** like [sqlite3_create_function()] in every way except that it
** interprets the zFunctionName argument as
** zero-terminated UTF-16 native byte order instead of as a
** zero-terminated UTF-8.
**
** {F16106} A successful invocation of
** the [sqlite3_create_function(D,X,N,E,...)] interface registers
** or replaces callback functions in [database connection] D
** used to implement the SQL function named X with N parameters
** and having a perferred text encoding of E.
**
** {F16109} A successful call to [sqlite3_create_function(D,X,N,E,P,F,S,L)]
** replaces the P, F, S, and L values from any prior calls with
** the same D, X, N, and E values.
**
** {F16112} The [sqlite3_create_function(D,X,...)] interface fails with
** a return code of [SQLITE_ERROR] if the SQL function name X is
** longer than 255 bytes exclusive of the zero terminator.
**
** {F16118} Either F must be NULL and S and L are non-NULL or else F
** is non-NULL and S and L are NULL, otherwise
** [sqlite3_create_function(D,X,N,E,P,F,S,L)] returns [SQLITE_ERROR].
**
** {F16121} The [sqlite3_create_function(D,...)] interface fails with an
** error code of [SQLITE_BUSY] if there exist [prepared statements]
** associated with the [database connection] D.
**
** {F16124} The [sqlite3_create_function(D,X,N,...)] interface fails with an
** error code of [SQLITE_ERROR] if parameter N (specifying the number
** of arguments to the SQL function being registered) is less
** than -1 or greater than 127.
**
** {F16127} When N is non-negative, the [sqlite3_create_function(D,X,N,...)]
** interface causes callbacks to be invoked for the SQL function
** named X when the number of arguments to the SQL function is
** exactly N.
**
** {F16130} When N is -1, the [sqlite3_create_function(D,X,N,...)]
** interface causes callbacks to be invoked for the SQL function
** named X with any number of arguments.
**
** {F16133} When calls to [sqlite3_create_function(D,X,N,...)]
** specify multiple implementations of the same function X
** and when one implementation has N>=0 and the other has N=(-1)
** the implementation with a non-zero N is preferred.
**
** {F16136} When calls to [sqlite3_create_function(D,X,N,E,...)]
** specify multiple implementations of the same function X with
** the same number of arguments N but with different
** encodings E, then the implementation where E matches the
** database encoding is preferred.
**
** {F16139} For an aggregate SQL function created using
** [sqlite3_create_function(D,X,N,E,P,0,S,L)] the finializer
** function L will always be invoked exactly once if the
** step function S is called one or more times.
**
** {F16142} When SQLite invokes either the xFunc or xStep function of
** an application-defined SQL function or aggregate created
** by [sqlite3_create_function()] or [sqlite3_create_function16()],
** then the array of [sqlite3_value] objects passed as the
** third parameter are always [protected sqlite3_value] objects.
*/
SQLITE_API int sqlite3_create_function(sqlite3 * db,
const char *zFunctionName,
int nArg,
int eTextRep,
void *pApp,
void (*xFunc) (sqlite3_context *, int,
sqlite3_value **),
void (*xStep) (sqlite3_context *, int,
sqlite3_value **),
void (*xFinal) (sqlite3_context *));
SQLITE_API int sqlite3_create_function16(sqlite3 * db, const void *zFunctionName, int nArg,
int eTextRep, void *pApp,
void (*xFunc) (sqlite3_context *, int,
sqlite3_value **),
void (*xStep) (sqlite3_context *, int,
sqlite3_value **),
void (*xFinal) (sqlite3_context *));
/*
** CAPI3REF: Text Encodings {F10267}
**
** These constant define integer codes that represent the various
** text encodings supported by SQLite.
*/
#define SQLITE_UTF8 1
#define SQLITE_UTF16LE 2
#define SQLITE_UTF16BE 3
#define SQLITE_UTF16 4 /* Use native byte order */
#define SQLITE_ANY 5 /* sqlite3_create_function only */
#define SQLITE_UTF16_ALIGNED 8 /* sqlite3_create_collation only */
/*
** CAPI3REF: Obsolete Functions
**
** These functions are all now obsolete. In order to maintain
** backwards compatibility with older code, we continue to support
** these functions. However, new development projects should avoid
** the use of these functions. To help encourage people to avoid
** using these functions, we are not going to tell you want they do.
*/
SQLITE_API int sqlite3_aggregate_count(sqlite3_context *);
SQLITE_API int sqlite3_expired(sqlite3_stmt *);
SQLITE_API int sqlite3_transfer_bindings(sqlite3_stmt *, sqlite3_stmt *);
SQLITE_API int sqlite3_global_recover(void);
SQLITE_API void sqlite3_thread_cleanup(void);
SQLITE_API int sqlite3_memory_alarm(void (*)(void *, sqlite3_int64, int), void *,
sqlite3_int64);
/*
** CAPI3REF: Obtaining SQL Function Parameter Values {F15100}
**
** The C-language implementation of SQL functions and aggregates uses
** this set of interface routines to access the parameter values on
** the function or aggregate.
**
** The xFunc (for scalar functions) or xStep (for aggregates) parameters
** to [sqlite3_create_function()] and [sqlite3_create_function16()]
** define callbacks that implement the SQL functions and aggregates.
** The 4th parameter to these callbacks is an array of pointers to
** [protected sqlite3_value] objects. There is one [sqlite3_value] object for
** each parameter to the SQL function. These routines are used to
** extract values from the [sqlite3_value] objects.
**
** These routines work only with [protected sqlite3_value] objects.
** Any attempt to use these routines on an [unprotected sqlite3_value]
** object results in undefined behavior.
**
** These routines work just like the corresponding
** [sqlite3_column_blob | sqlite3_column_* routines] except that
** these routines take a single [protected sqlite3_value] object pointer
** instead of an [sqlite3_stmt*] pointer and an integer column number.
**
** The sqlite3_value_text16() interface extracts a UTF16 string
** in the native byte-order of the host machine. The
** sqlite3_value_text16be() and sqlite3_value_text16le() interfaces
** extract UTF16 strings as big-endian and little-endian respectively.
**
** The sqlite3_value_numeric_type() interface attempts to apply
** numeric affinity to the value. This means that an attempt is
** made to convert the value to an integer or floating point. If
** such a conversion is possible without loss of information (in other
** words if the value is a string that looks like a number)
** then the conversion is done. Otherwise no conversion occurs. The
** [SQLITE_INTEGER | datatype] after conversion is returned.
**
** Please pay particular attention to the fact that the pointer that
** is returned from [sqlite3_value_blob()], [sqlite3_value_text()], or
** [sqlite3_value_text16()] can be invalidated by a subsequent call to
** [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()],
** or [sqlite3_value_text16()].
**
** These routines must be called from the same thread as
** the SQL function that supplied the [sqlite3_value*] parameters.
**
**
** INVARIANTS:
**
** {F15103} The [sqlite3_value_blob(V)] interface converts the
** [protected sqlite3_value] object V into a blob and then returns a
** pointer to the converted value.
**
** {F15106} The [sqlite3_value_bytes(V)] interface returns the
** number of bytes in the blob or string (exclusive of the
** zero terminator on the string) that was returned by the
** most recent call to [sqlite3_value_blob(V)] or
** [sqlite3_value_text(V)].
**
** {F15109} The [sqlite3_value_bytes16(V)] interface returns the
** number of bytes in the string (exclusive of the
** zero terminator on the string) that was returned by the
** most recent call to [sqlite3_value_text16(V)],
** [sqlite3_value_text16be(V)], or [sqlite3_value_text16le(V)].
**
** {F15112} The [sqlite3_value_double(V)] interface converts the
** [protected sqlite3_value] object V into a floating point value and
** returns a copy of that value.
**
** {F15115} The [sqlite3_value_int(V)] interface converts the
** [protected sqlite3_value] object V into a 64-bit signed integer and
** returns the lower 32 bits of that integer.
**
** {F15118} The [sqlite3_value_int64(V)] interface converts the
** [protected sqlite3_value] object V into a 64-bit signed integer and
** returns a copy of that integer.
**
** {F15121} The [sqlite3_value_text(V)] interface converts the
** [protected sqlite3_value] object V into a zero-terminated UTF-8
** string and returns a pointer to that string.
**
** {F15124} The [sqlite3_value_text16(V)] interface converts the
** [protected sqlite3_value] object V into a zero-terminated 2-byte
** aligned UTF-16 native byte order
** string and returns a pointer to that string.
**
** {F15127} The [sqlite3_value_text16be(V)] interface converts the
** [protected sqlite3_value] object V into a zero-terminated 2-byte
** aligned UTF-16 big-endian
** string and returns a pointer to that string.
**
** {F15130} The [sqlite3_value_text16le(V)] interface converts the
** [protected sqlite3_value] object V into a zero-terminated 2-byte
** aligned UTF-16 little-endian
** string and returns a pointer to that string.
**
** {F15133} The [sqlite3_value_type(V)] interface returns
** one of [SQLITE_NULL], [SQLITE_INTEGER], [SQLITE_FLOAT],
** [SQLITE_TEXT], or [SQLITE_BLOB] as appropriate for
** the [sqlite3_value] object V.
**
** {F15136} The [sqlite3_value_numeric_type(V)] interface converts
** the [protected sqlite3_value] object V into either an integer or
** a floating point value if it can do so without loss of
** information, and returns one of [SQLITE_NULL],
** [SQLITE_INTEGER], [SQLITE_FLOAT], [SQLITE_TEXT], or
** [SQLITE_BLOB] as appropriate for
** the [protected sqlite3_value] object V after the conversion attempt.
*/
SQLITE_API const void *sqlite3_value_blob(sqlite3_value *);
SQLITE_API int sqlite3_value_bytes(sqlite3_value *);
SQLITE_API int sqlite3_value_bytes16(sqlite3_value *);
SQLITE_API double sqlite3_value_double(sqlite3_value *);
SQLITE_API int sqlite3_value_int(sqlite3_value *);
SQLITE_API sqlite3_int64 sqlite3_value_int64(sqlite3_value *);
SQLITE_API const unsigned char *sqlite3_value_text(sqlite3_value *);
SQLITE_API const void *sqlite3_value_text16(sqlite3_value *);
SQLITE_API const void *sqlite3_value_text16le(sqlite3_value *);
SQLITE_API const void *sqlite3_value_text16be(sqlite3_value *);
SQLITE_API int sqlite3_value_type(sqlite3_value *);
SQLITE_API int sqlite3_value_numeric_type(sqlite3_value *);
/*
** CAPI3REF: Obtain Aggregate Function Context {F16210}
**
** The implementation of aggregate SQL functions use this routine to allocate
** a structure for storing their state.
** The first time the sqlite3_aggregate_context() routine is
** is called for a particular aggregate, SQLite allocates nBytes of memory
** zeros that memory, and returns a pointer to it.
** On second and subsequent calls to sqlite3_aggregate_context()
** for the same aggregate function index, the same buffer is returned.
** The implementation
** of the aggregate can use the returned buffer to accumulate data.
**
** SQLite automatically frees the allocated buffer when the aggregate
** query concludes.
**
** The first parameter should be a copy of the
** [sqlite3_context | SQL function context] that is the first
** parameter to the callback routine that implements the aggregate
** function.
**
** This routine must be called from the same thread in which
** the aggregate SQL function is running.
**
** INVARIANTS:
**
** {F16211} The first invocation of [sqlite3_aggregate_context(C,N)] for
** a particular instance of an aggregate function (for a particular
** context C) causes SQLite to allocation N bytes of memory,
** zero that memory, and return a pointer to the allocationed
** memory.
**
** {F16213} If a memory allocation error occurs during
** [sqlite3_aggregate_context(C,N)] then the function returns 0.
**
** {F16215} Second and subsequent invocations of
** [sqlite3_aggregate_context(C,N)] for the same context pointer C
** ignore the N parameter and return a pointer to the same
** block of memory returned by the first invocation.
**
** {F16217} The memory allocated by [sqlite3_aggregate_context(C,N)] is
** automatically freed on the next call to [sqlite3_reset()]
** or [sqlite3_finalize()] for the [prepared statement] containing
** the aggregate function associated with context C.
*/
SQLITE_API void *sqlite3_aggregate_context(sqlite3_context *, int nBytes);
/*
** CAPI3REF: User Data For Functions {F16240}
**
** The sqlite3_user_data() interface returns a copy of
** the pointer that was the pUserData parameter (the 5th parameter)
** of the the [sqlite3_create_function()]
** and [sqlite3_create_function16()] routines that originally
** registered the application defined function. {END}
**
** This routine must be called from the same thread in which
** the application-defined function is running.
**
** INVARIANTS:
**
** {F16243} The [sqlite3_user_data(C)] interface returns a copy of the
** P pointer from the [sqlite3_create_function(D,X,N,E,P,F,S,L)]
** or [sqlite3_create_function16(D,X,N,E,P,F,S,L)] call that
** registered the SQL function associated with
** [sqlite3_context] C.
*/
SQLITE_API void *sqlite3_user_data(sqlite3_context *);
/*
** CAPI3REF: Database Connection For Functions {F16250}
**
** The sqlite3_context_db_handle() interface returns a copy of
** the pointer to the [database connection] (the 1st parameter)
** of the the [sqlite3_create_function()]
** and [sqlite3_create_function16()] routines that originally
** registered the application defined function.
**
** INVARIANTS:
**
** {F16253} The [sqlite3_context_db_handle(C)] interface returns a copy of the
** D pointer from the [sqlite3_create_function(D,X,N,E,P,F,S,L)]
** or [sqlite3_create_function16(D,X,N,E,P,F,S,L)] call that
** registered the SQL function associated with
** [sqlite3_context] C.
*/
SQLITE_API sqlite3 *sqlite3_context_db_handle(sqlite3_context *);
/*
** CAPI3REF: Function Auxiliary Data {F16270}
**
** The following two functions may be used by scalar SQL functions to
** associate meta-data with argument values. If the same value is passed to
** multiple invocations of the same SQL function during query execution, under
** some circumstances the associated meta-data may be preserved. This may
** be used, for example, to add a regular-expression matching scalar
** function. The compiled version of the regular expression is stored as
** meta-data associated with the SQL value passed as the regular expression
** pattern. The compiled regular expression can be reused on multiple
** invocations of the same function so that the original pattern string
** does not need to be recompiled on each invocation.
**
** The sqlite3_get_auxdata() interface returns a pointer to the meta-data
** associated by the sqlite3_set_auxdata() function with the Nth argument
** value to the application-defined function.
** If no meta-data has been ever been set for the Nth
** argument of the function, or if the cooresponding function parameter
** has changed since the meta-data was set, then sqlite3_get_auxdata()
** returns a NULL pointer.
**
** The sqlite3_set_auxdata() interface saves the meta-data
** pointed to by its 3rd parameter as the meta-data for the N-th
** argument of the application-defined function. Subsequent
** calls to sqlite3_get_auxdata() might return this data, if it has
** not been destroyed.
** If it is not NULL, SQLite will invoke the destructor
** function given by the 4th parameter to sqlite3_set_auxdata() on
** the meta-data when the corresponding function parameter changes
** or when the SQL statement completes, whichever comes first.
**
** SQLite is free to call the destructor and drop meta-data on
** any parameter of any function at any time. The only guarantee
** is that the destructor will be called before the metadata is
** dropped.
**
** In practice, meta-data is preserved between function calls for
** expressions that are constant at compile time. This includes literal
** values and SQL variables.
**
** These routines must be called from the same thread in which
** the SQL function is running.
**
** INVARIANTS:
**
** {F16272} The [sqlite3_get_auxdata(C,N)] interface returns a pointer
** to metadata associated with the Nth parameter of the SQL function
** whose context is C, or NULL if there is no metadata associated
** with that parameter.
**
** {F16274} The [sqlite3_set_auxdata(C,N,P,D)] interface assigns a metadata
** pointer P to the Nth parameter of the SQL function with context
** C.
**
** {F16276} SQLite will invoke the destructor D with a single argument
** which is the metadata pointer P following a call to
** [sqlite3_set_auxdata(C,N,P,D)] when SQLite ceases to hold
** the metadata.
**
** {F16277} SQLite ceases to hold metadata for an SQL function parameter
** when the value of that parameter changes.
**
** {F16278} When [sqlite3_set_auxdata(C,N,P,D)] is invoked, the destructor
** is called for any prior metadata associated with the same function
** context C and parameter N.
**
** {F16279} SQLite will call destructors for any metadata it is holding
** in a particular [prepared statement] S when either
** [sqlite3_reset(S)] or [sqlite3_finalize(S)] is called.
*/
SQLITE_API void *sqlite3_get_auxdata(sqlite3_context *, int N);
SQLITE_API void sqlite3_set_auxdata(sqlite3_context *, int N, void *, void (*)(void *));
/*
** CAPI3REF: Constants Defining Special Destructor Behavior {F10280}
**
** These are special value for the destructor that is passed in as the
** final argument to routines like [sqlite3_result_blob()]. If the destructor
** argument is SQLITE_STATIC, it means that the content pointer is constant
** and will never change. It does not need to be destroyed. The
** SQLITE_TRANSIENT value means that the content will likely change in
** the near future and that SQLite should make its own private copy of
** the content before returning.
**
** The typedef is necessary to work around problems in certain
** C++ compilers. See ticket #2191.
*/
typedef void (*sqlite3_destructor_type) (void *);
#define SQLITE_STATIC ((sqlite3_destructor_type)0)
#define SQLITE_TRANSIENT ((sqlite3_destructor_type)-1)
/*
** CAPI3REF: Setting The Result Of An SQL Function {F16400}
**
** These routines are used by the xFunc or xFinal callbacks that
** implement SQL functions and aggregates. See
** [sqlite3_create_function()] and [sqlite3_create_function16()]
** for additional information.
**
** These functions work very much like the
** [sqlite3_bind_blob | sqlite3_bind_*] family of functions used
** to bind values to host parameters in prepared statements.
** Refer to the
** [sqlite3_bind_blob | sqlite3_bind_* documentation] for
** additional information.
**
** The sqlite3_result_blob() interface sets the result from
** an application defined function to be the BLOB whose content is pointed
** to by the second parameter and which is N bytes long where N is the
** third parameter.
** The sqlite3_result_zeroblob() inerfaces set the result of
** the application defined function to be a BLOB containing all zero
** bytes and N bytes in size, where N is the value of the 2nd parameter.
**
** The sqlite3_result_double() interface sets the result from
** an application defined function to be a floating point value specified
** by its 2nd argument.
**
** The sqlite3_result_error() and sqlite3_result_error16() functions
** cause the implemented SQL function to throw an exception.
** SQLite uses the string pointed to by the
** 2nd parameter of sqlite3_result_error() or sqlite3_result_error16()
** as the text of an error message. SQLite interprets the error
** message string from sqlite3_result_error() as UTF8. SQLite
** interprets the string from sqlite3_result_error16() as UTF16 in native
** byte order. If the third parameter to sqlite3_result_error()
** or sqlite3_result_error16() is negative then SQLite takes as the error
** message all text up through the first zero character.
** If the third parameter to sqlite3_result_error() or
** sqlite3_result_error16() is non-negative then SQLite takes that many
** bytes (not characters) from the 2nd parameter as the error message.
** The sqlite3_result_error() and sqlite3_result_error16()
** routines make a copy private copy of the error message text before
** they return. Hence, the calling function can deallocate or
** modify the text after they return without harm.
** The sqlite3_result_error_code() function changes the error code
** returned by SQLite as a result of an error in a function. By default,
** the error code is SQLITE_ERROR. A subsequent call to sqlite3_result_error()
** or sqlite3_result_error16() resets the error code to SQLITE_ERROR.
**
** The sqlite3_result_toobig() interface causes SQLite
** to throw an error indicating that a string or BLOB is to long
** to represent. The sqlite3_result_nomem() interface
** causes SQLite to throw an exception indicating that the a
** memory allocation failed.
**
** The sqlite3_result_int() interface sets the return value
** of the application-defined function to be the 32-bit signed integer
** value given in the 2nd argument.
** The sqlite3_result_int64() interface sets the return value
** of the application-defined function to be the 64-bit signed integer
** value given in the 2nd argument.
**
** The sqlite3_result_null() interface sets the return value
** of the application-defined function to be NULL.
**
** The sqlite3_result_text(), sqlite3_result_text16(),
** sqlite3_result_text16le(), and sqlite3_result_text16be() interfaces
** set the return value of the application-defined function to be
** a text string which is represented as UTF-8, UTF-16 native byte order,
** UTF-16 little endian, or UTF-16 big endian, respectively.
** SQLite takes the text result from the application from
** the 2nd parameter of the sqlite3_result_text* interfaces.
** If the 3rd parameter to the sqlite3_result_text* interfaces
** is negative, then SQLite takes result text from the 2nd parameter
** through the first zero character.
** If the 3rd parameter to the sqlite3_result_text* interfaces
** is non-negative, then as many bytes (not characters) of the text
** pointed to by the 2nd parameter are taken as the application-defined
** function result.
** If the 4th parameter to the sqlite3_result_text* interfaces
** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that
** function as the destructor on the text or blob result when it has
** finished using that result.
** If the 4th parameter to the sqlite3_result_text* interfaces
** or sqlite3_result_blob is the special constant SQLITE_STATIC, then
** SQLite assumes that the text or blob result is constant space and
** does not copy the space or call a destructor when it has
** finished using that result.
** If the 4th parameter to the sqlite3_result_text* interfaces
** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT
** then SQLite makes a copy of the result into space obtained from
** from [sqlite3_malloc()] before it returns.
**
** The sqlite3_result_value() interface sets the result of
** the application-defined function to be a copy the
** [unprotected sqlite3_value] object specified by the 2nd parameter. The
** sqlite3_result_value() interface makes a copy of the [sqlite3_value]
** so that [sqlite3_value] specified in the parameter may change or
** be deallocated after sqlite3_result_value() returns without harm.
** A [protected sqlite3_value] object may always be used where an
** [unprotected sqlite3_value] object is required, so either
** kind of [sqlite3_value] object can be used with this interface.
**
** If these routines are called from within the different thread
** than the one containing the application-defined function that recieved
** the [sqlite3_context] pointer, the results are undefined.
**
** INVARIANTS:
**
** {F16403} The default return value from any SQL function is NULL.
**
** {F16406} The [sqlite3_result_blob(C,V,N,D)] interface changes the
** return value of function C to be a blob that is N bytes
** in length and with content pointed to by V.
**
** {F16409} The [sqlite3_result_double(C,V)] interface changes the
** return value of function C to be the floating point value V.
**
** {F16412} The [sqlite3_result_error(C,V,N)] interface changes the return
** value of function C to be an exception with error code
** [SQLITE_ERROR] and a UTF8 error message copied from V up to the
** first zero byte or until N bytes are read if N is positive.
**
** {F16415} The [sqlite3_result_error16(C,V,N)] interface changes the return
** value of function C to be an exception with error code
** [SQLITE_ERROR] and a UTF16 native byte order error message
** copied from V up to the first zero terminator or until N bytes
** are read if N is positive.
**
** {F16418} The [sqlite3_result_error_toobig(C)] interface changes the return
** value of the function C to be an exception with error code
** [SQLITE_TOOBIG] and an appropriate error message.
**
** {F16421} The [sqlite3_result_error_nomem(C)] interface changes the return
** value of the function C to be an exception with error code
** [SQLITE_NOMEM] and an appropriate error message.
**
** {F16424} The [sqlite3_result_error_code(C,E)] interface changes the return
** value of the function C to be an exception with error code E.
** The error message text is unchanged.
**
** {F16427} The [sqlite3_result_int(C,V)] interface changes the
** return value of function C to be the 32-bit integer value V.
**
** {F16430} The [sqlite3_result_int64(C,V)] interface changes the
** return value of function C to be the 64-bit integer value V.
**
** {F16433} The [sqlite3_result_null(C)] interface changes the
** return value of function C to be NULL.
**
** {F16436} The [sqlite3_result_text(C,V,N,D)] interface changes the
** return value of function C to be the UTF8 string
** V up to the first zero if N is negative
** or the first N bytes of V if N is non-negative.
**
** {F16439} The [sqlite3_result_text16(C,V,N,D)] interface changes the
** return value of function C to be the UTF16 native byte order
** string V up to the first zero if N is
** negative or the first N bytes of V if N is non-negative.
**
** {F16442} The [sqlite3_result_text16be(C,V,N,D)] interface changes the
** return value of function C to be the UTF16 big-endian
** string V up to the first zero if N is
** is negative or the first N bytes or V if N is non-negative.
**
** {F16445} The [sqlite3_result_text16le(C,V,N,D)] interface changes the
** return value of function C to be the UTF16 little-endian
** string V up to the first zero if N is
** negative or the first N bytes of V if N is non-negative.
**
** {F16448} The [sqlite3_result_value(C,V)] interface changes the
** return value of function C to be [unprotected sqlite3_value]
** object V.
**
** {F16451} The [sqlite3_result_zeroblob(C,N)] interface changes the
** return value of function C to be an N-byte blob of all zeros.
**
** {F16454} The [sqlite3_result_error()] and [sqlite3_result_error16()]
** interfaces make a copy of their error message strings before
** returning.
**
** {F16457} If the D destructor parameter to [sqlite3_result_blob(C,V,N,D)],
** [sqlite3_result_text(C,V,N,D)], [sqlite3_result_text16(C,V,N,D)],
** [sqlite3_result_text16be(C,V,N,D)], or
** [sqlite3_result_text16le(C,V,N,D)] is the constant [SQLITE_STATIC]
** then no destructor is ever called on the pointer V and SQLite
** assumes that V is immutable.
**
** {F16460} If the D destructor parameter to [sqlite3_result_blob(C,V,N,D)],
** [sqlite3_result_text(C,V,N,D)], [sqlite3_result_text16(C,V,N,D)],
** [sqlite3_result_text16be(C,V,N,D)], or
** [sqlite3_result_text16le(C,V,N,D)] is the constant
** [SQLITE_TRANSIENT] then the interfaces makes a copy of the
** content of V and retains the copy.
**
** {F16463} If the D destructor parameter to [sqlite3_result_blob(C,V,N,D)],
** [sqlite3_result_text(C,V,N,D)], [sqlite3_result_text16(C,V,N,D)],
** [sqlite3_result_text16be(C,V,N,D)], or
** [sqlite3_result_text16le(C,V,N,D)] is some value other than
** the constants [SQLITE_STATIC] and [SQLITE_TRANSIENT] then
** SQLite will invoke the destructor D with V as its only argument
** when it has finished with the V value.
*/
SQLITE_API void sqlite3_result_blob(sqlite3_context *, const void *, int, void (*)(void *));
SQLITE_API void sqlite3_result_double(sqlite3_context *, double);
SQLITE_API void sqlite3_result_error(sqlite3_context *, const char *, int);
SQLITE_API void sqlite3_result_error16(sqlite3_context *, const void *, int);
SQLITE_API void sqlite3_result_error_toobig(sqlite3_context *);
SQLITE_API void sqlite3_result_error_nomem(sqlite3_context *);
SQLITE_API void sqlite3_result_error_code(sqlite3_context *, int);
SQLITE_API void sqlite3_result_int(sqlite3_context *, int);
SQLITE_API void sqlite3_result_int64(sqlite3_context *, sqlite3_int64);
SQLITE_API void sqlite3_result_null(sqlite3_context *);
SQLITE_API void sqlite3_result_text(sqlite3_context *, const char *, int, void (*)(void *));
SQLITE_API void sqlite3_result_text16(sqlite3_context *, const void *, int,
void (*)(void *));
SQLITE_API void sqlite3_result_text16le(sqlite3_context *, const void *, int,
void (*)(void *));
SQLITE_API void sqlite3_result_text16be(sqlite3_context *, const void *, int,
void (*)(void *));
SQLITE_API void sqlite3_result_value(sqlite3_context *, sqlite3_value *);
SQLITE_API void sqlite3_result_zeroblob(sqlite3_context *, int n);
/*
** CAPI3REF: Define New Collating Sequences {F16600}
**
** These functions are used to add new collation sequences to the
** [sqlite3*] handle specified as the first argument.
**
** The name of the new collation sequence is specified as a UTF-8 string
** for sqlite3_create_collation() and sqlite3_create_collation_v2()
** and a UTF-16 string for sqlite3_create_collation16(). In all cases
** the name is passed as the second function argument.
**
** The third argument may be one of the constants [SQLITE_UTF8],
** [SQLITE_UTF16LE] or [SQLITE_UTF16BE], indicating that the user-supplied
** routine expects to be passed pointers to strings encoded using UTF-8,
** UTF-16 little-endian or UTF-16 big-endian respectively. The
** third argument might also be [SQLITE_UTF16_ALIGNED] to indicate that
** the routine expects pointers to 16-bit word aligned strings
** of UTF16 in the native byte order of the host computer.
**
** A pointer to the user supplied routine must be passed as the fifth
** argument. If it is NULL, this is the same as deleting the collation
** sequence (so that SQLite cannot call it anymore).
** Each time the application
** supplied function is invoked, it is passed a copy of the void* passed as
** the fourth argument to sqlite3_create_collation() or
** sqlite3_create_collation16() as its first parameter.
**
** The remaining arguments to the application-supplied routine are two strings,
** each represented by a (length, data) pair and encoded in the encoding
** that was passed as the third argument when the collation sequence was
** registered. {END} The application defined collation routine should
** return negative, zero or positive if
** the first string is less than, equal to, or greater than the second
** string. i.e. (STRING1 - STRING2).
**
** The sqlite3_create_collation_v2() works like sqlite3_create_collation()
** excapt that it takes an extra argument which is a destructor for
** the collation. The destructor is called when the collation is
** destroyed and is passed a copy of the fourth parameter void* pointer
** of the sqlite3_create_collation_v2().
** Collations are destroyed when
** they are overridden by later calls to the collation creation functions
** or when the [sqlite3*] database handle is closed using [sqlite3_close()].
**
** INVARIANTS:
**
** {F16603} A successful call to the
** [sqlite3_create_collation_v2(B,X,E,P,F,D)] interface
** registers function F as the comparison function used to
** implement collation X on [database connection] B for
** databases having encoding E.
**
** {F16604} SQLite understands the X parameter to
** [sqlite3_create_collation_v2(B,X,E,P,F,D)] as a zero-terminated
** UTF-8 string in which case is ignored for ASCII characters and
** is significant for non-ASCII characters.
**
** {F16606} Successive calls to [sqlite3_create_collation_v2(B,X,E,P,F,D)]
** with the same values for B, X, and E, override prior values
** of P, F, and D.
**
** {F16609} The destructor D in [sqlite3_create_collation_v2(B,X,E,P,F,D)]
** is not NULL then it is called with argument P when the
** collating function is dropped by SQLite.
**
** {F16612} A collating function is dropped when it is overloaded.
**
** {F16615} A collating function is dropped when the database connection
** is closed using [sqlite3_close()].
**
** {F16618} The pointer P in [sqlite3_create_collation_v2(B,X,E,P,F,D)]
** is passed through as the first parameter to the comparison
** function F for all subsequent invocations of F.
**
** {F16621} A call to [sqlite3_create_collation(B,X,E,P,F)] is exactly
** the same as a call to [sqlite3_create_collation_v2()] with
** the same parameters and a NULL destructor.
**
** {F16624} Following a [sqlite3_create_collation_v2(B,X,E,P,F,D)],
** SQLite uses the comparison function F for all text comparison
** operations on [database connection] B on text values that
** use the collating sequence name X.
**
** {F16627} The [sqlite3_create_collation16(B,X,E,P,F)] works the same
** as [sqlite3_create_collation(B,X,E,P,F)] except that the
** collation name X is understood as UTF-16 in native byte order
** instead of UTF-8.
**
** {F16630} When multiple comparison functions are available for the same
** collating sequence, SQLite chooses the one whose text encoding
** requires the least amount of conversion from the default
** text encoding of the database.
*/
SQLITE_API int sqlite3_create_collation(sqlite3 *,
const char *zName,
int eTextRep,
void *,
int (*xCompare) (void *, int, const void *, int,
const void *));
SQLITE_API int sqlite3_create_collation_v2(sqlite3 *, const char *zName, int eTextRep,
void *, int (*xCompare) (void *, int,
const void *, int,
const void *),
void (*xDestroy) (void *));
SQLITE_API int sqlite3_create_collation16(sqlite3 *, const char *zName, int eTextRep,
void *, int (*xCompare) (void *, int,
const void *, int,
const void *));
/*
** CAPI3REF: Collation Needed Callbacks {F16700}
**
** To avoid having to register all collation sequences before a database
** can be used, a single callback function may be registered with the
** database handle to be called whenever an undefined collation sequence is
** required.
**
** If the function is registered using the sqlite3_collation_needed() API,
** then it is passed the names of undefined collation sequences as strings
** encoded in UTF-8. {F16703} If sqlite3_collation_needed16() is used, the names
** are passed as UTF-16 in machine native byte order. A call to either
** function replaces any existing callback.
**
** When the callback is invoked, the first argument passed is a copy
** of the second argument to sqlite3_collation_needed() or
** sqlite3_collation_needed16(). The second argument is the database
** handle. The third argument is one of [SQLITE_UTF8],
** [SQLITE_UTF16BE], or [SQLITE_UTF16LE], indicating the most
** desirable form of the collation sequence function required.
** The fourth parameter is the name of the
** required collation sequence.
**
** The callback function should register the desired collation using
** [sqlite3_create_collation()], [sqlite3_create_collation16()], or
** [sqlite3_create_collation_v2()].
**
** INVARIANTS:
**
** {F16702} A successful call to [sqlite3_collation_needed(D,P,F)]
** or [sqlite3_collation_needed16(D,P,F)] causes
** the [database connection] D to invoke callback F with first
** parameter P whenever it needs a comparison function for a
** collating sequence that it does not know about.
**
** {F16704} Each successful call to [sqlite3_collation_needed()] or
** [sqlite3_collation_needed16()] overrides the callback registered
** on the same [database connection] by prior calls to either
** interface.
**
** {F16706} The name of the requested collating function passed in the
** 4th parameter to the callback is in UTF-8 if the callback
** was registered using [sqlite3_collation_needed()] and
** is in UTF-16 native byte order if the callback was
** registered using [sqlite3_collation_needed16()].
**
**
*/
SQLITE_API int sqlite3_collation_needed(sqlite3 *,
void *,
void (*)(void *, sqlite3 *, int eTextRep,
const char *));
SQLITE_API int sqlite3_collation_needed16(sqlite3 *, void *,
void (*)(void *, sqlite3 *, int eTextRep,
const void *));
/*
** Specify the key for an encrypted database. This routine should be
** called right after sqlite3_open().
**
** The code to implement this API is not available in the public release
** of SQLite.
*/
SQLITE_API int sqlite3_key(sqlite3 * db, /* Database to be rekeyed */
const void *pKey, int nKey /* The key */
);
/*
** Change the key on an open database. If the current database is not
** encrypted, this routine will encrypt it. If pNew==0 or nNew==0, the
** database is decrypted.
**
** The code to implement this API is not available in the public release
** of SQLite.
*/
SQLITE_API int sqlite3_rekey(sqlite3 * db, /* Database to be rekeyed */
const void *pKey, int nKey /* The new key */
);
/*
** CAPI3REF: Suspend Execution For A Short Time {F10530}
**
** The sqlite3_sleep() function
** causes the current thread to suspend execution
** for at least a number of milliseconds specified in its parameter.
**
** If the operating system does not support sleep requests with
** millisecond time resolution, then the time will be rounded up to
** the nearest second. The number of milliseconds of sleep actually
** requested from the operating system is returned.
**
** SQLite implements this interface by calling the xSleep()
** method of the default [sqlite3_vfs] object.
**
** INVARIANTS:
**
** {F10533} The [sqlite3_sleep(M)] interface invokes the xSleep
** method of the default [sqlite3_vfs|VFS] in order to
** suspend execution of the current thread for at least
** M milliseconds.
**
** {F10536} The [sqlite3_sleep(M)] interface returns the number of
** milliseconds of sleep actually requested of the operating
** system, which might be larger than the parameter M.
*/
SQLITE_API int sqlite3_sleep(int);
/*
** CAPI3REF: Name Of The Folder Holding Temporary Files {F10310}
**
** If this global variable is made to point to a string which is
** the name of a folder (a.ka. directory), then all temporary files
** created by SQLite will be placed in that directory. If this variable
** is NULL pointer, then SQLite does a search for an appropriate temporary
** file directory.
**
** It is not safe to modify this variable once a database connection
** has been opened. It is intended that this variable be set once
** as part of process initialization and before any SQLite interface
** routines have been call and remain unchanged thereafter.
*/
SQLITE_API char *sqlite3_temp_directory;
/*
** CAPI3REF: Test To See If The Database Is In Auto-Commit Mode {F12930}
**
** The sqlite3_get_autocommit() interfaces returns non-zero or
** zero if the given database connection is or is not in autocommit mode,
** respectively. Autocommit mode is on
** by default. Autocommit mode is disabled by a [BEGIN] statement.
** Autocommit mode is reenabled by a [COMMIT] or [ROLLBACK].
**
** If certain kinds of errors occur on a statement within a multi-statement
** transactions (errors including [SQLITE_FULL], [SQLITE_IOERR],
** [SQLITE_NOMEM], [SQLITE_BUSY], and [SQLITE_INTERRUPT]) then the
** transaction might be rolled back automatically. The only way to
** find out if SQLite automatically rolled back the transaction after
** an error is to use this function.
**
** INVARIANTS:
**
** {F12931} The [sqlite3_get_autocommit(D)] interface returns non-zero or
** zero if the [database connection] D is or is not in autocommit
** mode, respectively.
**
** {F12932} Autocommit mode is on by default.
**
** {F12933} Autocommit mode is disabled by a successful [BEGIN] statement.
**
** {F12934} Autocommit mode is enabled by a successful [COMMIT] or [ROLLBACK]
** statement.
**
**
** LIMITATIONS:
***
** {U12936} If another thread changes the autocommit status of the database
** connection while this routine is running, then the return value
** is undefined.
*/
SQLITE_API int sqlite3_get_autocommit(sqlite3 *);
/*
** CAPI3REF: Find The Database Handle Of A Prepared Statement {F13120}
**
** The sqlite3_db_handle interface
** returns the [sqlite3*] database handle to which a
** [prepared statement] belongs.
** The database handle returned by sqlite3_db_handle
** is the same database handle that was
** the first argument to the [sqlite3_prepare_v2()] or its variants
** that was used to create the statement in the first place.
**
** INVARIANTS:
**
** {F13123} The [sqlite3_db_handle(S)] interface returns a pointer
** to the [database connection] associated with
** [prepared statement] S.
*/
SQLITE_API sqlite3 *sqlite3_db_handle(sqlite3_stmt *);
/*
** CAPI3REF: Commit And Rollback Notification Callbacks {F12950}
**
** The sqlite3_commit_hook() interface registers a callback
** function to be invoked whenever a transaction is committed.
** Any callback set by a previous call to sqlite3_commit_hook()
** for the same database connection is overridden.
** The sqlite3_rollback_hook() interface registers a callback
** function to be invoked whenever a transaction is committed.
** Any callback set by a previous call to sqlite3_commit_hook()
** for the same database connection is overridden.
** The pArg argument is passed through
** to the callback. If the callback on a commit hook function
** returns non-zero, then the commit is converted into a rollback.
**
** If another function was previously registered, its
** pArg value is returned. Otherwise NULL is returned.
**
** Registering a NULL function disables the callback.
**
** For the purposes of this API, a transaction is said to have been
** rolled back if an explicit "ROLLBACK" statement is executed, or
** an error or constraint causes an implicit rollback to occur.
** The rollback callback is not invoked if a transaction is
** automatically rolled back because the database connection is closed.
** The rollback callback is not invoked if a transaction is
** rolled back because a commit callback returned non-zero.
** <todo> Check on this </todo>
**
** These are experimental interfaces and are subject to change.
**
** INVARIANTS:
**
** {F12951} The [sqlite3_commit_hook(D,F,P)] interface registers the
** callback function F to be invoked with argument P whenever
** a transaction commits on [database connection] D.
**
** {F12952} The [sqlite3_commit_hook(D,F,P)] interface returns the P
** argument from the previous call with the same
** [database connection ] D , or NULL on the first call
** for a particular [database connection] D.
**
** {F12953} Each call to [sqlite3_commit_hook()] overwrites the callback
** registered by prior calls.
**
** {F12954} If the F argument to [sqlite3_commit_hook(D,F,P)] is NULL
** then the commit hook callback is cancelled and no callback
** is invoked when a transaction commits.
**
** {F12955} If the commit callback returns non-zero then the commit is
** converted into a rollback.
**
** {F12961} The [sqlite3_rollback_hook(D,F,P)] interface registers the
** callback function F to be invoked with argument P whenever
** a transaction rolls back on [database connection] D.
**
** {F12962} The [sqlite3_rollback_hook(D,F,P)] interface returns the P
** argument from the previous call with the same
** [database connection ] D , or NULL on the first call
** for a particular [database connection] D.
**
** {F12963} Each call to [sqlite3_rollback_hook()] overwrites the callback
** registered by prior calls.
**
** {F12964} If the F argument to [sqlite3_rollback_hook(D,F,P)] is NULL
** then the rollback hook callback is cancelled and no callback
** is invoked when a transaction rolls back.
*/
SQLITE_API void *sqlite3_commit_hook(sqlite3 *, int (*)(void *), void *);
SQLITE_API void *sqlite3_rollback_hook(sqlite3 *, void (*)(void *), void *);
/*
** CAPI3REF: Data Change Notification Callbacks {F12970}
**
** The sqlite3_update_hook() interface
** registers a callback function with the database connection identified by the
** first argument to be invoked whenever a row is updated, inserted or deleted.
** Any callback set by a previous call to this function for the same
** database connection is overridden.
**
** The second argument is a pointer to the function to invoke when a
** row is updated, inserted or deleted.
** The first argument to the callback is
** a copy of the third argument to sqlite3_update_hook().
** The second callback
** argument is one of [SQLITE_INSERT], [SQLITE_DELETE] or [SQLITE_UPDATE],
** depending on the operation that caused the callback to be invoked.
** The third and
** fourth arguments to the callback contain pointers to the database and
** table name containing the affected row.
** The final callback parameter is
** the rowid of the row.
** In the case of an update, this is the rowid after
** the update takes place.
**
** The update hook is not invoked when internal system tables are
** modified (i.e. sqlite_master and sqlite_sequence).
**
** If another function was previously registered, its pArg value
** is returned. Otherwise NULL is returned.
**
** INVARIANTS:
**
** {F12971} The [sqlite3_update_hook(D,F,P)] interface causes callback
** function F to be invoked with first parameter P whenever
** a table row is modified, inserted, or deleted on
** [database connection] D.
**
** {F12973} The [sqlite3_update_hook(D,F,P)] interface returns the value
** of P for the previous call on the same [database connection] D,
** or NULL for the first call.
**
** {F12975} If the update hook callback F in [sqlite3_update_hook(D,F,P)]
** is NULL then the no update callbacks are made.
**
** {F12977} Each call to [sqlite3_update_hook(D,F,P)] overrides prior calls
** to the same interface on the same [database connection] D.
**
** {F12979} The update hook callback is not invoked when internal system
** tables such as sqlite_master and sqlite_sequence are modified.
**
** {F12981} The second parameter to the update callback
** is one of [SQLITE_INSERT], [SQLITE_DELETE] or [SQLITE_UPDATE],
** depending on the operation that caused the callback to be invoked.
**
** {F12983} The third and fourth arguments to the callback contain pointers
** to zero-terminated UTF-8 strings which are the names of the
** database and table that is being updated.
** {F12985} The final callback parameter is the rowid of the row after
** the change occurs.
*/
SQLITE_API void *sqlite3_update_hook(sqlite3 *,
void (*)(void *, int, char const *, char const *,
sqlite3_int64), void *);
/*
** CAPI3REF: Enable Or Disable Shared Pager Cache {F10330}
**
** This routine enables or disables the sharing of the database cache
** and schema data structures between connections to the same database.
** Sharing is enabled if the argument is true and disabled if the argument
** is false.
**
** Cache sharing is enabled and disabled
** for an entire process. {END} This is a change as of SQLite version 3.5.0.
** In prior versions of SQLite, sharing was
** enabled or disabled for each thread separately.
**
** The cache sharing mode set by this interface effects all subsequent
** calls to [sqlite3_open()], [sqlite3_open_v2()], and [sqlite3_open16()].
** Existing database connections continue use the sharing mode
** that was in effect at the time they were opened.
**
** Virtual tables cannot be used with a shared cache. When shared
** cache is enabled, the [sqlite3_create_module()] API used to register
** virtual tables will always return an error.
**
** This routine returns [SQLITE_OK] if shared cache was
** enabled or disabled successfully. An [error code]
** is returned otherwise.
**
** Shared cache is disabled by default. But this might change in
** future releases of SQLite. Applications that care about shared
** cache setting should set it explicitly.
**
** INVARIANTS:
**
** {F10331} A successful invocation of [sqlite3_enable_shared_cache(B)]
** will enable or disable shared cache mode for any subsequently
** created [database connection] in the same process.
**
** {F10336} When shared cache is enabled, the [sqlite3_create_module()]
** interface will always return an error.
**
** {F10337} The [sqlite3_enable_shared_cache(B)] interface returns
** [SQLITE_OK] if shared cache was enabled or disabled successfully.
**
** {F10339} Shared cache is disabled by default.
*/
SQLITE_API int sqlite3_enable_shared_cache(int);
/*
** CAPI3REF: Attempt To Free Heap Memory {F17340}
**
** The sqlite3_release_memory() interface attempts to
** free N bytes of heap memory by deallocating non-essential memory
** allocations held by the database labrary. {END} Memory used
** to cache database pages to improve performance is an example of
** non-essential memory. Sqlite3_release_memory() returns
** the number of bytes actually freed, which might be more or less
** than the amount requested.
**
** INVARIANTS:
**
** {F17341} The [sqlite3_release_memory(N)] interface attempts to
** free N bytes of heap memory by deallocating non-essential
** memory allocations held by the database labrary.
**
** {F16342} The [sqlite3_release_memory(N)] returns the number
** of bytes actually freed, which might be more or less
** than the amount requested.
*/
SQLITE_API int sqlite3_release_memory(int);
/*
** CAPI3REF: Impose A Limit On Heap Size {F17350}
**
** The sqlite3_soft_heap_limit() interface
** places a "soft" limit on the amount of heap memory that may be allocated
** by SQLite. If an internal allocation is requested
** that would exceed the soft heap limit, [sqlite3_release_memory()] is
** invoked one or more times to free up some space before the allocation
** is made.
**
** The limit is called "soft", because if
** [sqlite3_release_memory()] cannot
** free sufficient memory to prevent the limit from being exceeded,
** the memory is allocated anyway and the current operation proceeds.
**
** A negative or zero value for N means that there is no soft heap limit and
** [sqlite3_release_memory()] will only be called when memory is exhausted.
** The default value for the soft heap limit is zero.
**
** SQLite makes a best effort to honor the soft heap limit.
** But if the soft heap limit cannot honored, execution will
** continue without error or notification. This is why the limit is
** called a "soft" limit. It is advisory only.
**
** Prior to SQLite version 3.5.0, this routine only constrained the memory
** allocated by a single thread - the same thread in which this routine
** runs. Beginning with SQLite version 3.5.0, the soft heap limit is
** applied to all threads. The value specified for the soft heap limit
** is an upper bound on the total memory allocation for all threads. In
** version 3.5.0 there is no mechanism for limiting the heap usage for
** individual threads.
**
** INVARIANTS:
**
** {F16351} The [sqlite3_soft_heap_limit(N)] interface places a soft limit
** of N bytes on the amount of heap memory that may be allocated
** using [sqlite3_malloc()] or [sqlite3_realloc()] at any point
** in time.
**
** {F16352} If a call to [sqlite3_malloc()] or [sqlite3_realloc()] would
** cause the total amount of allocated memory to exceed the
** soft heap limit, then [sqlite3_release_memory()] is invoked
** in an attempt to reduce the memory usage prior to proceeding
** with the memory allocation attempt.
**
** {F16353} Calls to [sqlite3_malloc()] or [sqlite3_realloc()] that trigger
** attempts to reduce memory usage through the soft heap limit
** mechanism continue even if the attempt to reduce memory
** usage is unsuccessful.
**
** {F16354} A negative or zero value for N in a call to
** [sqlite3_soft_heap_limit(N)] means that there is no soft
** heap limit and [sqlite3_release_memory()] will only be
** called when memory is completely exhausted.
**
** {F16355} The default value for the soft heap limit is zero.
**
** {F16358} Each call to [sqlite3_soft_heap_limit(N)] overrides the
** values set by all prior calls.
*/
SQLITE_API void sqlite3_soft_heap_limit(int);
/*
** CAPI3REF: Extract Metadata About A Column Of A Table {F12850}
**
** This routine
** returns meta-data about a specific column of a specific database
** table accessible using the connection handle passed as the first function
** argument.
**
** The column is identified by the second, third and fourth parameters to
** this function. The second parameter is either the name of the database
** (i.e. "main", "temp" or an attached database) containing the specified
** table or NULL. If it is NULL, then all attached databases are searched
** for the table using the same algorithm as the database engine uses to
** resolve unqualified table references.
**
** The third and fourth parameters to this function are the table and column
** name of the desired column, respectively. Neither of these parameters
** may be NULL.
**
** Meta information is returned by writing to the memory locations passed as
** the 5th and subsequent parameters to this function. Any of these
** arguments may be NULL, in which case the corresponding element of meta
** information is ommitted.
**
** <pre>
** Parameter Output Type Description
** -----------------------------------
**
** 5th const char* Data type
** 6th const char* Name of the default collation sequence
** 7th int True if the column has a NOT NULL constraint
** 8th int True if the column is part of the PRIMARY KEY
** 9th int True if the column is AUTOINCREMENT
** </pre>
**
**
** The memory pointed to by the character pointers returned for the
** declaration type and collation sequence is valid only until the next
** call to any sqlite API function.
**
** If the specified table is actually a view, then an error is returned.
**
** If the specified column is "rowid", "oid" or "_rowid_" and an
** INTEGER PRIMARY KEY column has been explicitly declared, then the output
** parameters are set for the explicitly declared column. If there is no
** explicitly declared IPK column, then the output parameters are set as
** follows:
**
** <pre>
** data type: "INTEGER"
** collation sequence: "BINARY"
** not null: 0
** primary key: 1
** auto increment: 0
** </pre>
**
** This function may load one or more schemas from database files. If an
** error occurs during this process, or if the requested table or column
** cannot be found, an SQLITE error code is returned and an error message
** left in the database handle (to be retrieved using sqlite3_errmsg()).
**
** This API is only available if the library was compiled with the
** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined.
*/
SQLITE_API int sqlite3_table_column_metadata(sqlite3 * db, /* Connection handle */
const char *zDbName, /* Database name or NULL */
const char *zTableName, /* Table name */
const char *zColumnName, /* Column name */
char const **pzDataType, /* OUTPUT: Declared data type */
char const **pzCollSeq, /* OUTPUT: Collation sequence name */
int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */
int *pPrimaryKey, /* OUTPUT: True if column part of PK */
int *pAutoinc /* OUTPUT: True if column is auto-increment */
);
/*
** CAPI3REF: Load An Extension {F12600}
**
** {F12601} The sqlite3_load_extension() interface
** attempts to load an SQLite extension library contained in the file
** zFile. {F12602} The entry point is zProc. {F12603} zProc may be 0
** in which case the name of the entry point defaults
** to "sqlite3_extension_init".
**
** {F12604} The sqlite3_load_extension() interface shall
** return [SQLITE_OK] on success and [SQLITE_ERROR] if something goes wrong.
**
** {F12605}
** If an error occurs and pzErrMsg is not 0, then the
** sqlite3_load_extension() interface shall attempt to fill *pzErrMsg with
** error message text stored in memory obtained from [sqlite3_malloc()].
** {END} The calling function should free this memory
** by calling [sqlite3_free()].
**
** {F12606}
** Extension loading must be enabled using [sqlite3_enable_load_extension()]
** prior to calling this API or an error will be returned.
*/
SQLITE_API int sqlite3_load_extension(sqlite3 * db, /* Load the extension into this database connection */
const char *zFile, /* Name of the shared library containing extension */
const char *zProc, /* Entry point. Derived from zFile if 0 */
char **pzErrMsg /* Put error message here if not 0 */
);
/*
** CAPI3REF: Enable Or Disable Extension Loading {F12620}
**
** So as not to open security holes in older applications that are
** unprepared to deal with extension loading, and as a means of disabling
** extension loading while evaluating user-entered SQL, the following
** API is provided to turn the [sqlite3_load_extension()] mechanism on and
** off. {F12622} It is off by default. {END} See ticket #1863.
**
** {F12621} Call the sqlite3_enable_load_extension() routine
** with onoff==1 to turn extension loading on
** and call it with onoff==0 to turn it back off again. {END}
*/
SQLITE_API int sqlite3_enable_load_extension(sqlite3 * db, int onoff);
/*
** CAPI3REF: Make Arrangements To Automatically Load An Extension {F12640}
**
** {F12641} This function
** registers an extension entry point that is automatically invoked
** whenever a new database connection is opened using
** [sqlite3_open()], [sqlite3_open16()], or [sqlite3_open_v2()]. {END}
**
** This API can be invoked at program startup in order to register
** one or more statically linked extensions that will be available
** to all new database connections.
**
** {F12642} Duplicate extensions are detected so calling this routine multiple
** times with the same extension is harmless.
**
** {F12643} This routine stores a pointer to the extension in an array
** that is obtained from sqlite_malloc(). {END} If you run a memory leak
** checker on your program and it reports a leak because of this
** array, then invoke [sqlite3_reset_auto_extension()] prior
** to shutdown to free the memory.
**
** {F12644} Automatic extensions apply across all threads. {END}
**
** This interface is experimental and is subject to change or
** removal in future releases of SQLite.
*/
SQLITE_API int sqlite3_auto_extension(void *xEntryPoint);
/*
** CAPI3REF: Reset Automatic Extension Loading {F12660}
**
** {F12661} This function disables all previously registered
** automatic extensions. {END} This
** routine undoes the effect of all prior [sqlite3_auto_extension()]
** calls.
**
** {F12662} This call disabled automatic extensions in all threads. {END}
**
** This interface is experimental and is subject to change or
** removal in future releases of SQLite.
*/
SQLITE_API void sqlite3_reset_auto_extension(void);
/*
****** EXPERIMENTAL - subject to change without notice **************
**
** The interface to the virtual-table mechanism is currently considered
** to be experimental. The interface might change in incompatible ways.
** If this is a problem for you, do not use the interface at this time.
**
** When the virtual-table mechanism stablizes, we will declare the
** interface fixed, support it indefinitely, and remove this comment.
*/
/*
** Structures used by the virtual table interface
*/
typedef struct sqlite3_vtab sqlite3_vtab;
typedef struct sqlite3_index_info sqlite3_index_info;
typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor;
typedef struct sqlite3_module sqlite3_module;
/*
** CAPI3REF: Virtual Table Object {F18000}
** KEYWORDS: sqlite3_module
**
** A module is a class of virtual tables. Each module is defined
** by an instance of the following structure. This structure consists
** mostly of methods for the module.
*/
struct sqlite3_module
{
int iVersion;
int (*xCreate) (sqlite3 *, void *pAux,
int argc, const char *const *argv, sqlite3_vtab ** ppVTab, char **);
int (*xConnect) (sqlite3 *, void *pAux,
int argc, const char *const *argv,
sqlite3_vtab ** ppVTab, char **);
int (*xBestIndex) (sqlite3_vtab * pVTab, sqlite3_index_info *);
int (*xDisconnect) (sqlite3_vtab * pVTab);
int (*xDestroy) (sqlite3_vtab * pVTab);
int (*xOpen) (sqlite3_vtab * pVTab, sqlite3_vtab_cursor ** ppCursor);
int (*xClose) (sqlite3_vtab_cursor *);
int (*xFilter) (sqlite3_vtab_cursor *, int idxNum, const char *idxStr,
int argc, sqlite3_value ** argv);
int (*xNext) (sqlite3_vtab_cursor *);
int (*xEof) (sqlite3_vtab_cursor *);
int (*xColumn) (sqlite3_vtab_cursor *, sqlite3_context *, int);
int (*xRowid) (sqlite3_vtab_cursor *, sqlite3_int64 * pRowid);
int (*xUpdate) (sqlite3_vtab *, int, sqlite3_value **, sqlite3_int64 *);
int (*xBegin) (sqlite3_vtab * pVTab);
int (*xSync) (sqlite3_vtab * pVTab);
int (*xCommit) (sqlite3_vtab * pVTab);
int (*xRollback) (sqlite3_vtab * pVTab);
int (*xFindFunction) (sqlite3_vtab * pVtab, int nArg, const char *zName,
void (**pxFunc) (sqlite3_context *, int, sqlite3_value **),
void **ppArg);
int (*xRename) (sqlite3_vtab * pVtab, const char *zNew);
};
/*
** CAPI3REF: Virtual Table Indexing Information {F18100}
** KEYWORDS: sqlite3_index_info
**
** The sqlite3_index_info structure and its substructures is used to
** pass information into and receive the reply from the xBestIndex
** method of an sqlite3_module. The fields under **Inputs** are the
** inputs to xBestIndex and are read-only. xBestIndex inserts its
** results into the **Outputs** fields.
**
** The aConstraint[] array records WHERE clause constraints of the
** form:
**
** column OP expr
**
** Where OP is =, &lt;, &lt;=, &gt;, or &gt;=.
** The particular operator is stored
** in aConstraint[].op. The index of the column is stored in
** aConstraint[].iColumn. aConstraint[].usable is TRUE if the
** expr on the right-hand side can be evaluated (and thus the constraint
** is usable) and false if it cannot.
**
** The optimizer automatically inverts terms of the form "expr OP column"
** and makes other simplifications to the WHERE clause in an attempt to
** get as many WHERE clause terms into the form shown above as possible.
** The aConstraint[] array only reports WHERE clause terms in the correct
** form that refer to the particular virtual table being queried.
**
** Information about the ORDER BY clause is stored in aOrderBy[].
** Each term of aOrderBy records a column of the ORDER BY clause.
**
** The xBestIndex method must fill aConstraintUsage[] with information
** about what parameters to pass to xFilter. If argvIndex>0 then
** the right-hand side of the corresponding aConstraint[] is evaluated
** and becomes the argvIndex-th entry in argv. If aConstraintUsage[].omit
** is true, then the constraint is assumed to be fully handled by the
** virtual table and is not checked again by SQLite.
**
** The idxNum and idxPtr values are recorded and passed into xFilter.
** sqlite3_free() is used to free idxPtr if needToFreeIdxPtr is true.
**
** The orderByConsumed means that output from xFilter will occur in
** the correct order to satisfy the ORDER BY clause so that no separate
** sorting step is required.
**
** The estimatedCost value is an estimate of the cost of doing the
** particular lookup. A full scan of a table with N entries should have
** a cost of N. A binary search of a table of N entries should have a
** cost of approximately log(N).
*/
struct sqlite3_index_info
{
/* Inputs */
int nConstraint; /* Number of entries in aConstraint */
struct sqlite3_index_constraint
{
int iColumn; /* Column on left-hand side of constraint */
unsigned char op; /* Constraint operator */
unsigned char usable; /* True if this constraint is usable */
int iTermOffset; /* Used internally - xBestIndex should ignore */
} *aConstraint; /* Table of WHERE clause constraints */
int nOrderBy; /* Number of terms in the ORDER BY clause */
struct sqlite3_index_orderby
{
int iColumn; /* Column number */
unsigned char desc; /* True for DESC. False for ASC. */
} *aOrderBy; /* The ORDER BY clause */
/* Outputs */
struct sqlite3_index_constraint_usage
{
int argvIndex; /* if >0, constraint is part of argv to xFilter */
unsigned char omit; /* Do not code a test for this constraint */
} *aConstraintUsage;
int idxNum; /* Number used to identify the index */
char *idxStr; /* String, possibly obtained from sqlite3_malloc */
int needToFreeIdxStr; /* Free idxStr using sqlite3_free() if true */
int orderByConsumed; /* True if output is already ordered */
double estimatedCost; /* Estimated cost of using this index */
};
#define SQLITE_INDEX_CONSTRAINT_EQ 2
#define SQLITE_INDEX_CONSTRAINT_GT 4
#define SQLITE_INDEX_CONSTRAINT_LE 8
#define SQLITE_INDEX_CONSTRAINT_LT 16
#define SQLITE_INDEX_CONSTRAINT_GE 32
#define SQLITE_INDEX_CONSTRAINT_MATCH 64
/*
** CAPI3REF: Register A Virtual Table Implementation {F18200}
**
** This routine is used to register a new module name with an SQLite
** connection. Module names must be registered before creating new
** virtual tables on the module, or before using preexisting virtual
** tables of the module.
*/
SQLITE_API int sqlite3_create_module(sqlite3 * db, /* SQLite connection to register module with */
const char *zName, /* Name of the module */
const sqlite3_module *, /* Methods for the module */
void * /* Client data for xCreate/xConnect */
);
/*
** CAPI3REF: Register A Virtual Table Implementation {F18210}
**
** This routine is identical to the sqlite3_create_module() method above,
** except that it allows a destructor function to be specified. It is
** even more experimental than the rest of the virtual tables API.
*/
SQLITE_API int sqlite3_create_module_v2(sqlite3 * db, /* SQLite connection to register module with */
const char *zName, /* Name of the module */
const sqlite3_module *, /* Methods for the module */
void *, /* Client data for xCreate/xConnect */
void (*xDestroy) (void *) /* Module destructor function */
);
/*
** CAPI3REF: Virtual Table Instance Object {F18010}
** KEYWORDS: sqlite3_vtab
**
** Every module implementation uses a subclass of the following structure
** to describe a particular instance of the module. Each subclass will
** be tailored to the specific needs of the module implementation. The
** purpose of this superclass is to define certain fields that are common
** to all module implementations.
**
** Virtual tables methods can set an error message by assigning a
** string obtained from sqlite3_mprintf() to zErrMsg. The method should
** take care that any prior string is freed by a call to sqlite3_free()
** prior to assigning a new string to zErrMsg. After the error message
** is delivered up to the client application, the string will be automatically
** freed by sqlite3_free() and the zErrMsg field will be zeroed. Note
** that sqlite3_mprintf() and sqlite3_free() are used on the zErrMsg field
** since virtual tables are commonly implemented in loadable extensions which
** do not have access to sqlite3MPrintf() or sqlite3Free().
*/
struct sqlite3_vtab
{
const sqlite3_module *pModule; /* The module for this virtual table */
int nRef; /* Used internally */
char *zErrMsg; /* Error message from sqlite3_mprintf() */
/* Virtual table implementations will typically add additional fields */
};
/*
** CAPI3REF: Virtual Table Cursor Object {F18020}
** KEYWORDS: sqlite3_vtab_cursor
**
** Every module implementation uses a subclass of the following structure
** to describe cursors that point into the virtual table and are used
** to loop through the virtual table. Cursors are created using the
** xOpen method of the module. Each module implementation will define
** the content of a cursor structure to suit its own needs.
**
** This superclass exists in order to define fields of the cursor that
** are common to all implementations.
*/
struct sqlite3_vtab_cursor
{
sqlite3_vtab *pVtab; /* Virtual table of this cursor */
/* Virtual table implementations will typically add additional fields */
};
/*
** CAPI3REF: Declare The Schema Of A Virtual Table {F18280}
**
** The xCreate and xConnect methods of a module use the following API
** to declare the format (the names and datatypes of the columns) of
** the virtual tables they implement.
*/
SQLITE_API int sqlite3_declare_vtab(sqlite3 *, const char *zCreateTable);
/*
** CAPI3REF: Overload A Function For A Virtual Table {F18300}
**
** Virtual tables can provide alternative implementations of functions
** using the xFindFunction method. But global versions of those functions
** must exist in order to be overloaded.
**
** This API makes sure a global version of a function with a particular
** name and number of parameters exists. If no such function exists
** before this API is called, a new function is created. The implementation
** of the new function always causes an exception to be thrown. So
** the new function is not good for anything by itself. Its only
** purpose is to be a place-holder function that can be overloaded
** by virtual tables.
**
** This API should be considered part of the virtual table interface,
** which is experimental and subject to change.
*/
SQLITE_API int sqlite3_overload_function(sqlite3 *, const char *zFuncName, int nArg);
/*
** The interface to the virtual-table mechanism defined above (back up
** to a comment remarkably similar to this one) is currently considered
** to be experimental. The interface might change in incompatible ways.
** If this is a problem for you, do not use the interface at this time.
**
** When the virtual-table mechanism stabilizes, we will declare the
** interface fixed, support it indefinitely, and remove this comment.
**
****** EXPERIMENTAL - subject to change without notice **************
*/
/*
** CAPI3REF: A Handle To An Open BLOB {F17800}
**
** An instance of this object represents an open BLOB on which
** incremental I/O can be preformed.
** Objects of this type are created by
** [sqlite3_blob_open()] and destroyed by [sqlite3_blob_close()].
** The [sqlite3_blob_read()] and [sqlite3_blob_write()] interfaces
** can be used to read or write small subsections of the blob.
** The [sqlite3_blob_bytes()] interface returns the size of the
** blob in bytes.
*/
typedef struct sqlite3_blob sqlite3_blob;
/*
** CAPI3REF: Open A BLOB For Incremental I/O {F17810}
**
** This interfaces opens a handle to the blob located
** in row iRow, column zColumn, table zTable in database zDb;
** in other words, the same blob that would be selected by:
**
** <pre>
** SELECT zColumn FROM zDb.zTable WHERE rowid = iRow;
** </pre> {END}
**
** If the flags parameter is non-zero, the blob is opened for
** read and write access. If it is zero, the blob is opened for read
** access.
**
** Note that the database name is not the filename that contains
** the database but rather the symbolic name of the database that
** is assigned when the database is connected using [ATTACH].
** For the main database file, the database name is "main". For
** TEMP tables, the database name is "temp".
**
** On success, [SQLITE_OK] is returned and the new
** [sqlite3_blob | blob handle] is written to *ppBlob.
** Otherwise an error code is returned and
** any value written to *ppBlob should not be used by the caller.
** This function sets the database-handle error code and message
** accessible via [sqlite3_errcode()] and [sqlite3_errmsg()].
**
** INVARIANTS:
**
** {F17813} A successful invocation of the [sqlite3_blob_open(D,B,T,C,R,F,P)]
** interface opens an [sqlite3_blob] object P on the blob
** in column C of table T in database B on [database connection] D.
**
** {F17814} A successful invocation of [sqlite3_blob_open(D,...)] starts
** a new transaction on [database connection] D if that connection
** is not already in a transaction.
**
** {F17816} The [sqlite3_blob_open(D,B,T,C,R,F,P)] interface opens the blob
** for read and write access if and only if the F parameter
** is non-zero.
**
** {F17819} The [sqlite3_blob_open()] interface returns [SQLITE_OK] on
** success and an appropriate [error code] on failure.
**
** {F17821} If an error occurs during evaluation of [sqlite3_blob_open(D,...)]
** then subsequent calls to [sqlite3_errcode(D)],
** [sqlite3_errmsg(D)], and [sqlite3_errmsg16(D)] will return
** information approprate for that error.
*/
SQLITE_API int sqlite3_blob_open(sqlite3 *,
const char *zDb,
const char *zTable,
const char *zColumn,
sqlite3_int64 iRow, int flags, sqlite3_blob ** ppBlob);
/*
** CAPI3REF: Close A BLOB Handle {F17830}
**
** Close an open [sqlite3_blob | blob handle].
**
** Closing a BLOB shall cause the current transaction to commit
** if there are no other BLOBs, no pending prepared statements, and the
** database connection is in autocommit mode.
** If any writes were made to the BLOB, they might be held in cache
** until the close operation if they will fit. {END}
** Closing the BLOB often forces the changes
** out to disk and so if any I/O errors occur, they will likely occur
** at the time when the BLOB is closed. {F17833} Any errors that occur during
** closing are reported as a non-zero return value.
**
** The BLOB is closed unconditionally. Even if this routine returns
** an error code, the BLOB is still closed.
**
** INVARIANTS:
**
** {F17833} The [sqlite3_blob_close(P)] interface closes an
** [sqlite3_blob] object P previously opened using
** [sqlite3_blob_open()].
**
** {F17836} Closing an [sqlite3_blob] object using
** [sqlite3_blob_close()] shall cause the current transaction to
** commit if there are no other open [sqlite3_blob] objects
** or [prepared statements] on the same [database connection] and
** the [database connection] is in
** [sqlite3_get_autocommit | autocommit mode].
**
** {F17839} The [sqlite3_blob_close(P)] interfaces closes the
** [sqlite3_blob] object P unconditionally, even if
** [sqlite3_blob_close(P)] returns something other than [SQLITE_OK].
**
*/
SQLITE_API int sqlite3_blob_close(sqlite3_blob *);
/*
** CAPI3REF: Return The Size Of An Open BLOB {F17840}
**
** Return the size in bytes of the blob accessible via the open
** [sqlite3_blob] object in its only argument.
**
** INVARIANTS:
**
** {F17843} The [sqlite3_blob_bytes(P)] interface returns the size
** in bytes of the BLOB that the [sqlite3_blob] object P
** refers to.
*/
SQLITE_API int sqlite3_blob_bytes(sqlite3_blob *);
/*
** CAPI3REF: Read Data From A BLOB Incrementally {F17850}
**
** This function is used to read data from an open
** [sqlite3_blob | blob-handle] into a caller supplied buffer.
** N bytes of data are copied into buffer
** Z from the open blob, starting at offset iOffset.
**
** If offset iOffset is less than N bytes from the end of the blob,
** [SQLITE_ERROR] is returned and no data is read. If N or iOffset is
** less than zero [SQLITE_ERROR] is returned and no data is read.
**
** On success, SQLITE_OK is returned. Otherwise, an
** [error code] or an [extended error code] is returned.
**
** INVARIANTS:
**
** {F17853} The [sqlite3_blob_read(P,Z,N,X)] interface reads N bytes
** beginning at offset X from
** the blob that [sqlite3_blob] object P refers to
** and writes those N bytes into buffer Z.
**
** {F17856} In [sqlite3_blob_read(P,Z,N,X)] if the size of the blob
** is less than N+X bytes, then the function returns [SQLITE_ERROR]
** and nothing is read from the blob.
**
** {F17859} In [sqlite3_blob_read(P,Z,N,X)] if X or N is less than zero
** then the function returns [SQLITE_ERROR]
** and nothing is read from the blob.
**
** {F17862} The [sqlite3_blob_read(P,Z,N,X)] interface returns [SQLITE_OK]
** if N bytes where successfully read into buffer Z.
**
** {F17865} If the requested read could not be completed,
** the [sqlite3_blob_read(P,Z,N,X)] interface returns an
** appropriate [error code] or [extended error code].
**
** {F17868} If an error occurs during evaluation of [sqlite3_blob_read(P,...)]
** then subsequent calls to [sqlite3_errcode(D)],
** [sqlite3_errmsg(D)], and [sqlite3_errmsg16(D)] will return
** information approprate for that error, where D is the
** database handle that was used to open blob handle P.
*/
SQLITE_API int sqlite3_blob_read(sqlite3_blob *, void *Z, int N, int iOffset);
/*
** CAPI3REF: Write Data Into A BLOB Incrementally {F17870}
**
** This function is used to write data into an open
** [sqlite3_blob | blob-handle] from a user supplied buffer.
** n bytes of data are copied from the buffer
** pointed to by z into the open blob, starting at offset iOffset.
**
** If the [sqlite3_blob | blob-handle] passed as the first argument
** was not opened for writing (the flags parameter to [sqlite3_blob_open()]
*** was zero), this function returns [SQLITE_READONLY].
**
** This function may only modify the contents of the blob; it is
** not possible to increase the size of a blob using this API.
** If offset iOffset is less than n bytes from the end of the blob,
** [SQLITE_ERROR] is returned and no data is written. If n is
** less than zero [SQLITE_ERROR] is returned and no data is written.
**
** On success, SQLITE_OK is returned. Otherwise, an
** [error code] or an [extended error code] is returned.
**
** INVARIANTS:
**
** {F17873} The [sqlite3_blob_write(P,Z,N,X)] interface writes N bytes
** from buffer Z into
** the blob that [sqlite3_blob] object P refers to
** beginning at an offset of X into the blob.
**
** {F17875} The [sqlite3_blob_write(P,Z,N,X)] interface returns
** [SQLITE_READONLY] if the [sqlite3_blob] object P was
** [sqlite3_blob_open | opened] for reading only.
**
** {F17876} In [sqlite3_blob_write(P,Z,N,X)] if the size of the blob
** is less than N+X bytes, then the function returns [SQLITE_ERROR]
** and nothing is written into the blob.
**
** {F17879} In [sqlite3_blob_write(P,Z,N,X)] if X or N is less than zero
** then the function returns [SQLITE_ERROR]
** and nothing is written into the blob.
**
** {F17882} The [sqlite3_blob_write(P,Z,N,X)] interface returns [SQLITE_OK]
** if N bytes where successfully written into blob.
**
** {F17885} If the requested write could not be completed,
** the [sqlite3_blob_write(P,Z,N,X)] interface returns an
** appropriate [error code] or [extended error code].
**
** {F17888} If an error occurs during evaluation of [sqlite3_blob_write(D,...)]
** then subsequent calls to [sqlite3_errcode(D)],
** [sqlite3_errmsg(D)], and [sqlite3_errmsg16(D)] will return
** information approprate for that error.
*/
SQLITE_API int sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset);
/*
** CAPI3REF: Virtual File System Objects {F11200}
**
** A virtual filesystem (VFS) is an [sqlite3_vfs] object
** that SQLite uses to interact
** with the underlying operating system. Most SQLite builds come with a
** single default VFS that is appropriate for the host computer.
** New VFSes can be registered and existing VFSes can be unregistered.
** The following interfaces are provided.
**
** The sqlite3_vfs_find() interface returns a pointer to
** a VFS given its name. Names are case sensitive.
** Names are zero-terminated UTF-8 strings.
** If there is no match, a NULL
** pointer is returned. If zVfsName is NULL then the default
** VFS is returned.
**
** New VFSes are registered with sqlite3_vfs_register().
** Each new VFS becomes the default VFS if the makeDflt flag is set.
** The same VFS can be registered multiple times without injury.
** To make an existing VFS into the default VFS, register it again
** with the makeDflt flag set. If two different VFSes with the
** same name are registered, the behavior is undefined. If a
** VFS is registered with a name that is NULL or an empty string,
** then the behavior is undefined.
**
** Unregister a VFS with the sqlite3_vfs_unregister() interface.
** If the default VFS is unregistered, another VFS is chosen as
** the default. The choice for the new VFS is arbitrary.
**
** INVARIANTS:
**
** {F11203} The [sqlite3_vfs_find(N)] interface returns a pointer to the
** registered [sqlite3_vfs] object whose name exactly matches
** the zero-terminated UTF-8 string N, or it returns NULL if
** there is no match.
**
** {F11206} If the N parameter to [sqlite3_vfs_find(N)] is NULL then
** the function returns a pointer to the default [sqlite3_vfs]
** object if there is one, or NULL if there is no default
** [sqlite3_vfs] object.
**
** {F11209} The [sqlite3_vfs_register(P,F)] interface registers the
** well-formed [sqlite3_vfs] object P using the name given
** by the zName field of the object.
**
** {F11212} Using the [sqlite3_vfs_register(P,F)] interface to register
** the same [sqlite3_vfs] object multiple times is a harmless no-op.
**
** {F11215} The [sqlite3_vfs_register(P,F)] interface makes the
** the [sqlite3_vfs] object P the default [sqlite3_vfs] object
** if F is non-zero.
**
** {F11218} The [sqlite3_vfs_unregister(P)] interface unregisters the
** [sqlite3_vfs] object P so that it is no longer returned by
** subsequent calls to [sqlite3_vfs_find()].
*/
SQLITE_API sqlite3_vfs *sqlite3_vfs_find(const char *zVfsName);
SQLITE_API int sqlite3_vfs_register(sqlite3_vfs *, int makeDflt);
SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs *);
/*
** CAPI3REF: Mutexes {F17000}
**
** The SQLite core uses these routines for thread
** synchronization. Though they are intended for internal
** use by SQLite, code that links against SQLite is
** permitted to use any of these routines.
**
** The SQLite source code contains multiple implementations
** of these mutex routines. An appropriate implementation
** is selected automatically at compile-time. The following
** implementations are available in the SQLite core:
**
** <ul>
** <li> SQLITE_MUTEX_OS2
** <li> SQLITE_MUTEX_PTHREAD
** <li> SQLITE_MUTEX_W32
** <li> SQLITE_MUTEX_NOOP
** </ul>
**
** The SQLITE_MUTEX_NOOP implementation is a set of routines
** that does no real locking and is appropriate for use in
** a single-threaded application. The SQLITE_MUTEX_OS2,
** SQLITE_MUTEX_PTHREAD, and SQLITE_MUTEX_W32 implementations
** are appropriate for use on os/2, unix, and windows.
**
** If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor
** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex
** implementation is included with the library. The
** mutex interface routines defined here become external
** references in the SQLite library for which implementations
** must be provided by the application. This facility allows an
** application that links against SQLite to provide its own mutex
** implementation without having to modify the SQLite core.
**
** {F17011} The sqlite3_mutex_alloc() routine allocates a new
** mutex and returns a pointer to it. {F17012} If it returns NULL
** that means that a mutex could not be allocated. {F17013} SQLite
** will unwind its stack and return an error. {F17014} The argument
** to sqlite3_mutex_alloc() is one of these integer constants:
**
** <ul>
** <li> SQLITE_MUTEX_FAST
** <li> SQLITE_MUTEX_RECURSIVE
** <li> SQLITE_MUTEX_STATIC_MASTER
** <li> SQLITE_MUTEX_STATIC_MEM
** <li> SQLITE_MUTEX_STATIC_MEM2
** <li> SQLITE_MUTEX_STATIC_PRNG
** <li> SQLITE_MUTEX_STATIC_LRU
** <li> SQLITE_MUTEX_STATIC_LRU2
** </ul> {END}
**
** {F17015} The first two constants cause sqlite3_mutex_alloc() to create
** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
** is used but not necessarily so when SQLITE_MUTEX_FAST is used. {END}
** The mutex implementation does not need to make a distinction
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
** not want to. {F17016} But SQLite will only request a recursive mutex in
** cases where it really needs one. {END} If a faster non-recursive mutex
** implementation is available on the host platform, the mutex subsystem
** might return such a mutex in response to SQLITE_MUTEX_FAST.
**
** {F17017} The other allowed parameters to sqlite3_mutex_alloc() each return
** a pointer to a static preexisting mutex. {END} Four static mutexes are
** used by the current version of SQLite. Future versions of SQLite
** may add additional static mutexes. Static mutexes are for internal
** use by SQLite only. Applications that use SQLite mutexes should
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
** SQLITE_MUTEX_RECURSIVE.
**
** {F17018} Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
** returns a different mutex on every call. {F17034} But for the static
** mutex types, the same mutex is returned on every call that has
** the same type number. {END}
**
** {F17019} The sqlite3_mutex_free() routine deallocates a previously
** allocated dynamic mutex. {F17020} SQLite is careful to deallocate every
** dynamic mutex that it allocates. {U17021} The dynamic mutexes must not be in
** use when they are deallocated. {U17022} Attempting to deallocate a static
** mutex results in undefined behavior. {F17023} SQLite never deallocates
** a static mutex. {END}
**
** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
** to enter a mutex. {F17024} If another thread is already within the mutex,
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
** SQLITE_BUSY. {F17025} The sqlite3_mutex_try() interface returns SQLITE_OK
** upon successful entry. {F17026} Mutexes created using
** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread.
** {F17027} In such cases the,
** mutex must be exited an equal number of times before another thread
** can enter. {U17028} If the same thread tries to enter any other
** kind of mutex more than once, the behavior is undefined.
** {F17029} SQLite will never exhibit
** such behavior in its own use of mutexes. {END}
**
** Some systems (ex: windows95) do not the operation implemented by
** sqlite3_mutex_try(). On those systems, sqlite3_mutex_try() will
** always return SQLITE_BUSY. {F17030} The SQLite core only ever uses
** sqlite3_mutex_try() as an optimization so this is acceptable behavior. {END}
**
** {F17031} The sqlite3_mutex_leave() routine exits a mutex that was
** previously entered by the same thread. {U17032} The behavior
** is undefined if the mutex is not currently entered by the
** calling thread or is not currently allocated. {F17033} SQLite will
** never do either. {END}
**
** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()].
*/
SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int);
SQLITE_API void sqlite3_mutex_free(sqlite3_mutex *);
SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex *);
SQLITE_API int sqlite3_mutex_try(sqlite3_mutex *);
SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex *);
/*
** CAPI3REF: Mutex Verifcation Routines {F17080}
**
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines
** are intended for use inside assert() statements. {F17081} The SQLite core
** never uses these routines except inside an assert() and applications
** are advised to follow the lead of the core. {F17082} The core only
** provides implementations for these routines when it is compiled
** with the SQLITE_DEBUG flag. {U17087} External mutex implementations
** are only required to provide these routines if SQLITE_DEBUG is
** defined and if NDEBUG is not defined.
**
** {F17083} These routines should return true if the mutex in their argument
** is held or not held, respectively, by the calling thread. {END}
**
** {X17084} The implementation is not required to provided versions of these
** routines that actually work.
** If the implementation does not provide working
** versions of these routines, it should at least provide stubs
** that always return true so that one does not get spurious
** assertion failures. {END}
**
** {F17085} If the argument to sqlite3_mutex_held() is a NULL pointer then
** the routine should return 1. {END} This seems counter-intuitive since
** clearly the mutex cannot be held if it does not exist. But the
** the reason the mutex does not exist is because the build is not
** using mutexes. And we do not want the assert() containing the
** call to sqlite3_mutex_held() to fail, so a non-zero return is
** the appropriate thing to do. {F17086} The sqlite3_mutex_notheld()
** interface should also return 1 when given a NULL pointer.
*/
SQLITE_API int sqlite3_mutex_held(sqlite3_mutex *);
SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex *);
/*
** CAPI3REF: Mutex Types {F17001}
**
** {F17002} The [sqlite3_mutex_alloc()] interface takes a single argument
** which is one of these integer constants. {END}
*/
#define SQLITE_MUTEX_FAST 0
#define SQLITE_MUTEX_RECURSIVE 1
#define SQLITE_MUTEX_STATIC_MASTER 2
#define SQLITE_MUTEX_STATIC_MEM 3 /* sqlite3_malloc() */
#define SQLITE_MUTEX_STATIC_MEM2 4 /* sqlite3_release_memory() */
#define SQLITE_MUTEX_STATIC_PRNG 5 /* sqlite3_random() */
#define SQLITE_MUTEX_STATIC_LRU 6 /* lru page list */
#define SQLITE_MUTEX_STATIC_LRU2 7 /* lru page list */
/*
** CAPI3REF: Low-Level Control Of Database Files {F11300}
**
** {F11301} The [sqlite3_file_control()] interface makes a direct call to the
** xFileControl method for the [sqlite3_io_methods] object associated
** with a particular database identified by the second argument. {F11302} The
** name of the database is the name assigned to the database by the
** <a href="lang_attach.html">ATTACH</a> SQL command that opened the
** database. {F11303} To control the main database file, use the name "main"
** or a NULL pointer. {F11304} The third and fourth parameters to this routine
** are passed directly through to the second and third parameters of
** the xFileControl method. {F11305} The return value of the xFileControl
** method becomes the return value of this routine.
**
** {F11306} If the second parameter (zDbName) does not match the name of any
** open database file, then SQLITE_ERROR is returned. {F11307} This error
** code is not remembered and will not be recalled by [sqlite3_errcode()]
** or [sqlite3_errmsg()]. {U11308} The underlying xFileControl method might
** also return SQLITE_ERROR. {U11309} There is no way to distinguish between
** an incorrect zDbName and an SQLITE_ERROR return from the underlying
** xFileControl method. {END}
**
** See also: [SQLITE_FCNTL_LOCKSTATE]
*/
SQLITE_API int sqlite3_file_control(sqlite3 *, const char *zDbName, int op, void *);
/*
** CAPI3REF: Testing Interface {F11400}
**
** The sqlite3_test_control() interface is used to read out internal
** state of SQLite and to inject faults into SQLite for testing
** purposes. The first parameter a operation code that determines
** the number, meaning, and operation of all subsequent parameters.
**
** This interface is not for use by applications. It exists solely
** for verifying the correct operation of the SQLite library. Depending
** on how the SQLite library is compiled, this interface might not exist.
**
** The details of the operation codes, their meanings, the parameters
** they take, and what they do are all subject to change without notice.
** Unlike most of the SQLite API, this function is not guaranteed to
** operate consistently from one release to the next.
*/
SQLITE_API int sqlite3_test_control(int op, ...);
/*
** CAPI3REF: Testing Interface Operation Codes {F11410}
**
** These constants are the valid operation code parameters used
** as the first argument to [sqlite3_test_control()].
**
** These parameters and their meansing are subject to change
** without notice. These values are for testing purposes only.
** Applications should not use any of these parameters or the
** [sqlite3_test_control()] interface.
*/
#define SQLITE_TESTCTRL_FAULT_CONFIG 1
#define SQLITE_TESTCTRL_FAULT_FAILURES 2
#define SQLITE_TESTCTRL_FAULT_BENIGN_FAILURES 3
#define SQLITE_TESTCTRL_FAULT_PENDING 4
#define SQLITE_TESTCTRL_PRNG_SAVE 5
#define SQLITE_TESTCTRL_PRNG_RESTORE 6
#define SQLITE_TESTCTRL_PRNG_RESET 7
#define SQLITE_TESTCTRL_BITVEC_TEST 8
/*
** Undo the hack that converts floating point types to integer for
** builds on processors without floating point support.
*/
#ifdef SQLITE_OMIT_FLOATING_POINT
# undef double
#endif
#if 0
} /* End of the 'extern "C"' block */
#endif
#endif
/************** End of sqlite3.h *********************************************/
/************** Continuing where we left off in sqliteInt.h ******************/
/************** Include hash.h in the middle of sqliteInt.h ******************/
/************** Begin file hash.h ********************************************/
/*
** 2001 September 22
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This is the header file for the generic hash-table implemenation
** used in SQLite.
**
*/
#ifndef _SQLITE_HASH_H_
#define _SQLITE_HASH_H_
/* Forward declarations of structures. */
typedef struct Hash Hash;
typedef struct HashElem HashElem;
/* A complete hash table is an instance of the following structure.
** The internals of this structure are intended to be opaque -- client
** code should not attempt to access or modify the fields of this structure
** directly. Change this structure only by using the routines below.
** However, many of the "procedures" and "functions" for modifying and
** accessing this structure are really macros, so we can't really make
** this structure opaque.
*/
struct Hash
{
char keyClass; /* SQLITE_HASH_INT, _POINTER, _STRING, _BINARY */
char copyKey; /* True if copy of key made on insert */
int count; /* Number of entries in this table */
int htsize; /* Number of buckets in the hash table */
HashElem *first; /* The first element of the array */
struct _ht
{ /* the hash table */
int count; /* Number of entries with this hash */
HashElem *chain; /* Pointer to first entry with this hash */
} *ht;
};
/* Each element in the hash table is an instance of the following
** structure. All elements are stored on a single doubly-linked list.
**
** Again, this structure is intended to be opaque, but it can't really
** be opaque because it is used by macros.
*/
struct HashElem
{
HashElem *next, *prev; /* Next and previous elements in the table */
void *data; /* Data associated with this element */
void *pKey;
int nKey; /* Key associated with this element */
};
/*
** There are 4 different modes of operation for a hash table:
**
** SQLITE_HASH_INT nKey is used as the key and pKey is ignored.
**
** SQLITE_HASH_POINTER pKey is used as the key and nKey is ignored.
**
** SQLITE_HASH_STRING pKey points to a string that is nKey bytes long
** (including the null-terminator, if any). Case
** is ignored in comparisons.
**
** SQLITE_HASH_BINARY pKey points to binary data nKey bytes long.
** memcmp() is used to compare keys.
**
** A copy of the key is made for SQLITE_HASH_STRING and SQLITE_HASH_BINARY
** if the copyKey parameter to HashInit is 1.
*/
/* #define SQLITE_HASH_INT 1 // NOT USED */
/* #define SQLITE_HASH_POINTER 2 // NOT USED */
#define SQLITE_HASH_STRING 3
#define SQLITE_HASH_BINARY 4
/*
** Access routines. To delete, insert a NULL pointer.
*/
SQLITE_PRIVATE void sqlite3HashInit(Hash *, int keytype, int copyKey);
SQLITE_PRIVATE void *sqlite3HashInsert(Hash *, const void *pKey, int nKey, void *pData);
SQLITE_PRIVATE void *sqlite3HashFind(const Hash *, const void *pKey, int nKey);
SQLITE_PRIVATE HashElem *sqlite3HashFindElem(const Hash *, const void *pKey, int nKey);
SQLITE_PRIVATE void sqlite3HashClear(Hash *);
/*
** Macros for looping over all elements of a hash table. The idiom is
** like this:
**
** Hash h;
** HashElem *p;
** ...
** for(p=sqliteHashFirst(&h); p; p=sqliteHashNext(p)){
** SomeStructure *pData = sqliteHashData(p);
** // do something with pData
** }
*/
#define sqliteHashFirst(H) ((H)->first)
#define sqliteHashNext(E) ((E)->next)
#define sqliteHashData(E) ((E)->data)
#define sqliteHashKey(E) ((E)->pKey)
#define sqliteHashKeysize(E) ((E)->nKey)
/*
** Number of entries in a hash table
*/
#define sqliteHashCount(H) ((H)->count)
#endif /* _SQLITE_HASH_H_ */
/************** End of hash.h ************************************************/
/************** Continuing where we left off in sqliteInt.h ******************/
/************** Include parse.h in the middle of sqliteInt.h *****************/
/************** Begin file parse.h *******************************************/
#define TK_SEMI 1
#define TK_EXPLAIN 2
#define TK_QUERY 3
#define TK_PLAN 4
#define TK_BEGIN 5
#define TK_TRANSACTION 6
#define TK_DEFERRED 7
#define TK_IMMEDIATE 8
#define TK_EXCLUSIVE 9
#define TK_COMMIT 10
#define TK_END 11
#define TK_ROLLBACK 12
#define TK_CREATE 13
#define TK_TABLE 14
#define TK_IF 15
#define TK_NOT 16
#define TK_EXISTS 17
#define TK_TEMP 18
#define TK_LP 19
#define TK_RP 20
#define TK_AS 21
#define TK_COMMA 22
#define TK_ID 23
#define TK_ABORT 24
#define TK_AFTER 25
#define TK_ANALYZE 26
#define TK_ASC 27
#define TK_ATTACH 28
#define TK_BEFORE 29
#define TK_CASCADE 30
#define TK_CAST 31
#define TK_CONFLICT 32
#define TK_DATABASE 33
#define TK_DESC 34
#define TK_DETACH 35
#define TK_EACH 36
#define TK_FAIL 37
#define TK_FOR 38
#define TK_IGNORE 39
#define TK_INITIALLY 40
#define TK_INSTEAD 41
#define TK_LIKE_KW 42
#define TK_MATCH 43
#define TK_KEY 44
#define TK_OF 45
#define TK_OFFSET 46
#define TK_PRAGMA 47
#define TK_RAISE 48
#define TK_REPLACE 49
#define TK_RESTRICT 50
#define TK_ROW 51
#define TK_TRIGGER 52
#define TK_VACUUM 53
#define TK_VIEW 54
#define TK_VIRTUAL 55
#define TK_REINDEX 56
#define TK_RENAME 57
#define TK_CTIME_KW 58
#define TK_ANY 59
#define TK_OR 60
#define TK_AND 61
#define TK_IS 62
#define TK_BETWEEN 63
#define TK_IN 64
#define TK_ISNULL 65
#define TK_NOTNULL 66
#define TK_NE 67
#define TK_EQ 68
#define TK_GT 69
#define TK_LE 70
#define TK_LT 71
#define TK_GE 72
#define TK_ESCAPE 73
#define TK_BITAND 74
#define TK_BITOR 75
#define TK_LSHIFT 76
#define TK_RSHIFT 77
#define TK_PLUS 78
#define TK_MINUS 79
#define TK_STAR 80
#define TK_SLASH 81
#define TK_REM 82
#define TK_CONCAT 83
#define TK_COLLATE 84
#define TK_UMINUS 85
#define TK_UPLUS 86
#define TK_BITNOT 87
#define TK_STRING 88
#define TK_JOIN_KW 89
#define TK_CONSTRAINT 90
#define TK_DEFAULT 91
#define TK_NULL 92
#define TK_PRIMARY 93
#define TK_UNIQUE 94
#define TK_CHECK 95
#define TK_REFERENCES 96
#define TK_AUTOINCR 97
#define TK_ON 98
#define TK_DELETE 99
#define TK_UPDATE 100
#define TK_INSERT 101
#define TK_SET 102
#define TK_DEFERRABLE 103
#define TK_FOREIGN 104
#define TK_DROP 105
#define TK_UNION 106
#define TK_ALL 107
#define TK_EXCEPT 108
#define TK_INTERSECT 109
#define TK_SELECT 110
#define TK_DISTINCT 111
#define TK_DOT 112
#define TK_FROM 113
#define TK_JOIN 114
#define TK_USING 115
#define TK_ORDER 116
#define TK_BY 117
#define TK_GROUP 118
#define TK_HAVING 119
#define TK_LIMIT 120
#define TK_WHERE 121
#define TK_INTO 122
#define TK_VALUES 123
#define TK_INTEGER 124
#define TK_FLOAT 125
#define TK_BLOB 126
#define TK_REGISTER 127
#define TK_VARIABLE 128
#define TK_CASE 129
#define TK_WHEN 130
#define TK_THEN 131
#define TK_ELSE 132
#define TK_INDEX 133
#define TK_ALTER 134
#define TK_TO 135
#define TK_ADD 136
#define TK_COLUMNKW 137
#define TK_TO_TEXT 138
#define TK_TO_BLOB 139
#define TK_TO_NUMERIC 140
#define TK_TO_INT 141
#define TK_TO_REAL 142
#define TK_END_OF_FILE 143
#define TK_ILLEGAL 144
#define TK_SPACE 145
#define TK_UNCLOSED_STRING 146
#define TK_COMMENT 147
#define TK_FUNCTION 148
#define TK_COLUMN 149
#define TK_AGG_FUNCTION 150
#define TK_AGG_COLUMN 151
#define TK_CONST_FUNC 152
/************** End of parse.h ***********************************************/
/************** Continuing where we left off in sqliteInt.h ******************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <stddef.h>
/*
** If compiling for a processor that lacks floating point support,
** substitute integer for floating-point
*/
#ifdef SQLITE_OMIT_FLOATING_POINT
# define double sqlite_int64
# define LONGDOUBLE_TYPE sqlite_int64
# ifndef SQLITE_BIG_DBL
# define SQLITE_BIG_DBL (0x7fffffffffffffff)
# endif
# define SQLITE_OMIT_DATETIME_FUNCS 1
# define SQLITE_OMIT_TRACE 1
# undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
#endif
#ifndef SQLITE_BIG_DBL
# define SQLITE_BIG_DBL (1e99)
#endif
/*
** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0
** afterward. Having this macro allows us to cause the C compiler
** to omit code used by TEMP tables without messy #ifndef statements.
*/
#ifdef SQLITE_OMIT_TEMPDB
#define OMIT_TEMPDB 1
#else
#define OMIT_TEMPDB 0
#endif
/*
** If the following macro is set to 1, then NULL values are considered
** distinct when determining whether or not two entries are the same
** in a UNIQUE index. This is the way PostgreSQL, Oracle, DB2, MySQL,
** OCELOT, and Firebird all work. The SQL92 spec explicitly says this
** is the way things are suppose to work.
**
** If the following macro is set to 0, the NULLs are indistinct for
** a UNIQUE index. In this mode, you can only have a single NULL entry
** for a column declared UNIQUE. This is the way Informix and SQL Server
** work.
*/
#define NULL_DISTINCT_FOR_UNIQUE 1
/*
** The "file format" number is an integer that is incremented whenever
** the VDBE-level file format changes. The following macros define the
** the default file format for new databases and the maximum file format
** that the library can read.
*/
#define SQLITE_MAX_FILE_FORMAT 4
#ifndef SQLITE_DEFAULT_FILE_FORMAT
# define SQLITE_DEFAULT_FILE_FORMAT 1
#endif
/*
** Provide a default value for TEMP_STORE in case it is not specified
** on the command-line
*/
#ifndef TEMP_STORE
# define TEMP_STORE 1
#endif
/*
** GCC does not define the offsetof() macro so we'll have to do it
** ourselves.
*/
#ifndef offsetof
#define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))
#endif
/*
** Check to see if this machine uses EBCDIC. (Yes, believe it or
** not, there are still machines out there that use EBCDIC.)
*/
#if 'A' == '\301'
# define SQLITE_EBCDIC 1
#else
# define SQLITE_ASCII 1
#endif
/*
** Integers of known sizes. These typedefs might change for architectures
** where the sizes very. Preprocessor macros are available so that the
** types can be conveniently redefined at compile-type. Like this:
**
** cc '-DUINTPTR_TYPE=long long int' ...
*/
#ifndef UINT32_TYPE
# ifdef HAVE_UINT32_T
# define UINT32_TYPE uint32_t
# else
# define UINT32_TYPE unsigned int
# endif
#endif
#ifndef UINT16_TYPE
# ifdef HAVE_UINT16_T
# define UINT16_TYPE uint16_t
# else
# define UINT16_TYPE unsigned short int
# endif
#endif
#ifndef INT16_TYPE
# ifdef HAVE_INT16_T
# define INT16_TYPE int16_t
# else
# define INT16_TYPE short int
# endif
#endif
#ifndef UINT8_TYPE
# ifdef HAVE_UINT8_T
# define UINT8_TYPE uint8_t
# else
# define UINT8_TYPE unsigned char
# endif
#endif
#ifndef INT8_TYPE
# ifdef HAVE_INT8_T
# define INT8_TYPE int8_t
# else
# define INT8_TYPE signed char
# endif
#endif
#ifndef LONGDOUBLE_TYPE
# define LONGDOUBLE_TYPE long double
#endif
typedef sqlite_int64 i64; /* 8-byte signed integer */
typedef sqlite_uint64 u64; /* 8-byte unsigned integer */
typedef UINT32_TYPE u32; /* 4-byte unsigned integer */
typedef UINT16_TYPE u16; /* 2-byte unsigned integer */
typedef INT16_TYPE i16; /* 2-byte signed integer */
typedef UINT8_TYPE u8; /* 1-byte unsigned integer */
typedef UINT8_TYPE i8; /* 1-byte signed integer */
/*
** Macros to determine whether the machine is big or little endian,
** evaluated at runtime.
*/
#ifdef SQLITE_AMALGAMATION
SQLITE_PRIVATE const int sqlite3one;
#else
SQLITE_PRIVATE const int sqlite3one;
#endif
#if defined(i386) || defined(__i386__) || defined(_M_IX86)
# define SQLITE_BIGENDIAN 0
# define SQLITE_LITTLEENDIAN 1
# define SQLITE_UTF16NATIVE SQLITE_UTF16LE
#else
# define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0)
# define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1)
# define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE)
#endif
/*
** Constants for the largest and smallest possible 64-bit signed integers.
** These macros are designed to work correctly on both 32-bit and 64-bit
** compilers.
*/
#define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32))
#define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64)
/*
** An instance of the following structure is used to store the busy-handler
** callback for a given sqlite handle.
**
** The sqlite.busyHandler member of the sqlite struct contains the busy
** callback for the database handle. Each pager opened via the sqlite
** handle is passed a pointer to sqlite.busyHandler. The busy-handler
** callback is currently invoked only from within pager.c.
*/
typedef struct BusyHandler BusyHandler;
struct BusyHandler
{
int (*xFunc) (void *, int); /* The busy callback */
void *pArg; /* First arg to busy callback */
int nBusy; /* Incremented with each busy call */
};
/*
** Name of the master database table. The master database table
** is a special table that holds the names and attributes of all
** user tables and indices.
*/
#define MASTER_NAME "sqlite_master"
#define TEMP_MASTER_NAME "sqlite_temp_master"
/*
** The root-page of the master database table.
*/
#define MASTER_ROOT 1
/*
** The name of the schema table.
*/
#define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME)
/*
** A convenience macro that returns the number of elements in
** an array.
*/
#define ArraySize(X) (sizeof(X)/sizeof(X[0]))
/*
** Forward references to structures
*/
typedef struct AggInfo AggInfo;
typedef struct AuthContext AuthContext;
typedef struct Bitvec Bitvec;
typedef struct CollSeq CollSeq;
typedef struct Column Column;
typedef struct Db Db;
typedef struct Schema Schema;
typedef struct Expr Expr;
typedef struct ExprList ExprList;
typedef struct FKey FKey;
typedef struct FuncDef FuncDef;
typedef struct IdList IdList;
typedef struct Index Index;
typedef struct KeyClass KeyClass;
typedef struct KeyInfo KeyInfo;
typedef struct Module Module;
typedef struct NameContext NameContext;
typedef struct Parse Parse;
typedef struct Select Select;
typedef struct SrcList SrcList;
typedef struct StrAccum StrAccum;
typedef struct Table Table;
typedef struct TableLock TableLock;
typedef struct Token Token;
typedef struct TriggerStack TriggerStack;
typedef struct TriggerStep TriggerStep;
typedef struct Trigger Trigger;
typedef struct WhereInfo WhereInfo;
typedef struct WhereLevel WhereLevel;
/*
** Defer sourcing vdbe.h and btree.h until after the "u8" and
** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque
** pointer types (i.e. FuncDef) defined above.
*/
/************** Include btree.h in the middle of sqliteInt.h *****************/
/************** Begin file btree.h *******************************************/
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This header file defines the interface that the sqlite B-Tree file
** subsystem. See comments in the source code for a detailed description
** of what each interface routine does.
**
*/
#ifndef _BTREE_H_
#define _BTREE_H_
/* TODO: This definition is just included so other modules compile. It
** needs to be revisited.
*/
#define SQLITE_N_BTREE_META 10
/*
** If defined as non-zero, auto-vacuum is enabled by default. Otherwise
** it must be turned on for each database using "PRAGMA auto_vacuum = 1".
*/
#ifndef SQLITE_DEFAULT_AUTOVACUUM
#define SQLITE_DEFAULT_AUTOVACUUM 0
#endif
#define BTREE_AUTOVACUUM_NONE 0 /* Do not do auto-vacuum */
#define BTREE_AUTOVACUUM_FULL 1 /* Do full auto-vacuum */
#define BTREE_AUTOVACUUM_INCR 2 /* Incremental vacuum */
/*
** Forward declarations of structure
*/
typedef struct Btree Btree;
typedef struct BtCursor BtCursor;
typedef struct BtShared BtShared;
typedef struct BtreeMutexArray BtreeMutexArray;
/*
** This structure records all of the Btrees that need to hold
** a mutex before we enter sqlite3VdbeExec(). The Btrees are
** are placed in aBtree[] in order of aBtree[]->pBt. That way,
** we can always lock and unlock them all quickly.
*/
struct BtreeMutexArray
{
int nMutex;
Btree *aBtree[SQLITE_MAX_ATTACHED + 1];
};
SQLITE_PRIVATE int sqlite3BtreeOpen(const char *zFilename, /* Name of database file to open */
sqlite3 * db, /* Associated database connection */
Btree **, /* Return open Btree* here */
int flags, /* Flags */
int vfsFlags /* Flags passed through to VFS open */
);
/* The flags parameter to sqlite3BtreeOpen can be the bitwise or of the
** following values.
**
** NOTE: These values must match the corresponding PAGER_ values in
** pager.h.
*/
#define BTREE_OMIT_JOURNAL 1 /* Do not use journal. No argument */
#define BTREE_NO_READLOCK 2 /* Omit readlocks on readonly files */
#define BTREE_MEMORY 4 /* In-memory DB. No argument */
#define BTREE_READONLY 8 /* Open the database in read-only mode */
#define BTREE_READWRITE 16 /* Open for both reading and writing */
#define BTREE_CREATE 32 /* Create the database if it does not exist */
/* Additional values for the 4th argument of sqlite3BtreeOpen that
** are not associated with PAGER_ values.
*/
#define BTREE_PRIVATE 64 /* Never share with other connections */
SQLITE_PRIVATE int sqlite3BtreeClose(Btree *);
SQLITE_PRIVATE int sqlite3BtreeSetCacheSize(Btree *, int);
SQLITE_PRIVATE int sqlite3BtreeSetSafetyLevel(Btree *, int, int);
SQLITE_PRIVATE int sqlite3BtreeSyncDisabled(Btree *);
SQLITE_PRIVATE int sqlite3BtreeSetPageSize(Btree *, int, int);
SQLITE_PRIVATE int sqlite3BtreeGetPageSize(Btree *);
SQLITE_PRIVATE int sqlite3BtreeMaxPageCount(Btree *, int);
SQLITE_PRIVATE int sqlite3BtreeGetReserve(Btree *);
SQLITE_PRIVATE int sqlite3BtreeSetAutoVacuum(Btree *, int);
SQLITE_PRIVATE int sqlite3BtreeGetAutoVacuum(Btree *);
SQLITE_PRIVATE int sqlite3BtreeBeginTrans(Btree *, int);
SQLITE_PRIVATE int sqlite3BtreeCommitPhaseOne(Btree *, const char *zMaster);
SQLITE_PRIVATE int sqlite3BtreeCommitPhaseTwo(Btree *);
SQLITE_PRIVATE int sqlite3BtreeCommit(Btree *);
SQLITE_PRIVATE int sqlite3BtreeRollback(Btree *);
SQLITE_PRIVATE int sqlite3BtreeBeginStmt(Btree *);
SQLITE_PRIVATE int sqlite3BtreeCommitStmt(Btree *);
SQLITE_PRIVATE int sqlite3BtreeRollbackStmt(Btree *);
SQLITE_PRIVATE int sqlite3BtreeCreateTable(Btree *, int *, int flags);
SQLITE_PRIVATE int sqlite3BtreeIsInTrans(Btree *);
SQLITE_PRIVATE int sqlite3BtreeIsInStmt(Btree *);
SQLITE_PRIVATE int sqlite3BtreeIsInReadTrans(Btree *);
SQLITE_PRIVATE void *sqlite3BtreeSchema(Btree *, int, void (*)(void *));
SQLITE_PRIVATE int sqlite3BtreeSchemaLocked(Btree *);
SQLITE_PRIVATE int sqlite3BtreeLockTable(Btree *, int, u8);
SQLITE_PRIVATE const char *sqlite3BtreeGetFilename(Btree *);
SQLITE_PRIVATE const char *sqlite3BtreeGetDirname(Btree *);
SQLITE_PRIVATE const char *sqlite3BtreeGetJournalname(Btree *);
SQLITE_PRIVATE int sqlite3BtreeCopyFile(Btree *, Btree *);
SQLITE_PRIVATE int sqlite3BtreeIncrVacuum(Btree *);
/* The flags parameter to sqlite3BtreeCreateTable can be the bitwise OR
** of the following flags:
*/
#define BTREE_INTKEY 1 /* Table has only 64-bit signed integer keys */
#define BTREE_ZERODATA 2 /* Table has keys only - no data */
#define BTREE_LEAFDATA 4 /* Data stored in leaves only. Implies INTKEY */
SQLITE_PRIVATE int sqlite3BtreeDropTable(Btree *, int, int *);
SQLITE_PRIVATE int sqlite3BtreeClearTable(Btree *, int);
SQLITE_PRIVATE int sqlite3BtreeGetMeta(Btree *, int idx, u32 * pValue);
SQLITE_PRIVATE int sqlite3BtreeUpdateMeta(Btree *, int idx, u32 value);
SQLITE_PRIVATE void sqlite3BtreeTripAllCursors(Btree *, int);
struct UnpackedRecord; /* Forward declaration. Definition in vdbeaux.c. */
SQLITE_PRIVATE int sqlite3BtreeCursor(Btree *, /* BTree containing table to open */
int iTable, /* Index of root page */
int wrFlag, /* 1 for writing. 0 for read-only */
struct KeyInfo *, /* First argument to compare function */
BtCursor * pCursor /* Space to write cursor structure */
);
SQLITE_PRIVATE int sqlite3BtreeCursorSize(void);
SQLITE_PRIVATE int sqlite3BtreeCloseCursor(BtCursor *);
SQLITE_PRIVATE int sqlite3BtreeMoveto(BtCursor *,
const void *pKey,
struct UnpackedRecord *pUnKey, i64 nKey, int bias, int *pRes);
SQLITE_PRIVATE int sqlite3BtreeDelete(BtCursor *);
SQLITE_PRIVATE int sqlite3BtreeInsert(BtCursor *, const void *pKey, i64 nKey,
const void *pData, int nData, int nZero, int bias);
SQLITE_PRIVATE int sqlite3BtreeFirst(BtCursor *, int *pRes);
SQLITE_PRIVATE int sqlite3BtreeLast(BtCursor *, int *pRes);
SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor *, int *pRes);
SQLITE_PRIVATE int sqlite3BtreeEof(BtCursor *);
SQLITE_PRIVATE int sqlite3BtreeFlags(BtCursor *);
SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor *, int *pRes);
SQLITE_PRIVATE int sqlite3BtreeKeySize(BtCursor *, i64 * pSize);
SQLITE_PRIVATE int sqlite3BtreeKey(BtCursor *, u32 offset, u32 amt, void *);
SQLITE_PRIVATE sqlite3 *sqlite3BtreeCursorDb(const BtCursor *);
SQLITE_PRIVATE const void *sqlite3BtreeKeyFetch(BtCursor *, int *pAmt);
SQLITE_PRIVATE const void *sqlite3BtreeDataFetch(BtCursor *, int *pAmt);
SQLITE_PRIVATE int sqlite3BtreeDataSize(BtCursor *, u32 * pSize);
SQLITE_PRIVATE int sqlite3BtreeData(BtCursor *, u32 offset, u32 amt, void *);
SQLITE_PRIVATE char *sqlite3BtreeIntegrityCheck(Btree *, int *aRoot, int nRoot, int, int *);
SQLITE_PRIVATE struct Pager *sqlite3BtreePager(Btree *);
SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor *, u32 offset, u32 amt, void *);
SQLITE_PRIVATE void sqlite3BtreeCacheOverflow(BtCursor *);
#ifdef SQLITE_TEST
SQLITE_PRIVATE int sqlite3BtreeCursorInfo(BtCursor *, int *, int);
SQLITE_PRIVATE void sqlite3BtreeCursorList(Btree *);
SQLITE_PRIVATE int sqlite3BtreePageDump(Btree *, int, int recursive);
#endif
/*
** If we are not using shared cache, then there is no need to
** use mutexes to access the BtShared structures. So make the
** Enter and Leave procedures no-ops.
*/
#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE
SQLITE_PRIVATE void sqlite3BtreeEnter(Btree *);
SQLITE_PRIVATE void sqlite3BtreeLeave(Btree *);
SQLITE_PRIVATE int sqlite3BtreeHoldsMutex(Btree *);
SQLITE_PRIVATE void sqlite3BtreeEnterCursor(BtCursor *);
SQLITE_PRIVATE void sqlite3BtreeLeaveCursor(BtCursor *);
SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3 *);
SQLITE_PRIVATE void sqlite3BtreeLeaveAll(sqlite3 *);
SQLITE_PRIVATE int sqlite3BtreeHoldsAllMutexes(sqlite3 *);
SQLITE_PRIVATE void sqlite3BtreeMutexArrayEnter(BtreeMutexArray *);
SQLITE_PRIVATE void sqlite3BtreeMutexArrayLeave(BtreeMutexArray *);
SQLITE_PRIVATE void sqlite3BtreeMutexArrayInsert(BtreeMutexArray *, Btree *);
#else
# define sqlite3BtreeEnter(X)
# define sqlite3BtreeLeave(X)
# define sqlite3BtreeHoldsMutex(X) 1
# define sqlite3BtreeEnterCursor(X)
# define sqlite3BtreeLeaveCursor(X)
# define sqlite3BtreeEnterAll(X)
# define sqlite3BtreeLeaveAll(X)
# define sqlite3BtreeHoldsAllMutexes(X) 1
# define sqlite3BtreeMutexArrayEnter(X)
# define sqlite3BtreeMutexArrayLeave(X)
# define sqlite3BtreeMutexArrayInsert(X,Y)
#endif
#endif /* _BTREE_H_ */
/************** End of btree.h ***********************************************/
/************** Continuing where we left off in sqliteInt.h ******************/
/************** Include vdbe.h in the middle of sqliteInt.h ******************/
/************** Begin file vdbe.h ********************************************/
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** Header file for the Virtual DataBase Engine (VDBE)
**
** This header defines the interface to the virtual database engine
** or VDBE. The VDBE implements an abstract machine that runs a
** simple program to access and modify the underlying database.
**
*/
#ifndef _SQLITE_VDBE_H_
#define _SQLITE_VDBE_H_
/*
** A single VDBE is an opaque structure named "Vdbe". Only routines
** in the source file sqliteVdbe.c are allowed to see the insides
** of this structure.
*/
typedef struct Vdbe Vdbe;
/*
** The names of the following types declared in vdbeInt.h are required
** for the VdbeOp definition.
*/
typedef struct VdbeFunc VdbeFunc;
typedef struct Mem Mem;
typedef struct UnpackedRecord UnpackedRecord;
/*
** A single instruction of the virtual machine has an opcode
** and as many as three operands. The instruction is recorded
** as an instance of the following structure:
*/
struct VdbeOp
{
u8 opcode; /* What operation to perform */
signed char p4type; /* One of the P4_xxx constants for p4 */
u8 opflags; /* Not currently used */
u8 p5; /* Fifth parameter is an unsigned character */
int p1; /* First operand */
int p2; /* Second parameter (often the jump destination) */
int p3; /* The third parameter */
union
{ /* forth parameter */
int i; /* Integer value if p4type==P4_INT32 */
void *p; /* Generic pointer */
char *z; /* Pointer to data for string (char array) types */
i64 *pI64; /* Used when p4type is P4_INT64 */
double *pReal; /* Used when p4type is P4_REAL */
FuncDef *pFunc; /* Used when p4type is P4_FUNCDEF */
VdbeFunc *pVdbeFunc; /* Used when p4type is P4_VDBEFUNC */
CollSeq *pColl; /* Used when p4type is P4_COLLSEQ */
Mem *pMem; /* Used when p4type is P4_MEM */
sqlite3_vtab *pVtab; /* Used when p4type is P4_VTAB */
KeyInfo *pKeyInfo; /* Used when p4type is P4_KEYINFO */
} p4;
#ifdef SQLITE_DEBUG
char *zComment; /* Comment to improve readability */
#endif
#ifdef VDBE_PROFILE
int cnt; /* Number of times this instruction was executed */
long long cycles; /* Total time spend executing this instruction */
#endif
};
typedef struct VdbeOp VdbeOp;
/*
** A smaller version of VdbeOp used for the VdbeAddOpList() function because
** it takes up less space.
*/
struct VdbeOpList
{
u8 opcode; /* What operation to perform */
signed char p1; /* First operand */
signed char p2; /* Second parameter (often the jump destination) */
signed char p3; /* Third parameter */
};
typedef struct VdbeOpList VdbeOpList;
/*
** Allowed values of VdbeOp.p3type
*/
#define P4_NOTUSED 0 /* The P4 parameter is not used */
#define P4_DYNAMIC (-1) /* Pointer to a string obtained from sqliteMalloc() */
#define P4_STATIC (-2) /* Pointer to a static string */
#define P4_COLLSEQ (-4) /* P4 is a pointer to a CollSeq structure */
#define P4_FUNCDEF (-5) /* P4 is a pointer to a FuncDef structure */
#define P4_KEYINFO (-6) /* P4 is a pointer to a KeyInfo structure */
#define P4_VDBEFUNC (-7) /* P4 is a pointer to a VdbeFunc structure */
#define P4_MEM (-8) /* P4 is a pointer to a Mem* structure */
#define P4_TRANSIENT (-9) /* P4 is a pointer to a transient string */
#define P4_VTAB (-10) /* P4 is a pointer to an sqlite3_vtab structure */
#define P4_MPRINTF (-11) /* P4 is a string obtained from sqlite3_mprintf() */
#define P4_REAL (-12) /* P4 is a 64-bit floating point value */
#define P4_INT64 (-13) /* P4 is a 64-bit signed integer */
#define P4_INT32 (-14) /* P4 is a 32-bit signed integer */
/* When adding a P4 argument using P4_KEYINFO, a copy of the KeyInfo structure
** is made. That copy is freed when the Vdbe is finalized. But if the
** argument is P4_KEYINFO_HANDOFF, the passed in pointer is used. It still
** gets freed when the Vdbe is finalized so it still should be obtained
** from a single sqliteMalloc(). But no copy is made and the calling
** function should *not* try to free the KeyInfo.
*/
#define P4_KEYINFO_HANDOFF (-9)
/*
** The Vdbe.aColName array contains 5n Mem structures, where n is the
** number of columns of data returned by the statement.
*/
#define COLNAME_NAME 0
#define COLNAME_DECLTYPE 1
#define COLNAME_DATABASE 2
#define COLNAME_TABLE 3
#define COLNAME_COLUMN 4
#ifdef SQLITE_ENABLE_COLUMN_METADATA
# define COLNAME_N 5 /* Number of COLNAME_xxx symbols */
#else
# ifdef SQLITE_OMIT_DECLTYPE
# define COLNAME_N 1 /* Store only the name */
# else
# define COLNAME_N 2 /* Store the name and decltype */
# endif
#endif
/*
** The following macro converts a relative address in the p2 field
** of a VdbeOp structure into a negative number so that
** sqlite3VdbeAddOpList() knows that the address is relative. Calling
** the macro again restores the address.
*/
#define ADDR(X) (-1-(X))
/*
** The makefile scans the vdbe.c source file and creates the "opcodes.h"
** header file that defines a number for each opcode used by the VDBE.
*/
/************** Include opcodes.h in the middle of vdbe.h ********************/
/************** Begin file opcodes.h *****************************************/
/* Automatically generated. Do not edit */
/* See the mkopcodeh.awk script for details */
#define OP_VNext 1
#define OP_Affinity 2
#define OP_Column 3
#define OP_SetCookie 4
#define OP_Real 125 /* same as TK_FLOAT */
#define OP_Sequence 5
#define OP_MoveGt 6
#define OP_Ge 72 /* same as TK_GE */
#define OP_RowKey 7
#define OP_SCopy 8
#define OP_Eq 68 /* same as TK_EQ */
#define OP_OpenWrite 9
#define OP_NotNull 66 /* same as TK_NOTNULL */
#define OP_If 10
#define OP_ToInt 141 /* same as TK_TO_INT */
#define OP_String8 88 /* same as TK_STRING */
#define OP_VRowid 11
#define OP_CollSeq 12
#define OP_OpenRead 13
#define OP_Expire 14
#define OP_AutoCommit 15
#define OP_Gt 69 /* same as TK_GT */
#define OP_IntegrityCk 17
#define OP_Sort 18
#define OP_Copy 19
#define OP_Trace 20
#define OP_Function 21
#define OP_IfNeg 22
#define OP_And 61 /* same as TK_AND */
#define OP_Subtract 79 /* same as TK_MINUS */
#define OP_Noop 23
#define OP_Return 24
#define OP_Remainder 82 /* same as TK_REM */
#define OP_NewRowid 25
#define OP_Multiply 80 /* same as TK_STAR */
#define OP_Variable 26
#define OP_String 27
#define OP_RealAffinity 28
#define OP_VRename 29
#define OP_ParseSchema 30
#define OP_VOpen 31
#define OP_Close 32
#define OP_CreateIndex 33
#define OP_IsUnique 34
#define OP_NotFound 35
#define OP_Int64 36
#define OP_MustBeInt 37
#define OP_Halt 38
#define OP_Rowid 39
#define OP_IdxLT 40
#define OP_AddImm 41
#define OP_Statement 42
#define OP_RowData 43
#define OP_MemMax 44
#define OP_Or 60 /* same as TK_OR */
#define OP_NotExists 45
#define OP_Gosub 46
#define OP_Divide 81 /* same as TK_SLASH */
#define OP_Integer 47
#define OP_ToNumeric 140 /* same as TK_TO_NUMERIC */
#define OP_Prev 48
#define OP_Concat 83 /* same as TK_CONCAT */
#define OP_BitAnd 74 /* same as TK_BITAND */
#define OP_VColumn 49
#define OP_CreateTable 50
#define OP_Last 51
#define OP_IsNull 65 /* same as TK_ISNULL */
#define OP_IncrVacuum 52
#define OP_IdxRowid 53
#define OP_ShiftRight 77 /* same as TK_RSHIFT */
#define OP_ResetCount 54
#define OP_FifoWrite 55
#define OP_ContextPush 56
#define OP_DropTrigger 57
#define OP_DropIndex 58
#define OP_IdxGE 59
#define OP_IdxDelete 62
#define OP_Vacuum 63
#define OP_MoveLe 64
#define OP_IfNot 73
#define OP_DropTable 84
#define OP_MakeRecord 85
#define OP_ToBlob 139 /* same as TK_TO_BLOB */
#define OP_ResultRow 86
#define OP_Delete 89
#define OP_AggFinal 90
#define OP_ShiftLeft 76 /* same as TK_LSHIFT */
#define OP_Goto 91
#define OP_TableLock 92
#define OP_FifoRead 93
#define OP_Clear 94
#define OP_MoveLt 95
#define OP_Le 70 /* same as TK_LE */
#define OP_VerifyCookie 96
#define OP_AggStep 97
#define OP_ToText 138 /* same as TK_TO_TEXT */
#define OP_Not 16 /* same as TK_NOT */
#define OP_ToReal 142 /* same as TK_TO_REAL */
#define OP_SetNumColumns 98
#define OP_Transaction 99
#define OP_VFilter 100
#define OP_Ne 67 /* same as TK_NE */
#define OP_VDestroy 101
#define OP_ContextPop 102
#define OP_BitOr 75 /* same as TK_BITOR */
#define OP_Next 103
#define OP_IdxInsert 104
#define OP_Lt 71 /* same as TK_LT */
#define OP_Insert 105
#define OP_Destroy 106
#define OP_ReadCookie 107
#define OP_ForceInt 108
#define OP_LoadAnalysis 109
#define OP_Explain 110
#define OP_OpenPseudo 111
#define OP_OpenEphemeral 112
#define OP_Null 113
#define OP_Move 114
#define OP_Blob 115
#define OP_Add 78 /* same as TK_PLUS */
#define OP_Rewind 116
#define OP_MoveGe 117
#define OP_VBegin 118
#define OP_VUpdate 119
#define OP_IfZero 120
#define OP_BitNot 87 /* same as TK_BITNOT */
#define OP_VCreate 121
#define OP_Found 122
#define OP_IfPos 123
#define OP_NullRow 124
/* The following opcode values are never used */
#define OP_NotUsed_126 126
#define OP_NotUsed_127 127
#define OP_NotUsed_128 128
#define OP_NotUsed_129 129
#define OP_NotUsed_130 130
#define OP_NotUsed_131 131
#define OP_NotUsed_132 132
#define OP_NotUsed_133 133
#define OP_NotUsed_134 134
#define OP_NotUsed_135 135
#define OP_NotUsed_136 136
#define OP_NotUsed_137 137
/* Properties such as "out2" or "jump" that are specified in
** comments following the "case" for each opcode in the vdbe.c
** are encoded into bitvectors as follows:
*/
#define OPFLG_JUMP 0x0001 /* jump: P2 holds jmp target */
#define OPFLG_OUT2_PRERELEASE 0x0002 /* out2-prerelease: */
#define OPFLG_IN1 0x0004 /* in1: P1 is an input */
#define OPFLG_IN2 0x0008 /* in2: P2 is an input */
#define OPFLG_IN3 0x0010 /* in3: P3 is an input */
#define OPFLG_OUT3 0x0020 /* out3: P3 is an output */
#define OPFLG_INITIALIZER {\
/* 0 */ 0x00, 0x01, 0x00, 0x00, 0x10, 0x02, 0x11, 0x00,\
/* 8 */ 0x00, 0x00, 0x05, 0x02, 0x00, 0x00, 0x00, 0x00,\
/* 16 */ 0x04, 0x00, 0x01, 0x00, 0x00, 0x00, 0x05, 0x00,\
/* 24 */ 0x00, 0x02, 0x02, 0x02, 0x04, 0x00, 0x00, 0x00,\
/* 32 */ 0x00, 0x02, 0x11, 0x11, 0x02, 0x05, 0x00, 0x02,\
/* 40 */ 0x11, 0x04, 0x00, 0x00, 0x0c, 0x11, 0x01, 0x02,\
/* 48 */ 0x01, 0x00, 0x02, 0x01, 0x01, 0x02, 0x00, 0x04,\
/* 56 */ 0x00, 0x00, 0x00, 0x11, 0x2c, 0x2c, 0x00, 0x00,\
/* 64 */ 0x11, 0x05, 0x05, 0x15, 0x15, 0x15, 0x15, 0x15,\
/* 72 */ 0x15, 0x05, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c,\
/* 80 */ 0x2c, 0x2c, 0x2c, 0x2c, 0x00, 0x00, 0x00, 0x04,\
/* 88 */ 0x02, 0x00, 0x00, 0x01, 0x00, 0x01, 0x00, 0x11,\
/* 96 */ 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x01,\
/* 104 */ 0x08, 0x00, 0x02, 0x02, 0x05, 0x00, 0x00, 0x00,\
/* 112 */ 0x00, 0x02, 0x00, 0x02, 0x01, 0x11, 0x00, 0x00,\
/* 120 */ 0x05, 0x00, 0x11, 0x05, 0x00, 0x02, 0x00, 0x00,\
/* 128 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\
/* 136 */ 0x00, 0x00, 0x04, 0x04, 0x04, 0x04, 0x04,}
/************** End of opcodes.h *********************************************/
/************** Continuing where we left off in vdbe.h ***********************/
/*
** Prototypes for the VDBE interface. See comments on the implementation
** for a description of what each of these routines does.
*/
SQLITE_PRIVATE Vdbe *sqlite3VdbeCreate(sqlite3 *);
SQLITE_PRIVATE int sqlite3VdbeAddOp0(Vdbe *, int);
SQLITE_PRIVATE int sqlite3VdbeAddOp1(Vdbe *, int, int);
SQLITE_PRIVATE int sqlite3VdbeAddOp2(Vdbe *, int, int, int);
SQLITE_PRIVATE int sqlite3VdbeAddOp3(Vdbe *, int, int, int, int);
SQLITE_PRIVATE int sqlite3VdbeAddOp4(Vdbe *, int, int, int, int, const char *zP4, int);
SQLITE_PRIVATE int sqlite3VdbeAddOpList(Vdbe *, int nOp, VdbeOpList const *aOp);
SQLITE_PRIVATE void sqlite3VdbeChangeP1(Vdbe *, int addr, int P1);
SQLITE_PRIVATE void sqlite3VdbeChangeP2(Vdbe *, int addr, int P2);
SQLITE_PRIVATE void sqlite3VdbeChangeP3(Vdbe *, int addr, int P3);
SQLITE_PRIVATE void sqlite3VdbeChangeP5(Vdbe *, u8 P5);
SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe *, int addr);
SQLITE_PRIVATE void sqlite3VdbeChangeToNoop(Vdbe *, int addr, int N);
SQLITE_PRIVATE void sqlite3VdbeChangeP4(Vdbe *, int addr, const char *zP4, int N);
SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe *, int);
SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetOp(Vdbe *, int);
SQLITE_PRIVATE int sqlite3VdbeMakeLabel(Vdbe *);
SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe *);
SQLITE_PRIVATE void sqlite3VdbeMakeReady(Vdbe *, int, int, int, int);
SQLITE_PRIVATE int sqlite3VdbeFinalize(Vdbe *);
SQLITE_PRIVATE void sqlite3VdbeResolveLabel(Vdbe *, int);
SQLITE_PRIVATE int sqlite3VdbeCurrentAddr(Vdbe *);
#ifdef SQLITE_DEBUG
SQLITE_PRIVATE void sqlite3VdbeTrace(Vdbe *, FILE *);
#endif
SQLITE_PRIVATE void sqlite3VdbeResetStepResult(Vdbe *);
SQLITE_PRIVATE int sqlite3VdbeReset(Vdbe *, int);
SQLITE_PRIVATE void sqlite3VdbeSetNumCols(Vdbe *, int);
SQLITE_PRIVATE int sqlite3VdbeSetColName(Vdbe *, int, int, const char *, int);
SQLITE_PRIVATE void sqlite3VdbeCountChanges(Vdbe *);
SQLITE_PRIVATE sqlite3 *sqlite3VdbeDb(Vdbe *);
SQLITE_PRIVATE void sqlite3VdbeSetSql(Vdbe *, const char *z, int n);
SQLITE_PRIVATE void sqlite3VdbeSwap(Vdbe *, Vdbe *);
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
SQLITE_PRIVATE int sqlite3VdbeReleaseMemory(int);
#endif
SQLITE_PRIVATE UnpackedRecord *sqlite3VdbeRecordUnpack(KeyInfo *, int, const void *, void *, int);
SQLITE_PRIVATE void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord *);
SQLITE_PRIVATE int sqlite3VdbeRecordCompare(int, const void *, UnpackedRecord *);
#ifndef NDEBUG
SQLITE_PRIVATE void sqlite3VdbeComment(Vdbe *, const char *, ...);
# define VdbeComment(X) sqlite3VdbeComment X
#else
# define VdbeComment(X)
#endif
#endif
/************** End of vdbe.h ************************************************/
/************** Continuing where we left off in sqliteInt.h ******************/
/************** Include pager.h in the middle of sqliteInt.h *****************/
/************** Begin file pager.h *******************************************/
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This header file defines the interface that the sqlite page cache
** subsystem. The page cache subsystem reads and writes a file a page
** at a time and provides a journal for rollback.
**
*/
#ifndef _PAGER_H_
#define _PAGER_H_
/*
** The type used to represent a page number. The first page in a file
** is called page 1. 0 is used to represent "not a page".
*/
typedef unsigned int Pgno;
/*
** Each open file is managed by a separate instance of the "Pager" structure.
*/
typedef struct Pager Pager;
/*
** Handle type for pages.
*/
typedef struct PgHdr DbPage;
/*
** Allowed values for the flags parameter to sqlite3PagerOpen().
**
** NOTE: This values must match the corresponding BTREE_ values in btree.h.
*/
#define PAGER_OMIT_JOURNAL 0x0001 /* Do not use a rollback journal */
#define PAGER_NO_READLOCK 0x0002 /* Omit readlocks on readonly files */
/*
** Valid values for the second argument to sqlite3PagerLockingMode().
*/
#define PAGER_LOCKINGMODE_QUERY -1
#define PAGER_LOCKINGMODE_NORMAL 0
#define PAGER_LOCKINGMODE_EXCLUSIVE 1
/*
** Valid values for the second argument to sqlite3PagerJournalMode().
*/
#define PAGER_JOURNALMODE_QUERY -1
#define PAGER_JOURNALMODE_DELETE 0 /* Commit by deleting journal file */
#define PAGER_JOURNALMODE_PERSIST 1 /* Commit by zeroing journal header */
#define PAGER_JOURNALMODE_OFF 2 /* Journal omitted. */
/*
** See source code comments for a detailed description of the following
** routines:
*/
SQLITE_PRIVATE int sqlite3PagerOpen(sqlite3_vfs *, Pager ** ppPager, const char *, int, int, int);
SQLITE_PRIVATE void sqlite3PagerSetBusyhandler(Pager *, BusyHandler * pBusyHandler);
SQLITE_PRIVATE void sqlite3PagerSetDestructor(Pager *, void (*)(DbPage *, int));
SQLITE_PRIVATE void sqlite3PagerSetReiniter(Pager *, void (*)(DbPage *, int));
SQLITE_PRIVATE int sqlite3PagerSetPagesize(Pager *, u16 *);
SQLITE_PRIVATE int sqlite3PagerMaxPageCount(Pager *, int);
SQLITE_PRIVATE int sqlite3PagerReadFileheader(Pager *, int, unsigned char *);
SQLITE_PRIVATE void sqlite3PagerSetCachesize(Pager *, int);
SQLITE_PRIVATE int sqlite3PagerClose(Pager * pPager);
SQLITE_PRIVATE int sqlite3PagerAcquire(Pager * pPager, Pgno pgno, DbPage ** ppPage, int clrFlag);
#define sqlite3PagerGet(A,B,C) sqlite3PagerAcquire(A,B,C,0)
SQLITE_PRIVATE DbPage *sqlite3PagerLookup(Pager * pPager, Pgno pgno);
SQLITE_PRIVATE int sqlite3PagerRef(DbPage *);
SQLITE_PRIVATE int sqlite3PagerUnref(DbPage *);
SQLITE_PRIVATE int sqlite3PagerWrite(DbPage *);
SQLITE_PRIVATE int sqlite3PagerPagecount(Pager *);
SQLITE_PRIVATE int sqlite3PagerTruncate(Pager *, Pgno);
SQLITE_PRIVATE int sqlite3PagerBegin(DbPage *, int exFlag);
SQLITE_PRIVATE int sqlite3PagerCommitPhaseOne(Pager *, const char *zMaster, Pgno, int);
SQLITE_PRIVATE int sqlite3PagerCommitPhaseTwo(Pager *);
SQLITE_PRIVATE int sqlite3PagerRollback(Pager *);
SQLITE_PRIVATE int sqlite3PagerIsreadonly(Pager *);
SQLITE_PRIVATE int sqlite3PagerStmtBegin(Pager *);
SQLITE_PRIVATE int sqlite3PagerStmtCommit(Pager *);
SQLITE_PRIVATE int sqlite3PagerStmtRollback(Pager *);
SQLITE_PRIVATE void sqlite3PagerDontRollback(DbPage *);
SQLITE_PRIVATE void sqlite3PagerDontWrite(DbPage *);
SQLITE_PRIVATE int sqlite3PagerRefcount(Pager *);
SQLITE_PRIVATE void sqlite3PagerSetSafetyLevel(Pager *, int, int);
SQLITE_PRIVATE const char *sqlite3PagerFilename(Pager *);
SQLITE_PRIVATE const sqlite3_vfs *sqlite3PagerVfs(Pager *);
SQLITE_PRIVATE sqlite3_file *sqlite3PagerFile(Pager *);
SQLITE_PRIVATE const char *sqlite3PagerDirname(Pager *);
SQLITE_PRIVATE const char *sqlite3PagerJournalname(Pager *);
SQLITE_PRIVATE int sqlite3PagerNosync(Pager *);
SQLITE_PRIVATE int sqlite3PagerMovepage(Pager *, DbPage *, Pgno);
SQLITE_PRIVATE void *sqlite3PagerGetData(DbPage *);
SQLITE_PRIVATE void *sqlite3PagerGetExtra(DbPage *);
SQLITE_PRIVATE int sqlite3PagerLockingMode(Pager *, int);
SQLITE_PRIVATE int sqlite3PagerJournalMode(Pager *, int);
SQLITE_PRIVATE void *sqlite3PagerTempSpace(Pager *);
SQLITE_PRIVATE int sqlite3PagerSync(Pager * pPager);
#if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) && !defined(SQLITE_OMIT_DISKIO)
SQLITE_PRIVATE int sqlite3PagerReleaseMemory(int);
#endif
#ifdef SQLITE_HAS_CODEC
SQLITE_PRIVATE void sqlite3PagerSetCodec(Pager *, void *(*)(void *, void *, Pgno, int), void *);
#endif
#if !defined(NDEBUG) || defined(SQLITE_TEST)
SQLITE_PRIVATE Pgno sqlite3PagerPagenumber(DbPage *);
SQLITE_PRIVATE int sqlite3PagerIswriteable(DbPage *);
#endif
#ifdef SQLITE_TEST
SQLITE_PRIVATE int *sqlite3PagerStats(Pager *);
SQLITE_PRIVATE void sqlite3PagerRefdump(Pager *);
#endif
#ifdef SQLITE_TEST
void disable_simulated_io_errors(void);
void enable_simulated_io_errors(void);
#else
# define disable_simulated_io_errors()
# define enable_simulated_io_errors()
#endif
#endif /* _PAGER_H_ */
/************** End of pager.h ***********************************************/
/************** Continuing where we left off in sqliteInt.h ******************/
/************** Include os.h in the middle of sqliteInt.h ********************/
/************** Begin file os.h **********************************************/
/*
** 2001 September 16
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** This header file (together with is companion C source-code file
** "os.c") attempt to abstract the underlying operating system so that
** the SQLite library will work on both POSIX and windows systems.
**
** This header file is #include-ed by sqliteInt.h and thus ends up
** being included by every source file.
*/
#ifndef _SQLITE_OS_H_
#define _SQLITE_OS_H_
/*
** Figure out if we are dealing with Unix, Windows, or some other
** operating system. After the following block of preprocess macros,
** all of OS_UNIX, OS_WIN, OS_OS2, and OS_OTHER will defined to either
** 1 or 0. One of the four will be 1. The other three will be 0.
*/
#if defined(OS_OTHER)
# if OS_OTHER==1
# undef OS_UNIX
# define OS_UNIX 0
# undef OS_WIN
# define OS_WIN 0
# undef OS_OS2
# define OS_OS2 0
# else
# undef OS_OTHER
# endif
#endif
#if !defined(OS_UNIX) && !defined(OS_OTHER)
# define OS_OTHER 0
# ifndef OS_WIN
# if defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || defined(__MINGW32__) || defined(__BORLANDC__)
# define OS_WIN 1
# define OS_UNIX 0
# define OS_OS2 0
# elif defined(__EMX__) || defined(_OS2) || defined(OS2) || defined(_OS2_) || defined(__OS2__)
# define OS_WIN 0
# define OS_UNIX 0
# define OS_OS2 1
# else
# define OS_WIN 0
# define OS_UNIX 1
# define OS_OS2 0
# endif
# else
# define OS_UNIX 0
# define OS_OS2 0
# endif
#else
# ifndef OS_WIN
# define OS_WIN 0
# endif
#endif
/*
** Define the maximum size of a temporary filename
*/
#if OS_WIN
# include <windows.h>
# define SQLITE_TEMPNAME_SIZE (MAX_PATH+50)
#elif OS_OS2
# if (__GNUC__ > 3 || __GNUC__ == 3 && __GNUC_MINOR__ >= 3) && defined(OS2_HIGH_MEMORY)
# include <os2safe.h> /* has to be included before os2.h for linking to work */
# endif
# define INCL_DOSDATETIME
# define INCL_DOSFILEMGR
# define INCL_DOSERRORS
# define INCL_DOSMISC
# define INCL_DOSPROCESS
# define INCL_DOSMODULEMGR
# define INCL_DOSSEMAPHORES
# include <os2.h>
# include <uconv.h>
# define SQLITE_TEMPNAME_SIZE (CCHMAXPATHCOMP)
#else
# define SQLITE_TEMPNAME_SIZE 200
#endif
/* If the SET_FULLSYNC macro is not defined above, then make it
** a no-op
*/
#ifndef SET_FULLSYNC
# define SET_FULLSYNC(x,y)
#endif
/*
** The default size of a disk sector
*/
#ifndef SQLITE_DEFAULT_SECTOR_SIZE
# define SQLITE_DEFAULT_SECTOR_SIZE 512
#endif
/*
** Temporary files are named starting with this prefix followed by 16 random
** alphanumeric characters, and no file extension. They are stored in the
** OS's standard temporary file directory, and are deleted prior to exit.
** If sqlite is being embedded in another program, you may wish to change the
** prefix to reflect your program's name, so that if your program exits
** prematurely, old temporary files can be easily identified. This can be done
** using -DSQLITE_TEMP_FILE_PREFIX=myprefix_ on the compiler command line.
**
** 2006-10-31: The default prefix used to be "sqlite_". But then
** Mcafee started using SQLite in their anti-virus product and it
** started putting files with the "sqlite" name in the c:/temp folder.
** This annoyed many windows users. Those users would then do a
** Google search for "sqlite", find the telephone numbers of the
** developers and call to wake them up at night and complain.
** For this reason, the default name prefix is changed to be "sqlite"
** spelled backwards. So the temp files are still identified, but
** anybody smart enough to figure out the code is also likely smart
** enough to know that calling the developer will not help get rid
** of the file.
*/
#ifndef SQLITE_TEMP_FILE_PREFIX
# define SQLITE_TEMP_FILE_PREFIX "etilqs_"
#endif
/*
** The following values may be passed as the second argument to
** sqlite3OsLock(). The various locks exhibit the following semantics:
**
** SHARED: Any number of processes may hold a SHARED lock simultaneously.
** RESERVED: A single process may hold a RESERVED lock on a file at
** any time. Other processes may hold and obtain new SHARED locks.
** PENDING: A single process may hold a PENDING lock on a file at
** any one time. Existing SHARED locks may persist, but no new
** SHARED locks may be obtained by other processes.
** EXCLUSIVE: An EXCLUSIVE lock precludes all other locks.
**
** PENDING_LOCK may not be passed directly to sqlite3OsLock(). Instead, a
** process that requests an EXCLUSIVE lock may actually obtain a PENDING
** lock. This can be upgraded to an EXCLUSIVE lock by a subsequent call to
** sqlite3OsLock().
*/
#define NO_LOCK 0
#define SHARED_LOCK 1
#define RESERVED_LOCK 2
#define PENDING_LOCK 3
#define EXCLUSIVE_LOCK 4
/*
** File Locking Notes: (Mostly about windows but also some info for Unix)
**
** We cannot use LockFileEx() or UnlockFileEx() on Win95/98/ME because
** those functions are not available. So we use only LockFile() and
** UnlockFile().
**
** LockFile() prevents not just writing but also reading by other processes.
** A SHARED_LOCK is obtained by locking a single randomly-chosen
** byte out of a specific range of bytes. The lock byte is obtained at
** random so two separate readers can probably access the file at the
** same time, unless they are unlucky and choose the same lock byte.
** An EXCLUSIVE_LOCK is obtained by locking all bytes in the range.
** There can only be one writer. A RESERVED_LOCK is obtained by locking
** a single byte of the file that is designated as the reserved lock byte.
** A PENDING_LOCK is obtained by locking a designated byte different from
** the RESERVED_LOCK byte.
**
** On WinNT/2K/XP systems, LockFileEx() and UnlockFileEx() are available,
** which means we can use reader/writer locks. When reader/writer locks
** are used, the lock is placed on the same range of bytes that is used
** for probabilistic locking in Win95/98/ME. Hence, the locking scheme
** will support two or more Win95 readers or two or more WinNT readers.
** But a single Win95 reader will lock out all WinNT readers and a single
** WinNT reader will lock out all other Win95 readers.
**
** The following #defines specify the range of bytes used for locking.
** SHARED_SIZE is the number of bytes available in the pool from which
** a random byte is selected for a shared lock. The pool of bytes for
** shared locks begins at SHARED_FIRST.
**
** These #defines are available in sqlite_aux.h so that adaptors for
** connecting SQLite to other operating systems can use the same byte
** ranges for locking. In particular, the same locking strategy and
** byte ranges are used for Unix. This leaves open the possiblity of having
** clients on win95, winNT, and unix all talking to the same shared file
** and all locking correctly. To do so would require that samba (or whatever
** tool is being used for file sharing) implements locks correctly between
** windows and unix. I'm guessing that isn't likely to happen, but by
** using the same locking range we are at least open to the possibility.
**
** Locking in windows is manditory. For this reason, we cannot store
** actual data in the bytes used for locking. The pager never allocates
** the pages involved in locking therefore. SHARED_SIZE is selected so
** that all locks will fit on a single page even at the minimum page size.
** PENDING_BYTE defines the beginning of the locks. By default PENDING_BYTE
** is set high so that we don't have to allocate an unused page except
** for very large databases. But one should test the page skipping logic
** by setting PENDING_BYTE low and running the entire regression suite.
**
** Changing the value of PENDING_BYTE results in a subtly incompatible
** file format. Depending on how it is changed, you might not notice
** the incompatibility right away, even running a full regression test.
** The default location of PENDING_BYTE is the first byte past the
** 1GB boundary.
**
*/
#ifndef SQLITE_TEST
#define PENDING_BYTE 0x40000000 /* First byte past the 1GB boundary */
#else
SQLITE_API extern unsigned int sqlite3_pending_byte;
#define PENDING_BYTE sqlite3_pending_byte
#endif
#define RESERVED_BYTE (PENDING_BYTE+1)
#define SHARED_FIRST (PENDING_BYTE+2)
#define SHARED_SIZE 510
/*
** Functions for accessing sqlite3_file methods
*/
SQLITE_PRIVATE int sqlite3OsClose(sqlite3_file *);
SQLITE_PRIVATE int sqlite3OsRead(sqlite3_file *, void *, int amt, i64 offset);
SQLITE_PRIVATE int sqlite3OsWrite(sqlite3_file *, const void *, int amt, i64 offset);
SQLITE_PRIVATE int sqlite3OsTruncate(sqlite3_file *, i64 size);
SQLITE_PRIVATE int sqlite3OsSync(sqlite3_file *, int);
SQLITE_PRIVATE int sqlite3OsFileSize(sqlite3_file *, i64 * pSize);
SQLITE_PRIVATE int sqlite3OsLock(sqlite3_file *, int);
SQLITE_PRIVATE int sqlite3OsUnlock(sqlite3_file *, int);
SQLITE_PRIVATE int sqlite3OsCheckReservedLock(sqlite3_file * id);
SQLITE_PRIVATE int sqlite3OsFileControl(sqlite3_file *, int, void *);
SQLITE_PRIVATE int sqlite3OsSectorSize(sqlite3_file * id);
SQLITE_PRIVATE int sqlite3OsDeviceCharacteristics(sqlite3_file * id);
/*
** Functions for accessing sqlite3_vfs methods
*/
SQLITE_PRIVATE int sqlite3OsOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int *);
SQLITE_PRIVATE int sqlite3OsDelete(sqlite3_vfs *, const char *, int);
SQLITE_PRIVATE int sqlite3OsAccess(sqlite3_vfs *, const char *, int);
SQLITE_PRIVATE int sqlite3OsGetTempname(sqlite3_vfs *, int, char *);
SQLITE_PRIVATE int sqlite3OsFullPathname(sqlite3_vfs *, const char *, int, char *);
SQLITE_PRIVATE void *sqlite3OsDlOpen(sqlite3_vfs *, const char *);
SQLITE_PRIVATE void sqlite3OsDlError(sqlite3_vfs *, int, char *);
SQLITE_PRIVATE void *sqlite3OsDlSym(sqlite3_vfs *, void *, const char *);
SQLITE_PRIVATE void sqlite3OsDlClose(sqlite3_vfs *, void *);
SQLITE_PRIVATE int sqlite3OsRandomness(sqlite3_vfs *, int, char *);
SQLITE_PRIVATE int sqlite3OsSleep(sqlite3_vfs *, int);
SQLITE_PRIVATE int sqlite3OsCurrentTime(sqlite3_vfs *, double *);
/*
** Convenience functions for opening and closing files using
** sqlite3_malloc() to obtain space for the file-handle structure.
*/
SQLITE_PRIVATE int sqlite3OsOpenMalloc(sqlite3_vfs *, const char *, sqlite3_file **, int, int *);
SQLITE_PRIVATE int sqlite3OsCloseFree(sqlite3_file *);
/*
** Each OS-specific backend defines an instance of the following
** structure for returning a pointer to its sqlite3_vfs. If OS_OTHER
** is defined (meaning that the application-defined OS interface layer
** is used) then there is no default VFS. The application must
** register one or more VFS structures using sqlite3_vfs_register()
** before attempting to use SQLite.
*/
SQLITE_PRIVATE sqlite3_vfs *sqlite3OsDefaultVfs(void);
#endif /* _SQLITE_OS_H_ */
/************** End of os.h **************************************************/
/************** Continuing where we left off in sqliteInt.h ******************/
/************** Include mutex.h in the middle of sqliteInt.h *****************/
/************** Begin file mutex.h *******************************************/
/*
** 2007 August 28
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains the common header for all mutex implementations.
** The sqliteInt.h header #includes this file so that it is available
** to all source files. We break it out in an effort to keep the code
** better organized.
**
** NOTE: source files should *not* #include this header file directly.
** Source files should #include the sqliteInt.h file and let that file
** include this one indirectly.
**
*/
#ifdef SQLITE_MUTEX_APPDEF
/*
** If SQLITE_MUTEX_APPDEF is defined, then this whole module is
** omitted and equivalent functionality must be provided by the
** application that links against the SQLite library.
*/
#else
/*
** Figure out what version of the code to use. The choices are
**
** SQLITE_MUTEX_NOOP For single-threaded applications that
** do not desire error checking.
**
** SQLITE_MUTEX_NOOP_DEBUG For single-threaded applications with
** error checking to help verify that mutexes
** are being used correctly even though they
** are not needed. Used when SQLITE_DEBUG is
** defined on single-threaded builds.
**
** SQLITE_MUTEX_PTHREADS For multi-threaded applications on Unix.
**
** SQLITE_MUTEX_W32 For multi-threaded applications on Win32.
**
** SQLITE_MUTEX_OS2 For multi-threaded applications on OS/2.
*/
#define SQLITE_MUTEX_NOOP 1 /* The default */
#if defined(SQLITE_DEBUG) && !SQLITE_THREADSAFE
# undef SQLITE_MUTEX_NOOP
# define SQLITE_MUTEX_NOOP_DEBUG
#endif
#if defined(SQLITE_MUTEX_NOOP) && SQLITE_THREADSAFE && OS_UNIX
# undef SQLITE_MUTEX_NOOP
# define SQLITE_MUTEX_PTHREADS
#endif
#if defined(SQLITE_MUTEX_NOOP) && SQLITE_THREADSAFE && OS_WIN
# undef SQLITE_MUTEX_NOOP
# define SQLITE_MUTEX_W32
#endif
#if defined(SQLITE_MUTEX_NOOP) && SQLITE_THREADSAFE && OS_OS2
# undef SQLITE_MUTEX_NOOP
# define SQLITE_MUTEX_OS2
#endif
#ifdef SQLITE_MUTEX_NOOP
/*
** If this is a no-op implementation, implement everything as macros.
*/
#define sqlite3_mutex_alloc(X) ((sqlite3_mutex*)8)
#define sqlite3_mutex_free(X)
#define sqlite3_mutex_enter(X)
#define sqlite3_mutex_try(X) SQLITE_OK
#define sqlite3_mutex_leave(X)
#define sqlite3_mutex_held(X) 1
#define sqlite3_mutex_notheld(X) 1
#endif
#endif /* SQLITE_MUTEX_APPDEF */
/************** End of mutex.h ***********************************************/
/************** Continuing where we left off in sqliteInt.h ******************/
/*
** Each database file to be accessed by the system is an instance
** of the following structure. There are normally two of these structures
** in the sqlite.aDb[] array. aDb[0] is the main database file and
** aDb[1] is the database file used to hold temporary tables. Additional
** databases may be attached.
*/
struct Db
{
char *zName; /* Name of this database */
Btree *pBt; /* The B*Tree structure for this database file */
u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */
u8 safety_level; /* How aggressive at synching data to disk */
void *pAux; /* Auxiliary data. Usually NULL */
void (*xFreeAux) (void *); /* Routine to free pAux */
Schema *pSchema; /* Pointer to database schema (possibly shared) */
};
/*
** An instance of the following structure stores a database schema.
**
** If there are no virtual tables configured in this schema, the
** Schema.db variable is set to NULL. After the first virtual table
** has been added, it is set to point to the database connection
** used to create the connection. Once a virtual table has been
** added to the Schema structure and the Schema.db variable populated,
** only that database connection may use the Schema to prepare
** statements.
*/
struct Schema
{
int schema_cookie; /* Database schema version number for this file */
Hash tblHash; /* All tables indexed by name */
Hash idxHash; /* All (named) indices indexed by name */
Hash trigHash; /* All triggers indexed by name */
Hash aFKey; /* Foreign keys indexed by to-table */
Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */
u8 file_format; /* Schema format version for this file */
u8 enc; /* Text encoding used by this database */
u16 flags; /* Flags associated with this schema */
int cache_size; /* Number of pages to use in the cache */
#ifndef SQLITE_OMIT_VIRTUALTABLE
sqlite3 *db; /* "Owner" connection. See comment above */
#endif
};
/*
** These macros can be used to test, set, or clear bits in the
** Db.flags field.
*/
#define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P))
#define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0)
#define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P)
#define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P)
/*
** Allowed values for the DB.flags field.
**
** The DB_SchemaLoaded flag is set after the database schema has been
** read into internal hash tables.
**
** DB_UnresetViews means that one or more views have column names that
** have been filled out. If the schema changes, these column names might
** changes and so the view will need to be reset.
*/
#define DB_SchemaLoaded 0x0001 /* The schema has been loaded */
#define DB_UnresetViews 0x0002 /* Some views have defined column names */
#define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */
/*
** The number of different kinds of things that can be limited
** using the sqlite3_limit() interface.
*/
#define SQLITE_N_LIMIT (SQLITE_LIMIT_VARIABLE_NUMBER+1)
/*
** Each database is an instance of the following structure.
**
** The sqlite.lastRowid records the last insert rowid generated by an
** insert statement. Inserts on views do not affect its value. Each
** trigger has its own context, so that lastRowid can be updated inside
** triggers as usual. The previous value will be restored once the trigger
** exits. Upon entering a before or instead of trigger, lastRowid is no
** longer (since after version 2.8.12) reset to -1.
**
** The sqlite.nChange does not count changes within triggers and keeps no
** context. It is reset at start of sqlite3_exec.
** The sqlite.lsChange represents the number of changes made by the last
** insert, update, or delete statement. It remains constant throughout the
** length of a statement and is then updated by OP_SetCounts. It keeps a
** context stack just like lastRowid so that the count of changes
** within a trigger is not seen outside the trigger. Changes to views do not
** affect the value of lsChange.
** The sqlite.csChange keeps track of the number of current changes (since
** the last statement) and is used to update sqlite_lsChange.
**
** The member variables sqlite.errCode, sqlite.zErrMsg and sqlite.zErrMsg16
** store the most recent error code and, if applicable, string. The
** internal function sqlite3Error() is used to set these variables
** consistently.
*/
struct sqlite3
{
sqlite3_vfs *pVfs; /* OS Interface */
int nDb; /* Number of backends currently in use */
Db *aDb; /* All backends */
int flags; /* Miscellanous flags. See below */
int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */
int errCode; /* Most recent error code (SQLITE_*) */
int errMask; /* & result codes with this before returning */
u8 autoCommit; /* The auto-commit flag. */
u8 temp_store; /* 1: file 2: memory 0: default */
u8 mallocFailed; /* True if we have seen a malloc failure */
u8 dfltLockMode; /* Default locking-mode for attached dbs */
u8 dfltJournalMode; /* Default journal mode for attached dbs */
signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */
int nextPagesize; /* Pagesize after VACUUM if >0 */
int nTable; /* Number of tables in the database */
CollSeq *pDfltColl; /* The default collating sequence (BINARY) */
i64 lastRowid; /* ROWID of most recent insert (see above) */
i64 priorNewRowid; /* Last randomly generated ROWID */
int magic; /* Magic number for detect library misuse */
int nChange; /* Value returned by sqlite3_changes() */
int nTotalChange; /* Value returned by sqlite3_total_changes() */
sqlite3_mutex *mutex; /* Connection mutex */
int aLimit[SQLITE_N_LIMIT]; /* Limits */
struct sqlite3InitInfo
{ /* Information used during initialization */
int iDb; /* When back is being initialized */
int newTnum; /* Rootpage of table being initialized */
u8 busy; /* TRUE if currently initializing */
} init;
int nExtension; /* Number of loaded extensions */
void **aExtension; /* Array of shared libraray handles */
struct Vdbe *pVdbe; /* List of active virtual machines */
int activeVdbeCnt; /* Number of vdbes currently executing */
void (*xTrace) (void *, const char *); /* Trace function */
void *pTraceArg; /* Argument to the trace function */
void (*xProfile) (void *, const char *, u64); /* Profiling function */
void *pProfileArg; /* Argument to profile function */
void *pCommitArg; /* Argument to xCommitCallback() */
int (*xCommitCallback) (void *); /* Invoked at every commit. */
void *pRollbackArg; /* Argument to xRollbackCallback() */
void (*xRollbackCallback) (void *); /* Invoked at every commit. */
void *pUpdateArg;
void (*xUpdateCallback) (void *, int, const char *, const char *, sqlite_int64);
void (*xCollNeeded) (void *, sqlite3 *, int eTextRep, const char *);
void (*xCollNeeded16) (void *, sqlite3 *, int eTextRep, const void *);
void *pCollNeededArg;
sqlite3_value *pErr; /* Most recent error message */
char *zErrMsg; /* Most recent error message (UTF-8 encoded) */
char *zErrMsg16; /* Most recent error message (UTF-16 encoded) */
union
{
int isInterrupted; /* True if sqlite3_interrupt has been called */
double notUsed1; /* Spacer */
} u1;
#ifndef SQLITE_OMIT_AUTHORIZATION
int (*xAuth) (void *, int, const char *, const char *, const char *, const char *);
/* Access authorization function */
void *pAuthArg; /* 1st argument to the access auth function */
#endif
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
int (*xProgress) (void *); /* The progress callback */
void *pProgressArg; /* Argument to the progress callback */
int nProgressOps; /* Number of opcodes for progress callback */
#endif
#ifndef SQLITE_OMIT_VIRTUALTABLE
Hash aModule; /* populated by sqlite3_create_module() */
Table *pVTab; /* vtab with active Connect/Create method */
sqlite3_vtab **aVTrans; /* Virtual tables with open transactions */
int nVTrans; /* Allocated size of aVTrans */
#endif
Hash aFunc; /* All functions that can be in SQL exprs */
Hash aCollSeq; /* All collating sequences */
BusyHandler busyHandler; /* Busy callback */
int busyTimeout; /* Busy handler timeout, in msec */
Db aDbStatic[2]; /* Static space for the 2 default backends */
#ifdef SQLITE_SSE
sqlite3_stmt *pFetch; /* Used by SSE to fetch stored statements */
#endif
};
/*
** A macro to discover the encoding of a database.
*/
#define ENC(db) ((db)->aDb[0].pSchema->enc)
/*
** Possible values for the sqlite.flags and or Db.flags fields.
**
** On sqlite.flags, the SQLITE_InTrans value means that we have
** executed a BEGIN. On Db.flags, SQLITE_InTrans means a statement
** transaction is active on that particular database file.
*/
#define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */
#define SQLITE_InTrans 0x00000008 /* True if in a transaction */
#define SQLITE_InternChanges 0x00000010 /* Uncommitted Hash table changes */
#define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */
#define SQLITE_ShortColNames 0x00000040 /* Show short columns names */
#define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */
/* DELETE, or UPDATE and return */
/* the count using a callback. */
#define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */
/* result set is empty */
#define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */
#define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */
#define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */
#define SQLITE_NoReadlock 0x00001000 /* Readlocks are omitted when
** accessing read-only databases */
#define SQLITE_IgnoreChecks 0x00002000 /* Do not enforce check constraints */
#define SQLITE_ReadUncommitted 0x00004000 /* For shared-cache mode */
#define SQLITE_LegacyFileFmt 0x00008000 /* Create new databases in format 1 */
#define SQLITE_FullFSync 0x00010000 /* Use full fsync on the backend */
#define SQLITE_LoadExtension 0x00020000 /* Enable load_extension */
#define SQLITE_RecoveryMode 0x00040000 /* Ignore schema errors */
#define SQLITE_SharedCache 0x00080000 /* Cache sharing is enabled */
#define SQLITE_Vtab 0x00100000 /* There exists a virtual table */
/*
** Possible values for the sqlite.magic field.
** The numbers are obtained at random and have no special meaning, other
** than being distinct from one another.
*/
#define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */
#define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */
#define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */
#define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */
#define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */
/*
** Each SQL function is defined by an instance of the following
** structure. A pointer to this structure is stored in the sqlite.aFunc
** hash table. When multiple functions have the same name, the hash table
** points to a linked list of these structures.
*/
struct FuncDef
{
i16 nArg; /* Number of arguments. -1 means unlimited */
u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */
u8 needCollSeq; /* True if sqlite3GetFuncCollSeq() might be called */
u8 flags; /* Some combination of SQLITE_FUNC_* */
void *pUserData; /* User data parameter */
FuncDef *pNext; /* Next function with same name */
void (*xFunc) (sqlite3_context *, int, sqlite3_value **); /* Regular function */
void (*xStep) (sqlite3_context *, int, sqlite3_value **); /* Aggregate step */
void (*xFinalize) (sqlite3_context *); /* Aggregate finializer */
char zName[1]; /* SQL name of the function. MUST BE LAST */
};
/*
** Each SQLite module (virtual table definition) is defined by an
** instance of the following structure, stored in the sqlite3.aModule
** hash table.
*/
struct Module
{
const sqlite3_module *pModule; /* Callback pointers */
const char *zName; /* Name passed to create_module() */
void *pAux; /* pAux passed to create_module() */
void (*xDestroy) (void *); /* Module destructor function */
};
/*
** Possible values for FuncDef.flags
*/
#define SQLITE_FUNC_LIKE 0x01 /* Candidate for the LIKE optimization */
#define SQLITE_FUNC_CASE 0x02 /* Case-sensitive LIKE-type function */
#define SQLITE_FUNC_EPHEM 0x04 /* Ephermeral. Delete with VDBE */
/*
** information about each column of an SQL table is held in an instance
** of this structure.
*/
struct Column
{
char *zName; /* Name of this column */
Expr *pDflt; /* Default value of this column */
char *zType; /* Data type for this column */
char *zColl; /* Collating sequence. If NULL, use the default */
u8 notNull; /* True if there is a NOT NULL constraint */
u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */
char affinity; /* One of the SQLITE_AFF_... values */
#ifndef SQLITE_OMIT_VIRTUALTABLE
u8 isHidden; /* True if this column is 'hidden' */
#endif
};
/*
** A "Collating Sequence" is defined by an instance of the following
** structure. Conceptually, a collating sequence consists of a name and
** a comparison routine that defines the order of that sequence.
**
** There may two seperate implementations of the collation function, one
** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that
** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine
** native byte order. When a collation sequence is invoked, SQLite selects
** the version that will require the least expensive encoding
** translations, if any.
**
** The CollSeq.pUser member variable is an extra parameter that passed in
** as the first argument to the UTF-8 comparison function, xCmp.
** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function,
** xCmp16.
**
** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the
** collating sequence is undefined. Indices built on an undefined
** collating sequence may not be read or written.
*/
struct CollSeq
{
char *zName; /* Name of the collating sequence, UTF-8 encoded */
u8 enc; /* Text encoding handled by xCmp() */
u8 type; /* One of the SQLITE_COLL_... values below */
void *pUser; /* First argument to xCmp() */
int (*xCmp) (void *, int, const void *, int, const void *);
void (*xDel) (void *); /* Destructor for pUser */
};
/*
** Allowed values of CollSeq flags:
*/
#define SQLITE_COLL_BINARY 1 /* The default memcmp() collating sequence */
#define SQLITE_COLL_NOCASE 2 /* The built-in NOCASE collating sequence */
#define SQLITE_COLL_REVERSE 3 /* The built-in REVERSE collating sequence */
#define SQLITE_COLL_USER 0 /* Any other user-defined collating sequence */
/*
** A sort order can be either ASC or DESC.
*/
#define SQLITE_SO_ASC 0 /* Sort in ascending order */
#define SQLITE_SO_DESC 1 /* Sort in ascending order */
/*
** Column affinity types.
**
** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and
** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve
** the speed a little by number the values consecutively.
**
** But rather than start with 0 or 1, we begin with 'a'. That way,
** when multiple affinity types are concatenated into a string and
** used as the P4 operand, they will be more readable.
**
** Note also that the numeric types are grouped together so that testing
** for a numeric type is a single comparison.
*/
#define SQLITE_AFF_TEXT 'a'
#define SQLITE_AFF_NONE 'b'
#define SQLITE_AFF_NUMERIC 'c'
#define SQLITE_AFF_INTEGER 'd'
#define SQLITE_AFF_REAL 'e'
#define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC)
/*
** The SQLITE_AFF_MASK values masks off the significant bits of an
** affinity value.
*/
#define SQLITE_AFF_MASK 0x67
/*
** Additional bit values that can be ORed with an affinity without
** changing the affinity.
*/
#define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */
#define SQLITE_NULLEQUAL 0x10 /* compare NULLs equal */
#define SQLITE_STOREP2 0x80 /* Store result in reg[P2] rather than jump */
/*
** Each SQL table is represented in memory by an instance of the
** following structure.
**
** Table.zName is the name of the table. The case of the original
** CREATE TABLE statement is stored, but case is not significant for
** comparisons.
**
** Table.nCol is the number of columns in this table. Table.aCol is a
** pointer to an array of Column structures, one for each column.
**
** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of
** the column that is that key. Otherwise Table.iPKey is negative. Note
** that the datatype of the PRIMARY KEY must be INTEGER for this field to
** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of
** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid
** is generated for each row of the table. Table.hasPrimKey is true if
** the table has any PRIMARY KEY, INTEGER or otherwise.
**
** Table.tnum is the page number for the root BTree page of the table in the
** database file. If Table.iDb is the index of the database table backend
** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that
** holds temporary tables and indices. If Table.isEphem
** is true, then the table is stored in a file that is automatically deleted
** when the VDBE cursor to the table is closed. In this case Table.tnum
** refers VDBE cursor number that holds the table open, not to the root
** page number. Transient tables are used to hold the results of a
** sub-query that appears instead of a real table name in the FROM clause
** of a SELECT statement.
*/
struct Table
{
char *zName; /* Name of the table */
int nCol; /* Number of columns in this table */
Column *aCol; /* Information about each column */
int iPKey; /* If not less then 0, use aCol[iPKey] as the primary key */
Index *pIndex; /* List of SQL indexes on this table. */
int tnum; /* Root BTree node for this table (see note above) */
Select *pSelect; /* NULL for tables. Points to definition if a view. */
int nRef; /* Number of pointers to this Table */
Trigger *pTrigger; /* List of SQL triggers on this table */
FKey *pFKey; /* Linked list of all foreign keys in this table */
char *zColAff; /* String defining the affinity of each column */
#ifndef SQLITE_OMIT_CHECK
Expr *pCheck; /* The AND of all CHECK constraints */
#endif
#ifndef SQLITE_OMIT_ALTERTABLE
int addColOffset; /* Offset in CREATE TABLE statement to add a new column */
#endif
u8 readOnly; /* True if this table should not be written by the user */
u8 isEphem; /* True if created using OP_OpenEphermeral */
u8 hasPrimKey; /* True if there exists a primary key */
u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */
u8 autoInc; /* True if the integer primary key is autoincrement */
#ifndef SQLITE_OMIT_VIRTUALTABLE
u8 isVirtual; /* True if this is a virtual table */
u8 isCommit; /* True once the CREATE TABLE has been committed */
Module *pMod; /* Pointer to the implementation of the module */
sqlite3_vtab *pVtab; /* Pointer to the module instance */
int nModuleArg; /* Number of arguments to the module */
char **azModuleArg; /* Text of all module args. [0] is module name */
#endif
Schema *pSchema; /* Schema that contains this table */
};
/*
** Test to see whether or not a table is a virtual table. This is
** done as a macro so that it will be optimized out when virtual
** table support is omitted from the build.
*/
#ifndef SQLITE_OMIT_VIRTUALTABLE
# define IsVirtual(X) ((X)->isVirtual)
# define IsHiddenColumn(X) ((X)->isHidden)
#else
# define IsVirtual(X) 0
# define IsHiddenColumn(X) 0
#endif
/*
** Each foreign key constraint is an instance of the following structure.
**
** A foreign key is associated with two tables. The "from" table is
** the table that contains the REFERENCES clause that creates the foreign
** key. The "to" table is the table that is named in the REFERENCES clause.
** Consider this example:
**
** CREATE TABLE ex1(
** a INTEGER PRIMARY KEY,
** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x)
** );
**
** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2".
**
** Each REFERENCES clause generates an instance of the following structure
** which is attached to the from-table. The to-table need not exist when
** the from-table is created. The existance of the to-table is not checked
** until an attempt is made to insert data into the from-table.
**
** The sqlite.aFKey hash table stores pointers to this structure
** given the name of a to-table. For each to-table, all foreign keys
** associated with that table are on a linked list using the FKey.pNextTo
** field.
*/
struct FKey
{
Table *pFrom; /* The table that constains the REFERENCES clause */
FKey *pNextFrom; /* Next foreign key in pFrom */
char *zTo; /* Name of table that the key points to */
FKey *pNextTo; /* Next foreign key that points to zTo */
int nCol; /* Number of columns in this key */
struct sColMap
{ /* Mapping of columns in pFrom to columns in zTo */
int iFrom; /* Index of column in pFrom */
char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */
} *aCol; /* One entry for each of nCol column s */
u8 isDeferred; /* True if constraint checking is deferred till COMMIT */
u8 updateConf; /* How to resolve conflicts that occur on UPDATE */
u8 deleteConf; /* How to resolve conflicts that occur on DELETE */
u8 insertConf; /* How to resolve conflicts that occur on INSERT */
};
/*
** SQLite supports many different ways to resolve a constraint
** error. ROLLBACK processing means that a constraint violation
** causes the operation in process to fail and for the current transaction
** to be rolled back. ABORT processing means the operation in process
** fails and any prior changes from that one operation are backed out,
** but the transaction is not rolled back. FAIL processing means that
** the operation in progress stops and returns an error code. But prior
** changes due to the same operation are not backed out and no rollback
** occurs. IGNORE means that the particular row that caused the constraint
** error is not inserted or updated. Processing continues and no error
** is returned. REPLACE means that preexisting database rows that caused
** a UNIQUE constraint violation are removed so that the new insert or
** update can proceed. Processing continues and no error is reported.
**
** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys.
** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the
** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign
** key is set to NULL. CASCADE means that a DELETE or UPDATE of the
** referenced table row is propagated into the row that holds the
** foreign key.
**
** The following symbolic values are used to record which type
** of action to take.
*/
#define OE_None 0 /* There is no constraint to check */
#define OE_Rollback 1 /* Fail the operation and rollback the transaction */
#define OE_Abort 2 /* Back out changes but do no rollback transaction */
#define OE_Fail 3 /* Stop the operation but leave all prior changes */
#define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */
#define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */
#define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */
#define OE_SetNull 7 /* Set the foreign key value to NULL */
#define OE_SetDflt 8 /* Set the foreign key value to its default */
#define OE_Cascade 9 /* Cascade the changes */
#define OE_Default 99 /* Do whatever the default action is */
/*
** An instance of the following structure is passed as the first
** argument to sqlite3VdbeKeyCompare and is used to control the
** comparison of the two index keys.
**
** If the KeyInfo.incrKey value is true and the comparison would
** otherwise be equal, then return a result as if the second key
** were larger.
*/
struct KeyInfo
{
sqlite3 *db; /* The database connection */
u8 enc; /* Text encoding - one of the TEXT_Utf* values */
u8 incrKey; /* Increase 2nd key by epsilon before comparison */
u8 prefixIsEqual; /* Treat a prefix as equal */
int nField; /* Number of entries in aColl[] */
u8 *aSortOrder; /* If defined an aSortOrder[i] is true, sort DESC */
CollSeq *aColl[1]; /* Collating sequence for each term of the key */
};
/*
** Each SQL index is represented in memory by an
** instance of the following structure.
**
** The columns of the table that are to be indexed are described
** by the aiColumn[] field of this structure. For example, suppose
** we have the following table and index:
**
** CREATE TABLE Ex1(c1 int, c2 int, c3 text);
** CREATE INDEX Ex2 ON Ex1(c3,c1);
**
** In the Table structure describing Ex1, nCol==3 because there are
** three columns in the table. In the Index structure describing
** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed.
** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the
** first column to be indexed (c3) has an index of 2 in Ex1.aCol[].
** The second column to be indexed (c1) has an index of 0 in
** Ex1.aCol[], hence Ex2.aiColumn[1]==0.
**
** The Index.onError field determines whether or not the indexed columns
** must be unique and what to do if they are not. When Index.onError=OE_None,
** it means this is not a unique index. Otherwise it is a unique index
** and the value of Index.onError indicate the which conflict resolution
** algorithm to employ whenever an attempt is made to insert a non-unique
** element.
*/
struct Index
{
char *zName; /* Name of this index */
int nColumn; /* Number of columns in the table used by this index */
int *aiColumn; /* Which columns are used by this index. 1st is 0 */
unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */
Table *pTable; /* The SQL table being indexed */
int tnum; /* Page containing root of this index in database file */
u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */
char *zColAff; /* String defining the affinity of each column */
Index *pNext; /* The next index associated with the same table */
Schema *pSchema; /* Schema containing this index */
u8 *aSortOrder; /* Array of size Index.nColumn. True==DESC, False==ASC */
char **azColl; /* Array of collation sequence names for index */
};
/*
** Each token coming out of the lexer is an instance of
** this structure. Tokens are also used as part of an expression.
**
** Note if Token.z==0 then Token.dyn and Token.n are undefined and
** may contain random values. Do not make any assuptions about Token.dyn
** and Token.n when Token.z==0.
*/
struct Token
{
const unsigned char *z; /* Text of the token. Not NULL-terminated! */
unsigned dyn:1; /* True for malloced memory, false for static */
unsigned n:31; /* Number of characters in this token */
};
/*
** An instance of this structure contains information needed to generate
** code for a SELECT that contains aggregate functions.
**
** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a
** pointer to this structure. The Expr.iColumn field is the index in
** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate
** code for that node.
**
** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the
** original Select structure that describes the SELECT statement. These
** fields do not need to be freed when deallocating the AggInfo structure.
*/
struct AggInfo
{
u8 directMode; /* Direct rendering mode means take data directly
** from source tables rather than from accumulators */
u8 useSortingIdx; /* In direct mode, reference the sorting index rather
** than the source table */
int sortingIdx; /* Cursor number of the sorting index */
ExprList *pGroupBy; /* The group by clause */
int nSortingColumn; /* Number of columns in the sorting index */
struct AggInfo_col
{ /* For each column used in source tables */
Table *pTab; /* Source table */
int iTable; /* Cursor number of the source table */
int iColumn; /* Column number within the source table */
int iSorterColumn; /* Column number in the sorting index */
int iMem; /* Memory location that acts as accumulator */
Expr *pExpr; /* The original expression */
} *aCol;
int nColumn; /* Number of used entries in aCol[] */
int nColumnAlloc; /* Number of slots allocated for aCol[] */
int nAccumulator; /* Number of columns that show through to the output.
** Additional columns are used only as parameters to
** aggregate functions */
struct AggInfo_func
{ /* For each aggregate function */
Expr *pExpr; /* Expression encoding the function */
FuncDef *pFunc; /* The aggregate function implementation */
int iMem; /* Memory location that acts as accumulator */
int iDistinct; /* Ephermeral table used to enforce DISTINCT */
} *aFunc;
int nFunc; /* Number of entries in aFunc[] */
int nFuncAlloc; /* Number of slots allocated for aFunc[] */
};
/*
** Each node of an expression in the parse tree is an instance
** of this structure.
**
** Expr.op is the opcode. The integer parser token codes are reused
** as opcodes here. For example, the parser defines TK_GE to be an integer
** code representing the ">=" operator. This same integer code is reused
** to represent the greater-than-or-equal-to operator in the expression
** tree.
**
** Expr.pRight and Expr.pLeft are subexpressions. Expr.pList is a list
** of argument if the expression is a function.
**
** Expr.token is the operator token for this node. For some expressions
** that have subexpressions, Expr.token can be the complete text that gave
** rise to the Expr. In the latter case, the token is marked as being
** a compound token.
**
** An expression of the form ID or ID.ID refers to a column in a table.
** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is
** the integer cursor number of a VDBE cursor pointing to that table and
** Expr.iColumn is the column number for the specific column. If the
** expression is used as a result in an aggregate SELECT, then the
** value is also stored in the Expr.iAgg column in the aggregate so that
** it can be accessed after all aggregates are computed.
**
** If the expression is a function, the Expr.iTable is an integer code
** representing which function. If the expression is an unbound variable
** marker (a question mark character '?' in the original SQL) then the
** Expr.iTable holds the index number for that variable.
**
** If the expression is a subquery then Expr.iColumn holds an integer
** register number containing the result of the subquery. If the
** subquery gives a constant result, then iTable is -1. If the subquery
** gives a different answer at different times during statement processing
** then iTable is the address of a subroutine that computes the subquery.
**
** The Expr.pSelect field points to a SELECT statement. The SELECT might
** be the right operand of an IN operator. Or, if a scalar SELECT appears
** in an expression the opcode is TK_SELECT and Expr.pSelect is the only
** operand.
**
** If the Expr is of type OP_Column, and the table it is selecting from
** is a disk table or the "old.*" pseudo-table, then pTab points to the
** corresponding table definition.
*/
struct Expr
{
u8 op; /* Operation performed by this node */
char affinity; /* The affinity of the column or 0 if not a column */
u16 flags; /* Various flags. See below */
CollSeq *pColl; /* The collation type of the column or 0 */
Expr *pLeft, *pRight; /* Left and right subnodes */
ExprList *pList; /* A list of expressions used as function arguments
** or in "<expr> IN (<expr-list)" */
Token token; /* An operand token */
Token span; /* Complete text of the expression */
int iTable, iColumn; /* When op==TK_COLUMN, then this expr node means the
** iColumn-th field of the iTable-th table. */
AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
int iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
int iRightJoinTable; /* If EP_FromJoin, the right table of the join */
Select *pSelect; /* When the expression is a sub-select. Also the
** right side of "<expr> IN (<select>)" */
Table *pTab; /* Table for OP_Column expressions. */
/* Schema *pSchema; */
#if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
int nHeight; /* Height of the tree headed by this node */
#endif
};
/*
** The following are the meanings of bits in the Expr.flags field.
*/
#define EP_FromJoin 0x0001 /* Originated in ON or USING clause of a join */
#define EP_Agg 0x0002 /* Contains one or more aggregate functions */
#define EP_Resolved 0x0004 /* IDs have been resolved to COLUMNs */
#define EP_Error 0x0008 /* Expression contains one or more errors */
#define EP_Distinct 0x0010 /* Aggregate function with DISTINCT keyword */
#define EP_VarSelect 0x0020 /* pSelect is correlated, not constant */
#define EP_Dequoted 0x0040 /* True if the string has been dequoted */
#define EP_InfixFunc 0x0080 /* True for an infix function: LIKE, GLOB, etc */
#define EP_ExpCollate 0x0100 /* Collating sequence specified explicitly */
#define EP_AnyAff 0x0200 /* Can take a cached column of any affinity */
#define EP_FixedDest 0x0400 /* Result needed in a specific register */
/*
** These macros can be used to test, set, or clear bits in the
** Expr.flags field.
*/
#define ExprHasProperty(E,P) (((E)->flags&(P))==(P))
#define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0)
#define ExprSetProperty(E,P) (E)->flags|=(P)
#define ExprClearProperty(E,P) (E)->flags&=~(P)
/*
** A list of expressions. Each expression may optionally have a
** name. An expr/name combination can be used in several ways, such
** as the list of "expr AS ID" fields following a "SELECT" or in the
** list of "ID = expr" items in an UPDATE. A list of expressions can
** also be used as the argument to a function, in which case the a.zName
** field is not used.
*/
struct ExprList
{
int nExpr; /* Number of expressions on the list */
int nAlloc; /* Number of entries allocated below */
int iECursor; /* VDBE Cursor associated with this ExprList */
struct ExprList_item
{
Expr *pExpr; /* The list of expressions */
char *zName; /* Token associated with this expression */
u8 sortOrder; /* 1 for DESC or 0 for ASC */
u8 isAgg; /* True if this is an aggregate like count(*) */
u8 done; /* A flag to indicate when processing is finished */
} *a; /* One entry for each expression */
};
/*
** An instance of this structure can hold a simple list of identifiers,
** such as the list "a,b,c" in the following statements:
**
** INSERT INTO t(a,b,c) VALUES ...;
** CREATE INDEX idx ON t(a,b,c);
** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...;
**
** The IdList.a.idx field is used when the IdList represents the list of
** column names after a table name in an INSERT statement. In the statement
**
** INSERT INTO t(a,b,c) ...
**
** If "a" is the k-th column of table "t", then IdList.a[0].idx==k.
*/
struct IdList
{
struct IdList_item
{
char *zName; /* Name of the identifier */
int idx; /* Index in some Table.aCol[] of a column named zName */
} *a;
int nId; /* Number of identifiers on the list */
int nAlloc; /* Number of entries allocated for a[] below */
};
/*
** The bitmask datatype defined below is used for various optimizations.
**
** Changing this from a 64-bit to a 32-bit type limits the number of
** tables in a join to 32 instead of 64. But it also reduces the size
** of the library by 738 bytes on ix86.
*/
typedef u64 Bitmask;
/*
** The following structure describes the FROM clause of a SELECT statement.
** Each table or subquery in the FROM clause is a separate element of
** the SrcList.a[] array.
**
** With the addition of multiple database support, the following structure
** can also be used to describe a particular table such as the table that
** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL,
** such a table must be a simple name: ID. But in SQLite, the table can
** now be identified by a database name, a dot, then the table name: ID.ID.
**
** The jointype starts out showing the join type between the current table
** and the next table on the list. The parser builds the list this way.
** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each
** jointype expresses the join between the table and the previous table.
*/
struct SrcList
{
i16 nSrc; /* Number of tables or subqueries in the FROM clause */
i16 nAlloc; /* Number of entries allocated in a[] below */
struct SrcList_item
{
char *zDatabase; /* Name of database holding this table */
char *zName; /* Name of the table */
char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */
Table *pTab; /* An SQL table corresponding to zName */
Select *pSelect; /* A SELECT statement used in place of a table name */
u8 isPopulated; /* Temporary table associated with SELECT is populated */
u8 jointype; /* Type of join between this able and the previous */
int iCursor; /* The VDBE cursor number used to access this table */
Expr *pOn; /* The ON clause of a join */
IdList *pUsing; /* The USING clause of a join */
Bitmask colUsed; /* Bit N (1<<N) set if column N or pTab is used */
} a[1]; /* One entry for each identifier on the list */
};
/*
** Permitted values of the SrcList.a.jointype field
*/
#define JT_INNER 0x0001 /* Any kind of inner or cross join */
#define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */
#define JT_NATURAL 0x0004 /* True for a "natural" join */
#define JT_LEFT 0x0008 /* Left outer join */
#define JT_RIGHT 0x0010 /* Right outer join */
#define JT_OUTER 0x0020 /* The "OUTER" keyword is present */
#define JT_ERROR 0x0040 /* unknown or unsupported join type */
/*
** For each nested loop in a WHERE clause implementation, the WhereInfo
** structure contains a single instance of this structure. This structure
** is intended to be private the the where.c module and should not be
** access or modified by other modules.
**
** The pIdxInfo and pBestIdx fields are used to help pick the best
** index on a virtual table. The pIdxInfo pointer contains indexing
** information for the i-th table in the FROM clause before reordering.
** All the pIdxInfo pointers are freed by whereInfoFree() in where.c.
** The pBestIdx pointer is a copy of pIdxInfo for the i-th table after
** FROM clause ordering. This is a little confusing so I will repeat
** it in different words. WhereInfo.a[i].pIdxInfo is index information
** for WhereInfo.pTabList.a[i]. WhereInfo.a[i].pBestInfo is the
** index information for the i-th loop of the join. pBestInfo is always
** either NULL or a copy of some pIdxInfo. So for cleanup it is
** sufficient to free all of the pIdxInfo pointers.
**
*/
struct WhereLevel
{
int iFrom; /* Which entry in the FROM clause */
int flags; /* Flags associated with this level */
int iMem; /* First memory cell used by this level */
int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */
Index *pIdx; /* Index used. NULL if no index */
int iTabCur; /* The VDBE cursor used to access the table */
int iIdxCur; /* The VDBE cursor used to acesss pIdx */
int brk; /* Jump here to break out of the loop */
int nxt; /* Jump here to start the next IN combination */
int cont; /* Jump here to continue with the next loop cycle */
int top; /* First instruction of interior of the loop */
int op, p1, p2; /* Opcode used to terminate the loop */
int nEq; /* Number of == or IN constraints on this loop */
int nIn; /* Number of IN operators constraining this loop */
struct InLoop
{
int iCur; /* The VDBE cursor used by this IN operator */
int topAddr; /* Top of the IN loop */
} *aInLoop; /* Information about each nested IN operator */
sqlite3_index_info *pBestIdx; /* Index information for this level */
/* The following field is really not part of the current level. But
** we need a place to cache index information for each table in the
** FROM clause and the WhereLevel structure is a convenient place.
*/
sqlite3_index_info *pIdxInfo; /* Index info for n-th source table */
};
/*
** Flags appropriate for the wflags parameter of sqlite3WhereBegin().
*/
#define WHERE_ORDERBY_NORMAL 0 /* No-op */
#define WHERE_ORDERBY_MIN 1 /* ORDER BY processing for min() func */
#define WHERE_ORDERBY_MAX 2 /* ORDER BY processing for max() func */
#define WHERE_ONEPASS_DESIRED 4 /* Want to do one-pass UPDATE/DELETE */
/*
** The WHERE clause processing routine has two halves. The
** first part does the start of the WHERE loop and the second
** half does the tail of the WHERE loop. An instance of
** this structure is returned by the first half and passed
** into the second half to give some continuity.
*/
struct WhereInfo
{
Parse *pParse; /* Parsing and code generating context */
u8 okOnePass; /* Ok to use one-pass algorithm for UPDATE or DELETE */
SrcList *pTabList; /* List of tables in the join */
int iTop; /* The very beginning of the WHERE loop */
int iContinue; /* Jump here to continue with next record */
int iBreak; /* Jump here to break out of the loop */
int nLevel; /* Number of nested loop */
sqlite3_index_info **apInfo; /* Array of pointers to index info structures */
WhereLevel a[1]; /* Information about each nest loop in the WHERE */
};
/*
** A NameContext defines a context in which to resolve table and column
** names. The context consists of a list of tables (the pSrcList) field and
** a list of named expression (pEList). The named expression list may
** be NULL. The pSrc corresponds to the FROM clause of a SELECT or
** to the table being operated on by INSERT, UPDATE, or DELETE. The
** pEList corresponds to the result set of a SELECT and is NULL for
** other statements.
**
** NameContexts can be nested. When resolving names, the inner-most
** context is searched first. If no match is found, the next outer
** context is checked. If there is still no match, the next context
** is checked. This process continues until either a match is found
** or all contexts are check. When a match is found, the nRef member of
** the context containing the match is incremented.
**
** Each subquery gets a new NameContext. The pNext field points to the
** NameContext in the parent query. Thus the process of scanning the
** NameContext list corresponds to searching through successively outer
** subqueries looking for a match.
*/
struct NameContext
{
Parse *pParse; /* The parser */
SrcList *pSrcList; /* One or more tables used to resolve names */
ExprList *pEList; /* Optional list of named expressions */
int nRef; /* Number of names resolved by this context */
int nErr; /* Number of errors encountered while resolving names */
u8 allowAgg; /* Aggregate functions allowed here */
u8 hasAgg; /* True if aggregates are seen */
u8 isCheck; /* True if resolving names in a CHECK constraint */
int nDepth; /* Depth of subquery recursion. 1 for no recursion */
AggInfo *pAggInfo; /* Information about aggregates at this level */
NameContext *pNext; /* Next outer name context. NULL for outermost */
};
/*
** An instance of the following structure contains all information
** needed to generate code for a single SELECT statement.
**
** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0.
** If there is a LIMIT clause, the parser sets nLimit to the value of the
** limit and nOffset to the value of the offset (or 0 if there is not
** offset). But later on, nLimit and nOffset become the memory locations
** in the VDBE that record the limit and offset counters.
**
** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes.
** These addresses must be stored so that we can go back and fill in
** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor
** the number of columns in P2 can be computed at the same time
** as the OP_OpenEphm instruction is coded because not
** enough information about the compound query is known at that point.
** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences
** for the result set. The KeyInfo for addrOpenTran[2] contains collating
** sequences for the ORDER BY clause.
*/
struct Select
{
ExprList *pEList; /* The fields of the result */
u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
u8 isDistinct; /* True if the DISTINCT keyword is present */
u8 isResolved; /* True once sqlite3SelectResolve() has run. */
u8 isAgg; /* True if this is an aggregate query */
u8 usesEphm; /* True if uses an OpenEphemeral opcode */
u8 disallowOrderBy; /* Do not allow an ORDER BY to be attached if TRUE */
char affinity; /* MakeRecord with this affinity for SRT_Set */
SrcList *pSrc; /* The FROM clause */
Expr *pWhere; /* The WHERE clause */
ExprList *pGroupBy; /* The GROUP BY clause */
Expr *pHaving; /* The HAVING clause */
ExprList *pOrderBy; /* The ORDER BY clause */
Select *pPrior; /* Prior select in a compound select statement */
Select *pNext; /* Next select to the left in a compound */
Select *pRightmost; /* Right-most select in a compound select statement */
Expr *pLimit; /* LIMIT expression. NULL means not used. */
Expr *pOffset; /* OFFSET expression. NULL means not used. */
int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */
int addrOpenEphm[3]; /* OP_OpenEphem opcodes related to this select */
};
/*
** The results of a select can be distributed in several ways.
*/
#define SRT_Union 1 /* Store result as keys in an index */
#define SRT_Except 2 /* Remove result from a UNION index */
#define SRT_Exists 3 /* Store 1 if the result is not empty */
#define SRT_Discard 4 /* Do not save the results anywhere */
/* The ORDER BY clause is ignored for all of the above */
#define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard)
#define SRT_Callback 5 /* Invoke a callback with each row of result */
#define SRT_Mem 6 /* Store result in a memory cell */
#define SRT_Set 7 /* Store non-null results as keys in an index */
#define SRT_Table 8 /* Store result as data with an automatic rowid */
#define SRT_EphemTab 9 /* Create transient tab and store like SRT_Table */
#define SRT_Subroutine 10 /* Call a subroutine to handle results */
/*
** A structure used to customize the behaviour of sqlite3Select(). See
** comments above sqlite3Select() for details.
*/
typedef struct SelectDest SelectDest;
struct SelectDest
{
u8 eDest; /* How to dispose of the results */
u8 affinity; /* Affinity used when eDest==SRT_Set */
int iParm; /* A parameter used by the eDest disposal method */
int iMem; /* Base register where results are written */
int nMem; /* Number of registers allocated */
};
/*
** An SQL parser context. A copy of this structure is passed through
** the parser and down into all the parser action routine in order to
** carry around information that is global to the entire parse.
**
** The structure is divided into two parts. When the parser and code
** generate call themselves recursively, the first part of the structure
** is constant but the second part is reset at the beginning and end of
** each recursion.
**
** The nTableLock and aTableLock variables are only used if the shared-cache
** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are
** used to store the set of table-locks required by the statement being
** compiled. Function sqlite3TableLock() is used to add entries to the
** list.
*/
struct Parse
{
sqlite3 *db; /* The main database structure */
int rc; /* Return code from execution */
char *zErrMsg; /* An error message */
Vdbe *pVdbe; /* An engine for executing database bytecode */
u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */
u8 nameClash; /* A permanent table name clashes with temp table name */
u8 checkSchema; /* Causes schema cookie check after an error */
u8 nested; /* Number of nested calls to the parser/code generator */
u8 parseError; /* True after a parsing error. Ticket #1794 */
u8 nTempReg; /* Number of temporary registers in aTempReg[] */
u8 nTempInUse; /* Number of aTempReg[] currently checked out */
int aTempReg[8]; /* Holding area for temporary registers */
int nRangeReg; /* Size of the temporary register block */
int iRangeReg; /* First register in temporary register block */
int nErr; /* Number of errors seen */
int nTab; /* Number of previously allocated VDBE cursors */
int nMem; /* Number of memory cells used so far */
int nSet; /* Number of sets used so far */
int ckBase; /* Base register of data during check constraints */
int disableColCache; /* True to disable adding to column cache */
int nColCache; /* Number of entries in the column cache */
int iColCache; /* Next entry of the cache to replace */
struct yColCache
{
int iTable; /* Table cursor number */
int iColumn; /* Table column number */
char affChange; /* True if this register has had an affinity change */
int iReg; /* Register holding value of this column */
} aColCache[10]; /* One for each valid column cache entry */
u32 writeMask; /* Start a write transaction on these databases */
u32 cookieMask; /* Bitmask of schema verified databases */
int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */
int cookieValue[SQLITE_MAX_ATTACHED + 2]; /* Values of cookies to verify */
#ifndef SQLITE_OMIT_SHARED_CACHE
int nTableLock; /* Number of locks in aTableLock */
TableLock *aTableLock; /* Required table locks for shared-cache mode */
#endif
int regRowid; /* Register holding rowid of CREATE TABLE entry */
int regRoot; /* Register holding root page number for new objects */
/* Above is constant between recursions. Below is reset before and after
** each recursion */
int nVar; /* Number of '?' variables seen in the SQL so far */
int nVarExpr; /* Number of used slots in apVarExpr[] */
int nVarExprAlloc; /* Number of allocated slots in apVarExpr[] */
Expr **apVarExpr; /* Pointers to :aaa and $aaaa wildcard expressions */
u8 explain; /* True if the EXPLAIN flag is found on the query */
Token sErrToken; /* The token at which the error occurred */
Token sNameToken; /* Token with unqualified schema object name */
Token sLastToken; /* The last token parsed */
const char *zSql; /* All SQL text */
const char *zTail; /* All SQL text past the last semicolon parsed */
Table *pNewTable; /* A table being constructed by CREATE TABLE */
Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */
TriggerStack *trigStack; /* Trigger actions being coded */
const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */
#ifndef SQLITE_OMIT_VIRTUALTABLE
Token sArg; /* Complete text of a module argument */
u8 declareVtab; /* True if inside sqlite3_declare_vtab() */
int nVtabLock; /* Number of virtual tables to lock */
Table **apVtabLock; /* Pointer to virtual tables needing locking */
#endif
#if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
int nHeight; /* Expression tree height of current sub-select */
#endif
};
#ifdef SQLITE_OMIT_VIRTUALTABLE
#define IN_DECLARE_VTAB 0
#else
#define IN_DECLARE_VTAB (pParse->declareVtab)
#endif
/*
** An instance of the following structure can be declared on a stack and used
** to save the Parse.zAuthContext value so that it can be restored later.
*/
struct AuthContext
{
const char *zAuthContext; /* Put saved Parse.zAuthContext here */
Parse *pParse; /* The Parse structure */
};
/*
** Bitfield flags for P2 value in OP_Insert and OP_Delete
*/
#define OPFLAG_NCHANGE 1 /* Set to update db->nChange */
#define OPFLAG_LASTROWID 2 /* Set to update db->lastRowid */
#define OPFLAG_ISUPDATE 4 /* This OP_Insert is an sql UPDATE */
#define OPFLAG_APPEND 8 /* This is likely to be an append */
/*
* Each trigger present in the database schema is stored as an instance of
* struct Trigger.
*
* Pointers to instances of struct Trigger are stored in two ways.
* 1. In the "trigHash" hash table (part of the sqlite3* that represents the
* database). This allows Trigger structures to be retrieved by name.
* 2. All triggers associated with a single table form a linked list, using the
* pNext member of struct Trigger. A pointer to the first element of the
* linked list is stored as the "pTrigger" member of the associated
* struct Table.
*
* The "step_list" member points to the first element of a linked list
* containing the SQL statements specified as the trigger program.
*/
struct Trigger
{
char *name; /* The name of the trigger */
char *table; /* The table or view to which the trigger applies */
u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */
u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
Expr *pWhen; /* The WHEN clause of the expresion (may be NULL) */
IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger,
the <column-list> is stored here */
Token nameToken; /* Token containing zName. Use during parsing only */
Schema *pSchema; /* Schema containing the trigger */
Schema *pTabSchema; /* Schema containing the table */
TriggerStep *step_list; /* Link list of trigger program steps */
Trigger *pNext; /* Next trigger associated with the table */
};
/*
** A trigger is either a BEFORE or an AFTER trigger. The following constants
** determine which.
**
** If there are multiple triggers, you might of some BEFORE and some AFTER.
** In that cases, the constants below can be ORed together.
*/
#define TRIGGER_BEFORE 1
#define TRIGGER_AFTER 2
/*
* An instance of struct TriggerStep is used to store a single SQL statement
* that is a part of a trigger-program.
*
* Instances of struct TriggerStep are stored in a singly linked list (linked
* using the "pNext" member) referenced by the "step_list" member of the
* associated struct Trigger instance. The first element of the linked list is
* the first step of the trigger-program.
*
* The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or
* "SELECT" statement. The meanings of the other members is determined by the
* value of "op" as follows:
*
* (op == TK_INSERT)
* orconf -> stores the ON CONFLICT algorithm
* pSelect -> If this is an INSERT INTO ... SELECT ... statement, then
* this stores a pointer to the SELECT statement. Otherwise NULL.
* target -> A token holding the name of the table to insert into.
* pExprList -> If this is an INSERT INTO ... VALUES ... statement, then
* this stores values to be inserted. Otherwise NULL.
* pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ...
* statement, then this stores the column-names to be
* inserted into.
*
* (op == TK_DELETE)
* target -> A token holding the name of the table to delete from.
* pWhere -> The WHERE clause of the DELETE statement if one is specified.
* Otherwise NULL.
*
* (op == TK_UPDATE)
* target -> A token holding the name of the table to update rows of.
* pWhere -> The WHERE clause of the UPDATE statement if one is specified.
* Otherwise NULL.
* pExprList -> A list of the columns to update and the expressions to update
* them to. See sqlite3Update() documentation of "pChanges"
* argument.
*
*/
struct TriggerStep
{
int op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */
int orconf; /* OE_Rollback etc. */
Trigger *pTrig; /* The trigger that this step is a part of */
Select *pSelect; /* Valid for SELECT and sometimes
INSERT steps (when pExprList == 0) */
Token target; /* Valid for DELETE, UPDATE, INSERT steps */
Expr *pWhere; /* Valid for DELETE, UPDATE steps */
ExprList *pExprList; /* Valid for UPDATE statements and sometimes
INSERT steps (when pSelect == 0) */
IdList *pIdList; /* Valid for INSERT statements only */
TriggerStep *pNext; /* Next in the link-list */
TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */
};
/*
* An instance of struct TriggerStack stores information required during code
* generation of a single trigger program. While the trigger program is being
* coded, its associated TriggerStack instance is pointed to by the
* "pTriggerStack" member of the Parse structure.
*
* The pTab member points to the table that triggers are being coded on. The
* newIdx member contains the index of the vdbe cursor that points at the temp
* table that stores the new.* references. If new.* references are not valid
* for the trigger being coded (for example an ON DELETE trigger), then newIdx
* is set to -1. The oldIdx member is analogous to newIdx, for old.* references.
*
* The ON CONFLICT policy to be used for the trigger program steps is stored
* as the orconf member. If this is OE_Default, then the ON CONFLICT clause
* specified for individual triggers steps is used.
*
* struct TriggerStack has a "pNext" member, to allow linked lists to be
* constructed. When coding nested triggers (triggers fired by other triggers)
* each nested trigger stores its parent trigger's TriggerStack as the "pNext"
* pointer. Once the nested trigger has been coded, the pNext value is restored
* to the pTriggerStack member of the Parse stucture and coding of the parent
* trigger continues.
*
* Before a nested trigger is coded, the linked list pointed to by the
* pTriggerStack is scanned to ensure that the trigger is not about to be coded
* recursively. If this condition is detected, the nested trigger is not coded.
*/
struct TriggerStack
{
Table *pTab; /* Table that triggers are currently being coded on */
int newIdx; /* Index of vdbe cursor to "new" temp table */
int oldIdx; /* Index of vdbe cursor to "old" temp table */
u32 newColMask;
u32 oldColMask;
int orconf; /* Current orconf policy */
int ignoreJump; /* where to jump to for a RAISE(IGNORE) */
Trigger *pTrigger; /* The trigger currently being coded */
TriggerStack *pNext; /* Next trigger down on the trigger stack */
};
/*
** The following structure contains information used by the sqliteFix...
** routines as they walk the parse tree to make database references
** explicit.
*/
typedef struct DbFixer DbFixer;
struct DbFixer
{
Parse *pParse; /* The parsing context. Error messages written here */
const char *zDb; /* Make sure all objects are contained in this database */
const char *zType; /* Type of the container - used for error messages */
const Token *pName; /* Name of the container - used for error messages */
};
/*
** An objected used to accumulate the text of a string where we
** do not necessarily know how big the string will be in the end.
*/
struct StrAccum
{
char *zBase; /* A base allocation. Not from malloc. */
char *zText; /* The string collected so far */
int nChar; /* Length of the string so far */
int nAlloc; /* Amount of space allocated in zText */
int mxAlloc; /* Maximum allowed string length */
u8 mallocFailed; /* Becomes true if any memory allocation fails */
u8 useMalloc; /* True if zText is enlargable using realloc */
u8 tooBig; /* Becomes true if string size exceeds limits */
};
/*
** A pointer to this structure is used to communicate information
** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback.
*/
typedef struct
{
sqlite3 *db; /* The database being initialized */
int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */
char **pzErrMsg; /* Error message stored here */
int rc; /* Result code stored here */
} InitData;
/*
** Assuming zIn points to the first byte of a UTF-8 character,
** advance zIn to point to the first byte of the next UTF-8 character.
*/
#define SQLITE_SKIP_UTF8(zIn) { \
if( (*(zIn++))>=0xc0 ){ \
while( (*zIn & 0xc0)==0x80 ){ zIn++; } \
} \
}
/*
** The SQLITE_CORRUPT_BKPT macro can be either a constant (for production
** builds) or a function call (for debugging). If it is a function call,
** it allows the operator to set a breakpoint at the spot where database
** corruption is first detected.
*/
#ifdef SQLITE_DEBUG
SQLITE_PRIVATE int sqlite3Corrupt(void);
# define SQLITE_CORRUPT_BKPT sqlite3Corrupt()
# define DEBUGONLY(X) X
#else
# define SQLITE_CORRUPT_BKPT SQLITE_CORRUPT
# define DEBUGONLY(X)
#endif
/*
** Internal function prototypes
*/
SQLITE_PRIVATE int sqlite3StrICmp(const char *, const char *);
SQLITE_PRIVATE int sqlite3StrNICmp(const char *, const char *, int);
SQLITE_PRIVATE int sqlite3IsNumber(const char *, int *, u8);
SQLITE_PRIVATE void *sqlite3MallocZero(unsigned);
SQLITE_PRIVATE void *sqlite3DbMallocZero(sqlite3 *, unsigned);
SQLITE_PRIVATE void *sqlite3DbMallocRaw(sqlite3 *, unsigned);
SQLITE_PRIVATE char *sqlite3StrDup(const char *);
SQLITE_PRIVATE char *sqlite3StrNDup(const char *, int);
SQLITE_PRIVATE char *sqlite3DbStrDup(sqlite3 *, const char *);
SQLITE_PRIVATE char *sqlite3DbStrNDup(sqlite3 *, const char *, int);
SQLITE_PRIVATE void *sqlite3DbReallocOrFree(sqlite3 *, void *, int);
SQLITE_PRIVATE void *sqlite3DbRealloc(sqlite3 *, void *, int);
SQLITE_PRIVATE int sqlite3MallocSize(void *);
SQLITE_PRIVATE int sqlite3IsNaN(double);
SQLITE_PRIVATE char *sqlite3MPrintf(sqlite3 *, const char *, ...);
SQLITE_PRIVATE char *sqlite3VMPrintf(sqlite3 *, const char *, va_list);
#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
SQLITE_PRIVATE void sqlite3DebugPrintf(const char *, ...);
#endif
#if defined(SQLITE_TEST)
SQLITE_PRIVATE void *sqlite3TextToPtr(const char *);
#endif
SQLITE_PRIVATE void sqlite3SetString(char **, ...);
SQLITE_PRIVATE void sqlite3ErrorMsg(Parse *, const char *, ...);
SQLITE_PRIVATE void sqlite3ErrorClear(Parse *);
SQLITE_PRIVATE void sqlite3Dequote(char *);
SQLITE_PRIVATE void sqlite3DequoteExpr(sqlite3 *, Expr *);
SQLITE_PRIVATE int sqlite3KeywordCode(const unsigned char *, int);
SQLITE_PRIVATE int sqlite3RunParser(Parse *, const char *, char **);
SQLITE_PRIVATE void sqlite3FinishCoding(Parse *);
SQLITE_PRIVATE int sqlite3GetTempReg(Parse *);
SQLITE_PRIVATE void sqlite3ReleaseTempReg(Parse *, int);
SQLITE_PRIVATE int sqlite3GetTempRange(Parse *, int);
SQLITE_PRIVATE void sqlite3ReleaseTempRange(Parse *, int, int);
SQLITE_PRIVATE Expr *sqlite3Expr(sqlite3 *, int, Expr *, Expr *, const Token *);
SQLITE_PRIVATE Expr *sqlite3PExpr(Parse *, int, Expr *, Expr *, const Token *);
SQLITE_PRIVATE Expr *sqlite3RegisterExpr(Parse *, Token *);
SQLITE_PRIVATE Expr *sqlite3ExprAnd(sqlite3 *, Expr *, Expr *);
SQLITE_PRIVATE void sqlite3ExprSpan(Expr *, Token *, Token *);
SQLITE_PRIVATE Expr *sqlite3ExprFunction(Parse *, ExprList *, Token *);
SQLITE_PRIVATE void sqlite3ExprAssignVarNumber(Parse *, Expr *);
SQLITE_PRIVATE void sqlite3ExprDelete(Expr *);
SQLITE_PRIVATE ExprList *sqlite3ExprListAppend(Parse *, ExprList *, Expr *, Token *);
SQLITE_PRIVATE void sqlite3ExprListDelete(ExprList *);
SQLITE_PRIVATE int sqlite3Init(sqlite3 *, char **);
SQLITE_PRIVATE int sqlite3InitCallback(void *, int, char **, char **);
SQLITE_PRIVATE void sqlite3Pragma(Parse *, Token *, Token *, Token *, int);
SQLITE_PRIVATE void sqlite3ResetInternalSchema(sqlite3 *, int);
SQLITE_PRIVATE void sqlite3BeginParse(Parse *, int);
SQLITE_PRIVATE void sqlite3CommitInternalChanges(sqlite3 *);
SQLITE_PRIVATE Table *sqlite3ResultSetOfSelect(Parse *, char *, Select *);
SQLITE_PRIVATE void sqlite3OpenMasterTable(Parse *, int);
SQLITE_PRIVATE void sqlite3StartTable(Parse *, Token *, Token *, int, int, int, int);
SQLITE_PRIVATE void sqlite3AddColumn(Parse *, Token *);
SQLITE_PRIVATE void sqlite3AddNotNull(Parse *, int);
SQLITE_PRIVATE void sqlite3AddPrimaryKey(Parse *, ExprList *, int, int, int);
SQLITE_PRIVATE void sqlite3AddCheckConstraint(Parse *, Expr *);
SQLITE_PRIVATE void sqlite3AddColumnType(Parse *, Token *);
SQLITE_PRIVATE void sqlite3AddDefaultValue(Parse *, Expr *);
SQLITE_PRIVATE void sqlite3AddCollateType(Parse *, Token *);
SQLITE_PRIVATE void sqlite3EndTable(Parse *, Token *, Token *, Select *);
SQLITE_PRIVATE Bitvec *sqlite3BitvecCreate(u32);
SQLITE_PRIVATE int sqlite3BitvecTest(Bitvec *, u32);
SQLITE_PRIVATE int sqlite3BitvecSet(Bitvec *, u32);
SQLITE_PRIVATE void sqlite3BitvecClear(Bitvec *, u32);
SQLITE_PRIVATE void sqlite3BitvecDestroy(Bitvec *);
SQLITE_PRIVATE int sqlite3BitvecBuiltinTest(int, int *);
SQLITE_PRIVATE void sqlite3CreateView(Parse *, Token *, Token *, Token *, Select *, int, int);
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
SQLITE_PRIVATE int sqlite3ViewGetColumnNames(Parse *, Table *);
#else
# define sqlite3ViewGetColumnNames(A,B) 0
#endif
SQLITE_PRIVATE void sqlite3DropTable(Parse *, SrcList *, int, int);
SQLITE_PRIVATE void sqlite3DeleteTable(Table *);
SQLITE_PRIVATE void sqlite3Insert(Parse *, SrcList *, ExprList *, Select *, IdList *, int);
SQLITE_PRIVATE void *sqlite3ArrayAllocate(sqlite3 *, void *, int, int, int *, int *, int *);
SQLITE_PRIVATE IdList *sqlite3IdListAppend(sqlite3 *, IdList *, Token *);
SQLITE_PRIVATE int sqlite3IdListIndex(IdList *, const char *);
SQLITE_PRIVATE SrcList *sqlite3SrcListAppend(sqlite3 *, SrcList *, Token *, Token *);
SQLITE_PRIVATE SrcList *sqlite3SrcListAppendFromTerm(Parse *, SrcList *, Token *, Token *, Token *,
Select *, Expr *, IdList *);
SQLITE_PRIVATE void sqlite3SrcListShiftJoinType(SrcList *);
SQLITE_PRIVATE void sqlite3SrcListAssignCursors(Parse *, SrcList *);
SQLITE_PRIVATE void sqlite3IdListDelete(IdList *);
SQLITE_PRIVATE void sqlite3SrcListDelete(SrcList *);
SQLITE_PRIVATE void sqlite3CreateIndex(Parse *, Token *, Token *, SrcList *, ExprList *, int,
Token *, Token *, int, int);
SQLITE_PRIVATE void sqlite3DropIndex(Parse *, SrcList *, int);
SQLITE_PRIVATE int sqlite3Select(Parse *, Select *, SelectDest *, Select *, int, int *, char *aff);
SQLITE_PRIVATE Select *sqlite3SelectNew(Parse *, ExprList *, SrcList *, Expr *, ExprList *,
Expr *, ExprList *, int, Expr *, Expr *);
SQLITE_PRIVATE void sqlite3SelectDelete(Select *);
SQLITE_PRIVATE Table *sqlite3SrcListLookup(Parse *, SrcList *);
SQLITE_PRIVATE int sqlite3IsReadOnly(Parse *, Table *, int);
SQLITE_PRIVATE void sqlite3OpenTable(Parse *, int iCur, int iDb, Table *, int);
SQLITE_PRIVATE void sqlite3DeleteFrom(Parse *, SrcList *, Expr *);
SQLITE_PRIVATE void sqlite3Update(Parse *, SrcList *, ExprList *, Expr *, int);
SQLITE_PRIVATE WhereInfo *sqlite3WhereBegin(Parse *, SrcList *, Expr *, ExprList **, u8);
SQLITE_PRIVATE void sqlite3WhereEnd(WhereInfo *);
SQLITE_PRIVATE int sqlite3ExprCodeGetColumn(Parse *, Table *, int, int, int, int);
SQLITE_PRIVATE void sqlite3ExprCodeMove(Parse *, int, int);
SQLITE_PRIVATE void sqlite3ExprClearColumnCache(Parse *, int);
SQLITE_PRIVATE void sqlite3ExprCacheAffinityChange(Parse *, int, int);
SQLITE_PRIVATE int sqlite3ExprWritableRegister(Parse *, int, int);
SQLITE_PRIVATE void sqlite3ExprHardCopy(Parse *, int, int);
SQLITE_PRIVATE int sqlite3ExprCode(Parse *, Expr *, int);
SQLITE_PRIVATE int sqlite3ExprCodeTemp(Parse *, Expr *, int *);
SQLITE_PRIVATE int sqlite3ExprCodeTarget(Parse *, Expr *, int);
SQLITE_PRIVATE int sqlite3ExprCodeAndCache(Parse *, Expr *, int);
SQLITE_PRIVATE void sqlite3ExprCodeConstants(Parse *, Expr *);
SQLITE_PRIVATE int sqlite3ExprCodeExprList(Parse *, ExprList *, int, int);
SQLITE_PRIVATE void sqlite3ExprIfTrue(Parse *, Expr *, int, int);
SQLITE_PRIVATE void sqlite3ExprIfFalse(Parse *, Expr *, int, int);
SQLITE_PRIVATE Table *sqlite3FindTable(sqlite3 *, const char *, const char *);
SQLITE_PRIVATE Table *sqlite3LocateTable(Parse *, int isView, const char *, const char *);
SQLITE_PRIVATE Index *sqlite3FindIndex(sqlite3 *, const char *, const char *);
SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTable(sqlite3 *, int, const char *);
SQLITE_PRIVATE void sqlite3UnlinkAndDeleteIndex(sqlite3 *, int, const char *);
SQLITE_PRIVATE void sqlite3Vacuum(Parse *);
SQLITE_PRIVATE int sqlite3RunVacuum(char **, sqlite3 *);
SQLITE_PRIVATE char *sqlite3NameFromToken(sqlite3 *, Token *);
SQLITE_PRIVATE int sqlite3ExprCompare(Expr *, Expr *);
SQLITE_PRIVATE int sqlite3ExprResolveNames(NameContext *, Expr *);
SQLITE_PRIVATE void sqlite3ExprAnalyzeAggregates(NameContext *, Expr *);
SQLITE_PRIVATE void sqlite3ExprAnalyzeAggList(NameContext *, ExprList *);
SQLITE_PRIVATE Vdbe *sqlite3GetVdbe(Parse *);
SQLITE_PRIVATE Expr *sqlite3CreateIdExpr(Parse *, const char *);
SQLITE_PRIVATE void sqlite3PrngSaveState(void);
SQLITE_PRIVATE void sqlite3PrngRestoreState(void);
SQLITE_PRIVATE void sqlite3PrngResetState(void);
SQLITE_PRIVATE void sqlite3RollbackAll(sqlite3 *);
SQLITE_PRIVATE void sqlite3CodeVerifySchema(Parse *, int);
SQLITE_PRIVATE void sqlite3BeginTransaction(Parse *, int);
SQLITE_PRIVATE void sqlite3CommitTransaction(Parse *);
SQLITE_PRIVATE void sqlite3RollbackTransaction(Parse *);
SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr *);
SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr *);
SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr *);
SQLITE_PRIVATE int sqlite3ExprIsInteger(Expr *, int *);
SQLITE_PRIVATE int sqlite3IsRowid(const char *);
SQLITE_PRIVATE void sqlite3GenerateRowDelete(Parse *, Table *, int, int, int);
SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete(Parse *, Table *, int, int *);
SQLITE_PRIVATE int sqlite3GenerateIndexKey(Parse *, Index *, int, int, int);
SQLITE_PRIVATE void sqlite3GenerateConstraintChecks(Parse *, Table *, int, int,
int *, int, int, int, int);
SQLITE_PRIVATE void sqlite3CompleteInsertion(Parse *, Table *, int, int, int *, int, int, int, int);
SQLITE_PRIVATE int sqlite3OpenTableAndIndices(Parse *, Table *, int, int);
SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse *, int, int);
SQLITE_PRIVATE Expr *sqlite3ExprDup(sqlite3 *, Expr *);
SQLITE_PRIVATE void sqlite3TokenCopy(sqlite3 *, Token *, Token *);
SQLITE_PRIVATE ExprList *sqlite3ExprListDup(sqlite3 *, ExprList *);
SQLITE_PRIVATE SrcList *sqlite3SrcListDup(sqlite3 *, SrcList *);
SQLITE_PRIVATE IdList *sqlite3IdListDup(sqlite3 *, IdList *);
SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3 *, Select *);
SQLITE_PRIVATE FuncDef *sqlite3FindFunction(sqlite3 *, const char *, int, int, u8, int);
SQLITE_PRIVATE void sqlite3RegisterBuiltinFunctions(sqlite3 *);
SQLITE_PRIVATE void sqlite3RegisterDateTimeFunctions(sqlite3 *);
#ifdef SQLITE_DEBUG
SQLITE_PRIVATE int sqlite3SafetyOn(sqlite3 *);
SQLITE_PRIVATE int sqlite3SafetyOff(sqlite3 *);
#else
# define sqlite3SafetyOn(A) 0
# define sqlite3SafetyOff(A) 0
#endif
SQLITE_PRIVATE int sqlite3SafetyCheckOk(sqlite3 *);
SQLITE_PRIVATE int sqlite3SafetyCheckSickOrOk(sqlite3 *);
SQLITE_PRIVATE void sqlite3ChangeCookie(Parse *, int);
SQLITE_PRIVATE void sqlite3MaterializeView(Parse *, Select *, Expr *, int);
#ifndef SQLITE_OMIT_TRIGGER
SQLITE_PRIVATE void sqlite3BeginTrigger(Parse *, Token *, Token *, int, int, IdList *, SrcList *,
Expr *, int, int);
SQLITE_PRIVATE void sqlite3FinishTrigger(Parse *, TriggerStep *, Token *);
SQLITE_PRIVATE void sqlite3DropTrigger(Parse *, SrcList *, int);
SQLITE_PRIVATE void sqlite3DropTriggerPtr(Parse *, Trigger *);
SQLITE_PRIVATE int sqlite3TriggersExist(Parse *, Table *, int, ExprList *);
SQLITE_PRIVATE int sqlite3CodeRowTrigger(Parse *, int, ExprList *, int, Table *, int, int,
int, int, u32 *, u32 *);
void sqliteViewTriggers(Parse *, Table *, Expr *, int, ExprList *);
SQLITE_PRIVATE void sqlite3DeleteTriggerStep(TriggerStep *);
SQLITE_PRIVATE TriggerStep *sqlite3TriggerSelectStep(sqlite3 *, Select *);
SQLITE_PRIVATE TriggerStep *sqlite3TriggerInsertStep(sqlite3 *, Token *, IdList *,
ExprList *, Select *, int);
SQLITE_PRIVATE TriggerStep *sqlite3TriggerUpdateStep(sqlite3 *, Token *, ExprList *, Expr *, int);
SQLITE_PRIVATE TriggerStep *sqlite3TriggerDeleteStep(sqlite3 *, Token *, Expr *);
SQLITE_PRIVATE void sqlite3DeleteTrigger(Trigger *);
SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTrigger(sqlite3 *, int, const char *);
#else
# define sqlite3TriggersExist(A,B,C,D,E,F) 0
# define sqlite3DeleteTrigger(A)
# define sqlite3DropTriggerPtr(A,B)
# define sqlite3UnlinkAndDeleteTrigger(A,B,C)
# define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I,J,K) 0
#endif
SQLITE_PRIVATE int sqlite3JoinType(Parse *, Token *, Token *, Token *);
SQLITE_PRIVATE void sqlite3CreateForeignKey(Parse *, ExprList *, Token *, ExprList *, int);
SQLITE_PRIVATE void sqlite3DeferForeignKey(Parse *, int);
#ifndef SQLITE_OMIT_AUTHORIZATION
SQLITE_PRIVATE void sqlite3AuthRead(Parse *, Expr *, Schema *, SrcList *);
SQLITE_PRIVATE int sqlite3AuthCheck(Parse *, int, const char *, const char *, const char *);
SQLITE_PRIVATE void sqlite3AuthContextPush(Parse *, AuthContext *, const char *);
SQLITE_PRIVATE void sqlite3AuthContextPop(AuthContext *);
#else
# define sqlite3AuthRead(a,b,c,d)
# define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK
# define sqlite3AuthContextPush(a,b,c)
# define sqlite3AuthContextPop(a) ((void)(a))
#endif
SQLITE_PRIVATE void sqlite3Attach(Parse *, Expr *, Expr *, Expr *);
SQLITE_PRIVATE void sqlite3Detach(Parse *, Expr *);
SQLITE_PRIVATE int sqlite3BtreeFactory(const sqlite3 * db, const char *zFilename,
int omitJournal, int nCache, int flags, Btree ** ppBtree);
SQLITE_PRIVATE int sqlite3FixInit(DbFixer *, Parse *, int, const char *, const Token *);
SQLITE_PRIVATE int sqlite3FixSrcList(DbFixer *, SrcList *);
SQLITE_PRIVATE int sqlite3FixSelect(DbFixer *, Select *);
SQLITE_PRIVATE int sqlite3FixExpr(DbFixer *, Expr *);
SQLITE_PRIVATE int sqlite3FixExprList(DbFixer *, ExprList *);
SQLITE_PRIVATE int sqlite3FixTriggerStep(DbFixer *, TriggerStep *);
SQLITE_PRIVATE int sqlite3AtoF(const char *z, double *);
SQLITE_API char *sqlite3_snprintf(int, char *, const char *, ...);
SQLITE_PRIVATE int sqlite3GetInt32(const char *, int *);
SQLITE_PRIVATE int sqlite3FitsIn64Bits(const char *, int);
SQLITE_PRIVATE int sqlite3Utf16ByteLen(const void *pData, int nChar);
SQLITE_PRIVATE int sqlite3Utf8CharLen(const char *pData, int nByte);
SQLITE_PRIVATE int sqlite3Utf8Read(const u8 *, const u8 *, const u8 **);
/*
** Routines to read and write variable-length integers. These used to
** be defined locally, but now we use the varint routines in the util.c
** file. Code should use the MACRO forms below, as the Varint32 versions
** are coded to assume the single byte case is already handled (which
** the MACRO form does).
*/
SQLITE_PRIVATE int sqlite3PutVarint(unsigned char *, u64);
SQLITE_PRIVATE int sqlite3PutVarint32(unsigned char *, u32);
SQLITE_PRIVATE int sqlite3GetVarint(const unsigned char *, u64 *);
SQLITE_PRIVATE int sqlite3GetVarint32(const unsigned char *, u32 *);
SQLITE_PRIVATE int sqlite3VarintLen(u64 v);
/*
** The header of a record consists of a sequence variable-length integers.
** These integers are almost always small and are encoded as a single byte.
** The following macros take advantage this fact to provide a fast encode
** and decode of the integers in a record header. It is faster for the common
** case where the integer is a single byte. It is a little slower when the
** integer is two or more bytes. But overall it is faster.
**
** The following expressions are equivalent:
**
** x = sqlite3GetVarint32( A, &B );
** x = sqlite3PutVarint32( A, B );
**
** x = getVarint32( A, B );
** x = putVarint32( A, B );
**
*/
#define getVarint32(A,B) ((*(A)<(unsigned char)0x80) ? ((B) = (u32)*(A)),1 : sqlite3GetVarint32((A), &(B)))
#define putVarint32(A,B) (((B)<(u32)0x80) ? (*(A) = (unsigned char)(B)),1 : sqlite3PutVarint32((A), (B)))
#define getVarint sqlite3GetVarint
#define putVarint sqlite3PutVarint
SQLITE_PRIVATE void sqlite3IndexAffinityStr(Vdbe *, Index *);
SQLITE_PRIVATE void sqlite3TableAffinityStr(Vdbe *, Table *);
SQLITE_PRIVATE char sqlite3CompareAffinity(Expr * pExpr, char aff2);
SQLITE_PRIVATE int sqlite3IndexAffinityOk(Expr * pExpr, char idx_affinity);
SQLITE_PRIVATE char sqlite3ExprAffinity(Expr * pExpr);
SQLITE_PRIVATE int sqlite3Atoi64(const char *, i64 *);
SQLITE_PRIVATE void sqlite3Error(sqlite3 *, int, const char *, ...);
SQLITE_PRIVATE void *sqlite3HexToBlob(sqlite3 *, const char *z, int n);
SQLITE_PRIVATE int sqlite3TwoPartName(Parse *, Token *, Token *, Token **);
SQLITE_PRIVATE const char *sqlite3ErrStr(int);
SQLITE_PRIVATE int sqlite3ReadSchema(Parse * pParse);
SQLITE_PRIVATE CollSeq *sqlite3FindCollSeq(sqlite3 *, u8 enc, const char *, int, int);
SQLITE_PRIVATE CollSeq *sqlite3LocateCollSeq(Parse * pParse, const char *zName, int nName);
SQLITE_PRIVATE CollSeq *sqlite3ExprCollSeq(Parse * pParse, Expr * pExpr);
SQLITE_PRIVATE Expr *sqlite3ExprSetColl(Parse * pParse, Expr *, Token *);
SQLITE_PRIVATE int sqlite3CheckCollSeq(Parse *, CollSeq *);
SQLITE_PRIVATE int sqlite3CheckObjectName(Parse *, const char *);
SQLITE_PRIVATE void sqlite3VdbeSetChanges(sqlite3 *, int);
SQLITE_PRIVATE const void *sqlite3ValueText(sqlite3_value *, u8);
SQLITE_PRIVATE int sqlite3ValueBytes(sqlite3_value *, u8);
SQLITE_PRIVATE void sqlite3ValueSetStr(sqlite3_value *, int, const void *, u8, void (*)(void *));
SQLITE_PRIVATE void sqlite3ValueFree(sqlite3_value *);
SQLITE_PRIVATE sqlite3_value *sqlite3ValueNew(sqlite3 *);
SQLITE_PRIVATE char *sqlite3Utf16to8(sqlite3 *, const void *, int);
SQLITE_PRIVATE int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **);
SQLITE_PRIVATE void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
#ifndef SQLITE_AMALGAMATION
SQLITE_PRIVATE const unsigned char sqlite3UpperToLower[];
#endif
SQLITE_PRIVATE void sqlite3RootPageMoved(Db *, int, int);
SQLITE_PRIVATE void sqlite3Reindex(Parse *, Token *, Token *);
SQLITE_PRIVATE void sqlite3AlterFunctions(sqlite3 *);
SQLITE_PRIVATE void sqlite3AlterRenameTable(Parse *, SrcList *, Token *);
SQLITE_PRIVATE int sqlite3GetToken(const unsigned char *, int *);
SQLITE_PRIVATE void sqlite3NestedParse(Parse *, const char *, ...);
SQLITE_PRIVATE void sqlite3ExpirePreparedStatements(sqlite3 *);
SQLITE_PRIVATE void sqlite3CodeSubselect(Parse *, Expr *);
SQLITE_PRIVATE int sqlite3SelectResolve(Parse *, Select *, NameContext *);
SQLITE_PRIVATE void sqlite3ColumnDefault(Vdbe *, Table *, int);
SQLITE_PRIVATE void sqlite3AlterFinishAddColumn(Parse *, Token *);
SQLITE_PRIVATE void sqlite3AlterBeginAddColumn(Parse *, SrcList *);
SQLITE_PRIVATE CollSeq *sqlite3GetCollSeq(sqlite3 *, CollSeq *, const char *, int);
SQLITE_PRIVATE char sqlite3AffinityType(const Token *);
SQLITE_PRIVATE void sqlite3Analyze(Parse *, Token *, Token *);
SQLITE_PRIVATE int sqlite3InvokeBusyHandler(BusyHandler *);
SQLITE_PRIVATE int sqlite3FindDb(sqlite3 *, Token *);
SQLITE_PRIVATE int sqlite3AnalysisLoad(sqlite3 *, int iDB);
SQLITE_PRIVATE void sqlite3DefaultRowEst(Index *);
SQLITE_PRIVATE void sqlite3RegisterLikeFunctions(sqlite3 *, int);
SQLITE_PRIVATE int sqlite3IsLikeFunction(sqlite3 *, Expr *, int *, char *);
SQLITE_PRIVATE void sqlite3AttachFunctions(sqlite3 *);
SQLITE_PRIVATE void sqlite3MinimumFileFormat(Parse *, int, int);
SQLITE_PRIVATE void sqlite3SchemaFree(void *);
SQLITE_PRIVATE Schema *sqlite3SchemaGet(sqlite3 *, Btree *);
SQLITE_PRIVATE int sqlite3SchemaToIndex(sqlite3 * db, Schema *);
SQLITE_PRIVATE KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *);
SQLITE_PRIVATE int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *,
void (*)(sqlite3_context *, int, sqlite3_value **),
void (*)(sqlite3_context *, int, sqlite3_value **),
void (*)(sqlite3_context *));
SQLITE_PRIVATE int sqlite3ApiExit(sqlite3 * db, int);
SQLITE_PRIVATE int sqlite3OpenTempDatabase(Parse *);
SQLITE_PRIVATE void sqlite3StrAccumAppend(StrAccum *, const char *, int);
SQLITE_PRIVATE char *sqlite3StrAccumFinish(StrAccum *);
SQLITE_PRIVATE void sqlite3StrAccumReset(StrAccum *);
SQLITE_PRIVATE void sqlite3SelectDestInit(SelectDest *, int, int);
/*
** The interface to the LEMON-generated parser
*/
SQLITE_PRIVATE void *sqlite3ParserAlloc(void *(*)(size_t));
SQLITE_PRIVATE void sqlite3ParserFree(void *, void (*)(void *));
SQLITE_PRIVATE void sqlite3Parser(void *, int, Token, Parse *);
SQLITE_PRIVATE int sqlite3AutoLoadExtensions(sqlite3 *);
#ifndef SQLITE_OMIT_LOAD_EXTENSION
SQLITE_PRIVATE void sqlite3CloseExtensions(sqlite3 *);
#else
# define sqlite3CloseExtensions(X)
#endif
#ifndef SQLITE_OMIT_SHARED_CACHE
SQLITE_PRIVATE void sqlite3TableLock(Parse *, int, int, u8, const char *);
#else
#define sqlite3TableLock(v,w,x,y,z)
#endif
#ifdef SQLITE_TEST
SQLITE_PRIVATE int sqlite3Utf8To8(unsigned char *);
#endif
#ifdef SQLITE_OMIT_VIRTUALTABLE
# define sqlite3VtabClear(X)
# define sqlite3VtabSync(X,Y) (Y)
# define sqlite3VtabRollback(X)
# define sqlite3VtabCommit(X)
#else
SQLITE_PRIVATE void sqlite3VtabClear(Table *);
SQLITE_PRIVATE int sqlite3VtabSync(sqlite3 * db, int rc);
SQLITE_PRIVATE int sqlite3VtabRollback(sqlite3 * db);
SQLITE_PRIVATE int sqlite3VtabCommit(sqlite3 * db);
#endif
SQLITE_PRIVATE void sqlite3VtabMakeWritable(Parse *, Table *);
SQLITE_PRIVATE void sqlite3VtabLock(sqlite3_vtab *);
SQLITE_PRIVATE void sqlite3VtabUnlock(sqlite3 *, sqlite3_vtab *);
SQLITE_PRIVATE void sqlite3VtabBeginParse(Parse *, Token *, Token *, Token *);
SQLITE_PRIVATE void sqlite3VtabFinishParse(Parse *, Token *);
SQLITE_PRIVATE void sqlite3VtabArgInit(Parse *);
SQLITE_PRIVATE void sqlite3VtabArgExtend(Parse *, Token *);
SQLITE_PRIVATE int sqlite3VtabCallCreate(sqlite3 *, int, const char *, char **);
SQLITE_PRIVATE int sqlite3VtabCallConnect(Parse *, Table *);
SQLITE_PRIVATE int sqlite3VtabCallDestroy(sqlite3 *, int, const char *);
SQLITE_PRIVATE int sqlite3VtabBegin(sqlite3 *, sqlite3_vtab *);
SQLITE_PRIVATE FuncDef *sqlite3VtabOverloadFunction(sqlite3 *, FuncDef *, int nArg, Expr *);
SQLITE_PRIVATE void sqlite3InvalidFunction(sqlite3_context *, int, sqlite3_value **);
SQLITE_PRIVATE int sqlite3Reprepare(Vdbe *);
SQLITE_PRIVATE void sqlite3ExprListCheckLength(Parse *, ExprList *, const char *);
SQLITE_PRIVATE CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *);
/*
** Available fault injectors. Should be numbered beginning with 0.
*/
#define SQLITE_FAULTINJECTOR_MALLOC 0
#define SQLITE_FAULTINJECTOR_COUNT 1
/*
** The interface to the fault injector subsystem. If the fault injector
** mechanism is disabled at compile-time then set up macros so that no
** unnecessary code is generated.
*/
#ifndef SQLITE_OMIT_BUILTIN_TEST
SQLITE_PRIVATE void sqlite3FaultConfig(int, int, int);
SQLITE_PRIVATE int sqlite3FaultFailures(int);
SQLITE_PRIVATE int sqlite3FaultBenignFailures(int);
SQLITE_PRIVATE int sqlite3FaultPending(int);
SQLITE_PRIVATE void sqlite3FaultBeginBenign(int);
SQLITE_PRIVATE void sqlite3FaultEndBenign(int);
SQLITE_PRIVATE int sqlite3FaultStep(int);
#else
# define sqlite3FaultConfig(A,B,C)
# define sqlite3FaultFailures(A) 0
# define sqlite3FaultBenignFailures(A) 0
# define sqlite3FaultPending(A) (-1)
# define sqlite3FaultBeginBenign(A)
# define sqlite3FaultEndBenign(A)
# define sqlite3FaultStep(A) 0
#endif
#define IN_INDEX_ROWID 1
#define IN_INDEX_EPH 2
#define IN_INDEX_INDEX 3
SQLITE_PRIVATE int sqlite3FindInIndex(Parse *, Expr *, int);
#ifdef SQLITE_ENABLE_ATOMIC_WRITE
SQLITE_PRIVATE int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int);
SQLITE_PRIVATE int sqlite3JournalSize(sqlite3_vfs *);
SQLITE_PRIVATE int sqlite3JournalCreate(sqlite3_file *);
#else
#define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile)
#endif
#if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
SQLITE_PRIVATE void sqlite3ExprSetHeight(Expr *);
SQLITE_PRIVATE int sqlite3SelectExprHeight(Select *);
#else
#define sqlite3ExprSetHeight(x)
#endif
SQLITE_PRIVATE u32 sqlite3Get4byte(const u8 *);
SQLITE_PRIVATE void sqlite3Put4byte(u8 *, u32);
#ifdef SQLITE_SSE
#include "sseInt.h"
#endif
#ifdef SQLITE_DEBUG
SQLITE_PRIVATE void sqlite3ParserTrace(FILE *, char *);
#endif
/*
** If the SQLITE_ENABLE IOTRACE exists then the global variable
** sqlite3IoTrace is a pointer to a printf-like routine used to
** print I/O tracing messages.
*/
#ifdef SQLITE_ENABLE_IOTRACE
# define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; }
SQLITE_PRIVATE void sqlite3VdbeIOTraceSql(Vdbe *);
SQLITE_PRIVATE void (*sqlite3IoTrace) (const char *, ...);
#else
# define IOTRACE(A)
# define sqlite3VdbeIOTraceSql(X)
#endif
#endif
/************** End of sqliteInt.h *******************************************/
/************** Begin file date.c ********************************************/
/*
** 2003 October 31
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains the C functions that implement date and time
** functions for SQLite.
**
** There is only one exported symbol in this file - the function
** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
** All other code has file scope.
**
**
** SQLite processes all times and dates as Julian Day numbers. The
** dates and times are stored as the number of days since noon
** in Greenwich on November 24, 4714 B.C. according to the Gregorian
** calendar system.
**
** 1970-01-01 00:00:00 is JD 2440587.5
** 2000-01-01 00:00:00 is JD 2451544.5
**
** This implemention requires years to be expressed as a 4-digit number
** which means that only dates between 0000-01-01 and 9999-12-31 can
** be represented, even though julian day numbers allow a much wider
** range of dates.
**
** The Gregorian calendar system is used for all dates and times,
** even those that predate the Gregorian calendar. Historians usually
** use the Julian calendar for dates prior to 1582-10-15 and for some
** dates afterwards, depending on locale. Beware of this difference.
**
** The conversion algorithms are implemented based on descriptions
** in the following text:
**
** Jean Meeus
** Astronomical Algorithms, 2nd Edition, 1998
** ISBM 0-943396-61-1
** Willmann-Bell, Inc
** Richmond, Virginia (USA)
*/
#include <ctype.h>
#include <time.h>
#ifndef SQLITE_OMIT_DATETIME_FUNCS
/*
** A structure for holding a single date and time.
*/
typedef struct DateTime DateTime;
struct DateTime
{
double rJD; /* The julian day number */
int Y, M, D; /* Year, month, and day */
int h, m; /* Hour and minutes */
int tz; /* Timezone offset in minutes */
double s; /* Seconds */
char validYMD; /* True if Y,M,D are valid */
char validHMS; /* True if h,m,s are valid */
char validJD; /* True if rJD is valid */
char validTZ; /* True if tz is valid */
};
/*
** Convert zDate into one or more integers. Additional arguments
** come in groups of 5 as follows:
**
** N number of digits in the integer
** min minimum allowed value of the integer
** max maximum allowed value of the integer
** nextC first character after the integer
** pVal where to write the integers value.
**
** Conversions continue until one with nextC==0 is encountered.
** The function returns the number of successful conversions.
*/
static int
getDigits(const char *zDate, ...)
{
va_list ap;
int val;
int N;
int min;
int max;
int nextC;
int *pVal;
int cnt = 0;
va_start(ap, zDate);
do
{
N = va_arg(ap, int);
min = va_arg(ap, int);
max = va_arg(ap, int);
nextC = va_arg(ap, int);
pVal = va_arg(ap, int *);
val = 0;
while (N--)
{
if(!isdigit(*(u8 *) zDate))
{
goto end_getDigits;
}
val = val * 10 + *zDate - '0';
zDate++;
}
if(val < min || val > max || (nextC != 0 && nextC != *zDate))
{
goto end_getDigits;
}
*pVal = val;
zDate++;
cnt++;
}
while (nextC);
end_getDigits:
va_end(ap);
return cnt;
}
/*
** Read text from z[] and convert into a floating point number. Return
** the number of digits converted.
*/
#define getValue sqlite3AtoF
/*
** Parse a timezone extension on the end of a date-time.
** The extension is of the form:
**
** (+/-)HH:MM
**
** Or the "zulu" notation:
**
** Z
**
** If the parse is successful, write the number of minutes
** of change in p->tz and return 0. If a parser error occurs,
** return non-zero.
**
** A missing specifier is not considered an error.
*/
static int
parseTimezone(const char *zDate, DateTime * p)
{
int sgn = 0;
int nHr, nMn;
int c;
while (isspace(*(u8 *) zDate))
{
zDate++;
}
p->tz = 0;
c = *zDate;
if(c == '-')
{
sgn = -1;
}
else if(c == '+')
{
sgn = +1;
}
else if(c == 'Z' || c == 'z')
{
zDate++;
goto zulu_time;
}
else
{
return c != 0;
}
zDate++;
if(getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn) != 2)
{
return 1;
}
zDate += 5;
p->tz = sgn * (nMn + nHr * 60);
zulu_time:
while (isspace(*(u8 *) zDate))
{
zDate++;
}
return *zDate != 0;
}
/*
** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
** The HH, MM, and SS must each be exactly 2 digits. The
** fractional seconds FFFF can be one or more digits.
**
** Return 1 if there is a parsing error and 0 on success.
*/
static int
parseHhMmSs(const char *zDate, DateTime * p)
{
int h, m, s;
double ms = 0.0;
if(getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m) != 2)
{
return 1;
}
zDate += 5;
if(*zDate == ':')
{
zDate++;
if(getDigits(zDate, 2, 0, 59, 0, &s) != 1)
{
return 1;
}
zDate += 2;
if(*zDate == '.' && isdigit((u8) zDate[1]))
{
double rScale = 1.0;
zDate++;
while (isdigit(*(u8 *) zDate))
{
ms = ms * 10.0 + *zDate - '0';
rScale *= 10.0;
zDate++;
}
ms /= rScale;
}
}
else
{
s = 0;
}
p->validJD = 0;
p->validHMS = 1;
p->h = h;
p->m = m;
p->s = s + ms;
if(parseTimezone(zDate, p))
return 1;
p->validTZ = p->tz != 0;
return 0;
}
/*
** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume
** that the YYYY-MM-DD is according to the Gregorian calendar.
**
** Reference: Meeus page 61
*/
static void
computeJD(DateTime * p)
{
int Y, M, D, A, B, X1, X2;
if(p->validJD)
return;
if(p->validYMD)
{
Y = p->Y;
M = p->M;
D = p->D;
}
else
{
Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */
M = 1;
D = 1;
}
if(M <= 2)
{
Y--;
M += 12;
}
A = Y / 100;
B = 2 - A + (A / 4);
X1 = 365.25 * (Y + 4716);
X2 = 30.6001 * (M + 1);
p->rJD = X1 + X2 + D + B - 1524.5;
p->validJD = 1;
if(p->validHMS)
{
p->rJD += (p->h * 3600.0 + p->m * 60.0 + p->s) / 86400.0;
if(p->validTZ)
{
p->rJD -= p->tz * 60 / 86400.0;
p->validYMD = 0;
p->validHMS = 0;
p->validTZ = 0;
}
}
}
/*
** Parse dates of the form
**
** YYYY-MM-DD HH:MM:SS.FFF
** YYYY-MM-DD HH:MM:SS
** YYYY-MM-DD HH:MM
** YYYY-MM-DD
**
** Write the result into the DateTime structure and return 0
** on success and 1 if the input string is not a well-formed
** date.
*/
static int
parseYyyyMmDd(const char *zDate, DateTime * p)
{
int Y, M, D, neg;
if(zDate[0] == '-')
{
zDate++;
neg = 1;
}
else
{
neg = 0;
}
if(getDigits(zDate, 4, 0, 9999, '-', &Y, 2, 1, 12, '-', &M, 2, 1, 31, 0, &D) != 3)
{
return 1;
}
zDate += 10;
while (isspace(*(u8 *) zDate) || 'T' == *(u8 *) zDate)
{
zDate++;
}
if(parseHhMmSs(zDate, p) == 0)
{
/* We got the time */
}
else if(*zDate == 0)
{
p->validHMS = 0;
}
else
{
return 1;
}
p->validJD = 0;
p->validYMD = 1;
p->Y = neg ? -Y : Y;
p->M = M;
p->D = D;
if(p->validTZ)
{
computeJD(p);
}
return 0;
}
/*
** Attempt to parse the given string into a Julian Day Number. Return
** the number of errors.
**
** The following are acceptable forms for the input string:
**
** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM
** DDDD.DD
** now
**
** In the first form, the +/-HH:MM is always optional. The fractional
** seconds extension (the ".FFF") is optional. The seconds portion
** (":SS.FFF") is option. The year and date can be omitted as long
** as there is a time string. The time string can be omitted as long
** as there is a year and date.
*/
static int
parseDateOrTime(sqlite3_context * context, const char *zDate, DateTime * p)
{
memset(p, 0, sizeof(*p));
if(parseYyyyMmDd(zDate, p) == 0)
{
return 0;
}
else if(parseHhMmSs(zDate, p) == 0)
{
return 0;
}
else if(sqlite3StrICmp(zDate, "now") == 0)
{
double r;
sqlite3 *db = sqlite3_context_db_handle(context);
sqlite3OsCurrentTime(db->pVfs, &r);
p->rJD = r;
p->validJD = 1;
return 0;
}
else if(sqlite3IsNumber(zDate, 0, SQLITE_UTF8))
{
getValue(zDate, &p->rJD);
p->validJD = 1;
return 0;
}
return 1;
}
/*
** Compute the Year, Month, and Day from the julian day number.
*/
static void
computeYMD(DateTime * p)
{
int Z, A, B, C, D, E, X1;
if(p->validYMD)
return;
if(!p->validJD)
{
p->Y = 2000;
p->M = 1;
p->D = 1;
}
else
{
Z = p->rJD + 0.5;
A = (Z - 1867216.25) / 36524.25;
A = Z + 1 + A - (A / 4);
B = A + 1524;
C = (B - 122.1) / 365.25;
D = 365.25 * C;
E = (B - D) / 30.6001;
X1 = 30.6001 * E;
p->D = B - D - X1;
p->M = E < 14 ? E - 1 : E - 13;
p->Y = p->M > 2 ? C - 4716 : C - 4715;
}
p->validYMD = 1;
}
/*
** Compute the Hour, Minute, and Seconds from the julian day number.
*/
static void
computeHMS(DateTime * p)
{
int Z, s;
if(p->validHMS)
return;
computeJD(p);
Z = p->rJD + 0.5;
s = (p->rJD + 0.5 - Z) * 86400000.0 + 0.5;
p->s = 0.001 * s;
s = p->s;
p->s -= s;
p->h = s / 3600;
s -= p->h * 3600;
p->m = s / 60;
p->s += s - p->m * 60;
p->validHMS = 1;
}
/*
** Compute both YMD and HMS
*/
static void
computeYMD_HMS(DateTime * p)
{
computeYMD(p);
computeHMS(p);
}
/*
** Clear the YMD and HMS and the TZ
*/
static void
clearYMD_HMS_TZ(DateTime * p)
{
p->validYMD = 0;
p->validHMS = 0;
p->validTZ = 0;
}
/*
** Compute the difference (in days) between localtime and UTC (a.k.a. GMT)
** for the time value p where p is in UTC.
*/
static double
localtimeOffset(DateTime * p)
{
DateTime x, y;
time_t t;
x = *p;
computeYMD_HMS(&x);
if(x.Y < 1971 || x.Y >= 2038)
{
x.Y = 2000;
x.M = 1;
x.D = 1;
x.h = 0;
x.m = 0;
x.s = 0.0;
}
else
{
int s = x.s + 0.5;
x.s = s;
}
x.tz = 0;
x.validJD = 0;
computeJD(&x);
t = (x.rJD - 2440587.5) * 86400.0 + 0.5;
#ifdef HAVE_LOCALTIME_R
{
struct tm sLocal;
localtime_r(&t, &sLocal);
y.Y = sLocal.tm_year + 1900;
y.M = sLocal.tm_mon + 1;
y.D = sLocal.tm_mday;
y.h = sLocal.tm_hour;
y.m = sLocal.tm_min;
y.s = sLocal.tm_sec;
}
#else
{
struct tm *pTm;
sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
pTm = localtime(&t);
y.Y = pTm->tm_year + 1900;
y.M = pTm->tm_mon + 1;
y.D = pTm->tm_mday;
y.h = pTm->tm_hour;
y.m = pTm->tm_min;
y.s = pTm->tm_sec;
sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
}
#endif
y.validYMD = 1;
y.validHMS = 1;
y.validJD = 0;
y.validTZ = 0;
computeJD(&y);
return y.rJD - x.rJD;
}
/*
** Process a modifier to a date-time stamp. The modifiers are
** as follows:
**
** NNN days
** NNN hours
** NNN minutes
** NNN.NNNN seconds
** NNN months
** NNN years
** start of month
** start of year
** start of week
** start of day
** weekday N
** unixepoch
** localtime
** utc
**
** Return 0 on success and 1 if there is any kind of error.
*/
static int
parseModifier(const char *zMod, DateTime * p)
{
int rc = 1;
int n;
double r;
char *z, zBuf[30];
z = zBuf;
for (n = 0; n < sizeof(zBuf) - 1 && zMod[n]; n++)
{
z[n] = tolower(zMod[n]);
}
z[n] = 0;
switch (z[0])
{
case 'l':
{
/* localtime
**
** Assuming the current time value is UTC (a.k.a. GMT), shift it to
** show local time.
*/
if(strcmp(z, "localtime") == 0)
{
computeJD(p);
p->rJD += localtimeOffset(p);
clearYMD_HMS_TZ(p);
rc = 0;
}
break;
}
case 'u':
{
/*
** unixepoch
**
** Treat the current value of p->rJD as the number of
** seconds since 1970. Convert to a real julian day number.
*/
if(strcmp(z, "unixepoch") == 0 && p->validJD)
{
p->rJD = p->rJD / 86400.0 + 2440587.5;
clearYMD_HMS_TZ(p);
rc = 0;
}
else if(strcmp(z, "utc") == 0)
{
double c1;
computeJD(p);
c1 = localtimeOffset(p);
p->rJD -= c1;
clearYMD_HMS_TZ(p);
p->rJD += c1 - localtimeOffset(p);
rc = 0;
}
break;
}
case 'w':
{
/*
** weekday N
**
** Move the date to the same time on the next occurrence of
** weekday N where 0==Sunday, 1==Monday, and so forth. If the
** date is already on the appropriate weekday, this is a no-op.
*/
if(strncmp(z, "weekday ", 8) == 0 && getValue(&z[8], &r) > 0
&& (n = r) == r && n >= 0 && r < 7)
{
int Z;
computeYMD_HMS(p);
p->validTZ = 0;
p->validJD = 0;
computeJD(p);
Z = p->rJD + 1.5;
Z %= 7;
if(Z > n)
Z -= 7;
p->rJD += n - Z;
clearYMD_HMS_TZ(p);
rc = 0;
}
break;
}
case 's':
{
/*
** start of TTTTT
**
** Move the date backwards to the beginning of the current day,
** or month or year.
*/
if(strncmp(z, "start of ", 9) != 0)
break;
z += 9;
computeYMD(p);
p->validHMS = 1;
p->h = p->m = 0;
p->s = 0.0;
p->validTZ = 0;
p->validJD = 0;
if(strcmp(z, "month") == 0)
{
p->D = 1;
rc = 0;
}
else if(strcmp(z, "year") == 0)
{
computeYMD(p);
p->M = 1;
p->D = 1;
rc = 0;
}
else if(strcmp(z, "day") == 0)
{
rc = 0;
}
break;
}
case '+':
case '-':
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
{
n = getValue(z, &r);
assert(n >= 1);
if(z[n] == ':')
{
/* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the
** specified number of hours, minutes, seconds, and fractional seconds
** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be
** omitted.
*/
const char *z2 = z;
DateTime tx;
int day;
if(!isdigit(*(u8 *) z2))
z2++;
memset(&tx, 0, sizeof(tx));
if(parseHhMmSs(z2, &tx))
break;
computeJD(&tx);
tx.rJD -= 0.5;
day = (int) tx.rJD;
tx.rJD -= day;
if(z[0] == '-')
tx.rJD = -tx.rJD;
computeJD(p);
clearYMD_HMS_TZ(p);
p->rJD += tx.rJD;
rc = 0;
break;
}
z += n;
while (isspace(*(u8 *) z))
z++;
n = strlen(z);
if(n > 10 || n < 3)
break;
if(z[n - 1] == 's')
{
z[n - 1] = 0;
n--;
}
computeJD(p);
rc = 0;
if(n == 3 && strcmp(z, "day") == 0)
{
p->rJD += r;
}
else if(n == 4 && strcmp(z, "hour") == 0)
{
p->rJD += r / 24.0;
}
else if(n == 6 && strcmp(z, "minute") == 0)
{
p->rJD += r / (24.0 * 60.0);
}
else if(n == 6 && strcmp(z, "second") == 0)
{
p->rJD += r / (24.0 * 60.0 * 60.0);
}
else if(n == 5 && strcmp(z, "month") == 0)
{
int x, y;
computeYMD_HMS(p);
p->M += r;
x = p->M > 0 ? (p->M - 1) / 12 : (p->M - 12) / 12;
p->Y += x;
p->M -= x * 12;
p->validJD = 0;
computeJD(p);
y = r;
if(y != r)
{
p->rJD += (r - y) * 30.0;
}
}
else if(n == 4 && strcmp(z, "year") == 0)
{
computeYMD_HMS(p);
p->Y += r;
p->validJD = 0;
computeJD(p);
}
else
{
rc = 1;
}
clearYMD_HMS_TZ(p);
break;
}
default:
{
break;
}
}
return rc;
}
/*
** Process time function arguments. argv[0] is a date-time stamp.
** argv[1] and following are modifiers. Parse them all and write
** the resulting time into the DateTime structure p. Return 0
** on success and 1 if there are any errors.
**
** If there are zero parameters (if even argv[0] is undefined)
** then assume a default value of "now" for argv[0].
*/
static int
isDate(sqlite3_context * context, int argc, sqlite3_value ** argv, DateTime * p)
{
int i;
const unsigned char *z;
static const unsigned char zDflt[] = "now";
if(argc == 0)
{
z = zDflt;
}
else
{
z = sqlite3_value_text(argv[0]);
}
if(!z || parseDateOrTime(context, (char *) z, p))
{
return 1;
}
for (i = 1; i < argc; i++)
{
if((z = sqlite3_value_text(argv[i])) == 0 || parseModifier((char *) z, p))
{
return 1;
}
}
return 0;
}
/*
** The following routines implement the various date and time functions
** of SQLite.
*/
/*
** julianday( TIMESTRING, MOD, MOD, ...)
**
** Return the julian day number of the date specified in the arguments
*/
static void
juliandayFunc(sqlite3_context * context, int argc, sqlite3_value ** argv)
{
DateTime x;
if(isDate(context, argc, argv, &x) == 0)
{
computeJD(&x);
sqlite3_result_double(context, x.rJD);
}
}
/*
** datetime( TIMESTRING, MOD, MOD, ...)
**
** Return YYYY-MM-DD HH:MM:SS
*/
static void
datetimeFunc(sqlite3_context * context, int argc, sqlite3_value ** argv)
{
DateTime x;
if(isDate(context, argc, argv, &x) == 0)
{
char zBuf[100];
computeYMD_HMS(&x);
sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d %02d:%02d:%02d",
x.Y, x.M, x.D, x.h, x.m, (int) (x.s));
sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
}
}
/*
** time( TIMESTRING, MOD, MOD, ...)
**
** Return HH:MM:SS
*/
static void
timeFunc(sqlite3_context * context, int argc, sqlite3_value ** argv)
{
DateTime x;
if(isDate(context, argc, argv, &x) == 0)
{
char zBuf[100];
computeHMS(&x);
sqlite3_snprintf(sizeof(zBuf), zBuf, "%02d:%02d:%02d", x.h, x.m, (int) x.s);
sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
}
}
/*
** date( TIMESTRING, MOD, MOD, ...)
**
** Return YYYY-MM-DD
*/
static void
dateFunc(sqlite3_context * context, int argc, sqlite3_value ** argv)
{
DateTime x;
if(isDate(context, argc, argv, &x) == 0)
{
char zBuf[100];
computeYMD(&x);
sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D);
sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
}
}
/*
** strftime( FORMAT, TIMESTRING, MOD, MOD, ...)
**
** Return a string described by FORMAT. Conversions as follows:
**
** %d day of month
** %f ** fractional seconds SS.SSS
** %H hour 00-24
** %j day of year 000-366
** %J ** Julian day number
** %m month 01-12
** %M minute 00-59
** %s seconds since 1970-01-01
** %S seconds 00-59
** %w day of week 0-6 sunday==0
** %W week of year 00-53
** %Y year 0000-9999
** %% %
*/
static void
strftimeFunc(sqlite3_context * context, int argc, sqlite3_value ** argv)
{
DateTime x;
u64 n;
int i, j;
char *z;
const char *zFmt = (const char *) sqlite3_value_text(argv[0]);
char zBuf[100];
if(zFmt == 0 || isDate(context, argc - 1, argv + 1, &x))
return;
for (i = 0, n = 1; zFmt[i]; i++, n++)
{
if(zFmt[i] == '%')
{
switch (zFmt[i + 1])
{
case 'd':
case 'H':
case 'm':
case 'M':
case 'S':
case 'W':
n++;
/* fall thru */
case 'w':
case '%':
break;
case 'f':
n += 8;
break;
case 'j':
n += 3;
break;
case 'Y':
n += 8;
break;
case 's':
case 'J':
n += 50;
break;
default:
return; /* ERROR. return a NULL */
}
i++;
}
}
if(n < sizeof(zBuf))
{
z = zBuf;
}
else if(n > sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH])
{
sqlite3_result_error_toobig(context);
return;
}
else
{
z = sqlite3_malloc(n);
if(z == 0)
{
sqlite3_result_error_nomem(context);
return;
}
}
computeJD(&x);
computeYMD_HMS(&x);
for (i = j = 0; zFmt[i]; i++)
{
if(zFmt[i] != '%')
{
z[j++] = zFmt[i];
}
else
{
i++;
switch (zFmt[i])
{
case 'd':
sqlite3_snprintf(3, &z[j], "%02d", x.D);
j += 2;
break;
case 'f':
{
double s = x.s;
if(s > 59.999)
s = 59.999;
sqlite3_snprintf(7, &z[j], "%06.3f", s);
j += strlen(&z[j]);
break;
}
case 'H':
sqlite3_snprintf(3, &z[j], "%02d", x.h);
j += 2;
break;
case 'W': /* Fall thru */
case 'j':
{
int nDay; /* Number of days since 1st day of year */
DateTime y = x;
y.validJD = 0;
y.M = 1;
y.D = 1;
computeJD(&y);
nDay = x.rJD - y.rJD + 0.5;
if(zFmt[i] == 'W')
{
int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */
wd = ((int) (x.rJD + 0.5)) % 7;
sqlite3_snprintf(3, &z[j], "%02d",
(nDay + 7 - wd) / 7);
j += 2;
}
else
{
sqlite3_snprintf(4, &z[j], "%03d", nDay + 1);
j += 3;
}
break;
}
case 'J':
{
sqlite3_snprintf(20, &z[j], "%.16g", x.rJD);
j += strlen(&z[j]);
break;
}
case 'm':
sqlite3_snprintf(3, &z[j], "%02d", x.M);
j += 2;
break;
case 'M':
sqlite3_snprintf(3, &z[j], "%02d", x.m);
j += 2;
break;
case 's':
{
sqlite3_snprintf(30, &z[j], "%d",
(int) ((x.rJD - 2440587.5) * 86400.0 +
0.5));
j += strlen(&z[j]);
break;
}
case 'S':
sqlite3_snprintf(3, &z[j], "%02d", (int) x.s);
j += 2;
break;
case 'w':
z[j++] = (((int) (x.rJD + 1.5)) % 7) + '0';
break;
case 'Y':
sqlite3_snprintf(5, &z[j], "%04d", x.Y);
j += strlen(&z[j]);
break;
default:
z[j++] = '%';
break;
}
}
}
z[j] = 0;
sqlite3_result_text(context, z, -1, z == zBuf ? SQLITE_TRANSIENT : sqlite3_free);
}
/*
** current_time()
**
** This function returns the same value as time('now').
*/
static void
ctimeFunc(sqlite3_context * context, int argc, sqlite3_value ** argv)
{
timeFunc(context, 0, 0);
}
/*
** current_date()
**
** This function returns the same value as date('now').
*/
static void
cdateFunc(sqlite3_context * context, int argc, sqlite3_value ** argv)
{
dateFunc(context, 0, 0);
}
/*
** current_timestamp()
**
** This function returns the same value as datetime('now').
*/
static void
ctimestampFunc(sqlite3_context * context, int argc, sqlite3_value ** argv)
{
datetimeFunc(context, 0, 0);
}
#endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */
#ifdef SQLITE_OMIT_DATETIME_FUNCS
/*
** If the library is compiled to omit the full-scale date and time
** handling (to get a smaller binary), the following minimal version
** of the functions current_time(), current_date() and current_timestamp()
** are included instead. This is to support column declarations that
** include "DEFAULT CURRENT_TIME" etc.
**
** This function uses the C-library functions time(), gmtime()
** and strftime(). The format string to pass to strftime() is supplied
** as the user-data for the function.
*/
static void
currentTimeFunc(sqlite3_context * context, int argc, sqlite3_value ** argv)
{
time_t t;
char *zFormat = (char *) sqlite3_user_data(context);
sqlite3 *db;
double rT;
char zBuf[20];
db = sqlite3_context_db_handle(context);
sqlite3OsCurrentTime(db->pVfs, &rT);
t = 86400.0 * (rT - 2440587.5) + 0.5;
#ifdef HAVE_GMTIME_R
{
struct tm sNow;
gmtime_r(&t, &sNow);
strftime(zBuf, 20, zFormat, &sNow);
}
#else
{
struct tm *pTm;
sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
pTm = gmtime(&t);
strftime(zBuf, 20, zFormat, pTm);
sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
}
#endif
sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
}
#endif
/*
** This function registered all of the above C functions as SQL
** functions. This should be the only routine in this file with
** external linkage.
*/
SQLITE_PRIVATE void
sqlite3RegisterDateTimeFunctions(sqlite3 * db)
{
#ifndef SQLITE_OMIT_DATETIME_FUNCS
static const struct
{
char *zName;
int nArg;
void (*xFunc) (sqlite3_context *, int, sqlite3_value **);
} aFuncs[] =
{
{
"julianday", -1, juliandayFunc},
{
"date", -1, dateFunc},
{
"time", -1, timeFunc},
{
"datetime", -1, datetimeFunc},
{
"strftime", -1, strftimeFunc},
{
"current_time", 0, ctimeFunc},
{
"current_timestamp", 0, ctimestampFunc},
{
"current_date", 0, cdateFunc},};
int i;
for (i = 0; i < sizeof(aFuncs) / sizeof(aFuncs[0]); i++)
{
sqlite3CreateFunc(db, aFuncs[i].zName, aFuncs[i].nArg,
SQLITE_UTF8, 0, aFuncs[i].xFunc, 0, 0);
}
#else
static const struct
{
char *zName;
char *zFormat;
} aFuncs[] =
{
{
"current_time", "%H:%M:%S"},
{
"current_date", "%Y-%m-%d"},
{
"current_timestamp", "%Y-%m-%d %H:%M:%S"}
};
int i;
for (i = 0; i < sizeof(aFuncs) / sizeof(aFuncs[0]); i++)
{
sqlite3CreateFunc(db, aFuncs[i].zName, 0, SQLITE_UTF8,
aFuncs[i].zFormat, currentTimeFunc, 0, 0);
}
#endif
}
/************** End of date.c ************************************************/
/************** Begin file os.c **********************************************/
/*
** 2005 November 29
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** This file contains OS interface code that is common to all
** architectures.
*/
#define _SQLITE_OS_C_ 1
#undef _SQLITE_OS_C_
/*
** The default SQLite sqlite3_vfs implementations do not allocate
** memory (actually, os_unix.c allocates a small amount of memory
** from within OsOpen()), but some third-party implementations may.
** So we test the effects of a malloc() failing and the sqlite3OsXXX()
** function returning SQLITE_IOERR_NOMEM using the DO_OS_MALLOC_TEST macro.
**
** The following functions are instrumented for malloc() failure
** testing:
**
** sqlite3OsOpen()
** sqlite3OsRead()
** sqlite3OsWrite()
** sqlite3OsSync()
** sqlite3OsLock()
**
*/
#if defined(SQLITE_TEST) && (OS_WIN==0)
#define DO_OS_MALLOC_TEST if (1) { \
void *pTstAlloc = sqlite3_malloc(10); \
if (!pTstAlloc) return SQLITE_IOERR_NOMEM; \
sqlite3_free(pTstAlloc); \
}
#else
#define DO_OS_MALLOC_TEST
#endif
/*
** The following routines are convenience wrappers around methods
** of the sqlite3_file object. This is mostly just syntactic sugar. All
** of this would be completely automatic if SQLite were coded using
** C++ instead of plain old C.
*/
SQLITE_PRIVATE int
sqlite3OsClose(sqlite3_file * pId)
{
int rc = SQLITE_OK;
if(pId->pMethods)
{
rc = pId->pMethods->xClose(pId);
pId->pMethods = 0;
}
return rc;
}
SQLITE_PRIVATE int
sqlite3OsRead(sqlite3_file * id, void *pBuf, int amt, i64 offset)
{
DO_OS_MALLOC_TEST;
return id->pMethods->xRead(id, pBuf, amt, offset);
}
SQLITE_PRIVATE int
sqlite3OsWrite(sqlite3_file * id, const void *pBuf, int amt, i64 offset)
{
DO_OS_MALLOC_TEST;
return id->pMethods->xWrite(id, pBuf, amt, offset);
}
SQLITE_PRIVATE int
sqlite3OsTruncate(sqlite3_file * id, i64 size)
{
return id->pMethods->xTruncate(id, size);
}
SQLITE_PRIVATE int
sqlite3OsSync(sqlite3_file * id, int flags)
{
DO_OS_MALLOC_TEST;
return id->pMethods->xSync(id, flags);
}
SQLITE_PRIVATE int
sqlite3OsFileSize(sqlite3_file * id, i64 * pSize)
{
return id->pMethods->xFileSize(id, pSize);
}
SQLITE_PRIVATE int
sqlite3OsLock(sqlite3_file * id, int lockType)
{
DO_OS_MALLOC_TEST;
return id->pMethods->xLock(id, lockType);
}
SQLITE_PRIVATE int
sqlite3OsUnlock(sqlite3_file * id, int lockType)
{
return id->pMethods->xUnlock(id, lockType);
}
SQLITE_PRIVATE int
sqlite3OsCheckReservedLock(sqlite3_file * id)
{
return id->pMethods->xCheckReservedLock(id);
}
SQLITE_PRIVATE int
sqlite3OsFileControl(sqlite3_file * id, int op, void *pArg)
{
return id->pMethods->xFileControl(id, op, pArg);
}
SQLITE_PRIVATE int
sqlite3OsSectorSize(sqlite3_file * id)
{
int (*xSectorSize) (sqlite3_file *) = id->pMethods->xSectorSize;
return (xSectorSize ? xSectorSize(id) : SQLITE_DEFAULT_SECTOR_SIZE);
}
SQLITE_PRIVATE int
sqlite3OsDeviceCharacteristics(sqlite3_file * id)
{
return id->pMethods->xDeviceCharacteristics(id);
}
/*
** The next group of routines are convenience wrappers around the
** VFS methods.
*/
SQLITE_PRIVATE int
sqlite3OsOpen(sqlite3_vfs * pVfs,
const char *zPath, sqlite3_file * pFile, int flags, int *pFlagsOut)
{
DO_OS_MALLOC_TEST;
return pVfs->xOpen(pVfs, zPath, pFile, flags, pFlagsOut);
}
SQLITE_PRIVATE int
sqlite3OsDelete(sqlite3_vfs * pVfs, const char *zPath, int dirSync)
{
return pVfs->xDelete(pVfs, zPath, dirSync);
}
SQLITE_PRIVATE int
sqlite3OsAccess(sqlite3_vfs * pVfs, const char *zPath, int flags)
{
int rc;
#ifdef SQLITE_TEST
void *pTstAlloc = sqlite3_malloc(10);
if(!pTstAlloc)
return -1;
sqlite3_free(pTstAlloc);
#endif
rc = pVfs->xAccess(pVfs, zPath, flags);
return rc;
}
SQLITE_PRIVATE int
sqlite3OsGetTempname(sqlite3_vfs * pVfs, int nBufOut, char *zBufOut)
{
return pVfs->xGetTempname(pVfs, nBufOut, zBufOut);
}
SQLITE_PRIVATE int
sqlite3OsFullPathname(sqlite3_vfs * pVfs, const char *zPath, int nPathOut, char *zPathOut)
{
return pVfs->xFullPathname(pVfs, zPath, nPathOut, zPathOut);
}
SQLITE_PRIVATE void *
sqlite3OsDlOpen(sqlite3_vfs * pVfs, const char *zPath)
{
return pVfs->xDlOpen(pVfs, zPath);
}
SQLITE_PRIVATE void
sqlite3OsDlError(sqlite3_vfs * pVfs, int nByte, char *zBufOut)
{
pVfs->xDlError(pVfs, nByte, zBufOut);
}
SQLITE_PRIVATE void *
sqlite3OsDlSym(sqlite3_vfs * pVfs, void *pHandle, const char *zSymbol)
{
return pVfs->xDlSym(pVfs, pHandle, zSymbol);
}
SQLITE_PRIVATE void
sqlite3OsDlClose(sqlite3_vfs * pVfs, void *pHandle)
{
pVfs->xDlClose(pVfs, pHandle);
}
SQLITE_PRIVATE int
sqlite3OsRandomness(sqlite3_vfs * pVfs, int nByte, char *zBufOut)
{
return pVfs->xRandomness(pVfs, nByte, zBufOut);
}
SQLITE_PRIVATE int
sqlite3OsSleep(sqlite3_vfs * pVfs, int nMicro)
{
return pVfs->xSleep(pVfs, nMicro);
}
SQLITE_PRIVATE int
sqlite3OsCurrentTime(sqlite3_vfs * pVfs, double *pTimeOut)
{
return pVfs->xCurrentTime(pVfs, pTimeOut);
}
SQLITE_PRIVATE int
sqlite3OsOpenMalloc(sqlite3_vfs * pVfs,
const char *zFile, sqlite3_file ** ppFile, int flags, int *pOutFlags)
{
int rc = SQLITE_NOMEM;
sqlite3_file *pFile;
pFile = (sqlite3_file *) sqlite3_malloc(pVfs->szOsFile);
if(pFile)
{
rc = sqlite3OsOpen(pVfs, zFile, pFile, flags, pOutFlags);
if(rc != SQLITE_OK)
{
sqlite3_free(pFile);
}
else
{
*ppFile = pFile;
}
}
return rc;
}
SQLITE_PRIVATE int
sqlite3OsCloseFree(sqlite3_file * pFile)
{
int rc = SQLITE_OK;
assert(pFile);
rc = sqlite3OsClose(pFile);
sqlite3_free(pFile);
return rc;
}
/*
** The list of all registered VFS implementations. This list is
** initialized to the single VFS returned by sqlite3OsDefaultVfs()
** upon the first call to sqlite3_vfs_find().
*/
static sqlite3_vfs *vfsList = 0;
/*
** Locate a VFS by name. If no name is given, simply return the
** first VFS on the list.
*/
SQLITE_API sqlite3_vfs *
sqlite3_vfs_find(const char *zVfs)
{
#ifndef SQLITE_MUTEX_NOOP
sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
#endif
sqlite3_vfs *pVfs = 0;
static int isInit = 0;
sqlite3_mutex_enter(mutex);
if(!isInit)
{
vfsList = sqlite3OsDefaultVfs();
isInit = 1;
}
for (pVfs = vfsList; pVfs; pVfs = pVfs->pNext)
{
if(zVfs == 0)
break;
if(strcmp(zVfs, pVfs->zName) == 0)
break;
}
sqlite3_mutex_leave(mutex);
return pVfs;
}
/*
** Unlink a VFS from the linked list
*/
static void
vfsUnlink(sqlite3_vfs * pVfs)
{
assert(sqlite3_mutex_held(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER)));
if(pVfs == 0)
{
/* No-op */
}
else if(vfsList == pVfs)
{
vfsList = pVfs->pNext;
}
else if(vfsList)
{
sqlite3_vfs *p = vfsList;
while (p->pNext && p->pNext != pVfs)
{
p = p->pNext;
}
if(p->pNext == pVfs)
{
p->pNext = pVfs->pNext;
}
}
}
/*
** Register a VFS with the system. It is harmless to register the same
** VFS multiple times. The new VFS becomes the default if makeDflt is
** true.
*/
SQLITE_API int
sqlite3_vfs_register(sqlite3_vfs * pVfs, int makeDflt)
{
#ifndef SQLITE_MUTEX_NOOP
sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
#endif
sqlite3_vfs_find(0); /* Make sure we are initialized */
sqlite3_mutex_enter(mutex);
vfsUnlink(pVfs);
if(makeDflt || vfsList == 0)
{
pVfs->pNext = vfsList;
vfsList = pVfs;
}
else
{
pVfs->pNext = vfsList->pNext;
vfsList->pNext = pVfs;
}
assert(vfsList);
sqlite3_mutex_leave(mutex);
return SQLITE_OK;
}
/*
** Unregister a VFS so that it is no longer accessible.
*/
SQLITE_API int
sqlite3_vfs_unregister(sqlite3_vfs * pVfs)
{
#ifndef SQLITE_MUTEX_NOOP
sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
#endif
sqlite3_mutex_enter(mutex);
vfsUnlink(pVfs);
sqlite3_mutex_leave(mutex);
return SQLITE_OK;
}
/*
** Provide a default sqlite3OsDefaultVfs() implementation in the
** cases where none of the standard backends are used.
*/
#if !OS_UNIX && !OS_WIN && !OS_OS2
SQLITE_PRIVATE sqlite3_vfs *
sqlite3OsDefaultVfs(void)
{
return 0;
}
#endif
/************** End of os.c **************************************************/
/************** Begin file fault.c *******************************************/
/*
** 2008 Jan 22
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code to implement a fault-injector used for
** testing and verification of SQLite.
**
** Subsystems within SQLite can call sqlite3FaultStep() to see if
** they should simulate a fault. sqlite3FaultStep() normally returns
** zero but will return non-zero if a fault should be simulated.
** Fault injectors can be used, for example, to simulate memory
** allocation failures or I/O errors.
**
** The fault injector is omitted from the code if SQLite is
** compiled with -DSQLITE_OMIT_BUILTIN_TEST=1. There is a very
** small performance hit for leaving the fault injector in the code.
** Commerical products will probably want to omit the fault injector
** from production builds. But safety-critical systems who work
** under the motto "fly what you test and test what you fly" may
** choose to leave the fault injector enabled even in production.
*/
#ifndef SQLITE_OMIT_BUILTIN_TEST
/*
** There can be various kinds of faults. For example, there can be
** a memory allocation failure. Or an I/O failure. For each different
** fault type, there is a separate FaultInjector structure to keep track
** of the status of that fault.
*/
static struct FaultInjector
{
int iCountdown; /* Number of pending successes before we hit a failure */
int nRepeat; /* Number of times to repeat the failure */
int nBenign; /* Number of benign failures seen since last config */
int nFail; /* Number of failures seen since last config */
u8 enable; /* True if enabled */
i16 benign; /* Positive if next failure will be benign */
} aFault[SQLITE_FAULTINJECTOR_COUNT];
/*
** This routine configures and enables a fault injector. After
** calling this routine, aFaultStep() will return false (zero)
** nDelay times, then it will return true nRepeat times,
** then it will again begin returning false.
*/
SQLITE_PRIVATE void
sqlite3FaultConfig(int id, int nDelay, int nRepeat)
{
assert(id >= 0 && id < SQLITE_FAULTINJECTOR_COUNT);
aFault[id].iCountdown = nDelay;
aFault[id].nRepeat = nRepeat;
aFault[id].nBenign = 0;
aFault[id].nFail = 0;
aFault[id].enable = nDelay >= 0;
aFault[id].benign = 0;
}
/*
** Return the number of faults (both hard and benign faults) that have
** occurred since the injector was last configured.
*/
SQLITE_PRIVATE int
sqlite3FaultFailures(int id)
{
assert(id >= 0 && id < SQLITE_FAULTINJECTOR_COUNT);
return aFault[id].nFail;
}
/*
** Return the number of benign faults that have occurred since the
** injector was last configured.
*/
SQLITE_PRIVATE int
sqlite3FaultBenignFailures(int id)
{
assert(id >= 0 && id < SQLITE_FAULTINJECTOR_COUNT);
return aFault[id].nBenign;
}
/*
** Return the number of successes that will occur before the next failure.
** If no failures are scheduled, return -1.
*/
SQLITE_PRIVATE int
sqlite3FaultPending(int id)
{
assert(id >= 0 && id < SQLITE_FAULTINJECTOR_COUNT);
if(aFault[id].enable)
{
return aFault[id].iCountdown;
}
else
{
return -1;
}
}
/*
** After this routine causes subsequent faults to be either benign
** or hard (not benign), according to the "enable" parameter.
**
** Most faults are hard. In other words, most faults cause
** an error to be propagated back up to the application interface.
** However, sometimes a fault is easily recoverable. For example,
** if a malloc fails while resizing a hash table, this is completely
** recoverable simply by not carrying out the resize. The hash table
** will continue to function normally. So a malloc failure during
** a hash table resize is a benign fault.
*/
SQLITE_PRIVATE void
sqlite3FaultBeginBenign(int id)
{
if(id < 0)
{
for (id = 0; id < SQLITE_FAULTINJECTOR_COUNT; id++)
{
aFault[id].benign++;
}
}
else
{
assert(id >= 0 && id < SQLITE_FAULTINJECTOR_COUNT);
aFault[id].benign++;
}
}
SQLITE_PRIVATE void
sqlite3FaultEndBenign(int id)
{
if(id < 0)
{
for (id = 0; id < SQLITE_FAULTINJECTOR_COUNT; id++)
{
assert(aFault[id].benign > 0);
aFault[id].benign--;
}
}
else
{
assert(id >= 0 && id < SQLITE_FAULTINJECTOR_COUNT);
assert(aFault[id].benign > 0);
aFault[id].benign--;
}
}
/*
** This routine exists as a place to set a breakpoint that will
** fire on any simulated fault.
*/
static void
sqlite3Fault(void)
{
static int cnt = 0;
cnt++;
}
/*
** Check to see if a fault should be simulated. Return true to simulate
** the fault. Return false if the fault should not be simulated.
*/
SQLITE_PRIVATE int
sqlite3FaultStep(int id)
{
assert(id >= 0 && id < SQLITE_FAULTINJECTOR_COUNT);
if(likely(!aFault[id].enable))
{
return 0;
}
if(aFault[id].iCountdown > 0)
{
aFault[id].iCountdown--;
return 0;
}
sqlite3Fault();
aFault[id].nFail++;
if(aFault[id].benign > 0)
{
aFault[id].nBenign++;
}
aFault[id].nRepeat--;
if(aFault[id].nRepeat <= 0)
{
aFault[id].enable = 0;
}
return 1;
}
#endif /* SQLITE_OMIT_BUILTIN_TEST */
/************** End of fault.c ***********************************************/
/************** Begin file mem1.c ********************************************/
/*
** 2007 August 14
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains the C functions that implement a memory
** allocation subsystem for use by SQLite.
**
*/
/*
** This version of the memory allocator is the default. It is
** used when no other memory allocator is specified using compile-time
** macros.
*/
#ifdef SQLITE_SYSTEM_MALLOC
/*
** All of the static variables used by this module are collected
** into a single structure named "mem". This is to keep the
** static variables organized and to reduce namespace pollution
** when this module is combined with other in the amalgamation.
*/
static struct
{
/*
** The alarm callback and its arguments. The mem.mutex lock will
** be held while the callback is running. Recursive calls into
** the memory subsystem are allowed, but no new callbacks will be
** issued. The alarmBusy variable is set to prevent recursive
** callbacks.
*/
sqlite3_int64 alarmThreshold;
void (*alarmCallback) (void *, sqlite3_int64, int);
void *alarmArg;
int alarmBusy;
/*
** Mutex to control access to the memory allocation subsystem.
*/
sqlite3_mutex *mutex;
/*
** Current allocation and high-water mark.
*/
sqlite3_int64 nowUsed;
sqlite3_int64 mxUsed;
} mem;
/*
** Enter the mutex mem.mutex. Allocate it if it is not already allocated.
*/
static void
enterMem(void)
{
if(mem.mutex == 0)
{
mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM);
}
sqlite3_mutex_enter(mem.mutex);
}
/*
** Return the amount of memory currently checked out.
*/
SQLITE_API sqlite3_int64
sqlite3_memory_used(void)
{
sqlite3_int64 n;
enterMem();
n = mem.nowUsed;
sqlite3_mutex_leave(mem.mutex);
return n;
}
/*
** Return the maximum amount of memory that has ever been
** checked out since either the beginning of this process
** or since the most recent reset.
*/
SQLITE_API sqlite3_int64
sqlite3_memory_highwater(int resetFlag)
{
sqlite3_int64 n;
enterMem();
n = mem.mxUsed;
if(resetFlag)
{
mem.mxUsed = mem.nowUsed;
}
sqlite3_mutex_leave(mem.mutex);
return n;
}
/*
** Change the alarm callback
*/
SQLITE_API int
sqlite3_memory_alarm(void (*xCallback) (void *pArg, sqlite3_int64 used, int N),
void *pArg, sqlite3_int64 iThreshold)
{
enterMem();
mem.alarmCallback = xCallback;
mem.alarmArg = pArg;
mem.alarmThreshold = iThreshold;
sqlite3_mutex_leave(mem.mutex);
return SQLITE_OK;
}
/*
** Trigger the alarm
*/
static void
sqlite3MemsysAlarm(int nByte)
{
void (*xCallback) (void *, sqlite3_int64, int);
sqlite3_int64 nowUsed;
void *pArg;
if(mem.alarmCallback == 0 || mem.alarmBusy)
return;
mem.alarmBusy = 1;
xCallback = mem.alarmCallback;
nowUsed = mem.nowUsed;
pArg = mem.alarmArg;
sqlite3_mutex_leave(mem.mutex);
xCallback(pArg, nowUsed, nByte);
sqlite3_mutex_enter(mem.mutex);
mem.alarmBusy = 0;
}
/*
** Allocate nBytes of memory
*/
SQLITE_API void *
sqlite3_malloc(int nBytes)
{
sqlite3_int64 *p = 0;
if(nBytes > 0)
{
enterMem();
if(mem.alarmCallback != 0 && mem.nowUsed + nBytes >= mem.alarmThreshold)
{
sqlite3MemsysAlarm(nBytes);
}
if(sqlite3FaultStep(SQLITE_FAULTINJECTOR_MALLOC))
{
p = 0;
}
else
{
p = malloc(nBytes + 8);
if(p == 0)
{
sqlite3MemsysAlarm(nBytes);
p = malloc(nBytes + 8);
}
}
if(p)
{
p[0] = nBytes;
p++;
mem.nowUsed += nBytes;
if(mem.nowUsed > mem.mxUsed)
{
mem.mxUsed = mem.nowUsed;
}
}
sqlite3_mutex_leave(mem.mutex);
}
return (void *) p;
}
/*
** Free memory.
*/
SQLITE_API void
sqlite3_free(void *pPrior)
{
sqlite3_int64 *p;
int nByte;
if(pPrior == 0)
{
return;
}
assert(mem.mutex != 0);
p = pPrior;
p--;
nByte = (int) *p;
sqlite3_mutex_enter(mem.mutex);
mem.nowUsed -= nByte;
free(p);
sqlite3_mutex_leave(mem.mutex);
}
/*
** Return the number of bytes allocated at p.
*/
SQLITE_PRIVATE int
sqlite3MallocSize(void *p)
{
sqlite3_int64 *pInt;
if(!p)
return 0;
pInt = p;
return pInt[-1];
}
/*
** Change the size of an existing memory allocation
*/
SQLITE_API void *
sqlite3_realloc(void *pPrior, int nBytes)
{
int nOld;
sqlite3_int64 *p;
if(pPrior == 0)
{
return sqlite3_malloc(nBytes);
}
if(nBytes <= 0)
{
sqlite3_free(pPrior);
return 0;
}
p = pPrior;
p--;
nOld = (int) p[0];
assert(mem.mutex != 0);
sqlite3_mutex_enter(mem.mutex);
if(mem.nowUsed + nBytes - nOld >= mem.alarmThreshold)
{
sqlite3MemsysAlarm(nBytes - nOld);
}
if(sqlite3FaultStep(SQLITE_FAULTINJECTOR_MALLOC))
{
p = 0;
}
else
{
p = realloc(p, nBytes + 8);
if(p == 0)
{
sqlite3MemsysAlarm(nBytes);
p = pPrior;
p--;
p = realloc(p, nBytes + 8);
}
}
if(p)
{
p[0] = nBytes;
p++;
mem.nowUsed += nBytes - nOld;
if(mem.nowUsed > mem.mxUsed)
{
mem.mxUsed = mem.nowUsed;
}
}
sqlite3_mutex_leave(mem.mutex);
return (void *) p;
}
#endif /* SQLITE_SYSTEM_MALLOC */
/************** End of mem1.c ************************************************/
/************** Begin file mem2.c ********************************************/
/*
** 2007 August 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains the C functions that implement a memory
** allocation subsystem for use by SQLite.
**
*/
/*
** This version of the memory allocator is used only if the
** SQLITE_MEMDEBUG macro is defined
*/
#ifdef SQLITE_MEMDEBUG
/*
** The backtrace functionality is only available with GLIBC
*/
#ifdef __GLIBC__
extern int backtrace(void **, int);
extern void backtrace_symbols_fd(void *const *, int, int);
#else
# define backtrace(A,B) 0
# define backtrace_symbols_fd(A,B,C)
#endif
/*
** Each memory allocation looks like this:
**
** ------------------------------------------------------------------------
** | Title | backtrace pointers | MemBlockHdr | allocation | EndGuard |
** ------------------------------------------------------------------------
**
** The application code sees only a pointer to the allocation. We have
** to back up from the allocation pointer to find the MemBlockHdr. The
** MemBlockHdr tells us the size of the allocation and the number of
** backtrace pointers. There is also a guard word at the end of the
** MemBlockHdr.
*/
struct MemBlockHdr
{
i64 iSize; /* Size of this allocation */
struct MemBlockHdr *pNext, *pPrev; /* Linked list of all unfreed memory */
char nBacktrace; /* Number of backtraces on this alloc */
char nBacktraceSlots; /* Available backtrace slots */
short nTitle; /* Bytes of title; includes '\0' */
int iForeGuard; /* Guard word for sanity */
};
/*
** Guard words
*/
#define FOREGUARD 0x80F5E153
#define REARGUARD 0xE4676B53
/*
** Number of malloc size increments to track.
*/
#define NCSIZE 1000
/*
** All of the static variables used by this module are collected
** into a single structure named "mem". This is to keep the
** static variables organized and to reduce namespace pollution
** when this module is combined with other in the amalgamation.
*/
static struct
{
/*
** The alarm callback and its arguments. The mem.mutex lock will
** be held while the callback is running. Recursive calls into
** the memory subsystem are allowed, but no new callbacks will be
** issued. The alarmBusy variable is set to prevent recursive
** callbacks.
*/
sqlite3_int64 alarmThreshold;
void (*alarmCallback) (void *, sqlite3_int64, int);
void *alarmArg;
int alarmBusy;
/*
** Mutex to control access to the memory allocation subsystem.
*/
sqlite3_mutex *mutex;
/*
** Current allocation and high-water mark.
*/
sqlite3_int64 nowUsed;
sqlite3_int64 mxUsed;
/*
** Head and tail of a linked list of all outstanding allocations
*/
struct MemBlockHdr *pFirst;
struct MemBlockHdr *pLast;
/*
** The number of levels of backtrace to save in new allocations.
*/
int nBacktrace;
void (*xBacktrace) (int, int, void **);
/*
** Title text to insert in front of each block
*/
int nTitle; /* Bytes of zTitle to save. Includes '\0' and padding */
char zTitle[100]; /* The title text */
/*
** sqlite3MallocDisallow() increments the following counter.
** sqlite3MallocAllow() decrements it.
*/
int disallow; /* Do not allow memory allocation */
/*
** Gather statistics on the sizes of memory allocations.
** sizeCnt[i] is the number of allocation attempts of i*8
** bytes. i==NCSIZE is the number of allocation attempts for
** sizes more than NCSIZE*8 bytes.
*/
int sizeCnt[NCSIZE];
} mem;
/*
** Enter the mutex mem.mutex. Allocate it if it is not already allocated.
*/
static void
enterMem(void)
{
if(mem.mutex == 0)
{
mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM);
}
sqlite3_mutex_enter(mem.mutex);
}
/*
** Return the amount of memory currently checked out.
*/
SQLITE_API sqlite3_int64
sqlite3_memory_used(void)
{
sqlite3_int64 n;
enterMem();
n = mem.nowUsed;
sqlite3_mutex_leave(mem.mutex);
return n;
}
/*
** Return the maximum amount of memory that has ever been
** checked out since either the beginning of this process
** or since the most recent reset.
*/
SQLITE_API sqlite3_int64
sqlite3_memory_highwater(int resetFlag)
{
sqlite3_int64 n;
enterMem();
n = mem.mxUsed;
if(resetFlag)
{
mem.mxUsed = mem.nowUsed;
}
sqlite3_mutex_leave(mem.mutex);
return n;
}
/*
** Change the alarm callback
*/
SQLITE_API int
sqlite3_memory_alarm(void (*xCallback) (void *pArg, sqlite3_int64 used, int N),
void *pArg, sqlite3_int64 iThreshold)
{
enterMem();
mem.alarmCallback = xCallback;
mem.alarmArg = pArg;
mem.alarmThreshold = iThreshold;
sqlite3_mutex_leave(mem.mutex);
return SQLITE_OK;
}
/*
** Trigger the alarm
*/
static void
sqlite3MemsysAlarm(int nByte)
{
void (*xCallback) (void *, sqlite3_int64, int);
sqlite3_int64 nowUsed;
void *pArg;
if(mem.alarmCallback == 0 || mem.alarmBusy)
return;
mem.alarmBusy = 1;
xCallback = mem.alarmCallback;
nowUsed = mem.nowUsed;
pArg = mem.alarmArg;
sqlite3_mutex_leave(mem.mutex);
xCallback(pArg, nowUsed, nByte);
sqlite3_mutex_enter(mem.mutex);
mem.alarmBusy = 0;
}
/*
** Given an allocation, find the MemBlockHdr for that allocation.
**
** This routine checks the guards at either end of the allocation and
** if they are incorrect it asserts.
*/
static struct MemBlockHdr *
sqlite3MemsysGetHeader(void *pAllocation)
{
struct MemBlockHdr *p;
int *pInt;
u8 *pU8;
int nReserve;
p = (struct MemBlockHdr *) pAllocation;
p--;
assert(p->iForeGuard == FOREGUARD);
nReserve = (p->iSize + 7) & ~7;
pInt = (int *) pAllocation;
pU8 = (u8 *) pAllocation;
assert(pInt[nReserve / sizeof(int)] == REARGUARD);
assert((nReserve - 0) <= p->iSize || pU8[nReserve - 1] == 0x65);
assert((nReserve - 1) <= p->iSize || pU8[nReserve - 2] == 0x65);
assert((nReserve - 2) <= p->iSize || pU8[nReserve - 3] == 0x65);
return p;
}
/*
** Return the number of bytes currently allocated at address p.
*/
SQLITE_PRIVATE int
sqlite3MallocSize(void *p)
{
struct MemBlockHdr *pHdr;
if(!p)
{
return 0;
}
pHdr = sqlite3MemsysGetHeader(p);
return pHdr->iSize;
}
/*
** Allocate nByte bytes of memory.
*/
SQLITE_API void *
sqlite3_malloc(int nByte)
{
struct MemBlockHdr *pHdr;
void **pBt;
char *z;
int *pInt;
void *p = 0;
int totalSize;
if(nByte > 0)
{
int nReserve;
enterMem();
assert(mem.disallow == 0);
if(mem.alarmCallback != 0 && mem.nowUsed + nByte >= mem.alarmThreshold)
{
sqlite3MemsysAlarm(nByte);
}
nReserve = (nByte + 7) & ~7;
if(nReserve / 8 > NCSIZE - 1)
{
mem.sizeCnt[NCSIZE - 1]++;
}
else
{
mem.sizeCnt[nReserve / 8]++;
}
totalSize = nReserve + sizeof(*pHdr) + sizeof(int) +
mem.nBacktrace * sizeof(void *) + mem.nTitle;
if(sqlite3FaultStep(SQLITE_FAULTINJECTOR_MALLOC))
{
p = 0;
}
else
{
p = malloc(totalSize);
if(p == 0)
{
sqlite3MemsysAlarm(nByte);
p = malloc(totalSize);
}
}
if(p)
{
z = p;
pBt = (void **) &z[mem.nTitle];
pHdr = (struct MemBlockHdr *) &pBt[mem.nBacktrace];
pHdr->pNext = 0;
pHdr->pPrev = mem.pLast;
if(mem.pLast)
{
mem.pLast->pNext = pHdr;
}
else
{
mem.pFirst = pHdr;
}
mem.pLast = pHdr;
pHdr->iForeGuard = FOREGUARD;
pHdr->nBacktraceSlots = mem.nBacktrace;
pHdr->nTitle = mem.nTitle;
if(mem.nBacktrace)
{
void *aAddr[40];
pHdr->nBacktrace = backtrace(aAddr, mem.nBacktrace + 1) - 1;
memcpy(pBt, &aAddr[1], pHdr->nBacktrace * sizeof(void *));
if(mem.xBacktrace)
{
mem.xBacktrace(nByte, pHdr->nBacktrace - 1, &aAddr[1]);
}
}
else
{
pHdr->nBacktrace = 0;
}
if(mem.nTitle)
{
memcpy(z, mem.zTitle, mem.nTitle);
}
pHdr->iSize = nByte;
pInt = (int *) &pHdr[1];
pInt[nReserve / sizeof(int)] = REARGUARD;
memset(pInt, 0x65, nReserve);
mem.nowUsed += nByte;
if(mem.nowUsed > mem.mxUsed)
{
mem.mxUsed = mem.nowUsed;
}
p = (void *) pInt;
}
sqlite3_mutex_leave(mem.mutex);
}
return p;
}
/*
** Free memory.
*/
SQLITE_API void
sqlite3_free(void *pPrior)
{
struct MemBlockHdr *pHdr;
void **pBt;
char *z;
if(pPrior == 0)
{
return;
}
assert(mem.mutex != 0);
pHdr = sqlite3MemsysGetHeader(pPrior);
pBt = (void **) pHdr;
pBt -= pHdr->nBacktraceSlots;
sqlite3_mutex_enter(mem.mutex);
mem.nowUsed -= pHdr->iSize;
if(pHdr->pPrev)
{
assert(pHdr->pPrev->pNext == pHdr);
pHdr->pPrev->pNext = pHdr->pNext;
}
else
{
assert(mem.pFirst == pHdr);
mem.pFirst = pHdr->pNext;
}
if(pHdr->pNext)
{
assert(pHdr->pNext->pPrev == pHdr);
pHdr->pNext->pPrev = pHdr->pPrev;
}
else
{
assert(mem.pLast == pHdr);
mem.pLast = pHdr->pPrev;
}
z = (char *) pBt;
z -= pHdr->nTitle;
memset(z, 0x2b, sizeof(void *) * pHdr->nBacktraceSlots + sizeof(*pHdr) +
pHdr->iSize + sizeof(int) + pHdr->nTitle);
free(z);
sqlite3_mutex_leave(mem.mutex);
}
/*
** Change the size of an existing memory allocation.
**
** For this debugging implementation, we *always* make a copy of the
** allocation into a new place in memory. In this way, if the
** higher level code is using pointer to the old allocation, it is
** much more likely to break and we are much more liking to find
** the error.
*/
SQLITE_API void *
sqlite3_realloc(void *pPrior, int nByte)
{
struct MemBlockHdr *pOldHdr;
void *pNew;
if(pPrior == 0)
{
return sqlite3_malloc(nByte);
}
if(nByte <= 0)
{
sqlite3_free(pPrior);
return 0;
}
assert(mem.disallow == 0);
pOldHdr = sqlite3MemsysGetHeader(pPrior);
pNew = sqlite3_malloc(nByte);
if(pNew)
{
memcpy(pNew, pPrior, nByte < pOldHdr->iSize ? nByte : pOldHdr->iSize);
if(nByte > pOldHdr->iSize)
{
memset(&((char *) pNew)[pOldHdr->iSize], 0x2b, nByte - pOldHdr->iSize);
}
sqlite3_free(pPrior);
}
return pNew;
}
/*
** Set the number of backtrace levels kept for each allocation.
** A value of zero turns of backtracing. The number is always rounded
** up to a multiple of 2.
*/
SQLITE_PRIVATE void
sqlite3MemdebugBacktrace(int depth)
{
if(depth < 0)
{
depth = 0;
}
if(depth > 20)
{
depth = 20;
}
depth = (depth + 1) & 0xfe;
mem.nBacktrace = depth;
}
SQLITE_PRIVATE void
sqlite3MemdebugBacktraceCallback(void (*xBacktrace) (int, int, void **))
{
mem.xBacktrace = xBacktrace;
}
/*
** Set the title string for subsequent allocations.
*/
SQLITE_PRIVATE void
sqlite3MemdebugSettitle(const char *zTitle)
{
int n = strlen(zTitle) + 1;
enterMem();
if(n >= sizeof(mem.zTitle))
n = sizeof(mem.zTitle) - 1;
memcpy(mem.zTitle, zTitle, n);
mem.zTitle[n] = 0;
mem.nTitle = (n + 7) & ~7;
sqlite3_mutex_leave(mem.mutex);
}
SQLITE_PRIVATE void
sqlite3MemdebugSync()
{
struct MemBlockHdr *pHdr;
for (pHdr = mem.pFirst; pHdr; pHdr = pHdr->pNext)
{
void **pBt = (void **) pHdr;
pBt -= pHdr->nBacktraceSlots;
mem.xBacktrace(pHdr->iSize, pHdr->nBacktrace - 1, &pBt[1]);
}
}
/*
** Open the file indicated and write a log of all unfreed memory
** allocations into that log.
*/
SQLITE_PRIVATE void
sqlite3MemdebugDump(const char *zFilename)
{
FILE *out;
struct MemBlockHdr *pHdr;
void **pBt;
int i;
out = fopen(zFilename, "w");
if(out == 0)
{
fprintf(stderr, "** Unable to output memory debug output log: %s **\n", zFilename);
return;
}
for (pHdr = mem.pFirst; pHdr; pHdr = pHdr->pNext)
{
char *z = (char *) pHdr;
z -= pHdr->nBacktraceSlots * sizeof(void *) + pHdr->nTitle;
fprintf(out, "**** %lld bytes at %p from %s ****\n",
pHdr->iSize, &pHdr[1], pHdr->nTitle ? z : "???");
if(pHdr->nBacktrace)
{
fflush(out);
pBt = (void **) pHdr;
pBt -= pHdr->nBacktraceSlots;
backtrace_symbols_fd(pBt, pHdr->nBacktrace, fileno(out));
fprintf(out, "\n");
}
}
fprintf(out, "COUNTS:\n");
for (i = 0; i < NCSIZE - 1; i++)
{
if(mem.sizeCnt[i])
{
fprintf(out, " %3d: %d\n", i * 8 + 8, mem.sizeCnt[i]);
}
}
if(mem.sizeCnt[NCSIZE - 1])
{
fprintf(out, " >%3d: %d\n", NCSIZE * 8, mem.sizeCnt[NCSIZE - 1]);
}
fclose(out);
}
/*
** Return the number of times sqlite3_malloc() has been called.
*/
SQLITE_PRIVATE int
sqlite3MemdebugMallocCount()
{
int i;
int nTotal = 0;
for (i = 0; i < NCSIZE; i++)
{
nTotal += mem.sizeCnt[i];
}
return nTotal;
}
#endif /* SQLITE_MEMDEBUG */
/************** End of mem2.c ************************************************/
/************** Begin file mem3.c ********************************************/
/*
** 2007 October 14
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains the C functions that implement a memory
** allocation subsystem for use by SQLite.
**
** This version of the memory allocation subsystem omits all
** use of malloc(). All dynamically allocatable memory is
** contained in a static array, mem.aPool[]. The size of this
** fixed memory pool is SQLITE_MEMORY_SIZE bytes.
**
** This version of the memory allocation subsystem is used if
** and only if SQLITE_MEMORY_SIZE is defined.
**
*/
/*
** This version of the memory allocator is used only when
** SQLITE_MEMORY_SIZE is defined.
*/
#ifdef SQLITE_MEMORY_SIZE
/*
** Maximum size (in Mem3Blocks) of a "small" chunk.
*/
#define MX_SMALL 10
/*
** Number of freelist hash slots
*/
#define N_HASH 61
/*
** A memory allocation (also called a "chunk") consists of two or
** more blocks where each block is 8 bytes. The first 8 bytes are
** a header that is not returned to the user.
**
** A chunk is two or more blocks that is either checked out or
** free. The first block has format u.hdr. u.hdr.size4x is 4 times the
** size of the allocation in blocks if the allocation is free.
** The u.hdr.size4x&1 bit is true if the chunk is checked out and
** false if the chunk is on the freelist. The u.hdr.size4x&2 bit
** is true if the previous chunk is checked out and false if the
** previous chunk is free. The u.hdr.prevSize field is the size of
** the previous chunk in blocks if the previous chunk is on the
** freelist. If the previous chunk is checked out, then
** u.hdr.prevSize can be part of the data for that chunk and should
** not be read or written.
**
** We often identify a chunk by its index in mem.aPool[]. When
** this is done, the chunk index refers to the second block of
** the chunk. In this way, the first chunk has an index of 1.
** A chunk index of 0 means "no such chunk" and is the equivalent
** of a NULL pointer.
**
** The second block of free chunks is of the form u.list. The
** two fields form a double-linked list of chunks of related sizes.
** Pointers to the head of the list are stored in mem.aiSmall[]
** for smaller chunks and mem.aiHash[] for larger chunks.
**
** The second block of a chunk is user data if the chunk is checked
** out. If a chunk is checked out, the user data may extend into
** the u.hdr.prevSize value of the following chunk.
*/
typedef struct Mem3Block Mem3Block;
struct Mem3Block
{
union
{
struct
{
u32 prevSize; /* Size of previous chunk in Mem3Block elements */
u32 size4x; /* 4x the size of current chunk in Mem3Block elements */
} hdr;
struct
{
u32 next; /* Index in mem.aPool[] of next free chunk */
u32 prev; /* Index in mem.aPool[] of previous free chunk */
} list;
} u;
};
/*
** All of the static variables used by this module are collected
** into a single structure named "mem". This is to keep the
** static variables organized and to reduce namespace pollution
** when this module is combined with other in the amalgamation.
*/
static struct
{
/*
** True if we are evaluating an out-of-memory callback.
*/
int alarmBusy;
/*
** Mutex to control access to the memory allocation subsystem.
*/
sqlite3_mutex *mutex;
/*
** The minimum amount of free space that we have seen.
*/
u32 mnMaster;
/*
** iMaster is the index of the master chunk. Most new allocations
** occur off of this chunk. szMaster is the size (in Mem3Blocks)
** of the current master. iMaster is 0 if there is not master chunk.
** The master chunk is not in either the aiHash[] or aiSmall[].
*/
u32 iMaster;
u32 szMaster;
/*
** Array of lists of free blocks according to the block size
** for smaller chunks, or a hash on the block size for larger
** chunks.
*/
u32 aiSmall[MX_SMALL - 1]; /* For sizes 2 through MX_SMALL, inclusive */
u32 aiHash[N_HASH]; /* For sizes MX_SMALL+1 and larger */
/*
** Memory available for allocation
*/
Mem3Block aPool[SQLITE_MEMORY_SIZE / sizeof(Mem3Block) + 2];
}
mem;
/*
** Unlink the chunk at mem.aPool[i] from list it is currently
** on. *pRoot is the list that i is a member of.
*/
static void
memsys3UnlinkFromList(u32 i, u32 * pRoot)
{
u32 next = mem.aPool[i].u.list.next;
u32 prev = mem.aPool[i].u.list.prev;
assert(sqlite3_mutex_held(mem.mutex));
if(prev == 0)
{
*pRoot = next;
}
else
{
mem.aPool[prev].u.list.next = next;
}
if(next)
{
mem.aPool[next].u.list.prev = prev;
}
mem.aPool[i].u.list.next = 0;
mem.aPool[i].u.list.prev = 0;
}
/*
** Unlink the chunk at index i from
** whatever list is currently a member of.
*/
static void
memsys3Unlink(u32 i)
{
u32 size, hash;
assert(sqlite3_mutex_held(mem.mutex));
assert((mem.aPool[i - 1].u.hdr.size4x & 1) == 0);
assert(i >= 1);
size = mem.aPool[i - 1].u.hdr.size4x / 4;
assert(size == mem.aPool[i + size - 1].u.hdr.prevSize);
assert(size >= 2);
if(size <= MX_SMALL)
{
memsys3UnlinkFromList(i, &mem.aiSmall[size - 2]);
}
else
{
hash = size % N_HASH;
memsys3UnlinkFromList(i, &mem.aiHash[hash]);
}
}
/*
** Link the chunk at mem.aPool[i] so that is on the list rooted
** at *pRoot.
*/
static void
memsys3LinkIntoList(u32 i, u32 * pRoot)
{
assert(sqlite3_mutex_held(mem.mutex));
mem.aPool[i].u.list.next = *pRoot;
mem.aPool[i].u.list.prev = 0;
if(*pRoot)
{
mem.aPool[*pRoot].u.list.prev = i;
}
*pRoot = i;
}
/*
** Link the chunk at index i into either the appropriate
** small chunk list, or into the large chunk hash table.
*/
static void
memsys3Link(u32 i)
{
u32 size, hash;
assert(sqlite3_mutex_held(mem.mutex));
assert(i >= 1);
assert((mem.aPool[i - 1].u.hdr.size4x & 1) == 0);
size = mem.aPool[i - 1].u.hdr.size4x / 4;
assert(size == mem.aPool[i + size - 1].u.hdr.prevSize);
assert(size >= 2);
if(size <= MX_SMALL)
{
memsys3LinkIntoList(i, &mem.aiSmall[size - 2]);
}
else
{
hash = size % N_HASH;
memsys3LinkIntoList(i, &mem.aiHash[hash]);
}
}
/*
** Enter the mutex mem.mutex. Allocate it if it is not already allocated.
**
** Also: Initialize the memory allocation subsystem the first time
** this routine is called.
*/
static void
memsys3Enter(void)
{
if(mem.mutex == 0)
{
mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM);
mem.aPool[0].u.hdr.size4x = SQLITE_MEMORY_SIZE / 2 + 2;
mem.aPool[SQLITE_MEMORY_SIZE / 8].u.hdr.prevSize = SQLITE_MEMORY_SIZE / 8;
mem.aPool[SQLITE_MEMORY_SIZE / 8].u.hdr.size4x = 1;
mem.iMaster = 1;
mem.szMaster = SQLITE_MEMORY_SIZE / 8;
mem.mnMaster = mem.szMaster;
}
sqlite3_mutex_enter(mem.mutex);
}
/*
** Return the amount of memory currently checked out.
*/
SQLITE_API sqlite3_int64
sqlite3_memory_used(void)
{
sqlite3_int64 n;
memsys3Enter();
n = SQLITE_MEMORY_SIZE - mem.szMaster * 8;
sqlite3_mutex_leave(mem.mutex);
return n;
}
/*
** Return the maximum amount of memory that has ever been
** checked out since either the beginning of this process
** or since the most recent reset.
*/
SQLITE_API sqlite3_int64
sqlite3_memory_highwater(int resetFlag)
{
sqlite3_int64 n;
memsys3Enter();
n = SQLITE_MEMORY_SIZE - mem.mnMaster * 8;
if(resetFlag)
{
mem.mnMaster = mem.szMaster;
}
sqlite3_mutex_leave(mem.mutex);
return n;
}
/*
** Change the alarm callback.
**
** This is a no-op for the static memory allocator. The purpose
** of the memory alarm is to support sqlite3_soft_heap_limit().
** But with this memory allocator, the soft_heap_limit is really
** a hard limit that is fixed at SQLITE_MEMORY_SIZE.
*/
SQLITE_API int
sqlite3_memory_alarm(void (*xCallback) (void *pArg, sqlite3_int64 used, int N),
void *pArg, sqlite3_int64 iThreshold)
{
return SQLITE_OK;
}
/*
** Called when we are unable to satisfy an allocation of nBytes.
*/
static void
memsys3OutOfMemory(int nByte)
{
if(!mem.alarmBusy)
{
mem.alarmBusy = 1;
assert(sqlite3_mutex_held(mem.mutex));
sqlite3_mutex_leave(mem.mutex);
sqlite3_release_memory(nByte);
sqlite3_mutex_enter(mem.mutex);
mem.alarmBusy = 0;
}
}
/*
** Return the size of an outstanding allocation, in bytes. The
** size returned omits the 8-byte header overhead. This only
** works for chunks that are currently checked out.
*/
SQLITE_PRIVATE int
sqlite3MallocSize(void *p)
{
int iSize = 0;
if(p)
{
Mem3Block *pBlock = (Mem3Block *) p;
assert((pBlock[-1].u.hdr.size4x & 1) != 0);
iSize = (pBlock[-1].u.hdr.size4x & ~3) * 2 - 4;
}
return iSize;
}
/*
** Chunk i is a free chunk that has been unlinked. Adjust its
** size parameters for check-out and return a pointer to the
** user portion of the chunk.
*/
static void *
memsys3Checkout(u32 i, int nBlock)
{
u32 x;
assert(sqlite3_mutex_held(mem.mutex));
assert(i >= 1);
assert(mem.aPool[i - 1].u.hdr.size4x / 4 == nBlock);
assert(mem.aPool[i + nBlock - 1].u.hdr.prevSize == nBlock);
x = mem.aPool[i - 1].u.hdr.size4x;
mem.aPool[i - 1].u.hdr.size4x = nBlock * 4 | 1 | (x & 2);
mem.aPool[i + nBlock - 1].u.hdr.prevSize = nBlock;
mem.aPool[i + nBlock - 1].u.hdr.size4x |= 2;
return &mem.aPool[i];
}
/*
** Carve a piece off of the end of the mem.iMaster free chunk.
** Return a pointer to the new allocation. Or, if the master chunk
** is not large enough, return 0.
*/
static void *
memsys3FromMaster(int nBlock)
{
assert(sqlite3_mutex_held(mem.mutex));
assert(mem.szMaster >= nBlock);
if(nBlock >= mem.szMaster - 1)
{
/* Use the entire master */
void *p = memsys3Checkout(mem.iMaster, mem.szMaster);
mem.iMaster = 0;
mem.szMaster = 0;
mem.mnMaster = 0;
return p;
}
else
{
/* Split the master block. Return the tail. */
u32 newi, x;
newi = mem.iMaster + mem.szMaster - nBlock;
assert(newi > mem.iMaster + 1);
mem.aPool[mem.iMaster + mem.szMaster - 1].u.hdr.prevSize = nBlock;
mem.aPool[mem.iMaster + mem.szMaster - 1].u.hdr.size4x |= 2;
mem.aPool[newi - 1].u.hdr.size4x = nBlock * 4 + 1;
mem.szMaster -= nBlock;
mem.aPool[newi - 1].u.hdr.prevSize = mem.szMaster;
x = mem.aPool[mem.iMaster - 1].u.hdr.size4x & 2;
mem.aPool[mem.iMaster - 1].u.hdr.size4x = mem.szMaster * 4 | x;
if(mem.szMaster < mem.mnMaster)
{
mem.mnMaster = mem.szMaster;
}
return (void *) &mem.aPool[newi];
}
}
/*
** *pRoot is the head of a list of free chunks of the same size
** or same size hash. In other words, *pRoot is an entry in either
** mem.aiSmall[] or mem.aiHash[].
**
** This routine examines all entries on the given list and tries
** to coalesce each entries with adjacent free chunks.
**
** If it sees a chunk that is larger than mem.iMaster, it replaces
** the current mem.iMaster with the new larger chunk. In order for
** this mem.iMaster replacement to work, the master chunk must be
** linked into the hash tables. That is not the normal state of
** affairs, of course. The calling routine must link the master
** chunk before invoking this routine, then must unlink the (possibly
** changed) master chunk once this routine has finished.
*/
static void
memsys3Merge(u32 * pRoot)
{
u32 iNext, prev, size, i, x;
assert(sqlite3_mutex_held(mem.mutex));
for (i = *pRoot; i > 0; i = iNext)
{
iNext = mem.aPool[i].u.list.next;
size = mem.aPool[i - 1].u.hdr.size4x;
assert((size & 1) == 0);
if((size & 2) == 0)
{
memsys3UnlinkFromList(i, pRoot);
assert(i > mem.aPool[i - 1].u.hdr.prevSize);
prev = i - mem.aPool[i - 1].u.hdr.prevSize;
if(prev == iNext)
{
iNext = mem.aPool[prev].u.list.next;
}
memsys3Unlink(prev);
size = i + size / 4 - prev;
x = mem.aPool[prev - 1].u.hdr.size4x & 2;
mem.aPool[prev - 1].u.hdr.size4x = size * 4 | x;
mem.aPool[prev + size - 1].u.hdr.prevSize = size;
memsys3Link(prev);
i = prev;
}
else
{
size /= 4;
}
if(size > mem.szMaster)
{
mem.iMaster = i;
mem.szMaster = size;
}
}
}
/*
** Return a block of memory of at least nBytes in size.
** Return NULL if unable.
*/
static void *
memsys3Malloc(int nByte)
{
u32 i;
int nBlock;
int toFree;
assert(sqlite3_mutex_held(mem.mutex));
assert(sizeof(Mem3Block) == 8);
if(nByte <= 12)
{
nBlock = 2;
}
else
{
nBlock = (nByte + 11) / 8;
}
assert(nBlock >= 2);
/* STEP 1:
** Look for an entry of the correct size in either the small
** chunk table or in the large chunk hash table. This is
** successful most of the time (about 9 times out of 10).
*/
if(nBlock <= MX_SMALL)
{
i = mem.aiSmall[nBlock - 2];
if(i > 0)
{
memsys3UnlinkFromList(i, &mem.aiSmall[nBlock - 2]);
return memsys3Checkout(i, nBlock);
}
}
else
{
int hash = nBlock % N_HASH;
for (i = mem.aiHash[hash]; i > 0; i = mem.aPool[i].u.list.next)
{
if(mem.aPool[i - 1].u.hdr.size4x / 4 == nBlock)
{
memsys3UnlinkFromList(i, &mem.aiHash[hash]);
return memsys3Checkout(i, nBlock);
}
}
}
/* STEP 2:
** Try to satisfy the allocation by carving a piece off of the end
** of the master chunk. This step usually works if step 1 fails.
*/
if(mem.szMaster >= nBlock)
{
return memsys3FromMaster(nBlock);
}
/* STEP 3:
** Loop through the entire memory pool. Coalesce adjacent free
** chunks. Recompute the master chunk as the largest free chunk.
** Then try again to satisfy the allocation by carving a piece off
** of the end of the master chunk. This step happens very
** rarely (we hope!)
*/
for (toFree = nBlock * 16; toFree < SQLITE_MEMORY_SIZE * 2; toFree *= 2)
{
memsys3OutOfMemory(toFree);
if(mem.iMaster)
{
memsys3Link(mem.iMaster);
mem.iMaster = 0;
mem.szMaster = 0;
}
for (i = 0; i < N_HASH; i++)
{
memsys3Merge(&mem.aiHash[i]);
}
for (i = 0; i < MX_SMALL - 1; i++)
{
memsys3Merge(&mem.aiSmall[i]);
}
if(mem.szMaster)
{
memsys3Unlink(mem.iMaster);
if(mem.szMaster >= nBlock)
{
return memsys3FromMaster(nBlock);
}
}
}
/* If none of the above worked, then we fail. */
return 0;
}
/*
** Free an outstanding memory allocation.
*/
void
memsys3Free(void *pOld)
{
Mem3Block *p = (Mem3Block *) pOld;
int i;
u32 size, x;
assert(sqlite3_mutex_held(mem.mutex));
assert(p > mem.aPool && p < &mem.aPool[SQLITE_MEMORY_SIZE / 8]);
i = p - mem.aPool;
assert((mem.aPool[i - 1].u.hdr.size4x & 1) == 1);
size = mem.aPool[i - 1].u.hdr.size4x / 4;
assert(i + size <= SQLITE_MEMORY_SIZE / 8 + 1);
mem.aPool[i - 1].u.hdr.size4x &= ~1;
mem.aPool[i + size - 1].u.hdr.prevSize = size;
mem.aPool[i + size - 1].u.hdr.size4x &= ~2;
memsys3Link(i);
/* Try to expand the master using the newly freed chunk */
if(mem.iMaster)
{
while ((mem.aPool[mem.iMaster - 1].u.hdr.size4x & 2) == 0)
{
size = mem.aPool[mem.iMaster - 1].u.hdr.prevSize;
mem.iMaster -= size;
mem.szMaster += size;
memsys3Unlink(mem.iMaster);
x = mem.aPool[mem.iMaster - 1].u.hdr.size4x & 2;
mem.aPool[mem.iMaster - 1].u.hdr.size4x = mem.szMaster * 4 | x;
mem.aPool[mem.iMaster + mem.szMaster - 1].u.hdr.prevSize = mem.szMaster;
}
x = mem.aPool[mem.iMaster - 1].u.hdr.size4x & 2;
while ((mem.aPool[mem.iMaster + mem.szMaster - 1].u.hdr.size4x & 1) == 0)
{
memsys3Unlink(mem.iMaster + mem.szMaster);
mem.szMaster += mem.aPool[mem.iMaster + mem.szMaster - 1].u.hdr.size4x / 4;
mem.aPool[mem.iMaster - 1].u.hdr.size4x = mem.szMaster * 4 | x;
mem.aPool[mem.iMaster + mem.szMaster - 1].u.hdr.prevSize = mem.szMaster;
}
}
}
/*
** Allocate nBytes of memory
*/
SQLITE_API void *
sqlite3_malloc(int nBytes)
{
sqlite3_int64 *p = 0;
if(nBytes > 0)
{
memsys3Enter();
p = memsys3Malloc(nBytes);
sqlite3_mutex_leave(mem.mutex);
}
return (void *) p;
}
/*
** Free memory.
*/
SQLITE_API void
sqlite3_free(void *pPrior)
{
if(pPrior == 0)
{
return;
}
assert(mem.mutex != 0);
sqlite3_mutex_enter(mem.mutex);
memsys3Free(pPrior);
sqlite3_mutex_leave(mem.mutex);
}
/*
** Change the size of an existing memory allocation
*/
SQLITE_API void *
sqlite3_realloc(void *pPrior, int nBytes)
{
int nOld;
void *p;
if(pPrior == 0)
{
return sqlite3_malloc(nBytes);
}
if(nBytes <= 0)
{
sqlite3_free(pPrior);
return 0;
}
assert(mem.mutex != 0);
nOld = sqlite3MallocSize(pPrior);
if(nBytes <= nOld && nBytes >= nOld - 128)
{
return pPrior;
}
sqlite3_mutex_enter(mem.mutex);
p = memsys3Malloc(nBytes);
if(p)
{
if(nOld < nBytes)
{
memcpy(p, pPrior, nOld);
}
else
{
memcpy(p, pPrior, nBytes);
}
memsys3Free(pPrior);
}
sqlite3_mutex_leave(mem.mutex);
return p;
}
/*
** Open the file indicated and write a log of all unfreed memory
** allocations into that log.
*/
SQLITE_PRIVATE void
sqlite3MemdebugDump(const char *zFilename)
{
#ifdef SQLITE_DEBUG
FILE *out;
int i, j;
u32 size;
if(zFilename == 0 || zFilename[0] == 0)
{
out = stdout;
}
else
{
out = fopen(zFilename, "w");
if(out == 0)
{
fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
zFilename);
return;
}
}
memsys3Enter();
fprintf(out, "CHUNKS:\n");
for (i = 1; i <= SQLITE_MEMORY_SIZE / 8; i += size / 4)
{
size = mem.aPool[i - 1].u.hdr.size4x;
if(size / 4 <= 1)
{
fprintf(out, "%p size error\n", &mem.aPool[i]);
assert(0);
break;
}
if((size & 1) == 0 && mem.aPool[i + size / 4 - 1].u.hdr.prevSize != size / 4)
{
fprintf(out, "%p tail size does not match\n", &mem.aPool[i]);
assert(0);
break;
}
if(((mem.aPool[i + size / 4 - 1].u.hdr.size4x & 2) >> 1) != (size & 1))
{
fprintf(out, "%p tail checkout bit is incorrect\n", &mem.aPool[i]);
assert(0);
break;
}
if(size & 1)
{
fprintf(out, "%p %6d bytes checked out\n", &mem.aPool[i],
(size / 4) * 8 - 8);
}
else
{
fprintf(out, "%p %6d bytes free%s\n", &mem.aPool[i], (size / 4) * 8 - 8,
i == mem.iMaster ? " **master**" : "");
}
}
for (i = 0; i < MX_SMALL - 1; i++)
{
if(mem.aiSmall[i] == 0)
continue;
fprintf(out, "small(%2d):", i);
for (j = mem.aiSmall[i]; j > 0; j = mem.aPool[j].u.list.next)
{
fprintf(out, " %p(%d)", &mem.aPool[j],
(mem.aPool[j - 1].u.hdr.size4x / 4) * 8 - 8);
}
fprintf(out, "\n");
}
for (i = 0; i < N_HASH; i++)
{
if(mem.aiHash[i] == 0)
continue;
fprintf(out, "hash(%2d):", i);
for (j = mem.aiHash[i]; j > 0; j = mem.aPool[j].u.list.next)
{
fprintf(out, " %p(%d)", &mem.aPool[j],
(mem.aPool[j - 1].u.hdr.size4x / 4) * 8 - 8);
}
fprintf(out, "\n");
}
fprintf(out, "master=%d\n", mem.iMaster);
fprintf(out, "nowUsed=%d\n", SQLITE_MEMORY_SIZE - mem.szMaster * 8);
fprintf(out, "mxUsed=%d\n", SQLITE_MEMORY_SIZE - mem.mnMaster * 8);
sqlite3_mutex_leave(mem.mutex);
if(out == stdout)
{
fflush(stdout);
}
else
{
fclose(out);
}
#endif
}
#endif /* !SQLITE_MEMORY_SIZE */
/************** End of mem3.c ************************************************/
/************** Begin file mem5.c ********************************************/
/*
** 2007 October 14
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains the C functions that implement a memory
** allocation subsystem for use by SQLite.
**
** This version of the memory allocation subsystem omits all
** use of malloc(). All dynamically allocatable memory is
** contained in a static array, mem.aPool[]. The size of this
** fixed memory pool is SQLITE_POW2_MEMORY_SIZE bytes.
**
** This version of the memory allocation subsystem is used if
** and only if SQLITE_POW2_MEMORY_SIZE is defined.
**
*/
/*
** This version of the memory allocator is used only when
** SQLITE_POW2_MEMORY_SIZE is defined.
*/
#ifdef SQLITE_POW2_MEMORY_SIZE
/*
** Log2 of the minimum size of an allocation. For example, if
** 4 then all allocations will be rounded up to at least 16 bytes.
** If 5 then all allocations will be rounded up to at least 32 bytes.
*/
#ifndef SQLITE_POW2_LOGMIN
# define SQLITE_POW2_LOGMIN 6
#endif
#define POW2_MIN (1<<SQLITE_POW2_LOGMIN)
/*
** Log2 of the maximum size of an allocation.
*/
#ifndef SQLITE_POW2_LOGMAX
# define SQLITE_POW2_LOGMAX 18
#endif
#define POW2_MAX (((unsigned int)1)<<SQLITE_POW2_LOGMAX)
/*
** Number of distinct allocation sizes.
*/
#define NSIZE (SQLITE_POW2_LOGMAX - SQLITE_POW2_LOGMIN + 1)
/*
** A minimum allocation is an instance of the following structure.
** Larger allocations are an array of these structures where the
** size of the array is a power of 2.
*/
typedef struct Mem5Block Mem5Block;
struct Mem5Block
{
union
{
char aData[POW2_MIN];
struct
{
int next; /* Index in mem.aPool[] of next free chunk */
int prev; /* Index in mem.aPool[] of previous free chunk */
} list;
} u;
};
/*
** Number of blocks of memory available for allocation.
*/
#define NBLOCK (SQLITE_POW2_MEMORY_SIZE/POW2_MIN)
/*
** The size in blocks of an POW2_MAX allocation
*/
#define SZ_MAX (1<<(NSIZE-1))
/*
** Masks used for mem.aCtrl[] elements.
*/
#define CTRL_LOGSIZE 0x1f /* Log2 Size of this block relative to POW2_MIN */
#define CTRL_FREE 0x20 /* True if not checked out */
/*
** All of the static variables used by this module are collected
** into a single structure named "mem". This is to keep the
** static variables organized and to reduce namespace pollution
** when this module is combined with other in the amalgamation.
*/
static struct
{
/*
** The alarm callback and its arguments. The mem.mutex lock will
** be held while the callback is running. Recursive calls into
** the memory subsystem are allowed, but no new callbacks will be
** issued. The alarmBusy variable is set to prevent recursive
** callbacks.
*/
sqlite3_int64 alarmThreshold;
void (*alarmCallback) (void *, sqlite3_int64, int);
void *alarmArg;
int alarmBusy;
/*
** Mutex to control access to the memory allocation subsystem.
*/
sqlite3_mutex *mutex;
/*
** Performance statistics
*/
u64 nAlloc; /* Total number of calls to malloc */
u64 totalAlloc; /* Total of all malloc calls - includes internal frag */
u64 totalExcess; /* Total internal fragmentation */
u32 currentOut; /* Current checkout, including internal fragmentation */
u32 currentCount; /* Current number of distinct checkouts */
u32 maxOut; /* Maximum instantaneous currentOut */
u32 maxCount; /* Maximum instantaneous currentCount */
u32 maxRequest; /* Largest allocation (exclusive of internal frag) */
/*
** Lists of free blocks of various sizes.
*/
int aiFreelist[NSIZE];
/*
** Space for tracking which blocks are checked out and the size
** of each block. One byte per block.
*/
u8 aCtrl[NBLOCK];
/*
** Memory available for allocation
*/
Mem5Block aPool[NBLOCK];
} mem;
/*
** Unlink the chunk at mem.aPool[i] from list it is currently
** on. It should be found on mem.aiFreelist[iLogsize].
*/
static void
memsys5Unlink(int i, int iLogsize)
{
int next, prev;
assert(i >= 0 && i < NBLOCK);
assert(iLogsize >= 0 && iLogsize < NSIZE);
assert((mem.aCtrl[i] & CTRL_LOGSIZE) == iLogsize);
assert(sqlite3_mutex_held(mem.mutex));
next = mem.aPool[i].u.list.next;
prev = mem.aPool[i].u.list.prev;
if(prev < 0)
{
mem.aiFreelist[iLogsize] = next;
}
else
{
mem.aPool[prev].u.list.next = next;
}
if(next >= 0)
{
mem.aPool[next].u.list.prev = prev;
}
}
/*
** Link the chunk at mem.aPool[i] so that is on the iLogsize
** free list.
*/
static void
memsys5Link(int i, int iLogsize)
{
int x;
assert(sqlite3_mutex_held(mem.mutex));
assert(i >= 0 && i < NBLOCK);
assert(iLogsize >= 0 && iLogsize < NSIZE);
assert((mem.aCtrl[i] & CTRL_LOGSIZE) == iLogsize);
mem.aPool[i].u.list.next = x = mem.aiFreelist[iLogsize];
mem.aPool[i].u.list.prev = -1;
if(x >= 0)
{
assert(x < NBLOCK);
mem.aPool[x].u.list.prev = i;
}
mem.aiFreelist[iLogsize] = i;
}
/*
** Enter the mutex mem.mutex. Allocate it if it is not already allocated.
**
** Also: Initialize the memory allocation subsystem the first time
** this routine is called.
*/
static void
memsys5Enter(void)
{
if(mem.mutex == 0)
{
int i;
assert(sizeof(Mem5Block) == POW2_MIN);
assert((SQLITE_POW2_MEMORY_SIZE % POW2_MAX) == 0);
assert(SQLITE_POW2_MEMORY_SIZE >= POW2_MAX);
mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM);
sqlite3_mutex_enter(mem.mutex);
for (i = 0; i < NSIZE; i++)
mem.aiFreelist[i] = -1;
for (i = 0; i <= NBLOCK - SZ_MAX; i += SZ_MAX)
{
mem.aCtrl[i] = (NSIZE - 1) | CTRL_FREE;
memsys5Link(i, NSIZE - 1);
}
}
else
{
sqlite3_mutex_enter(mem.mutex);
}
}
/*
** Return the amount of memory currently checked out.
*/
SQLITE_API sqlite3_int64
sqlite3_memory_used(void)
{
return mem.currentOut;
}
/*
** Return the maximum amount of memory that has ever been
** checked out since either the beginning of this process
** or since the most recent reset.
*/
SQLITE_API sqlite3_int64
sqlite3_memory_highwater(int resetFlag)
{
sqlite3_int64 n;
memsys5Enter();
n = mem.maxOut;
if(resetFlag)
{
mem.maxOut = mem.currentOut;
}
sqlite3_mutex_leave(mem.mutex);
return n;
}
/*
** Trigger the alarm
*/
static void
memsys5Alarm(int nByte)
{
void (*xCallback) (void *, sqlite3_int64, int);
sqlite3_int64 nowUsed;
void *pArg;
if(mem.alarmCallback == 0 || mem.alarmBusy)
return;
mem.alarmBusy = 1;
xCallback = mem.alarmCallback;
nowUsed = mem.currentOut;
pArg = mem.alarmArg;
sqlite3_mutex_leave(mem.mutex);
xCallback(pArg, nowUsed, nByte);
sqlite3_mutex_enter(mem.mutex);
mem.alarmBusy = 0;
}
/*
** Change the alarm callback.
**
** This is a no-op for the static memory allocator. The purpose
** of the memory alarm is to support sqlite3_soft_heap_limit().
** But with this memory allocator, the soft_heap_limit is really
** a hard limit that is fixed at SQLITE_POW2_MEMORY_SIZE.
*/
SQLITE_API int
sqlite3_memory_alarm(void (*xCallback) (void *pArg, sqlite3_int64 used, int N),
void *pArg, sqlite3_int64 iThreshold)
{
memsys5Enter();
mem.alarmCallback = xCallback;
mem.alarmArg = pArg;
mem.alarmThreshold = iThreshold;
sqlite3_mutex_leave(mem.mutex);
return SQLITE_OK;
}
/*
** Return the size of an outstanding allocation, in bytes. The
** size returned omits the 8-byte header overhead. This only
** works for chunks that are currently checked out.
*/
SQLITE_PRIVATE int
sqlite3MallocSize(void *p)
{
int iSize = 0;
if(p)
{
int i = ((Mem5Block *) p) - mem.aPool;
assert(i >= 0 && i < NBLOCK);
iSize = 1 << ((mem.aCtrl[i] & CTRL_LOGSIZE) + SQLITE_POW2_LOGMIN);
}
return iSize;
}
/*
** Find the first entry on the freelist iLogsize. Unlink that
** entry and return its index.
*/
static int
memsys5UnlinkFirst(int iLogsize)
{
int i;
int iFirst;
assert(iLogsize >= 0 && iLogsize < NSIZE);
i = iFirst = mem.aiFreelist[iLogsize];
assert(iFirst >= 0);
while (i > 0)
{
if(i < iFirst)
iFirst = i;
i = mem.aPool[i].u.list.next;
}
memsys5Unlink(iFirst, iLogsize);
return iFirst;
}
/*
** Return a block of memory of at least nBytes in size.
** Return NULL if unable.
*/
static void *
memsys5Malloc(int nByte)
{
int i; /* Index of a mem.aPool[] slot */
int iBin; /* Index into mem.aiFreelist[] */
int iFullSz; /* Size of allocation rounded up to power of 2 */
int iLogsize; /* Log2 of iFullSz/POW2_MIN */
assert(sqlite3_mutex_held(mem.mutex));
/* Keep track of the maximum allocation request. Even unfulfilled
** requests are counted */
if(nByte > mem.maxRequest)
{
mem.maxRequest = nByte;
}
/* Simulate a memory allocation fault */
if(sqlite3FaultStep(SQLITE_FAULTINJECTOR_MALLOC))
return 0;
/* Round nByte up to the next valid power of two */
if(nByte > POW2_MAX)
return 0;
for (iFullSz = POW2_MIN, iLogsize = 0; iFullSz < nByte; iFullSz *= 2, iLogsize++)
{
}
/* If we will be over the memory alarm threshold after this allocation,
** then trigger the memory overflow alarm */
if(mem.alarmCallback != 0 && mem.currentOut + iFullSz >= mem.alarmThreshold)
{
memsys5Alarm(iFullSz);
}
/* Make sure mem.aiFreelist[iLogsize] contains at least one free
** block. If not, then split a block of the next larger power of
** two in order to create a new free block of size iLogsize.
*/
for (iBin = iLogsize; mem.aiFreelist[iBin] < 0 && iBin < NSIZE; iBin++)
{
}
if(iBin >= NSIZE)
return 0;
i = memsys5UnlinkFirst(iBin);
while (iBin > iLogsize)
{
int newSize;
iBin--;
newSize = 1 << iBin;
mem.aCtrl[i + newSize] = CTRL_FREE | iBin;
memsys5Link(i + newSize, iBin);
}
mem.aCtrl[i] = iLogsize;
/* Update allocator performance statistics. */
mem.nAlloc++;
mem.totalAlloc += iFullSz;
mem.totalExcess += iFullSz - nByte;
mem.currentCount++;
mem.currentOut += iFullSz;
if(mem.maxCount < mem.currentCount)
mem.maxCount = mem.currentCount;
if(mem.maxOut < mem.currentOut)
mem.maxOut = mem.currentOut;
/* Return a pointer to the allocated memory. */
return (void *) &mem.aPool[i];
}
/*
** Free an outstanding memory allocation.
*/
void
memsys5Free(void *pOld)
{
u32 size, iLogsize;
int i;
i = ((Mem5Block *) pOld) - mem.aPool;
assert(sqlite3_mutex_held(mem.mutex));
assert(i >= 0 && i < NBLOCK);
assert((mem.aCtrl[i] & CTRL_FREE) == 0);
iLogsize = mem.aCtrl[i] & CTRL_LOGSIZE;
size = 1 << iLogsize;
assert(i + size - 1 < NBLOCK);
mem.aCtrl[i] |= CTRL_FREE;
mem.aCtrl[i + size - 1] |= CTRL_FREE;
assert(mem.currentCount > 0);
assert(mem.currentOut >= 0);
mem.currentCount--;
mem.currentOut -= size * POW2_MIN;
assert(mem.currentOut > 0 || mem.currentCount == 0);
assert(mem.currentCount > 0 || mem.currentOut == 0);
mem.aCtrl[i] = CTRL_FREE | iLogsize;
while (iLogsize < NSIZE - 1)
{
int iBuddy;
if((i >> iLogsize) & 1)
{
iBuddy = i - size;
}
else
{
iBuddy = i + size;
}
assert(iBuddy >= 0 && iBuddy < NBLOCK);
if(mem.aCtrl[iBuddy] != (CTRL_FREE | iLogsize))
break;
memsys5Unlink(iBuddy, iLogsize);
iLogsize++;
if(iBuddy < i)
{
mem.aCtrl[iBuddy] = CTRL_FREE | iLogsize;
mem.aCtrl[i] = 0;
i = iBuddy;
}
else
{
mem.aCtrl[i] = CTRL_FREE | iLogsize;
mem.aCtrl[iBuddy] = 0;
}
size *= 2;
}
memsys5Link(i, iLogsize);
}
/*
** Allocate nBytes of memory
*/
SQLITE_API void *
sqlite3_malloc(int nBytes)
{
sqlite3_int64 *p = 0;
if(nBytes > 0)
{
memsys5Enter();
p = memsys5Malloc(nBytes);
sqlite3_mutex_leave(mem.mutex);
}
return (void *) p;
}
/*
** Free memory.
*/
SQLITE_API void
sqlite3_free(void *pPrior)
{
if(pPrior == 0)
{
return;
}
assert(mem.mutex != 0);
sqlite3_mutex_enter(mem.mutex);
memsys5Free(pPrior);
sqlite3_mutex_leave(mem.mutex);
}
/*
** Change the size of an existing memory allocation
*/
SQLITE_API void *
sqlite3_realloc(void *pPrior, int nBytes)
{
int nOld;
void *p;
if(pPrior == 0)
{
return sqlite3_malloc(nBytes);
}
if(nBytes <= 0)
{
sqlite3_free(pPrior);
return 0;
}
assert(mem.mutex != 0);
nOld = sqlite3MallocSize(pPrior);
if(nBytes <= nOld)
{
return pPrior;
}
sqlite3_mutex_enter(mem.mutex);
p = memsys5Malloc(nBytes);
if(p)
{
memcpy(p, pPrior, nOld);
memsys5Free(pPrior);
}
sqlite3_mutex_leave(mem.mutex);
return p;
}
/*
** Open the file indicated and write a log of all unfreed memory
** allocations into that log.
*/
SQLITE_PRIVATE void
sqlite3MemdebugDump(const char *zFilename)
{
#ifdef SQLITE_DEBUG
FILE *out;
int i, j, n;
if(zFilename == 0 || zFilename[0] == 0)
{
out = stdout;
}
else
{
out = fopen(zFilename, "w");
if(out == 0)
{
fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
zFilename);
return;
}
}
memsys5Enter();
for (i = 0; i < NSIZE; i++)
{
for (n = 0, j = mem.aiFreelist[i]; j >= 0; j = mem.aPool[j].u.list.next, n++)
{
}
fprintf(out, "freelist items of size %d: %d\n", POW2_MIN << i, n);
}
fprintf(out, "mem.nAlloc = %llu\n", mem.nAlloc);
fprintf(out, "mem.totalAlloc = %llu\n", mem.totalAlloc);
fprintf(out, "mem.totalExcess = %llu\n", mem.totalExcess);
fprintf(out, "mem.currentOut = %u\n", mem.currentOut);
fprintf(out, "mem.currentCount = %u\n", mem.currentCount);
fprintf(out, "mem.maxOut = %u\n", mem.maxOut);
fprintf(out, "mem.maxCount = %u\n", mem.maxCount);
fprintf(out, "mem.maxRequest = %u\n", mem.maxRequest);
sqlite3_mutex_leave(mem.mutex);
if(out == stdout)
{
fflush(stdout);
}
else
{
fclose(out);
}
#endif
}
#endif /* !SQLITE_POW2_MEMORY_SIZE */
/************** End of mem5.c ************************************************/
/************** Begin file mutex.c *******************************************/
/*
** 2007 August 14
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains the C functions that implement mutexes.
**
** The implementation in this file does not provide any mutual
** exclusion and is thus suitable for use only in applications
** that use SQLite in a single thread. But this implementation
** does do a lot of error checking on mutexes to make sure they
** are called correctly and at appropriate times. Hence, this
** implementation is suitable for testing.
** debugging purposes
**
*/
#ifdef SQLITE_MUTEX_NOOP_DEBUG
/*
** In this implementation, mutexes do not provide any mutual exclusion.
** But the error checking is provided. This implementation is useful
** for test purposes.
*/
/*
** The mutex object
*/
struct sqlite3_mutex
{
int id; /* The mutex type */
int cnt; /* Number of entries without a matching leave */
};
/*
** The sqlite3_mutex_alloc() routine allocates a new
** mutex and returns a pointer to it. If it returns NULL
** that means that a mutex could not be allocated.
*/
SQLITE_API sqlite3_mutex *
sqlite3_mutex_alloc(int id)
{
static sqlite3_mutex aStatic[6];
sqlite3_mutex *pNew = 0;
switch (id)
{
case SQLITE_MUTEX_FAST:
case SQLITE_MUTEX_RECURSIVE:
{
pNew = sqlite3_malloc(sizeof(*pNew));
if(pNew)
{
pNew->id = id;
pNew->cnt = 0;
}
break;
}
default:
{
assert(id - 2 >= 0);
assert(id - 2 < sizeof(aStatic) / sizeof(aStatic[0]));
pNew = &aStatic[id - 2];
pNew->id = id;
break;
}
}
return pNew;
}
/*
** This routine deallocates a previously allocated mutex.
*/
SQLITE_API void
sqlite3_mutex_free(sqlite3_mutex * p)
{
assert(p);
assert(p->cnt == 0);
assert(p->id == SQLITE_MUTEX_FAST || p->id == SQLITE_MUTEX_RECURSIVE);
sqlite3_free(p);
}
/*
** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
** to enter a mutex. If another thread is already within the mutex,
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
** be entered multiple times by the same thread. In such cases the,
** mutex must be exited an equal number of times before another thread
** can enter. If the same thread tries to enter any other kind of mutex
** more than once, the behavior is undefined.
*/
SQLITE_API void
sqlite3_mutex_enter(sqlite3_mutex * p)
{
assert(p);
assert(p->id == SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p));
p->cnt++;
}
SQLITE_API int
sqlite3_mutex_try(sqlite3_mutex * p)
{
assert(p);
assert(p->id == SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p));
p->cnt++;
return SQLITE_OK;
}
/*
** The sqlite3_mutex_leave() routine exits a mutex that was
** previously entered by the same thread. The behavior
** is undefined if the mutex is not currently entered or
** is not currently allocated. SQLite will never do either.
*/
SQLITE_API void
sqlite3_mutex_leave(sqlite3_mutex * p)
{
assert(p);
assert(sqlite3_mutex_held(p));
p->cnt--;
assert(p->id == SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p));
}
/*
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
** intended for use inside assert() statements.
*/
SQLITE_API int
sqlite3_mutex_held(sqlite3_mutex * p)
{
return p == 0 || p->cnt > 0;
}
SQLITE_API int
sqlite3_mutex_notheld(sqlite3_mutex * p)
{
return p == 0 || p->cnt == 0;
}
#endif /* SQLITE_MUTEX_NOOP_DEBUG */
/************** End of mutex.c ***********************************************/
/************** Begin file mutex_os2.c ***************************************/
/*
** 2007 August 28
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains the C functions that implement mutexes for OS/2
**
*/
/*
** The code in this file is only used if SQLITE_MUTEX_OS2 is defined.
** See the mutex.h file for details.
*/
#ifdef SQLITE_MUTEX_OS2
/********************** OS/2 Mutex Implementation **********************
**
** This implementation of mutexes is built using the OS/2 API.
*/
/*
** The mutex object
** Each recursive mutex is an instance of the following structure.
*/
struct sqlite3_mutex
{
HMTX mutex; /* Mutex controlling the lock */
int id; /* Mutex type */
int nRef; /* Number of references */
TID owner; /* Thread holding this mutex */
};
#define OS2_MUTEX_INITIALIZER 0,0,0,0
/*
** The sqlite3_mutex_alloc() routine allocates a new
** mutex and returns a pointer to it. If it returns NULL
** that means that a mutex could not be allocated.
** SQLite will unwind its stack and return an error. The argument
** to sqlite3_mutex_alloc() is one of these integer constants:
**
** <ul>
** <li> SQLITE_MUTEX_FAST 0
** <li> SQLITE_MUTEX_RECURSIVE 1
** <li> SQLITE_MUTEX_STATIC_MASTER 2
** <li> SQLITE_MUTEX_STATIC_MEM 3
** <li> SQLITE_MUTEX_STATIC_PRNG 4
** </ul>
**
** The first two constants cause sqlite3_mutex_alloc() to create
** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
** The mutex implementation does not need to make a distinction
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
** not want to. But SQLite will only request a recursive mutex in
** cases where it really needs one. If a faster non-recursive mutex
** implementation is available on the host platform, the mutex subsystem
** might return such a mutex in response to SQLITE_MUTEX_FAST.
**
** The other allowed parameters to sqlite3_mutex_alloc() each return
** a pointer to a static preexisting mutex. Three static mutexes are
** used by the current version of SQLite. Future versions of SQLite
** may add additional static mutexes. Static mutexes are for internal
** use by SQLite only. Applications that use SQLite mutexes should
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
** SQLITE_MUTEX_RECURSIVE.
**
** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
** returns a different mutex on every call. But for the static
** mutex types, the same mutex is returned on every call that has
** the same type number.
*/
SQLITE_API sqlite3_mutex *
sqlite3_mutex_alloc(int iType)
{
sqlite3_mutex *p = NULL;
switch (iType)
{
case SQLITE_MUTEX_FAST:
case SQLITE_MUTEX_RECURSIVE:
{
p = sqlite3MallocZero(sizeof(*p));
if(p)
{
p->id = iType;
if(DosCreateMutexSem(0, &p->mutex, 0, FALSE) != NO_ERROR)
{
sqlite3_free(p);
p = NULL;
}
}
break;
}
default:
{
static volatile int isInit = 0;
static sqlite3_mutex staticMutexes[] = {
{OS2_MUTEX_INITIALIZER,},
{OS2_MUTEX_INITIALIZER,},
{OS2_MUTEX_INITIALIZER,},
{OS2_MUTEX_INITIALIZER,},
{OS2_MUTEX_INITIALIZER,},
{OS2_MUTEX_INITIALIZER,},
};
if(!isInit)
{
APIRET rc;
PTIB ptib;
PPIB ppib;
HMTX mutex;
char name[32];
DosGetInfoBlocks(&ptib, &ppib);
sqlite3_snprintf(sizeof(name), name, "\\SEM32\\SQLITE%04x",
ppib->pib_ulpid);
while (!isInit)
{
mutex = 0;
rc = DosCreateMutexSem(name, &mutex, 0, FALSE);
if(rc == NO_ERROR)
{
int i;
if(!isInit)
{
for (i = 0;
i <
sizeof(staticMutexes) /
sizeof(staticMutexes[0]); i++)
{
DosCreateMutexSem(0,
&staticMutexes[i].
mutex, 0, FALSE);
}
isInit = 1;
}
DosCloseMutexSem(mutex);
}
else if(rc == ERROR_DUPLICATE_NAME)
{
DosSleep(1);
}
else
{
return p;
}
}
}
assert(iType - 2 >= 0);
assert(iType - 2 < sizeof(staticMutexes) / sizeof(staticMutexes[0]));
p = &staticMutexes[iType - 2];
p->id = iType;
break;
}
}
return p;
}
/*
** This routine deallocates a previously allocated mutex.
** SQLite is careful to deallocate every mutex that it allocates.
*/
SQLITE_API void
sqlite3_mutex_free(sqlite3_mutex * p)
{
assert(p);
assert(p->nRef == 0);
assert(p->id == SQLITE_MUTEX_FAST || p->id == SQLITE_MUTEX_RECURSIVE);
DosCloseMutexSem(p->mutex);
sqlite3_free(p);
}
/*
** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
** to enter a mutex. If another thread is already within the mutex,
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
** be entered multiple times by the same thread. In such cases the,
** mutex must be exited an equal number of times before another thread
** can enter. If the same thread tries to enter any other kind of mutex
** more than once, the behavior is undefined.
*/
SQLITE_API void
sqlite3_mutex_enter(sqlite3_mutex * p)
{
TID tid;
PID holder1;
ULONG holder2;
assert(p);
assert(p->id == SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p));
DosRequestMutexSem(p->mutex, SEM_INDEFINITE_WAIT);
DosQueryMutexSem(p->mutex, &holder1, &tid, &holder2);
p->owner = tid;
p->nRef++;
}
SQLITE_API int
sqlite3_mutex_try(sqlite3_mutex * p)
{
int rc;
TID tid;
PID holder1;
ULONG holder2;
assert(p);
assert(p->id == SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p));
if(DosRequestMutexSem(p->mutex, SEM_IMMEDIATE_RETURN) == NO_ERROR)
{
DosQueryMutexSem(p->mutex, &holder1, &tid, &holder2);
p->owner = tid;
p->nRef++;
rc = SQLITE_OK;
}
else
{
rc = SQLITE_BUSY;
}
return rc;
}
/*
** The sqlite3_mutex_leave() routine exits a mutex that was
** previously entered by the same thread. The behavior
** is undefined if the mutex is not currently entered or
** is not currently allocated. SQLite will never do either.
*/
SQLITE_API void
sqlite3_mutex_leave(sqlite3_mutex * p)
{
TID tid;
PID holder1;
ULONG holder2;
assert(p->nRef > 0);
DosQueryMutexSem(p->mutex, &holder1, &tid, &holder2);
assert(p->owner == tid);
p->nRef--;
assert(p->nRef == 0 || p->id == SQLITE_MUTEX_RECURSIVE);
DosReleaseMutexSem(p->mutex);
}
/*
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
** intended for use inside assert() statements.
*/
SQLITE_API int
sqlite3_mutex_held(sqlite3_mutex * p)
{
TID tid;
PID pid;
ULONG ulCount;
PTIB ptib;
if(p != 0)
{
DosQueryMutexSem(p->mutex, &pid, &tid, &ulCount);
}
else
{
DosGetInfoBlocks(&ptib, NULL);
tid = ptib->tib_ptib2->tib2_ultid;
}
return p == 0 || (p->nRef != 0 && p->owner == tid);
}
SQLITE_API int
sqlite3_mutex_notheld(sqlite3_mutex * p)
{
TID tid;
PID pid;
ULONG ulCount;
PTIB ptib;
if(p != 0)
{
DosQueryMutexSem(p->mutex, &pid, &tid, &ulCount);
}
else
{
DosGetInfoBlocks(&ptib, NULL);
tid = ptib->tib_ptib2->tib2_ultid;
}
return p == 0 || p->nRef == 0 || p->owner != tid;
}
#endif /* SQLITE_MUTEX_OS2 */
/************** End of mutex_os2.c *******************************************/
/************** Begin file mutex_unix.c **************************************/
/*
** 2007 August 28
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains the C functions that implement mutexes for pthreads
**
*/
/*
** The code in this file is only used if we are compiling threadsafe
** under unix with pthreads.
**
** Note that this implementation requires a version of pthreads that
** supports recursive mutexes.
*/
#ifdef SQLITE_MUTEX_PTHREADS
#include <pthread.h>
/*
** Each recursive mutex is an instance of the following structure.
*/
struct sqlite3_mutex
{
pthread_mutex_t mutex; /* Mutex controlling the lock */
int id; /* Mutex type */
int nRef; /* Number of entrances */
pthread_t owner; /* Thread that is within this mutex */
#ifdef SQLITE_DEBUG
int trace; /* True to trace changes */
#endif
};
#ifdef SQLITE_DEBUG
#define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER, 0, 0, (pthread_t)0, 0 }
#else
#define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER, 0, 0, (pthread_t)0 }
#endif
/*
** The sqlite3_mutex_alloc() routine allocates a new
** mutex and returns a pointer to it. If it returns NULL
** that means that a mutex could not be allocated. SQLite
** will unwind its stack and return an error. The argument
** to sqlite3_mutex_alloc() is one of these integer constants:
**
** <ul>
** <li> SQLITE_MUTEX_FAST
** <li> SQLITE_MUTEX_RECURSIVE
** <li> SQLITE_MUTEX_STATIC_MASTER
** <li> SQLITE_MUTEX_STATIC_MEM
** <li> SQLITE_MUTEX_STATIC_MEM2
** <li> SQLITE_MUTEX_STATIC_PRNG
** <li> SQLITE_MUTEX_STATIC_LRU
** </ul>
**
** The first two constants cause sqlite3_mutex_alloc() to create
** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
** The mutex implementation does not need to make a distinction
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
** not want to. But SQLite will only request a recursive mutex in
** cases where it really needs one. If a faster non-recursive mutex
** implementation is available on the host platform, the mutex subsystem
** might return such a mutex in response to SQLITE_MUTEX_FAST.
**
** The other allowed parameters to sqlite3_mutex_alloc() each return
** a pointer to a static preexisting mutex. Three static mutexes are
** used by the current version of SQLite. Future versions of SQLite
** may add additional static mutexes. Static mutexes are for internal
** use by SQLite only. Applications that use SQLite mutexes should
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
** SQLITE_MUTEX_RECURSIVE.
**
** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
** returns a different mutex on every call. But for the static
** mutex types, the same mutex is returned on every call that has
** the same type number.
*/
SQLITE_API sqlite3_mutex *
sqlite3_mutex_alloc(int iType)
{
static sqlite3_mutex staticMutexes[] = {
SQLITE3_MUTEX_INITIALIZER,
SQLITE3_MUTEX_INITIALIZER,
SQLITE3_MUTEX_INITIALIZER,
SQLITE3_MUTEX_INITIALIZER,
SQLITE3_MUTEX_INITIALIZER,
SQLITE3_MUTEX_INITIALIZER
};
sqlite3_mutex *p;
switch (iType)
{
case SQLITE_MUTEX_RECURSIVE:
{
p = sqlite3MallocZero(sizeof(*p));
if(p)
{
#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
/* If recursive mutexes are not available, we will have to
** build our own. See below. */
pthread_mutex_init(&p->mutex, 0);
#else
/* Use a recursive mutex if it is available */
pthread_mutexattr_t recursiveAttr;
pthread_mutexattr_init(&recursiveAttr);
pthread_mutexattr_settype(&recursiveAttr, PTHREAD_MUTEX_RECURSIVE);
pthread_mutex_init(&p->mutex, &recursiveAttr);
pthread_mutexattr_destroy(&recursiveAttr);
#endif
p->id = iType;
}
break;
}
case SQLITE_MUTEX_FAST:
{
p = sqlite3MallocZero(sizeof(*p));
if(p)
{
p->id = iType;
pthread_mutex_init(&p->mutex, 0);
}
break;
}
default:
{
assert(iType - 2 >= 0);
assert(iType - 2 < sizeof(staticMutexes) / sizeof(staticMutexes[0]));
p = &staticMutexes[iType - 2];
p->id = iType;
break;
}
}
return p;
}
/*
** This routine deallocates a previously
** allocated mutex. SQLite is careful to deallocate every
** mutex that it allocates.
*/
SQLITE_API void
sqlite3_mutex_free(sqlite3_mutex * p)
{
assert(p);
assert(p->nRef == 0);
assert(p->id == SQLITE_MUTEX_FAST || p->id == SQLITE_MUTEX_RECURSIVE);
pthread_mutex_destroy(&p->mutex);
sqlite3_free(p);
}
/*
** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
** to enter a mutex. If another thread is already within the mutex,
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
** be entered multiple times by the same thread. In such cases the,
** mutex must be exited an equal number of times before another thread
** can enter. If the same thread tries to enter any other kind of mutex
** more than once, the behavior is undefined.
*/
SQLITE_API void
sqlite3_mutex_enter(sqlite3_mutex * p)
{
assert(p);
assert(p->id == SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p));
#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
/* If recursive mutexes are not available, then we have to grow
** our own. This implementation assumes that pthread_equal()
** is atomic - that it cannot be deceived into thinking self
** and p->owner are equal if p->owner changes between two values
** that are not equal to self while the comparison is taking place.
** This implementation also assumes a coherent cache - that
** separate processes cannot read different values from the same
** address at the same time. If either of these two conditions
** are not met, then the mutexes will fail and problems will result.
*/
{
pthread_t self = pthread_self();
if(p->nRef > 0 && pthread_equal(p->owner, self))
{
p->nRef++;
}
else
{
pthread_mutex_lock(&p->mutex);
assert(p->nRef == 0);
p->owner = self;
p->nRef = 1;
}
}
#else
/* Use the built-in recursive mutexes if they are available.
*/
pthread_mutex_lock(&p->mutex);
p->owner = pthread_self();
p->nRef++;
#endif
#ifdef SQLITE_DEBUG
if(p->trace)
{
printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
}
#endif
}
SQLITE_API int
sqlite3_mutex_try(sqlite3_mutex * p)
{
int rc;
assert(p);
assert(p->id == SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p));
#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
/* If recursive mutexes are not available, then we have to grow
** our own. This implementation assumes that pthread_equal()
** is atomic - that it cannot be deceived into thinking self
** and p->owner are equal if p->owner changes between two values
** that are not equal to self while the comparison is taking place.
** This implementation also assumes a coherent cache - that
** separate processes cannot read different values from the same
** address at the same time. If either of these two conditions
** are not met, then the mutexes will fail and problems will result.
*/
{
pthread_t self = pthread_self();
if(p->nRef > 0 && pthread_equal(p->owner, self))
{
p->nRef++;
rc = SQLITE_OK;
}
else if(pthread_mutex_lock(&p->mutex) == 0)
{
assert(p->nRef == 0);
p->owner = self;
p->nRef = 1;
rc = SQLITE_OK;
}
else
{
rc = SQLITE_BUSY;
}
}
#else
/* Use the built-in recursive mutexes if they are available.
*/
if(pthread_mutex_trylock(&p->mutex) == 0)
{
p->owner = pthread_self();
p->nRef++;
rc = SQLITE_OK;
}
else
{
rc = SQLITE_BUSY;
}
#endif
#ifdef SQLITE_DEBUG
if(rc == SQLITE_OK && p->trace)
{
printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
}
#endif
return rc;
}
/*
** The sqlite3_mutex_leave() routine exits a mutex that was
** previously entered by the same thread. The behavior
** is undefined if the mutex is not currently entered or
** is not currently allocated. SQLite will never do either.
*/
SQLITE_API void
sqlite3_mutex_leave(sqlite3_mutex * p)
{
assert(p);
assert(sqlite3_mutex_held(p));
p->nRef--;
assert(p->nRef == 0 || p->id == SQLITE_MUTEX_RECURSIVE);
#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
if(p->nRef == 0)
{
pthread_mutex_unlock(&p->mutex);
}
#else
pthread_mutex_unlock(&p->mutex);
#endif
#ifdef SQLITE_DEBUG
if(p->trace)
{
printf("leave mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
}
#endif
}
/*
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
** intended for use only inside assert() statements. On some platforms,
** there might be race conditions that can cause these routines to
** deliver incorrect results. In particular, if pthread_equal() is
** not an atomic operation, then these routines might delivery
** incorrect results. On most platforms, pthread_equal() is a
** comparison of two integers and is therefore atomic. But we are
** told that HPUX is not such a platform. If so, then these routines
** will not always work correctly on HPUX.
**
** On those platforms where pthread_equal() is not atomic, SQLite
** should be compiled without -DSQLITE_DEBUG and with -DNDEBUG to
** make sure no assert() statements are evaluated and hence these
** routines are never called.
*/
#ifndef NDEBUG
SQLITE_API int
sqlite3_mutex_held(sqlite3_mutex * p)
{
return p == 0 || (p->nRef != 0 && pthread_equal(p->owner, pthread_self()));
}
SQLITE_API int
sqlite3_mutex_notheld(sqlite3_mutex * p)
{
return p == 0 || p->nRef == 0 || pthread_equal(p->owner, pthread_self()) == 0;
}
#endif
#endif /* SQLITE_MUTEX_PTHREAD */
/************** End of mutex_unix.c ******************************************/
/************** Begin file mutex_w32.c ***************************************/
/*
** 2007 August 14
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains the C functions that implement mutexes for win32
**
*/
/*
** The code in this file is only used if we are compiling multithreaded
** on a win32 system.
*/
#ifdef SQLITE_MUTEX_W32
/*
** Each recursive mutex is an instance of the following structure.
*/
struct sqlite3_mutex
{
CRITICAL_SECTION mutex; /* Mutex controlling the lock */
int id; /* Mutex type */
int nRef; /* Number of enterances */
DWORD owner; /* Thread holding this mutex */
};
/*
** Return true (non-zero) if we are running under WinNT, Win2K, WinXP,
** or WinCE. Return false (zero) for Win95, Win98, or WinME.
**
** Here is an interesting observation: Win95, Win98, and WinME lack
** the LockFileEx() API. But we can still statically link against that
** API as long as we don't call it win running Win95/98/ME. A call to
** this routine is used to determine if the host is Win95/98/ME or
** WinNT/2K/XP so that we will know whether or not we can safely call
** the LockFileEx() API.
*/
#if OS_WINCE
# define mutexIsNT() (1)
#else
static int
mutexIsNT(void)
{
static int osType = 0;
if(osType == 0)
{
OSVERSIONINFO sInfo;
sInfo.dwOSVersionInfoSize = sizeof(sInfo);
GetVersionEx(&sInfo);
osType = sInfo.dwPlatformId == VER_PLATFORM_WIN32_NT ? 2 : 1;
}
return osType == 2;
}
#endif /* OS_WINCE */
/*
** The sqlite3_mutex_alloc() routine allocates a new
** mutex and returns a pointer to it. If it returns NULL
** that means that a mutex could not be allocated. SQLite
** will unwind its stack and return an error. The argument
** to sqlite3_mutex_alloc() is one of these integer constants:
**
** <ul>
** <li> SQLITE_MUTEX_FAST 0
** <li> SQLITE_MUTEX_RECURSIVE 1
** <li> SQLITE_MUTEX_STATIC_MASTER 2
** <li> SQLITE_MUTEX_STATIC_MEM 3
** <li> SQLITE_MUTEX_STATIC_PRNG 4
** </ul>
**
** The first two constants cause sqlite3_mutex_alloc() to create
** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
** The mutex implementation does not need to make a distinction
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
** not want to. But SQLite will only request a recursive mutex in
** cases where it really needs one. If a faster non-recursive mutex
** implementation is available on the host platform, the mutex subsystem
** might return such a mutex in response to SQLITE_MUTEX_FAST.
**
** The other allowed parameters to sqlite3_mutex_alloc() each return
** a pointer to a static preexisting mutex. Three static mutexes are
** used by the current version of SQLite. Future versions of SQLite
** may add additional static mutexes. Static mutexes are for internal
** use by SQLite only. Applications that use SQLite mutexes should
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
** SQLITE_MUTEX_RECURSIVE.
**
** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
** returns a different mutex on every call. But for the static
** mutex types, the same mutex is returned on every call that has
** the same type number.
*/
SQLITE_API sqlite3_mutex *
sqlite3_mutex_alloc(int iType)
{
sqlite3_mutex *p;
switch (iType)
{
case SQLITE_MUTEX_FAST:
case SQLITE_MUTEX_RECURSIVE:
{
p = sqlite3MallocZero(sizeof(*p));
if(p)
{
p->id = iType;
InitializeCriticalSection(&p->mutex);
}
break;
}
default:
{
static sqlite3_mutex staticMutexes[6];
static int isInit = 0;
while (!isInit)
{
static long lock = 0;
if(InterlockedIncrement(&lock) == 1)
{
int i;
for (i = 0;
i < sizeof(staticMutexes) / sizeof(staticMutexes[0]);
i++)
{
InitializeCriticalSection(&staticMutexes[i].mutex);
}
isInit = 1;
}
else
{
Sleep(1);
}
}
assert(iType - 2 >= 0);
assert(iType - 2 < sizeof(staticMutexes) / sizeof(staticMutexes[0]));
p = &staticMutexes[iType - 2];
p->id = iType;
break;
}
}
return p;
}
/*
** This routine deallocates a previously
** allocated mutex. SQLite is careful to deallocate every
** mutex that it allocates.
*/
SQLITE_API void
sqlite3_mutex_free(sqlite3_mutex * p)
{
assert(p);
assert(p->nRef == 0);
assert(p->id == SQLITE_MUTEX_FAST || p->id == SQLITE_MUTEX_RECURSIVE);
DeleteCriticalSection(&p->mutex);
sqlite3_free(p);
}
/*
** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
** to enter a mutex. If another thread is already within the mutex,
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
** be entered multiple times by the same thread. In such cases the,
** mutex must be exited an equal number of times before another thread
** can enter. If the same thread tries to enter any other kind of mutex
** more than once, the behavior is undefined.
*/
SQLITE_API void
sqlite3_mutex_enter(sqlite3_mutex * p)
{
assert(p);
assert(p->id == SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p));
EnterCriticalSection(&p->mutex);
p->owner = GetCurrentThreadId();
p->nRef++;
}
SQLITE_API int
sqlite3_mutex_try(sqlite3_mutex * p)
{
int rc = SQLITE_BUSY;
assert(p);
assert(p->id == SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p));
/*
** The sqlite3_mutex_try() routine is very rarely used, and when it
** is used it is merely an optimization. So it is OK for it to always
** fail.
**
** The TryEnterCriticalSection() interface is only available on WinNT.
** And some windows compilers complain if you try to use it without
** first doing some #defines that prevent SQLite from building on Win98.
** For that reason, we will omit this optimization for now. See
** ticket #2685.
*/
#if 0
if(mutexIsNT() && TryEnterCriticalSection(&p->mutex))
{
p->owner = GetCurrentThreadId();
p->nRef++;
rc = SQLITE_OK;
}
#endif
return rc;
}
/*
** The sqlite3_mutex_leave() routine exits a mutex that was
** previously entered by the same thread. The behavior
** is undefined if the mutex is not currently entered or
** is not currently allocated. SQLite will never do either.
*/
SQLITE_API void
sqlite3_mutex_leave(sqlite3_mutex * p)
{
assert(p->nRef > 0);
assert(p->owner == GetCurrentThreadId());
p->nRef--;
assert(p->nRef == 0 || p->id == SQLITE_MUTEX_RECURSIVE);
LeaveCriticalSection(&p->mutex);
}
/*
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
** intended for use only inside assert() statements.
*/
SQLITE_API int
sqlite3_mutex_held(sqlite3_mutex * p)
{
return p == 0 || (p->nRef != 0 && p->owner == GetCurrentThreadId());
}
SQLITE_API int
sqlite3_mutex_notheld(sqlite3_mutex * p)
{
return p == 0 || p->nRef == 0 || p->owner != GetCurrentThreadId();
}
#endif /* SQLITE_MUTEX_W32 */
/************** End of mutex_w32.c *******************************************/
/************** Begin file malloc.c ******************************************/
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** Memory allocation functions used throughout sqlite.
**
**
*/
/*
** This routine runs when the memory allocator sees that the
** total memory allocation is about to exceed the soft heap
** limit.
*/
static void
softHeapLimitEnforcer(void *NotUsed, sqlite3_int64 inUse, int allocSize)
{
sqlite3_release_memory(allocSize);
}
/*
** Set the soft heap-size limit for the current thread. Passing a
** zero or negative value indicates no limit.
*/
SQLITE_API void
sqlite3_soft_heap_limit(int n)
{
sqlite3_uint64 iLimit;
int overage;
if(n < 0)
{
iLimit = 0;
}
else
{
iLimit = n;
}
if(iLimit > 0)
{
sqlite3_memory_alarm(softHeapLimitEnforcer, 0, iLimit);
}
else
{
sqlite3_memory_alarm(0, 0, 0);
}
overage = sqlite3_memory_used() - n;
if(overage > 0)
{
sqlite3_release_memory(overage);
}
}
/*
** Release memory held by SQLite instances created by the current thread.
*/
SQLITE_API int
sqlite3_release_memory(int n)
{
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
int nRet = sqlite3VdbeReleaseMemory(n);
nRet += sqlite3PagerReleaseMemory(n - nRet);
return nRet;
#else
return SQLITE_OK;
#endif
}
/*
** Allocate and zero memory.
*/
SQLITE_PRIVATE void *
sqlite3MallocZero(unsigned n)
{
void *p = sqlite3_malloc(n);
if(p)
{
memset(p, 0, n);
}
return p;
}
/*
** Allocate and zero memory. If the allocation fails, make
** the mallocFailed flag in the connection pointer.
*/
SQLITE_PRIVATE void *
sqlite3DbMallocZero(sqlite3 * db, unsigned n)
{
void *p = sqlite3DbMallocRaw(db, n);
if(p)
{
memset(p, 0, n);
}
return p;
}
/*
** Allocate and zero memory. If the allocation fails, make
** the mallocFailed flag in the connection pointer.
*/
SQLITE_PRIVATE void *
sqlite3DbMallocRaw(sqlite3 * db, unsigned n)
{
void *p = 0;
if(!db || db->mallocFailed == 0)
{
p = sqlite3_malloc(n);
if(!p && db)
{
db->mallocFailed = 1;
}
}
return p;
}
/*
** Resize the block of memory pointed to by p to n bytes. If the
** resize fails, set the mallocFailed flag inthe connection object.
*/
SQLITE_PRIVATE void *
sqlite3DbRealloc(sqlite3 * db, void *p, int n)
{
void *pNew = 0;
if(db->mallocFailed == 0)
{
pNew = sqlite3_realloc(p, n);
if(!pNew)
{
db->mallocFailed = 1;
}
}
return pNew;
}
/*
** Attempt to reallocate p. If the reallocation fails, then free p
** and set the mallocFailed flag in the database connection.
*/
SQLITE_PRIVATE void *
sqlite3DbReallocOrFree(sqlite3 * db, void *p, int n)
{
void *pNew;
pNew = sqlite3DbRealloc(db, p, n);
if(!pNew)
{
sqlite3_free(p);
}
return pNew;
}
/*
** Make a copy of a string in memory obtained from sqliteMalloc(). These
** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
** is because when memory debugging is turned on, these two functions are
** called via macros that record the current file and line number in the
** ThreadData structure.
*/
SQLITE_PRIVATE char *
sqlite3StrDup(const char *z)
{
char *zNew;
int n;
if(z == 0)
return 0;
n = strlen(z) + 1;
zNew = sqlite3_malloc(n);
if(zNew)
memcpy(zNew, z, n);
return zNew;
}
SQLITE_PRIVATE char *
sqlite3StrNDup(const char *z, int n)
{
char *zNew;
if(z == 0)
return 0;
zNew = sqlite3_malloc(n + 1);
if(zNew)
{
memcpy(zNew, z, n);
zNew[n] = 0;
}
return zNew;
}
SQLITE_PRIVATE char *
sqlite3DbStrDup(sqlite3 * db, const char *z)
{
char *zNew = sqlite3StrDup(z);
if(z && !zNew)
{
db->mallocFailed = 1;
}
return zNew;
}
SQLITE_PRIVATE char *
sqlite3DbStrNDup(sqlite3 * db, const char *z, int n)
{
char *zNew = sqlite3StrNDup(z, n);
if(z && !zNew)
{
db->mallocFailed = 1;
}
return zNew;
}
/*
** Create a string from the 2nd and subsequent arguments (up to the
** first NULL argument), store the string in memory obtained from
** sqliteMalloc() and make the pointer indicated by the 1st argument
** point to that string. The 1st argument must either be NULL or
** point to memory obtained from sqliteMalloc().
*/
SQLITE_PRIVATE void
sqlite3SetString(char **pz, ...)
{
va_list ap;
int nByte;
const char *z;
char *zResult;
assert(pz != 0);
nByte = 1;
va_start(ap, pz);
while ((z = va_arg(ap, const char *)) != 0)
{
nByte += strlen(z);
}
va_end(ap);
sqlite3_free(*pz);
*pz = zResult = sqlite3_malloc(nByte);
if(zResult == 0)
{
return;
}
*zResult = 0;
va_start(ap, pz);
while ((z = va_arg(ap, const char *)) != 0)
{
int n = strlen(z);
memcpy(zResult, z, n);
zResult += n;
}
zResult[0] = 0;
va_end(ap);
}
/*
** This function must be called before exiting any API function (i.e.
** returning control to the user) that has called sqlite3_malloc or
** sqlite3_realloc.
**
** The returned value is normally a copy of the second argument to this
** function. However, if a malloc() failure has occured since the previous
** invocation SQLITE_NOMEM is returned instead.
**
** If the first argument, db, is not NULL and a malloc() error has occured,
** then the connection error-code (the value returned by sqlite3_errcode())
** is set to SQLITE_NOMEM.
*/
SQLITE_PRIVATE int
sqlite3ApiExit(sqlite3 * db, int rc)
{
/* If the db handle is not NULL, then we must hold the connection handle
** mutex here. Otherwise the read (and possible write) of db->mallocFailed
** is unsafe, as is the call to sqlite3Error().
*/
assert(!db || sqlite3_mutex_held(db->mutex));
if(db && db->mallocFailed)
{
sqlite3Error(db, SQLITE_NOMEM, 0);
db->mallocFailed = 0;
rc = SQLITE_NOMEM;
}
return rc & (db ? db->errMask : 0xff);
}
/************** End of malloc.c **********************************************/
/************** Begin file printf.c ******************************************/
/*
** The "printf" code that follows dates from the 1980's. It is in
** the public domain. The original comments are included here for
** completeness. They are very out-of-date but might be useful as
** an historical reference. Most of the "enhancements" have been backed
** out so that the functionality is now the same as standard printf().
**
**************************************************************************
**
** The following modules is an enhanced replacement for the "printf" subroutines
** found in the standard C library. The following enhancements are
** supported:
**
** + Additional functions. The standard set of "printf" functions
** includes printf, fprintf, sprintf, vprintf, vfprintf, and
** vsprintf. This module adds the following:
**
** * snprintf -- Works like sprintf, but has an extra argument
** which is the size of the buffer written to.
**
** * mprintf -- Similar to sprintf. Writes output to memory
** obtained from malloc.
**
** * xprintf -- Calls a function to dispose of output.
**
** * nprintf -- No output, but returns the number of characters
** that would have been output by printf.
**
** * A v- version (ex: vsnprintf) of every function is also
** supplied.
**
** + A few extensions to the formatting notation are supported:
**
** * The "=" flag (similar to "-") causes the output to be
** be centered in the appropriately sized field.
**
** * The %b field outputs an integer in binary notation.
**
** * The %c field now accepts a precision. The character output
** is repeated by the number of times the precision specifies.
**
** * The %' field works like %c, but takes as its character the
** next character of the format string, instead of the next
** argument. For example, printf("%.78'-") prints 78 minus
** signs, the same as printf("%.78c",'-').
**
** + When compiled using GCC on a SPARC, this version of printf is
** faster than the library printf for SUN OS 4.1.
**
** + All functions are fully reentrant.
**
*/
/*
** Conversion types fall into various categories as defined by the
** following enumeration.
*/
#define etRADIX 1 /* Integer types. %d, %x, %o, and so forth */
#define etFLOAT 2 /* Floating point. %f */
#define etEXP 3 /* Exponentional notation. %e and %E */
#define etGENERIC 4 /* Floating or exponential, depending on exponent. %g */
#define etSIZE 5 /* Return number of characters processed so far. %n */
#define etSTRING 6 /* Strings. %s */
#define etDYNSTRING 7 /* Dynamically allocated strings. %z */
#define etPERCENT 8 /* Percent symbol. %% */
#define etCHARX 9 /* Characters. %c */
/* The rest are extensions, not normally found in printf() */
#define etCHARLIT 10 /* Literal characters. %' */
#define etSQLESCAPE 11 /* Strings with '\'' doubled. %q */
#define etSQLESCAPE2 12 /* Strings with '\'' doubled and enclosed in '',
NULL pointers replaced by SQL NULL. %Q */
#define etTOKEN 13 /* a pointer to a Token structure */
#define etSRCLIST 14 /* a pointer to a SrcList */
#define etPOINTER 15 /* The %p conversion */
#define etSQLESCAPE3 16 /* %w -> Strings with '\"' doubled */
#define etORDINAL 17 /* %r -> 1st, 2nd, 3rd, 4th, etc. English only */
/*
** An "etByte" is an 8-bit unsigned value.
*/
typedef unsigned char etByte;
/*
** Each builtin conversion character (ex: the 'd' in "%d") is described
** by an instance of the following structure
*/
typedef struct et_info
{ /* Information about each format field */
char fmttype; /* The format field code letter */
etByte base; /* The base for radix conversion */
etByte flags; /* One or more of FLAG_ constants below */
etByte type; /* Conversion paradigm */
etByte charset; /* Offset into aDigits[] of the digits string */
etByte prefix; /* Offset into aPrefix[] of the prefix string */
} et_info;
/*
** Allowed values for et_info.flags
*/
#define FLAG_SIGNED 1 /* True if the value to convert is signed */
#define FLAG_INTERN 2 /* True if for internal use only */
#define FLAG_STRING 4 /* Allow infinity precision */
/*
** The following table is searched linearly, so it is good to put the
** most frequently used conversion types first.
*/
static const char aDigits[] = "0123456789ABCDEF0123456789abcdef";
static const char aPrefix[] = "-x0\000X0";
static const et_info fmtinfo[] = {
{'d', 10, 1, etRADIX, 0, 0},
{'s', 0, 4, etSTRING, 0, 0},
{'g', 0, 1, etGENERIC, 30, 0},
{'z', 0, 4, etDYNSTRING, 0, 0},
{'q', 0, 4, etSQLESCAPE, 0, 0},
{'Q', 0, 4, etSQLESCAPE2, 0, 0},
{'w', 0, 4, etSQLESCAPE3, 0, 0},
{'c', 0, 0, etCHARX, 0, 0},
{'o', 8, 0, etRADIX, 0, 2},
{'u', 10, 0, etRADIX, 0, 0},
{'x', 16, 0, etRADIX, 16, 1},
{'X', 16, 0, etRADIX, 0, 4},
#ifndef SQLITE_OMIT_FLOATING_POINT
{'f', 0, 1, etFLOAT, 0, 0},
{'e', 0, 1, etEXP, 30, 0},
{'E', 0, 1, etEXP, 14, 0},
{'G', 0, 1, etGENERIC, 14, 0},
#endif
{'i', 10, 1, etRADIX, 0, 0},
{'n', 0, 0, etSIZE, 0, 0},
{'%', 0, 0, etPERCENT, 0, 0},
{'p', 16, 0, etPOINTER, 0, 1},
{'T', 0, 2, etTOKEN, 0, 0},
{'S', 0, 2, etSRCLIST, 0, 0},
{'r', 10, 3, etORDINAL, 0, 0},
};
#define etNINFO (sizeof(fmtinfo)/sizeof(fmtinfo[0]))
/*
** If SQLITE_OMIT_FLOATING_POINT is defined, then none of the floating point
** conversions will work.
*/
#ifndef SQLITE_OMIT_FLOATING_POINT
/*
** "*val" is a double such that 0.1 <= *val < 10.0
** Return the ascii code for the leading digit of *val, then
** multiply "*val" by 10.0 to renormalize.
**
** Example:
** input: *val = 3.14159
** output: *val = 1.4159 function return = '3'
**
** The counter *cnt is incremented each time. After counter exceeds
** 16 (the number of significant digits in a 64-bit float) '0' is
** always returned.
*/
static int
et_getdigit(LONGDOUBLE_TYPE * val, int *cnt)
{
int digit;
LONGDOUBLE_TYPE d;
if((*cnt)++ >= 16)
return '0';
digit = (int) *val;
d = digit;
digit += '0';
*val = (*val - d) * 10.0;
return digit;
}
#endif /* SQLITE_OMIT_FLOATING_POINT */
/*
** Append N space characters to the given string buffer.
*/
static void
appendSpace(StrAccum * pAccum, int N)
{
static const char zSpaces[] = " ";
while (N >= sizeof(zSpaces) - 1)
{
sqlite3StrAccumAppend(pAccum, zSpaces, sizeof(zSpaces) - 1);
N -= sizeof(zSpaces) - 1;
}
if(N > 0)
{
sqlite3StrAccumAppend(pAccum, zSpaces, N);
}
}
/*
** On machines with a small stack size, you can redefine the
** SQLITE_PRINT_BUF_SIZE to be less than 350. But beware - for
** smaller values some %f conversions may go into an infinite loop.
*/
#ifndef SQLITE_PRINT_BUF_SIZE
# define SQLITE_PRINT_BUF_SIZE 350
#endif
#define etBUFSIZE SQLITE_PRINT_BUF_SIZE /* Size of the output buffer */
/*
** The root program. All variations call this core.
**
** INPUTS:
** func This is a pointer to a function taking three arguments
** 1. A pointer to anything. Same as the "arg" parameter.
** 2. A pointer to the list of characters to be output
** (Note, this list is NOT null terminated.)
** 3. An integer number of characters to be output.
** (Note: This number might be zero.)
**
** arg This is the pointer to anything which will be passed as the
** first argument to "func". Use it for whatever you like.
**
** fmt This is the format string, as in the usual print.
**
** ap This is a pointer to a list of arguments. Same as in
** vfprint.
**
** OUTPUTS:
** The return value is the total number of characters sent to
** the function "func". Returns -1 on a error.
**
** Note that the order in which automatic variables are declared below
** seems to make a big difference in determining how fast this beast
** will run.
*/
static void
vxprintf(StrAccum * pAccum, /* Accumulate results here */
int useExtended, /* Allow extended %-conversions */
const char *fmt, /* Format string */
va_list ap /* arguments */
)
{
int c; /* Next character in the format string */
char *bufpt; /* Pointer to the conversion buffer */
int precision; /* Precision of the current field */
int length; /* Length of the field */
int idx; /* A general purpose loop counter */
int width; /* Width of the current field */
etByte flag_leftjustify; /* True if "-" flag is present */
etByte flag_plussign; /* True if "+" flag is present */
etByte flag_blanksign; /* True if " " flag is present */
etByte flag_alternateform; /* True if "#" flag is present */
etByte flag_altform2; /* True if "!" flag is present */
etByte flag_zeropad; /* True if field width constant starts with zero */
etByte flag_long; /* True if "l" flag is present */
etByte flag_longlong; /* True if the "ll" flag is present */
etByte done; /* Loop termination flag */
sqlite_uint64 longvalue; /* Value for integer types */
LONGDOUBLE_TYPE realvalue; /* Value for real types */
const et_info *infop; /* Pointer to the appropriate info structure */
char buf[etBUFSIZE]; /* Conversion buffer */
char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */
etByte errorflag = 0; /* True if an error is encountered */
etByte xtype; /* Conversion paradigm */
char *zExtra; /* Extra memory used for etTCLESCAPE conversions */
#ifndef SQLITE_OMIT_FLOATING_POINT
int exp, e2; /* exponent of real numbers */
double rounder; /* Used for rounding floating point values */
etByte flag_dp; /* True if decimal point should be shown */
etByte flag_rtz; /* True if trailing zeros should be removed */
etByte flag_exp; /* True to force display of the exponent */
int nsd; /* Number of significant digits returned */
#endif
length = 0;
bufpt = 0;
for (; (c = (*fmt)) != 0; ++fmt)
{
if(c != '%')
{
int amt;
bufpt = (char *) fmt;
amt = 1;
while ((c = (*++fmt)) != '%' && c != 0)
amt++;
sqlite3StrAccumAppend(pAccum, bufpt, amt);
if(c == 0)
break;
}
if((c = (*++fmt)) == 0)
{
errorflag = 1;
sqlite3StrAccumAppend(pAccum, "%", 1);
break;
}
/* Find out what flags are present */
flag_leftjustify = flag_plussign = flag_blanksign =
flag_alternateform = flag_altform2 = flag_zeropad = 0;
done = 0;
do
{
switch (c)
{
case '-':
flag_leftjustify = 1;
break;
case '+':
flag_plussign = 1;
break;
case ' ':
flag_blanksign = 1;
break;
case '#':
flag_alternateform = 1;
break;
case '!':
flag_altform2 = 1;
break;
case '0':
flag_zeropad = 1;
break;
default:
done = 1;
break;
}
}
while (!done && (c = (*++fmt)) != 0);
/* Get the field width */
width = 0;
if(c == '*')
{
width = va_arg(ap, int);
if(width < 0)
{
flag_leftjustify = 1;
width = -width;
}
c = *++fmt;
}
else
{
while (c >= '0' && c <= '9')
{
width = width * 10 + c - '0';
c = *++fmt;
}
}
if(width > etBUFSIZE - 10)
{
width = etBUFSIZE - 10;
}
/* Get the precision */
if(c == '.')
{
precision = 0;
c = *++fmt;
if(c == '*')
{
precision = va_arg(ap, int);
if(precision < 0)
precision = -precision;
c = *++fmt;
}
else
{
while (c >= '0' && c <= '9')
{
precision = precision * 10 + c - '0';
c = *++fmt;
}
}
}
else
{
precision = -1;
}
/* Get the conversion type modifier */
if(c == 'l')
{
flag_long = 1;
c = *++fmt;
if(c == 'l')
{
flag_longlong = 1;
c = *++fmt;
}
else
{
flag_longlong = 0;
}
}
else
{
flag_long = flag_longlong = 0;
}
/* Fetch the info entry for the field */
infop = 0;
for (idx = 0; idx < etNINFO; idx++)
{
if(c == fmtinfo[idx].fmttype)
{
infop = &fmtinfo[idx];
if(useExtended || (infop->flags & FLAG_INTERN) == 0)
{
xtype = infop->type;
}
else
{
return;
}
break;
}
}
zExtra = 0;
if(infop == 0)
{
return;
}
/* Limit the precision to prevent overflowing buf[] during conversion */
if(precision > etBUFSIZE - 40 && (infop->flags & FLAG_STRING) == 0)
{
precision = etBUFSIZE - 40;
}
/*
** At this point, variables are initialized as follows:
**
** flag_alternateform TRUE if a '#' is present.
** flag_altform2 TRUE if a '!' is present.
** flag_plussign TRUE if a '+' is present.
** flag_leftjustify TRUE if a '-' is present or if the
** field width was negative.
** flag_zeropad TRUE if the width began with 0.
** flag_long TRUE if the letter 'l' (ell) prefixed
** the conversion character.
** flag_longlong TRUE if the letter 'll' (ell ell) prefixed
** the conversion character.
** flag_blanksign TRUE if a ' ' is present.
** width The specified field width. This is
** always non-negative. Zero is the default.
** precision The specified precision. The default
** is -1.
** xtype The class of the conversion.
** infop Pointer to the appropriate info struct.
*/
switch (xtype)
{
case etPOINTER:
flag_longlong = sizeof(char *) == sizeof(i64);
flag_long = sizeof(char *) == sizeof(long int);
/* Fall through into the next case */
case etORDINAL:
case etRADIX:
if(infop->flags & FLAG_SIGNED)
{
i64 v;
if(flag_longlong)
v = va_arg(ap, i64);
else if(flag_long)
v = va_arg(ap, long int);
else
v = va_arg(ap, int);
if(v < 0)
{
longvalue = -v;
prefix = '-';
}
else
{
longvalue = v;
if(flag_plussign)
prefix = '+';
else if(flag_blanksign)
prefix = ' ';
else
prefix = 0;
}
}
else
{
if(flag_longlong)
longvalue = va_arg(ap, u64);
else if(flag_long)
longvalue = va_arg(ap, unsigned long int);
else
longvalue = va_arg(ap, unsigned int);
prefix = 0;
}
if(longvalue == 0)
flag_alternateform = 0;
if(flag_zeropad && precision < width - (prefix != 0))
{
precision = width - (prefix != 0);
}
bufpt = &buf[etBUFSIZE - 1];
if(xtype == etORDINAL)
{
static const char zOrd[] = "thstndrd";
int x = longvalue % 10;
if(x >= 4 || (longvalue / 10) % 10 == 1)
{
x = 0;
}
buf[etBUFSIZE - 3] = zOrd[x * 2];
buf[etBUFSIZE - 2] = zOrd[x * 2 + 1];
bufpt -= 2;
}
{
register const char *cset; /* Use registers for speed */
register int base;
cset = &aDigits[infop->charset];
base = infop->base;
do
{ /* Convert to ascii */
*(--bufpt) = cset[longvalue % base];
longvalue = longvalue / base;
}
while (longvalue > 0);
}
length = &buf[etBUFSIZE - 1] - bufpt;
for (idx = precision - length; idx > 0; idx--)
{
*(--bufpt) = '0'; /* Zero pad */
}
if(prefix)
*(--bufpt) = prefix; /* Add sign */
if(flag_alternateform && infop->prefix)
{ /* Add "0" or "0x" */
const char *pre;
char x;
pre = &aPrefix[infop->prefix];
if(*bufpt != pre[0])
{
for (; (x = (*pre)) != 0; pre++)
*(--bufpt) = x;
}
}
length = &buf[etBUFSIZE - 1] - bufpt;
break;
case etFLOAT:
case etEXP:
case etGENERIC:
realvalue = va_arg(ap, double);
#ifndef SQLITE_OMIT_FLOATING_POINT
if(precision < 0)
precision = 6; /* Set default precision */
if(precision > etBUFSIZE / 2 - 10)
precision = etBUFSIZE / 2 - 10;
if(realvalue < 0.0)
{
realvalue = -realvalue;
prefix = '-';
}
else
{
if(flag_plussign)
prefix = '+';
else if(flag_blanksign)
prefix = ' ';
else
prefix = 0;
}
if(xtype == etGENERIC && precision > 0)
precision--;
#if 0
/* Rounding works like BSD when the constant 0.4999 is used. Wierd! */
for (idx = precision, rounder = 0.4999; idx > 0; idx--, rounder *= 0.1);
#else
/* It makes more sense to use 0.5 */
for (idx = precision, rounder = 0.5; idx > 0; idx--, rounder *= 0.1)
{
}
#endif
if(xtype == etFLOAT)
realvalue += rounder;
/* Normalize realvalue to within 10.0 > realvalue >= 1.0 */
exp = 0;
if(sqlite3IsNaN(realvalue))
{
bufpt = "NaN";
length = 3;
break;
}
if(realvalue > 0.0)
{
while (realvalue >= 1e32 && exp <= 350)
{
realvalue *= 1e-32;
exp += 32;
}
while (realvalue >= 1e8 && exp <= 350)
{
realvalue *= 1e-8;
exp += 8;
}
while (realvalue >= 10.0 && exp <= 350)
{
realvalue *= 0.1;
exp++;
}
while (realvalue < 1e-8 && exp >= -350)
{
realvalue *= 1e8;
exp -= 8;
}
while (realvalue < 1.0 && exp >= -350)
{
realvalue *= 10.0;
exp--;
}
if(exp > 350 || exp < -350)
{
if(prefix == '-')
{
bufpt = "-Inf";
}
else if(prefix == '+')
{
bufpt = "+Inf";
}
else
{
bufpt = "Inf";
}
length = strlen(bufpt);
break;
}
}
bufpt = buf;
/*
** If the field type is etGENERIC, then convert to either etEXP
** or etFLOAT, as appropriate.
*/
flag_exp = xtype == etEXP;
if(xtype != etFLOAT)
{
realvalue += rounder;
if(realvalue >= 10.0)
{
realvalue *= 0.1;
exp++;
}
}
if(xtype == etGENERIC)
{
flag_rtz = !flag_alternateform;
if(exp < -4 || exp > precision)
{
xtype = etEXP;
}
else
{
precision = precision - exp;
xtype = etFLOAT;
}
}
else
{
flag_rtz = 0;
}
if(xtype == etEXP)
{
e2 = 0;
}
else
{
e2 = exp;
}
nsd = 0;
flag_dp = (precision > 0) | flag_alternateform | flag_altform2;
/* The sign in front of the number */
if(prefix)
{
*(bufpt++) = prefix;
}
/* Digits prior to the decimal point */
if(e2 < 0)
{
*(bufpt++) = '0';
}
else
{
for (; e2 >= 0; e2--)
{
*(bufpt++) = et_getdigit(&realvalue, &nsd);
}
}
/* The decimal point */
if(flag_dp)
{
*(bufpt++) = '.';
}
/* "0" digits after the decimal point but before the first
** significant digit of the number */
for (e2++; e2 < 0 && precision > 0; precision--, e2++)
{
*(bufpt++) = '0';
}
/* Significant digits after the decimal point */
while ((precision--) > 0)
{
*(bufpt++) = et_getdigit(&realvalue, &nsd);
}
/* Remove trailing zeros and the "." if no digits follow the "." */
if(flag_rtz && flag_dp)
{
while (bufpt[-1] == '0')
*(--bufpt) = 0;
assert(bufpt > buf);
if(bufpt[-1] == '.')
{
if(flag_altform2)
{
*(bufpt++) = '0';
}
else
{
*(--bufpt) = 0;
}
}
}
/* Add the "eNNN" suffix */
if(flag_exp || (xtype == etEXP && exp))
{
*(bufpt++) = aDigits[infop->charset];
if(exp < 0)
{
*(bufpt++) = '-';
exp = -exp;
}
else
{
*(bufpt++) = '+';
}
if(exp >= 100)
{
*(bufpt++) = (exp / 100) + '0'; /* 100's digit */
exp %= 100;
}
*(bufpt++) = exp / 10 + '0'; /* 10's digit */
*(bufpt++) = exp % 10 + '0'; /* 1's digit */
}
*bufpt = 0;
/* The converted number is in buf[] and zero terminated. Output it.
** Note that the number is in the usual order, not reversed as with
** integer conversions. */
length = bufpt - buf;
bufpt = buf;
/* Special case: Add leading zeros if the flag_zeropad flag is
** set and we are not left justified */
if(flag_zeropad && !flag_leftjustify && length < width)
{
int i;
int nPad = width - length;
for (i = width; i >= nPad; i--)
{
bufpt[i] = bufpt[i - nPad];
}
i = prefix != 0;
while (nPad--)
bufpt[i++] = '0';
length = width;
}
#endif
break;
case etSIZE:
*(va_arg(ap, int *)) = pAccum->nChar;
length = width = 0;
break;
case etPERCENT:
buf[0] = '%';
bufpt = buf;
length = 1;
break;
case etCHARLIT:
case etCHARX:
c = buf[0] = (xtype == etCHARX ? va_arg(ap, int) : *++fmt);
if(precision >= 0)
{
for (idx = 1; idx < precision; idx++)
buf[idx] = c;
length = precision;
}
else
{
length = 1;
}
bufpt = buf;
break;
case etSTRING:
case etDYNSTRING:
bufpt = va_arg(ap, char *);
if(bufpt == 0)
{
bufpt = "";
}
else if(xtype == etDYNSTRING)
{
zExtra = bufpt;
}
if(precision >= 0)
{
for (length = 0; length < precision && bufpt[length]; length++)
{
}
}
else
{
length = strlen(bufpt);
}
break;
case etSQLESCAPE:
case etSQLESCAPE2:
case etSQLESCAPE3:
{
int i, j, n, ch, isnull;
int needQuote;
char q = ((xtype == etSQLESCAPE3) ? '"' : '\''); /* Quote character */
char *escarg = va_arg(ap, char *);
isnull = escarg == 0;
if(isnull)
escarg = (xtype == etSQLESCAPE2 ? "NULL" : "(NULL)");
for (i = n = 0; (ch = escarg[i]) != 0; i++)
{
if(ch == q)
n++;
}
needQuote = !isnull && xtype == etSQLESCAPE2;
n += i + 1 + needQuote * 2;
if(n > etBUFSIZE)
{
bufpt = zExtra = sqlite3_malloc(n);
if(bufpt == 0)
return;
}
else
{
bufpt = buf;
}
j = 0;
if(needQuote)
bufpt[j++] = q;
for (i = 0; (ch = escarg[i]) != 0; i++)
{
bufpt[j++] = ch;
if(ch == q)
bufpt[j++] = ch;
}
if(needQuote)
bufpt[j++] = q;
bufpt[j] = 0;
length = j;
/* The precision is ignored on %q and %Q */
/* if( precision>=0 && precision<length ) length = precision; */
break;
}
case etTOKEN:
{
Token *pToken = va_arg(ap, Token *);
if(pToken && pToken->z)
{
sqlite3StrAccumAppend(pAccum, (const char *) pToken->z,
pToken->n);
}
length = width = 0;
break;
}
case etSRCLIST:
{
SrcList *pSrc = va_arg(ap, SrcList *);
int k = va_arg(ap, int);
struct SrcList_item *pItem = &pSrc->a[k];
assert(k >= 0 && k < pSrc->nSrc);
if(pItem->zDatabase && pItem->zDatabase[0])
{
sqlite3StrAccumAppend(pAccum, pItem->zDatabase, -1);
sqlite3StrAccumAppend(pAccum, ".", 1);
}
sqlite3StrAccumAppend(pAccum, pItem->zName, -1);
length = width = 0;
break;
}
} /* End switch over the format type */
/*
** The text of the conversion is pointed to by "bufpt" and is
** "length" characters long. The field width is "width". Do
** the output.
*/
if(!flag_leftjustify)
{
register int nspace;
nspace = width - length;
if(nspace > 0)
{
appendSpace(pAccum, nspace);
}
}
if(length > 0)
{
sqlite3StrAccumAppend(pAccum, bufpt, length);
}
if(flag_leftjustify)
{
register int nspace;
nspace = width - length;
if(nspace > 0)
{
appendSpace(pAccum, nspace);
}
}
if(zExtra)
{
sqlite3_free(zExtra);
}
} /* End for loop over the format string */
} /* End of function */
/*
** Append N bytes of text from z to the StrAccum object.
*/
SQLITE_PRIVATE void
sqlite3StrAccumAppend(StrAccum * p, const char *z, int N)
{
if(p->tooBig | p->mallocFailed)
{
return;
}
if(N < 0)
{
N = strlen(z);
}
if(N == 0)
{
return;
}
if(p->nChar + N >= p->nAlloc)
{
char *zNew;
if(!p->useMalloc)
{
p->tooBig = 1;
N = p->nAlloc - p->nChar - 1;
if(N <= 0)
{
return;
}
}
else
{
i64 szNew = p->nAlloc;
szNew += N + 1;
if(szNew > p->mxAlloc)
{
p->nAlloc = p->mxAlloc;
if(((i64) p->nChar) + ((i64) N) >= p->nAlloc)
{
sqlite3StrAccumReset(p);
p->tooBig = 1;
return;
}
}
else
{
p->nAlloc = szNew;
}
zNew = sqlite3_malloc(p->nAlloc);
if(zNew)
{
memcpy(zNew, p->zText, p->nChar);
sqlite3StrAccumReset(p);
p->zText = zNew;
}
else
{
p->mallocFailed = 1;
sqlite3StrAccumReset(p);
return;
}
}
}
memcpy(&p->zText[p->nChar], z, N);
p->nChar += N;
}
/*
** Finish off a string by making sure it is zero-terminated.
** Return a pointer to the resulting string. Return a NULL
** pointer if any kind of error was encountered.
*/
SQLITE_PRIVATE char *
sqlite3StrAccumFinish(StrAccum * p)
{
if(p->zText)
{
p->zText[p->nChar] = 0;
if(p->useMalloc && p->zText == p->zBase)
{
p->zText = sqlite3_malloc(p->nChar + 1);
if(p->zText)
{
memcpy(p->zText, p->zBase, p->nChar + 1);
}
else
{
p->mallocFailed = 1;
}
}
}
return p->zText;
}
/*
** Reset an StrAccum string. Reclaim all malloced memory.
*/
SQLITE_PRIVATE void
sqlite3StrAccumReset(StrAccum * p)
{
if(p->zText != p->zBase)
{
sqlite3_free(p->zText);
p->zText = 0;
}
}
/*
** Initialize a string accumulator
*/
static void
sqlite3StrAccumInit(StrAccum * p, char *zBase, int n, int mx)
{
p->zText = p->zBase = zBase;
p->nChar = 0;
p->nAlloc = n;
p->mxAlloc = mx;
p->useMalloc = 1;
p->tooBig = 0;
p->mallocFailed = 0;
}
/*
** Print into memory obtained from sqliteMalloc(). Use the internal
** %-conversion extensions.
*/
SQLITE_PRIVATE char *
sqlite3VMPrintf(sqlite3 * db, const char *zFormat, va_list ap)
{
char *z;
char zBase[SQLITE_PRINT_BUF_SIZE];
StrAccum acc;
sqlite3StrAccumInit(&acc, zBase, sizeof(zBase),
db ? db->aLimit[SQLITE_LIMIT_LENGTH] : SQLITE_MAX_LENGTH);
vxprintf(&acc, 1, zFormat, ap);
z = sqlite3StrAccumFinish(&acc);
if(acc.mallocFailed && db)
{
db->mallocFailed = 1;
}
return z;
}
/*
** Print into memory obtained from sqliteMalloc(). Use the internal
** %-conversion extensions.
*/
SQLITE_PRIVATE char *
sqlite3MPrintf(sqlite3 * db, const char *zFormat, ...)
{
va_list ap;
char *z;
va_start(ap, zFormat);
z = sqlite3VMPrintf(db, zFormat, ap);
va_end(ap);
return z;
}
/*
** Print into memory obtained from sqlite3_malloc(). Omit the internal
** %-conversion extensions.
*/
SQLITE_API char *
sqlite3_vmprintf(const char *zFormat, va_list ap)
{
char *z;
char zBase[SQLITE_PRINT_BUF_SIZE];
StrAccum acc;
sqlite3StrAccumInit(&acc, zBase, sizeof(zBase), SQLITE_MAX_LENGTH);
vxprintf(&acc, 0, zFormat, ap);
z = sqlite3StrAccumFinish(&acc);
return z;
}
/*
** Print into memory obtained from sqlite3_malloc()(). Omit the internal
** %-conversion extensions.
*/
SQLITE_API char *
sqlite3_mprintf(const char *zFormat, ...)
{
va_list ap;
char *z;
va_start(ap, zFormat);
z = sqlite3_vmprintf(zFormat, ap);
va_end(ap);
return z;
}
/*
** sqlite3_snprintf() works like snprintf() except that it ignores the
** current locale settings. This is important for SQLite because we
** are not able to use a "," as the decimal point in place of "." as
** specified by some locales.
*/
SQLITE_API char *
sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...)
{
char *z;
va_list ap;
StrAccum acc;
if(n <= 0)
{
return zBuf;
}
sqlite3StrAccumInit(&acc, zBuf, n, 0);
acc.useMalloc = 0;
va_start(ap, zFormat);
vxprintf(&acc, 0, zFormat, ap);
va_end(ap);
z = sqlite3StrAccumFinish(&acc);
return z;
}
#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) || defined(SQLITE_MEMDEBUG)
/*
** A version of printf() that understands %lld. Used for debugging.
** The printf() built into some versions of windows does not understand %lld
** and segfaults if you give it a long long int.
*/
SQLITE_PRIVATE void
sqlite3DebugPrintf(const char *zFormat, ...)
{
va_list ap;
StrAccum acc;
char zBuf[500];
sqlite3StrAccumInit(&acc, zBuf, sizeof(zBuf), 0);
acc.useMalloc = 0;
va_start(ap, zFormat);
vxprintf(&acc, 0, zFormat, ap);
va_end(ap);
sqlite3StrAccumFinish(&acc);
fprintf(stdout, "%s", zBuf);
fflush(stdout);
}
#endif
/************** End of printf.c **********************************************/
/************** Begin file random.c ******************************************/
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code to implement a pseudo-random number
** generator (PRNG) for SQLite.
**
** Random numbers are used by some of the database backends in order
** to generate random integer keys for tables or random filenames.
**
*/
/* All threads share a single random number generator.
** This structure is the current state of the generator.
*/
static struct sqlite3PrngType
{
unsigned char isInit; /* True if initialized */
unsigned char i, j; /* State variables */
unsigned char s[256]; /* State variables */
} sqlite3Prng;
/*
** Get a single 8-bit random value from the RC4 PRNG. The Mutex
** must be held while executing this routine.
**
** Why not just use a library random generator like lrand48() for this?
** Because the OP_NewRowid opcode in the VDBE depends on having a very
** good source of random numbers. The lrand48() library function may
** well be good enough. But maybe not. Or maybe lrand48() has some
** subtle problems on some systems that could cause problems. It is hard
** to know. To minimize the risk of problems due to bad lrand48()
** implementations, SQLite uses this random number generator based
** on RC4, which we know works very well.
**
** (Later): Actually, OP_NewRowid does not depend on a good source of
** randomness any more. But we will leave this code in all the same.
*/
static int
randomByte(void)
{
unsigned char t;
/* Initialize the state of the random number generator once,
** the first time this routine is called. The seed value does
** not need to contain a lot of randomness since we are not
** trying to do secure encryption or anything like that...
**
** Nothing in this file or anywhere else in SQLite does any kind of
** encryption. The RC4 algorithm is being used as a PRNG (pseudo-random
** number generator) not as an encryption device.
*/
if(!sqlite3Prng.isInit)
{
int i;
char k[256];
sqlite3Prng.j = 0;
sqlite3Prng.i = 0;
sqlite3OsRandomness(sqlite3_vfs_find(0), 256, k);
for (i = 0; i < 256; i++)
{
sqlite3Prng.s[i] = i;
}
for (i = 0; i < 256; i++)
{
sqlite3Prng.j += sqlite3Prng.s[i] + k[i];
t = sqlite3Prng.s[sqlite3Prng.j];
sqlite3Prng.s[sqlite3Prng.j] = sqlite3Prng.s[i];
sqlite3Prng.s[i] = t;
}
sqlite3Prng.isInit = 1;
}
/* Generate and return single random byte
*/
sqlite3Prng.i++;
t = sqlite3Prng.s[sqlite3Prng.i];
sqlite3Prng.j += t;
sqlite3Prng.s[sqlite3Prng.i] = sqlite3Prng.s[sqlite3Prng.j];
sqlite3Prng.s[sqlite3Prng.j] = t;
t += sqlite3Prng.s[sqlite3Prng.i];
return sqlite3Prng.s[t];
}
/*
** Return N random bytes.
*/
SQLITE_API void
sqlite3_randomness(int N, void *pBuf)
{
unsigned char *zBuf = pBuf;
static sqlite3_mutex *mutex = 0;
if(mutex == 0)
{
mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_PRNG);
}
sqlite3_mutex_enter(mutex);
while (N--)
{
*(zBuf++) = randomByte();
}
sqlite3_mutex_leave(mutex);
}
#ifndef SQLITE_OMIT_BUILTIN_TEST
/*
** For testing purposes, we sometimes want to preserve the state of
** PRNG and restore the PRNG to its saved state at a later time.
** The sqlite3_test_control() interface calls these routines to
** control the PRNG.
*/
static struct sqlite3PrngType sqlite3SavedPrng;
SQLITE_PRIVATE void
sqlite3PrngSaveState(void)
{
memcpy(&sqlite3SavedPrng, &sqlite3Prng, sizeof(sqlite3Prng));
}
SQLITE_PRIVATE void
sqlite3PrngRestoreState(void)
{
memcpy(&sqlite3Prng, &sqlite3SavedPrng, sizeof(sqlite3Prng));
}
SQLITE_PRIVATE void
sqlite3PrngResetState(void)
{
sqlite3Prng.isInit = 0;
}
#endif /* SQLITE_OMIT_BUILTIN_TEST */
/************** End of random.c **********************************************/
/************** Begin file utf.c *********************************************/
/*
** 2004 April 13
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains routines used to translate between UTF-8,
** UTF-16, UTF-16BE, and UTF-16LE.
**
**
** Notes on UTF-8:
**
** Byte-0 Byte-1 Byte-2 Byte-3 Value
** 0xxxxxxx 00000000 00000000 0xxxxxxx
** 110yyyyy 10xxxxxx 00000000 00000yyy yyxxxxxx
** 1110zzzz 10yyyyyy 10xxxxxx 00000000 zzzzyyyy yyxxxxxx
** 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx 000uuuuu zzzzyyyy yyxxxxxx
**
**
** Notes on UTF-16: (with wwww+1==uuuuu)
**
** Word-0 Word-1 Value
** 110110ww wwzzzzyy 110111yy yyxxxxxx 000uuuuu zzzzyyyy yyxxxxxx
** zzzzyyyy yyxxxxxx 00000000 zzzzyyyy yyxxxxxx
**
**
** BOM or Byte Order Mark:
** 0xff 0xfe little-endian utf-16 follows
** 0xfe 0xff big-endian utf-16 follows
**
*/
/************** Include vdbeInt.h in the middle of utf.c *********************/
/************** Begin file vdbeInt.h *****************************************/
/*
** 2003 September 6
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This is the header file for information that is private to the
** VDBE. This information used to all be at the top of the single
** source code file "vdbe.c". When that file became too big (over
** 6000 lines long) it was split up into several smaller files and
** this header information was factored out.
*/
#ifndef _VDBEINT_H_
#define _VDBEINT_H_
/*
** intToKey() and keyToInt() used to transform the rowid. But with
** the latest versions of the design they are no-ops.
*/
#define keyToInt(X) (X)
#define intToKey(X) (X)
/*
** SQL is translated into a sequence of instructions to be
** executed by a virtual machine. Each instruction is an instance
** of the following structure.
*/
typedef struct VdbeOp Op;
/*
** Boolean values
*/
typedef unsigned char Bool;
/*
** A cursor is a pointer into a single BTree within a database file.
** The cursor can seek to a BTree entry with a particular key, or
** loop over all entries of the Btree. You can also insert new BTree
** entries or retrieve the key or data from the entry that the cursor
** is currently pointing to.
**
** Every cursor that the virtual machine has open is represented by an
** instance of the following structure.
**
** If the Cursor.isTriggerRow flag is set it means that this cursor is
** really a single row that represents the NEW or OLD pseudo-table of
** a row trigger. The data for the row is stored in Cursor.pData and
** the rowid is in Cursor.iKey.
*/
struct Cursor
{
BtCursor *pCursor; /* The cursor structure of the backend */
int iDb; /* Index of cursor database in db->aDb[] (or -1) */
i64 lastRowid; /* Last rowid from a Next or NextIdx operation */
i64 nextRowid; /* Next rowid returned by OP_NewRowid */
Bool zeroed; /* True if zeroed out and ready for reuse */
Bool rowidIsValid; /* True if lastRowid is valid */
Bool atFirst; /* True if pointing to first entry */
Bool useRandomRowid; /* Generate new record numbers semi-randomly */
Bool nullRow; /* True if pointing to a row with no data */
Bool nextRowidValid; /* True if the nextRowid field is valid */
Bool pseudoTable; /* This is a NEW or OLD pseudo-tables of a trigger */
Bool ephemPseudoTable;
Bool deferredMoveto; /* A call to sqlite3BtreeMoveto() is needed */
Bool isTable; /* True if a table requiring integer keys */
Bool isIndex; /* True if an index containing keys only - no data */
u8 bogusIncrKey; /* Something for pIncrKey to point to if pKeyInfo==0 */
i64 movetoTarget; /* Argument to the deferred sqlite3BtreeMoveto() */
Btree *pBt; /* Separate file holding temporary table */
int nData; /* Number of bytes in pData */
char *pData; /* Data for a NEW or OLD pseudo-table */
i64 iKey; /* Key for the NEW or OLD pseudo-table row */
u8 *pIncrKey; /* Pointer to pKeyInfo->incrKey */
KeyInfo *pKeyInfo; /* Info about index keys needed by index cursors */
int nField; /* Number of fields in the header */
i64 seqCount; /* Sequence counter */
sqlite3_vtab_cursor *pVtabCursor; /* The cursor for a virtual table */
const sqlite3_module *pModule; /* Module for cursor pVtabCursor */
/* Cached information about the header for the data record that the
** cursor is currently pointing to. Only valid if cacheValid is true.
** aRow might point to (ephemeral) data for the current row, or it might
** be NULL.
*/
int cacheStatus; /* Cache is valid if this matches Vdbe.cacheCtr */
int payloadSize; /* Total number of bytes in the record */
u32 *aType; /* Type values for all entries in the record */
u32 *aOffset; /* Cached offsets to the start of each columns data */
u8 *aRow; /* Data for the current row, if all on one page */
};
typedef struct Cursor Cursor;
/*
** A value for Cursor.cacheValid that means the cache is always invalid.
*/
#define CACHE_STALE 0
/*
** Internally, the vdbe manipulates nearly all SQL values as Mem
** structures. Each Mem struct may cache multiple representations (string,
** integer etc.) of the same value. A value (and therefore Mem structure)
** has the following properties:
**
** Each value has a manifest type. The manifest type of the value stored
** in a Mem struct is returned by the MemType(Mem*) macro. The type is
** one of SQLITE_NULL, SQLITE_INTEGER, SQLITE_REAL, SQLITE_TEXT or
** SQLITE_BLOB.
*/
struct Mem
{
union
{
i64 i; /* Integer value. Or FuncDef* when flags==MEM_Agg */
FuncDef *pDef; /* Used only when flags==MEM_Agg */
} u;
double r; /* Real value */
sqlite3 *db; /* The associated database connection */
char *z; /* String or BLOB value */
int n; /* Number of characters in string value, excluding '\0' */
u16 flags; /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */
u8 type; /* One of SQLITE_NULL, SQLITE_TEXT, SQLITE_INTEGER, etc */
u8 enc; /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */
void (*xDel) (void *); /* If not null, call this function to delete Mem.z */
char *zMalloc; /* Dynamic buffer allocated by sqlite3_malloc() */
};
/* One or more of the following flags are set to indicate the validOK
** representations of the value stored in the Mem struct.
**
** If the MEM_Null flag is set, then the value is an SQL NULL value.
** No other flags may be set in this case.
**
** If the MEM_Str flag is set then Mem.z points at a string representation.
** Usually this is encoded in the same unicode encoding as the main
** database (see below for exceptions). If the MEM_Term flag is also
** set, then the string is nul terminated. The MEM_Int and MEM_Real
** flags may coexist with the MEM_Str flag.
**
** Multiple of these values can appear in Mem.flags. But only one
** at a time can appear in Mem.type.
*/
#define MEM_Null 0x0001 /* Value is NULL */
#define MEM_Str 0x0002 /* Value is a string */
#define MEM_Int 0x0004 /* Value is an integer */
#define MEM_Real 0x0008 /* Value is a real number */
#define MEM_Blob 0x0010 /* Value is a BLOB */
#define MemSetTypeFlag(p, f) \
((p)->flags = ((p)->flags&~(MEM_Int|MEM_Real|MEM_Null|MEM_Blob|MEM_Str))|f)
/* Whenever Mem contains a valid string or blob representation, one of
** the following flags must be set to determine the memory management
** policy for Mem.z. The MEM_Term flag tells us whether or not the
** string is \000 or \u0000 terminated
*/
#define MEM_Term 0x0020 /* String rep is nul terminated */
#define MEM_Dyn 0x0040 /* Need to call sqliteFree() on Mem.z */
#define MEM_Static 0x0080 /* Mem.z points to a static string */
#define MEM_Ephem 0x0100 /* Mem.z points to an ephemeral string */
#define MEM_Agg 0x0400 /* Mem.z points to an agg function context */
#define MEM_Zero 0x0800 /* Mem.i contains count of 0s appended to blob */
#ifdef SQLITE_OMIT_INCRBLOB
#undef MEM_Zero
#define MEM_Zero 0x0000
#endif
/* A VdbeFunc is just a FuncDef (defined in sqliteInt.h) that contains
** additional information about auxiliary information bound to arguments
** of the function. This is used to implement the sqlite3_get_auxdata()
** and sqlite3_set_auxdata() APIs. The "auxdata" is some auxiliary data
** that can be associated with a constant argument to a function. This
** allows functions such as "regexp" to compile their constant regular
** expression argument once and reused the compiled code for multiple
** invocations.
*/
struct VdbeFunc
{
FuncDef *pFunc; /* The definition of the function */
int nAux; /* Number of entries allocated for apAux[] */
struct AuxData
{
void *pAux; /* Aux data for the i-th argument */
void (*xDelete) (void *); /* Destructor for the aux data */
} apAux[1]; /* One slot for each function argument */
};
/*
** The "context" argument for a installable function. A pointer to an
** instance of this structure is the first argument to the routines used
** implement the SQL functions.
**
** There is a typedef for this structure in sqlite.h. So all routines,
** even the public interface to SQLite, can use a pointer to this structure.
** But this file is the only place where the internal details of this
** structure are known.
**
** This structure is defined inside of vdbeInt.h because it uses substructures
** (Mem) which are only defined there.
*/
struct sqlite3_context
{
FuncDef *pFunc; /* Pointer to function information. MUST BE FIRST */
VdbeFunc *pVdbeFunc; /* Auxilary data, if created. */
Mem s; /* The return value is stored here */
Mem *pMem; /* Memory cell used to store aggregate context */
int isError; /* Error code returned by the function. */
CollSeq *pColl; /* Collating sequence */
};
/*
** A Set structure is used for quick testing to see if a value
** is part of a small set. Sets are used to implement code like
** this:
** x.y IN ('hi','hoo','hum')
*/
typedef struct Set Set;
struct Set
{
Hash hash; /* A set is just a hash table */
HashElem *prev; /* Previously accessed hash elemen */
};
/*
** A FifoPage structure holds a single page of valves. Pages are arranged
** in a list.
*/
typedef struct FifoPage FifoPage;
struct FifoPage
{
int nSlot; /* Number of entries aSlot[] */
int iWrite; /* Push the next value into this entry in aSlot[] */
int iRead; /* Read the next value from this entry in aSlot[] */
FifoPage *pNext; /* Next page in the fifo */
i64 aSlot[1]; /* One or more slots for rowid values */
};
/*
** The Fifo structure is typedef-ed in vdbeInt.h. But the implementation
** of that structure is private to this file.
**
** The Fifo structure describes the entire fifo.
*/
typedef struct Fifo Fifo;
struct Fifo
{
int nEntry; /* Total number of entries */
FifoPage *pFirst; /* First page on the list */
FifoPage *pLast; /* Last page on the list */
};
/*
** A Context stores the last insert rowid, the last statement change count,
** and the current statement change count (i.e. changes since last statement).
** The current keylist is also stored in the context.
** Elements of Context structure type make up the ContextStack, which is
** updated by the ContextPush and ContextPop opcodes (used by triggers).
** The context is pushed before executing a trigger a popped when the
** trigger finishes.
*/
typedef struct Context Context;
struct Context
{
i64 lastRowid; /* Last insert rowid (sqlite3.lastRowid) */
int nChange; /* Statement changes (Vdbe.nChanges) */
Fifo sFifo; /* Records that will participate in a DELETE or UPDATE */
};
/*
** An instance of the virtual machine. This structure contains the complete
** state of the virtual machine.
**
** The "sqlite3_stmt" structure pointer that is returned by sqlite3_compile()
** is really a pointer to an instance of this structure.
**
** The Vdbe.inVtabMethod variable is set to non-zero for the duration of
** any virtual table method invocations made by the vdbe program. It is
** set to 2 for xDestroy method calls and 1 for all other methods. This
** variable is used for two purposes: to allow xDestroy methods to execute
** "DROP TABLE" statements and to prevent some nasty side effects of
** malloc failure when SQLite is invoked recursively by a virtual table
** method function.
*/
struct Vdbe
{
sqlite3 *db; /* The whole database */
Vdbe *pPrev, *pNext; /* Linked list of VDBEs with the same Vdbe.db */
int nOp; /* Number of instructions in the program */
int nOpAlloc; /* Number of slots allocated for aOp[] */
Op *aOp; /* Space to hold the virtual machine's program */
int nLabel; /* Number of labels used */
int nLabelAlloc; /* Number of slots allocated in aLabel[] */
int *aLabel; /* Space to hold the labels */
Mem **apArg; /* Arguments to currently executing user function */
Mem *aColName; /* Column names to return */
int nCursor; /* Number of slots in apCsr[] */
Cursor **apCsr; /* One element of this array for each open cursor */
int nVar; /* Number of entries in aVar[] */
Mem *aVar; /* Values for the OP_Variable opcode. */
char **azVar; /* Name of variables */
int okVar; /* True if azVar[] has been initialized */
int magic; /* Magic number for sanity checking */
int nMem; /* Number of memory locations currently allocated */
Mem *aMem; /* The memory locations */
int nCallback; /* Number of callbacks invoked so far */
int cacheCtr; /* Cursor row cache generation counter */
Fifo sFifo; /* A list of ROWIDs */
int contextStackTop; /* Index of top element in the context stack */
int contextStackDepth; /* The size of the "context" stack */
Context *contextStack; /* Stack used by opcodes ContextPush & ContextPop */
int pc; /* The program counter */
int rc; /* Value to return */
unsigned uniqueCnt; /* Used by OP_MakeRecord when P2!=0 */
int errorAction; /* Recovery action to do in case of an error */
int inTempTrans; /* True if temp database is transactioned */
int returnStack[25]; /* Return address stack for OP_Gosub & OP_Return */
int returnDepth; /* Next unused element in returnStack[] */
int nResColumn; /* Number of columns in one row of the result set */
char **azResColumn; /* Values for one row of result */
char *zErrMsg; /* Error message written here */
Mem *pResultSet; /* Pointer to an array of results */
u8 explain; /* True if EXPLAIN present on SQL command */
u8 changeCntOn; /* True to update the change-counter */
u8 aborted; /* True if ROLLBACK in another VM causes an abort */
u8 expired; /* True if the VM needs to be recompiled */
u8 minWriteFileFormat; /* Minimum file format for writable database files */
u8 inVtabMethod; /* See comments above */
int nChange; /* Number of db changes made since last reset */
i64 startTime; /* Time when query started - used for profiling */
int btreeMask; /* Bitmask of db->aDb[] entries referenced */
BtreeMutexArray aMutex; /* An array of Btree used here and needing locks */
int nSql; /* Number of bytes in zSql */
char *zSql; /* Text of the SQL statement that generated this */
#ifdef SQLITE_DEBUG
FILE *trace; /* Write an execution trace here, if not NULL */
#endif
int openedStatement; /* True if this VM has opened a statement journal */
#ifdef SQLITE_SSE
int fetchId; /* Statement number used by sqlite3_fetch_statement */
int lru; /* Counter used for LRU cache replacement */
#endif
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
Vdbe *pLruPrev;
Vdbe *pLruNext;
#endif
};
/*
** An instance of the following structure holds information about a
** single index record that has already been parsed out into individual
** values.
**
** A record is an object that contains one or more fields of data.
** Records are used to store the content of a table row and to store
** the key of an index. A blob encoding of a record is created by
** the OP_MakeRecord opcode of the VDBE and is disassemblied by the
** OP_Column opcode.
**
** This structure holds a record that has already been disassembled
** into its constitutent fields.
*/
struct UnpackedRecord
{
KeyInfo *pKeyInfo; /* Collation and sort-order information */
u16 nField; /* Number of entries in apMem[] */
u8 needFree; /* True if memory obtained from sqlite3_malloc() */
u8 needDestroy; /* True if apMem[]s should be destroyed on close */
Mem *aMem; /* Values */
};
/*
** The following are allowed values for Vdbe.magic
*/
#define VDBE_MAGIC_INIT 0x26bceaa5 /* Building a VDBE program */
#define VDBE_MAGIC_RUN 0xbdf20da3 /* VDBE is ready to execute */
#define VDBE_MAGIC_HALT 0x519c2973 /* VDBE has completed execution */
#define VDBE_MAGIC_DEAD 0xb606c3c8 /* The VDBE has been deallocated */
/*
** Function prototypes
*/
SQLITE_PRIVATE void sqlite3VdbeFreeCursor(Vdbe *, Cursor *);
void sqliteVdbePopStack(Vdbe *, int);
SQLITE_PRIVATE int sqlite3VdbeCursorMoveto(Cursor *);
#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
SQLITE_PRIVATE void sqlite3VdbePrintOp(FILE *, int, Op *);
#endif
SQLITE_PRIVATE int sqlite3VdbeSerialTypeLen(u32);
SQLITE_PRIVATE u32 sqlite3VdbeSerialType(Mem *, int);
SQLITE_PRIVATE int sqlite3VdbeSerialPut(unsigned char *, int, Mem *, int);
SQLITE_PRIVATE int sqlite3VdbeSerialGet(const unsigned char *, u32, Mem *);
SQLITE_PRIVATE void sqlite3VdbeDeleteAuxData(VdbeFunc *, int);
int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *);
SQLITE_PRIVATE int sqlite3VdbeIdxKeyCompare(Cursor *, UnpackedRecord *, int, const unsigned char *,
int *);
SQLITE_PRIVATE int sqlite3VdbeIdxRowid(BtCursor *, i64 *);
SQLITE_PRIVATE int sqlite3MemCompare(const Mem *, const Mem *, const CollSeq *);
SQLITE_PRIVATE int sqlite3VdbeIdxRowidLen(const u8 *);
SQLITE_PRIVATE int sqlite3VdbeExec(Vdbe *);
SQLITE_PRIVATE int sqlite3VdbeList(Vdbe *);
SQLITE_PRIVATE int sqlite3VdbeHalt(Vdbe *);
SQLITE_PRIVATE int sqlite3VdbeChangeEncoding(Mem *, int);
SQLITE_PRIVATE int sqlite3VdbeMemTooBig(Mem *);
SQLITE_PRIVATE int sqlite3VdbeMemCopy(Mem *, const Mem *);
SQLITE_PRIVATE void sqlite3VdbeMemShallowCopy(Mem *, const Mem *, int);
SQLITE_PRIVATE void sqlite3VdbeMemMove(Mem *, Mem *);
SQLITE_PRIVATE int sqlite3VdbeMemNulTerminate(Mem *);
SQLITE_PRIVATE int sqlite3VdbeMemSetStr(Mem *, const char *, int, u8, void (*)(void *));
SQLITE_PRIVATE void sqlite3VdbeMemSetInt64(Mem *, i64);
SQLITE_PRIVATE void sqlite3VdbeMemSetDouble(Mem *, double);
SQLITE_PRIVATE void sqlite3VdbeMemSetNull(Mem *);
SQLITE_PRIVATE void sqlite3VdbeMemSetZeroBlob(Mem *, int);
SQLITE_PRIVATE int sqlite3VdbeMemMakeWriteable(Mem *);
SQLITE_PRIVATE int sqlite3VdbeMemDynamicify(Mem *);
SQLITE_PRIVATE int sqlite3VdbeMemStringify(Mem *, int);
SQLITE_PRIVATE i64 sqlite3VdbeIntValue(Mem *);
SQLITE_PRIVATE int sqlite3VdbeMemIntegerify(Mem *);
SQLITE_PRIVATE double sqlite3VdbeRealValue(Mem *);
SQLITE_PRIVATE void sqlite3VdbeIntegerAffinity(Mem *);
SQLITE_PRIVATE int sqlite3VdbeMemRealify(Mem *);
SQLITE_PRIVATE int sqlite3VdbeMemNumerify(Mem *);
SQLITE_PRIVATE int sqlite3VdbeMemFromBtree(BtCursor *, int, int, int, Mem *);
SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem * p);
SQLITE_PRIVATE void sqlite3VdbeMemReleaseExternal(Mem * p);
SQLITE_PRIVATE int sqlite3VdbeMemFinalize(Mem *, FuncDef *);
SQLITE_PRIVATE const char *sqlite3OpcodeName(int);
SQLITE_PRIVATE int sqlite3VdbeOpcodeHasProperty(int, int);
SQLITE_PRIVATE int sqlite3VdbeMemGrow(Mem * pMem, int n, int preserve);
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
SQLITE_PRIVATE int sqlite3VdbeReleaseBuffers(Vdbe * p);
#endif
#ifndef NDEBUG
SQLITE_PRIVATE void sqlite3VdbeMemSanity(Mem *);
#endif
SQLITE_PRIVATE int sqlite3VdbeMemTranslate(Mem *, u8);
#ifdef SQLITE_DEBUG
SQLITE_PRIVATE void sqlite3VdbePrintSql(Vdbe *);
SQLITE_PRIVATE void sqlite3VdbeMemPrettyPrint(Mem * pMem, char *zBuf);
#endif
SQLITE_PRIVATE int sqlite3VdbeMemHandleBom(Mem * pMem);
SQLITE_PRIVATE void sqlite3VdbeFifoInit(Fifo *);
SQLITE_PRIVATE int sqlite3VdbeFifoPush(Fifo *, i64);
SQLITE_PRIVATE int sqlite3VdbeFifoPop(Fifo *, i64 *);
SQLITE_PRIVATE void sqlite3VdbeFifoClear(Fifo *);
#ifndef SQLITE_OMIT_INCRBLOB
SQLITE_PRIVATE int sqlite3VdbeMemExpandBlob(Mem *);
#else
#define sqlite3VdbeMemExpandBlob(x) SQLITE_OK
#endif
#endif /* !defined(_VDBEINT_H_) */
/************** End of vdbeInt.h *********************************************/
/************** Continuing where we left off in utf.c ************************/
/*
** The following constant value is used by the SQLITE_BIGENDIAN and
** SQLITE_LITTLEENDIAN macros.
*/
SQLITE_PRIVATE const int sqlite3one = 1;
/*
** This lookup table is used to help decode the first byte of
** a multi-byte UTF8 character.
*/
static const unsigned char sqlite3UtfTrans1[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00,
};
#define WRITE_UTF8(zOut, c) { \
if( c<0x00080 ){ \
*zOut++ = (c&0xFF); \
} \
else if( c<0x00800 ){ \
*zOut++ = 0xC0 + ((c>>6)&0x1F); \
*zOut++ = 0x80 + (c & 0x3F); \
} \
else if( c<0x10000 ){ \
*zOut++ = 0xE0 + ((c>>12)&0x0F); \
*zOut++ = 0x80 + ((c>>6) & 0x3F); \
*zOut++ = 0x80 + (c & 0x3F); \
}else{ \
*zOut++ = 0xF0 + ((c>>18) & 0x07); \
*zOut++ = 0x80 + ((c>>12) & 0x3F); \
*zOut++ = 0x80 + ((c>>6) & 0x3F); \
*zOut++ = 0x80 + (c & 0x3F); \
} \
}
#define WRITE_UTF16LE(zOut, c) { \
if( c<=0xFFFF ){ \
*zOut++ = (c&0x00FF); \
*zOut++ = ((c>>8)&0x00FF); \
}else{ \
*zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \
*zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03)); \
*zOut++ = (c&0x00FF); \
*zOut++ = (0x00DC + ((c>>8)&0x03)); \
} \
}
#define WRITE_UTF16BE(zOut, c) { \
if( c<=0xFFFF ){ \
*zOut++ = ((c>>8)&0x00FF); \
*zOut++ = (c&0x00FF); \
}else{ \
*zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03)); \
*zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \
*zOut++ = (0x00DC + ((c>>8)&0x03)); \
*zOut++ = (c&0x00FF); \
} \
}
#define READ_UTF16LE(zIn, c){ \
c = (*zIn++); \
c += ((*zIn++)<<8); \
if( c>=0xD800 && c<0xE000 ){ \
int c2 = (*zIn++); \
c2 += ((*zIn++)<<8); \
c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \
if( (c & 0xFFFF0000)==0 ) c = 0xFFFD; \
} \
}
#define READ_UTF16BE(zIn, c){ \
c = ((*zIn++)<<8); \
c += (*zIn++); \
if( c>=0xD800 && c<0xE000 ){ \
int c2 = ((*zIn++)<<8); \
c2 += (*zIn++); \
c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \
if( (c & 0xFFFF0000)==0 ) c = 0xFFFD; \
} \
}
/*
** Translate a single UTF-8 character. Return the unicode value.
**
** During translation, assume that the byte that zTerm points
** is a 0x00.
**
** Write a pointer to the next unread byte back into *pzNext.
**
** Notes On Invalid UTF-8:
**
** * This routine never allows a 7-bit character (0x00 through 0x7f) to
** be encoded as a multi-byte character. Any multi-byte character that
** attempts to encode a value between 0x00 and 0x7f is rendered as 0xfffd.
**
** * This routine never allows a UTF16 surrogate value to be encoded.
** If a multi-byte character attempts to encode a value between
** 0xd800 and 0xe000 then it is rendered as 0xfffd.
**
** * Bytes in the range of 0x80 through 0xbf which occur as the first
** byte of a character are interpreted as single-byte characters
** and rendered as themselves even though they are technically
** invalid characters.
**
** * This routine accepts an infinite number of different UTF8 encodings
** for unicode values 0x80 and greater. It do not change over-length
** encodings to 0xfffd as some systems recommend.
*/
SQLITE_PRIVATE int
sqlite3Utf8Read(const unsigned char *z, /* First byte of UTF-8 character */
const unsigned char *zTerm, /* Pretend this byte is 0x00 */
const unsigned char **pzNext /* Write first byte past UTF-8 char here */
)
{
int c = *(z++);
if(c >= 0xc0)
{
c = sqlite3UtfTrans1[c - 0xc0];
while (z != zTerm && (*z & 0xc0) == 0x80)
{
c = (c << 6) + (0x3f & *(z++));
}
if(c < 0x80 || (c & 0xFFFFF800) == 0xD800 || (c & 0xFFFFFFFE) == 0xFFFE)
{
c = 0xFFFD;
}
}
*pzNext = z;
return c;
}
/*
** If the TRANSLATE_TRACE macro is defined, the value of each Mem is
** printed on stderr on the way into and out of sqlite3VdbeMemTranslate().
*/
/* #define TRANSLATE_TRACE 1 */
#ifndef SQLITE_OMIT_UTF16
/*
** This routine transforms the internal text encoding used by pMem to
** desiredEnc. It is an error if the string is already of the desired
** encoding, or if *pMem does not contain a string value.
*/
SQLITE_PRIVATE int
sqlite3VdbeMemTranslate(Mem * pMem, u8 desiredEnc)
{
int len; /* Maximum length of output string in bytes */
unsigned char *zOut; /* Output buffer */
unsigned char *zIn; /* Input iterator */
unsigned char *zTerm; /* End of input */
unsigned char *z; /* Output iterator */
unsigned int c;
assert(pMem->db == 0 || sqlite3_mutex_held(pMem->db->mutex));
assert(pMem->flags & MEM_Str);
assert(pMem->enc != desiredEnc);
assert(pMem->enc != 0);
assert(pMem->n >= 0);
#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
{
char zBuf[100];
sqlite3VdbeMemPrettyPrint(pMem, zBuf);
fprintf(stderr, "INPUT: %s\n", zBuf);
}
#endif
/* If the translation is between UTF-16 little and big endian, then
** all that is required is to swap the byte order. This case is handled
** differently from the others.
*/
if(pMem->enc != SQLITE_UTF8 && desiredEnc != SQLITE_UTF8)
{
u8 temp;
int rc;
rc = sqlite3VdbeMemMakeWriteable(pMem);
if(rc != SQLITE_OK)
{
assert(rc == SQLITE_NOMEM);
return SQLITE_NOMEM;
}
zIn = (u8 *) pMem->z;
zTerm = &zIn[pMem->n];
while (zIn < zTerm)
{
temp = *zIn;
*zIn = *(zIn + 1);
zIn++;
*zIn++ = temp;
}
pMem->enc = desiredEnc;
goto translate_out;
}
/* Set len to the maximum number of bytes required in the output buffer. */
if(desiredEnc == SQLITE_UTF8)
{
/* When converting from UTF-16, the maximum growth results from
** translating a 2-byte character to a 4-byte UTF-8 character.
** A single byte is required for the output string
** nul-terminator.
*/
len = pMem->n * 2 + 1;
}
else
{
/* When converting from UTF-8 to UTF-16 the maximum growth is caused
** when a 1-byte UTF-8 character is translated into a 2-byte UTF-16
** character. Two bytes are required in the output buffer for the
** nul-terminator.
*/
len = pMem->n * 2 + 2;
}
/* Set zIn to point at the start of the input buffer and zTerm to point 1
** byte past the end.
**
** Variable zOut is set to point at the output buffer, space obtained
** from sqlite3_malloc().
*/
zIn = (u8 *) pMem->z;
zTerm = &zIn[pMem->n];
zOut = sqlite3DbMallocRaw(pMem->db, len);
if(!zOut)
{
return SQLITE_NOMEM;
}
z = zOut;
if(pMem->enc == SQLITE_UTF8)
{
if(desiredEnc == SQLITE_UTF16LE)
{
/* UTF-8 -> UTF-16 Little-endian */
while (zIn < zTerm)
{
c = sqlite3Utf8Read(zIn, zTerm, (const u8 **) &zIn);
WRITE_UTF16LE(z, c);
}
}
else
{
assert(desiredEnc == SQLITE_UTF16BE);
/* UTF-8 -> UTF-16 Big-endian */
while (zIn < zTerm)
{
c = sqlite3Utf8Read(zIn, zTerm, (const u8 **) &zIn);
WRITE_UTF16BE(z, c);
}
}
pMem->n = z - zOut;
*z++ = 0;
}
else
{
assert(desiredEnc == SQLITE_UTF8);
if(pMem->enc == SQLITE_UTF16LE)
{
/* UTF-16 Little-endian -> UTF-8 */
while (zIn < zTerm)
{
READ_UTF16LE(zIn, c);
WRITE_UTF8(z, c);
}
}
else
{
/* UTF-16 Little-endian -> UTF-8 */
while (zIn < zTerm)
{
READ_UTF16BE(zIn, c);
WRITE_UTF8(z, c);
}
}
pMem->n = z - zOut;
}
*z = 0;
assert((pMem->n + (desiredEnc == SQLITE_UTF8 ? 1 : 2)) <= len);
sqlite3VdbeMemRelease(pMem);
pMem->flags &= ~(MEM_Static | MEM_Dyn | MEM_Ephem);
pMem->enc = desiredEnc;
pMem->flags |= (MEM_Term | MEM_Dyn);
pMem->z = (char *) zOut;
pMem->zMalloc = pMem->z;
translate_out:
#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
{
char zBuf[100];
sqlite3VdbeMemPrettyPrint(pMem, zBuf);
fprintf(stderr, "OUTPUT: %s\n", zBuf);
}
#endif
return SQLITE_OK;
}
/*
** This routine checks for a byte-order mark at the beginning of the
** UTF-16 string stored in *pMem. If one is present, it is removed and
** the encoding of the Mem adjusted. This routine does not do any
** byte-swapping, it just sets Mem.enc appropriately.
**
** The allocation (static, dynamic etc.) and encoding of the Mem may be
** changed by this function.
*/
SQLITE_PRIVATE int
sqlite3VdbeMemHandleBom(Mem * pMem)
{
int rc = SQLITE_OK;
u8 bom = 0;
if(pMem->n < 0 || pMem->n > 1)
{
u8 b1 = *(u8 *) pMem->z;
u8 b2 = *(((u8 *) pMem->z) + 1);
if(b1 == 0xFE && b2 == 0xFF)
{
bom = SQLITE_UTF16BE;
}
if(b1 == 0xFF && b2 == 0xFE)
{
bom = SQLITE_UTF16LE;
}
}
if(bom)
{
rc = sqlite3VdbeMemMakeWriteable(pMem);
if(rc == SQLITE_OK)
{
pMem->n -= 2;
memmove(pMem->z, &pMem->z[2], pMem->n);
pMem->z[pMem->n] = '\0';
pMem->z[pMem->n + 1] = '\0';
pMem->flags |= MEM_Term;
pMem->enc = bom;
}
}
return rc;
}
#endif /* SQLITE_OMIT_UTF16 */
/*
** pZ is a UTF-8 encoded unicode string. If nByte is less than zero,
** return the number of unicode characters in pZ up to (but not including)
** the first 0x00 byte. If nByte is not less than zero, return the
** number of unicode characters in the first nByte of pZ (or up to
** the first 0x00, whichever comes first).
*/
SQLITE_PRIVATE int
sqlite3Utf8CharLen(const char *zIn, int nByte)
{
int r = 0;
const u8 *z = (const u8 *) zIn;
const u8 *zTerm;
if(nByte >= 0)
{
zTerm = &z[nByte];
}
else
{
zTerm = (const u8 *) (-1);
}
assert(z <= zTerm);
while (*z != 0 && z < zTerm)
{
SQLITE_SKIP_UTF8(z);
r++;
}
return r;
}
/* This test function is not currently used by the automated test-suite.
** Hence it is only available in debug builds.
*/
#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
/*
** Translate UTF-8 to UTF-8.
**
** This has the effect of making sure that the string is well-formed
** UTF-8. Miscoded characters are removed.
**
** The translation is done in-place (since it is impossible for the
** correct UTF-8 encoding to be longer than a malformed encoding).
*/
SQLITE_PRIVATE int
sqlite3Utf8To8(unsigned char *zIn)
{
unsigned char *zOut = zIn;
unsigned char *zStart = zIn;
unsigned char *zTerm;
u32 c;
while (zIn[0])
{
c = sqlite3Utf8Read(zIn, zTerm, (const u8 **) &zIn);
if(c != 0xfffd)
{
WRITE_UTF8(zOut, c);
}
}
*zOut = 0;
return zOut - zStart;
}
#endif
#ifndef SQLITE_OMIT_UTF16
/*
** Convert a UTF-16 string in the native encoding into a UTF-8 string.
** Memory to hold the UTF-8 string is obtained from sqlite3_malloc and must
** be freed by the calling function.
**
** NULL is returned if there is an allocation error.
*/
SQLITE_PRIVATE char *
sqlite3Utf16to8(sqlite3 * db, const void *z, int nByte)
{
Mem m;
memset(&m, 0, sizeof(m));
m.db = db;
sqlite3VdbeMemSetStr(&m, z, nByte, SQLITE_UTF16NATIVE, SQLITE_STATIC);
sqlite3VdbeChangeEncoding(&m, SQLITE_UTF8);
if(db->mallocFailed)
{
sqlite3VdbeMemRelease(&m);
m.z = 0;
}
assert((m.flags & MEM_Term) != 0 || db->mallocFailed);
assert((m.flags & MEM_Str) != 0 || db->mallocFailed);
return (m.flags & MEM_Dyn) != 0 ? m.z : sqlite3DbStrDup(db, m.z);
}
/*
** pZ is a UTF-16 encoded unicode string. If nChar is less than zero,
** return the number of bytes up to (but not including), the first pair
** of consecutive 0x00 bytes in pZ. If nChar is not less than zero,
** then return the number of bytes in the first nChar unicode characters
** in pZ (or up until the first pair of 0x00 bytes, whichever comes first).
*/
SQLITE_PRIVATE int
sqlite3Utf16ByteLen(const void *zIn, int nChar)
{
unsigned int c = 1;
char const *z = zIn;
int n = 0;
if(SQLITE_UTF16NATIVE == SQLITE_UTF16BE)
{
/* Using an "if (SQLITE_UTF16NATIVE==SQLITE_UTF16BE)" construct here
** and in other parts of this file means that at one branch will
** not be covered by coverage testing on any single host. But coverage
** will be complete if the tests are run on both a little-endian and
** big-endian host. Because both the UTF16NATIVE and SQLITE_UTF16BE
** macros are constant at compile time the compiler can determine
** which branch will be followed. It is therefore assumed that no runtime
** penalty is paid for this "if" statement.
*/
while (c && ((nChar < 0) || n < nChar))
{
READ_UTF16BE(z, c);
n++;
}
}
else
{
while (c && ((nChar < 0) || n < nChar))
{
READ_UTF16LE(z, c);
n++;
}
}
return (z - (char const *) zIn) - ((c == 0) ? 2 : 0);
}
#if defined(SQLITE_TEST)
/*
** This routine is called from the TCL test function "translate_selftest".
** It checks that the primitives for serializing and deserializing
** characters in each encoding are inverses of each other.
*/
SQLITE_PRIVATE void
sqlite3UtfSelfTest()
{
unsigned int i, t;
unsigned char zBuf[20];
unsigned char *z;
unsigned char *zTerm;
int n;
unsigned int c;
for (i = 0; i < 0x00110000; i++)
{
z = zBuf;
WRITE_UTF8(z, i);
n = z - zBuf;
z[0] = 0;
zTerm = z;
z = zBuf;
c = sqlite3Utf8Read(z, zTerm, (const u8 **) &z);
t = i;
if(i >= 0xD800 && i <= 0xDFFF)
t = 0xFFFD;
if((i & 0xFFFFFFFE) == 0xFFFE)
t = 0xFFFD;
assert(c == t);
assert((z - zBuf) == n);
}
for (i = 0; i < 0x00110000; i++)
{
if(i >= 0xD800 && i < 0xE000)
continue;
z = zBuf;
WRITE_UTF16LE(z, i);
n = z - zBuf;
z[0] = 0;
z = zBuf;
READ_UTF16LE(z, c);
assert(c == i);
assert((z - zBuf) == n);
}
for (i = 0; i < 0x00110000; i++)
{
if(i >= 0xD800 && i < 0xE000)
continue;
z = zBuf;
WRITE_UTF16BE(z, i);
n = z - zBuf;
z[0] = 0;
z = zBuf;
READ_UTF16BE(z, c);
assert(c == i);
assert((z - zBuf) == n);
}
}
#endif /* SQLITE_TEST */
#endif /* SQLITE_OMIT_UTF16 */
/************** End of utf.c *************************************************/
/************** Begin file util.c ********************************************/
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** Utility functions used throughout sqlite.
**
** This file contains functions for allocating memory, comparing
** strings, and stuff like that.
**
*/
/*
** Return true if the floating point value is Not a Number.
*/
SQLITE_PRIVATE int
sqlite3IsNaN(double x)
{
/* This NaN test sometimes fails if compiled on GCC with -ffast-math.
** On the other hand, the use of -ffast-math comes with the following
** warning:
**
** This option [-ffast-math] should never be turned on by any
** -O option since it can result in incorrect output for programs
** which depend on an exact implementation of IEEE or ISO
** rules/specifications for math functions.
*/
volatile double y = x;
return x != y;
}
/*
** Set the most recent error code and error string for the sqlite
** handle "db". The error code is set to "err_code".
**
** If it is not NULL, string zFormat specifies the format of the
** error string in the style of the printf functions: The following
** format characters are allowed:
**
** %s Insert a string
** %z A string that should be freed after use
** %d Insert an integer
** %T Insert a token
** %S Insert the first element of a SrcList
**
** zFormat and any string tokens that follow it are assumed to be
** encoded in UTF-8.
**
** To clear the most recent error for sqlite handle "db", sqlite3Error
** should be called with err_code set to SQLITE_OK and zFormat set
** to NULL.
*/
SQLITE_PRIVATE void
sqlite3Error(sqlite3 * db, int err_code, const char *zFormat, ...)
{
if(db && (db->pErr || (db->pErr = sqlite3ValueNew(db)) != 0))
{
db->errCode = err_code;
if(zFormat)
{
char *z;
va_list ap;
va_start(ap, zFormat);
z = sqlite3VMPrintf(db, zFormat, ap);
va_end(ap);
sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, sqlite3_free);
}
else
{
sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC);
}
}
}
/*
** Add an error message to pParse->zErrMsg and increment pParse->nErr.
** The following formatting characters are allowed:
**
** %s Insert a string
** %z A string that should be freed after use
** %d Insert an integer
** %T Insert a token
** %S Insert the first element of a SrcList
**
** This function should be used to report any error that occurs whilst
** compiling an SQL statement (i.e. within sqlite3_prepare()). The
** last thing the sqlite3_prepare() function does is copy the error
** stored by this function into the database handle using sqlite3Error().
** Function sqlite3Error() should be used during statement execution
** (sqlite3_step() etc.).
*/
SQLITE_PRIVATE void
sqlite3ErrorMsg(Parse * pParse, const char *zFormat, ...)
{
va_list ap;
pParse->nErr++;
sqlite3_free(pParse->zErrMsg);
va_start(ap, zFormat);
pParse->zErrMsg = sqlite3VMPrintf(pParse->db, zFormat, ap);
va_end(ap);
if(pParse->rc == SQLITE_OK)
{
pParse->rc = SQLITE_ERROR;
}
}
/*
** Clear the error message in pParse, if any
*/
SQLITE_PRIVATE void
sqlite3ErrorClear(Parse * pParse)
{
sqlite3_free(pParse->zErrMsg);
pParse->zErrMsg = 0;
pParse->nErr = 0;
}
/*
** Convert an SQL-style quoted string into a normal string by removing
** the quote characters. The conversion is done in-place. If the
** input does not begin with a quote character, then this routine
** is a no-op.
**
** 2002-Feb-14: This routine is extended to remove MS-Access style
** brackets from around identifers. For example: "[a-b-c]" becomes
** "a-b-c".
*/
SQLITE_PRIVATE void
sqlite3Dequote(char *z)
{
int quote;
int i, j;
if(z == 0)
return;
quote = z[0];
switch (quote)
{
case '\'':
break;
case '"':
break;
case '`':
break; /* For MySQL compatibility */
case '[':
quote = ']';
break; /* For MS SqlServer compatibility */
default:
return;
}
for (i = 1, j = 0; z[i]; i++)
{
if(z[i] == quote)
{
if(z[i + 1] == quote)
{
z[j++] = quote;
i++;
}
else
{
z[j++] = 0;
break;
}
}
else
{
z[j++] = z[i];
}
}
}
/* An array to map all upper-case characters into their corresponding
** lower-case character.
*/
SQLITE_PRIVATE const unsigned char sqlite3UpperToLower[] = {
#ifdef SQLITE_ASCII
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97, 98, 99, 100, 101, 102, 103,
104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121,
122, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107,
108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125,
126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143,
144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161,
162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179,
180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197,
198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215,
216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233,
234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251,
252, 253, 254, 255
#endif
#ifdef SQLITE_EBCDIC
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 0x */
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, /* 1x */
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, /* 2x */
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, /* 3x */
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, /* 4x */
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, /* 5x */
96, 97, 66, 67, 68, 69, 70, 71, 72, 73, 106, 107, 108, 109, 110, 111, /* 6x */
112, 81, 82, 83, 84, 85, 86, 87, 88, 89, 122, 123, 124, 125, 126, 127, /* 7x */
128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, /* 8x */
144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 156, 159, /* 9x */
160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 140, 141, 142, 175, /* Ax */
176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, /* Bx */
192, 129, 130, 131, 132, 133, 134, 135, 136, 137, 202, 203, 204, 205, 206, 207, /* Cx */
208, 145, 146, 147, 148, 149, 150, 151, 152, 153, 218, 219, 220, 221, 222, 223, /* Dx */
224, 225, 162, 163, 164, 165, 166, 167, 168, 169, 232, 203, 204, 205, 206, 207, /* Ex */
239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 219, 220, 221, 222, 255, /* Fx */
#endif
};
#define UpperToLower sqlite3UpperToLower
/*
** Some systems have stricmp(). Others have strcasecmp(). Because
** there is no consistency, we will define our own.
*/
SQLITE_PRIVATE int
sqlite3StrICmp(const char *zLeft, const char *zRight)
{
register unsigned char *a, *b;
a = (unsigned char *) zLeft;
b = (unsigned char *) zRight;
while (*a != 0 && UpperToLower[*a] == UpperToLower[*b])
{
a++;
b++;
}
return UpperToLower[*a] - UpperToLower[*b];
}
SQLITE_PRIVATE int
sqlite3StrNICmp(const char *zLeft, const char *zRight, int N)
{
register unsigned char *a, *b;
a = (unsigned char *) zLeft;
b = (unsigned char *) zRight;
while (N-- > 0 && *a != 0 && UpperToLower[*a] == UpperToLower[*b])
{
a++;
b++;
}
return N < 0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
}
/*
** Return TRUE if z is a pure numeric string. Return FALSE if the
** string contains any character which is not part of a number. If
** the string is numeric and contains the '.' character, set *realnum
** to TRUE (otherwise FALSE).
**
** An empty string is considered non-numeric.
*/
SQLITE_PRIVATE int
sqlite3IsNumber(const char *z, int *realnum, u8 enc)
{
int incr = (enc == SQLITE_UTF8 ? 1 : 2);
if(enc == SQLITE_UTF16BE)
z++;
if(*z == '-' || *z == '+')
z += incr;
if(!isdigit(*(u8 *) z))
{
return 0;
}
z += incr;
if(realnum)
*realnum = 0;
while (isdigit(*(u8 *) z))
{
z += incr;
}
if(*z == '.')
{
z += incr;
if(!isdigit(*(u8 *) z))
return 0;
while (isdigit(*(u8 *) z))
{
z += incr;
}
if(realnum)
*realnum = 1;
}
if(*z == 'e' || *z == 'E')
{
z += incr;
if(*z == '+' || *z == '-')
z += incr;
if(!isdigit(*(u8 *) z))
return 0;
while (isdigit(*(u8 *) z))
{
z += incr;
}
if(realnum)
*realnum = 1;
}
return *z == 0;
}
/*
** The string z[] is an ascii representation of a real number.
** Convert this string to a double.
**
** This routine assumes that z[] really is a valid number. If it
** is not, the result is undefined.
**
** This routine is used instead of the library atof() function because
** the library atof() might want to use "," as the decimal point instead
** of "." depending on how locale is set. But that would cause problems
** for SQL. So this routine always uses "." regardless of locale.
*/
SQLITE_PRIVATE int
sqlite3AtoF(const char *z, double *pResult)
{
#ifndef SQLITE_OMIT_FLOATING_POINT
int sign = 1;
const char *zBegin = z;
LONGDOUBLE_TYPE v1 = 0.0;
int nSignificant = 0;
while (isspace(*(u8 *) z))
z++;
if(*z == '-')
{
sign = -1;
z++;
}
else if(*z == '+')
{
z++;
}
while (z[0] == '0')
{
z++;
}
while (isdigit(*(u8 *) z))
{
v1 = v1 * 10.0 + (*z - '0');
z++;
nSignificant++;
}
if(*z == '.')
{
LONGDOUBLE_TYPE divisor = 1.0;
z++;
if(nSignificant == 0)
{
while (z[0] == '0')
{
divisor *= 10.0;
z++;
}
}
while (isdigit(*(u8 *) z))
{
if(nSignificant < 18)
{
v1 = v1 * 10.0 + (*z - '0');
divisor *= 10.0;
nSignificant++;
}
z++;
}
v1 /= divisor;
}
if(*z == 'e' || *z == 'E')
{
int esign = 1;
int eval = 0;
LONGDOUBLE_TYPE scale = 1.0;
z++;
if(*z == '-')
{
esign = -1;
z++;
}
else if(*z == '+')
{
z++;
}
while (isdigit(*(u8 *) z))
{
eval = eval * 10 + *z - '0';
z++;
}
while (eval >= 64)
{
scale *= 1.0e+64;
eval -= 64;
}
while (eval >= 16)
{
scale *= 1.0e+16;
eval -= 16;
}
while (eval >= 4)
{
scale *= 1.0e+4;
eval -= 4;
}
while (eval >= 1)
{
scale *= 1.0e+1;
eval -= 1;
}
if(esign < 0)
{
v1 /= scale;
}
else
{
v1 *= scale;
}
}
*pResult = sign < 0 ? -v1 : v1;
return z - zBegin;
#else
return sqlite3Atoi64(z, pResult);
#endif /* SQLITE_OMIT_FLOATING_POINT */
}
/*
** Compare the 19-character string zNum against the text representation
** value 2^63: 9223372036854775808. Return negative, zero, or positive
** if zNum is less than, equal to, or greater than the string.
**
** Unlike memcmp() this routine is guaranteed to return the difference
** in the values of the last digit if the only difference is in the
** last digit. So, for example,
**
** compare2pow63("9223372036854775800")
**
** will return -8.
*/
static int
compare2pow63(const char *zNum)
{
int c;
c = memcmp(zNum, "922337203685477580", 18);
if(c == 0)
{
c = zNum[18] - '8';
}
return c;
}
/*
** Return TRUE if zNum is a 64-bit signed integer and write
** the value of the integer into *pNum. If zNum is not an integer
** or is an integer that is too large to be expressed with 64 bits,
** then return false.
**
** When this routine was originally written it dealt with only
** 32-bit numbers. At that time, it was much faster than the
** atoi() library routine in RedHat 7.2.
*/
SQLITE_PRIVATE int
sqlite3Atoi64(const char *zNum, i64 * pNum)
{
i64 v = 0;
int neg;
int i, c;
while (isspace(*(u8 *) zNum))
zNum++;
if(*zNum == '-')
{
neg = 1;
zNum++;
}
else if(*zNum == '+')
{
neg = 0;
zNum++;
}
else
{
neg = 0;
}
while (zNum[0] == '0')
{
zNum++;
} /* Skip over leading zeros. Ticket #2454 */
for (i = 0; (c = zNum[i]) >= '0' && c <= '9'; i++)
{
v = v * 10 + c - '0';
}
*pNum = neg ? -v : v;
if(c != 0 || i == 0 || i > 19)
{
/* zNum is empty or contains non-numeric text or is longer
** than 19 digits (thus guaranting that it is too large) */
return 0;
}
else if(i < 19)
{
/* Less than 19 digits, so we know that it fits in 64 bits */
return 1;
}
else
{
/* 19-digit numbers must be no larger than 9223372036854775807 if positive
** or 9223372036854775808 if negative. Note that 9223372036854665808
** is 2^63. */
return compare2pow63(zNum) < neg;
}
}
/*
** The string zNum represents an integer. There might be some other
** information following the integer too, but that part is ignored.
** If the integer that the prefix of zNum represents will fit in a
** 64-bit signed integer, return TRUE. Otherwise return FALSE.
**
** This routine returns FALSE for the string -9223372036854775808 even that
** that number will, in theory fit in a 64-bit integer. Positive
** 9223373036854775808 will not fit in 64 bits. So it seems safer to return
** false.
*/
SQLITE_PRIVATE int
sqlite3FitsIn64Bits(const char *zNum, int negFlag)
{
int i, c;
int neg = 0;
if(*zNum == '-')
{
neg = 1;
zNum++;
}
else if(*zNum == '+')
{
zNum++;
}
if(negFlag)
neg = 1 - neg;
while (*zNum == '0')
{
zNum++; /* Skip leading zeros. Ticket #2454 */
}
for (i = 0; (c = zNum[i]) >= '0' && c <= '9'; i++)
{
}
if(i < 19)
{
/* Guaranteed to fit if less than 19 digits */
return 1;
}
else if(i > 19)
{
/* Guaranteed to be too big if greater than 19 digits */
return 0;
}
else
{
/* Compare against 2^63. */
return compare2pow63(zNum) < neg;
}
}
/*
** If zNum represents an integer that will fit in 32-bits, then set
** *pValue to that integer and return true. Otherwise return false.
**
** Any non-numeric characters that following zNum are ignored.
** This is different from sqlite3Atoi64() which requires the
** input number to be zero-terminated.
*/
SQLITE_PRIVATE int
sqlite3GetInt32(const char *zNum, int *pValue)
{
sqlite_int64 v = 0;
int i, c;
int neg = 0;
if(zNum[0] == '-')
{
neg = 1;
zNum++;
}
else if(zNum[0] == '+')
{
zNum++;
}
while (zNum[0] == '0')
zNum++;
for (i = 0; i < 11 && (c = zNum[i] - '0') >= 0 && c <= 9; i++)
{
v = v * 10 + c;
}
/* The longest decimal representation of a 32 bit integer is 10 digits:
**
** 1234567890
** 2^31 -> 2147483648
*/
if(i > 10)
{
return 0;
}
if(v - neg > 2147483647)
{
return 0;
}
if(neg)
{
v = -v;
}
*pValue = (int) v;
return 1;
}
/*
** The variable-length integer encoding is as follows:
**
** KEY:
** A = 0xxxxxxx 7 bits of data and one flag bit
** B = 1xxxxxxx 7 bits of data and one flag bit
** C = xxxxxxxx 8 bits of data
**
** 7 bits - A
** 14 bits - BA
** 21 bits - BBA
** 28 bits - BBBA
** 35 bits - BBBBA
** 42 bits - BBBBBA
** 49 bits - BBBBBBA
** 56 bits - BBBBBBBA
** 64 bits - BBBBBBBBC
*/
/*
** Write a 64-bit variable-length integer to memory starting at p[0].
** The length of data write will be between 1 and 9 bytes. The number
** of bytes written is returned.
**
** A variable-length integer consists of the lower 7 bits of each byte
** for all bytes that have the 8th bit set and one byte with the 8th
** bit clear. Except, if we get to the 9th byte, it stores the full
** 8 bits and is the last byte.
*/
SQLITE_PRIVATE int
sqlite3PutVarint(unsigned char *p, u64 v)
{
int i, j, n;
u8 buf[10];
if(v & (((u64) 0xff000000) << 32))
{
p[8] = v;
v >>= 8;
for (i = 7; i >= 0; i--)
{
p[i] = (v & 0x7f) | 0x80;
v >>= 7;
}
return 9;
}
n = 0;
do
{
buf[n++] = (v & 0x7f) | 0x80;
v >>= 7;
}
while (v != 0);
buf[0] &= 0x7f;
assert(n <= 9);
for (i = 0, j = n - 1; j >= 0; j--, i++)
{
p[i] = buf[j];
}
return n;
}
/*
** This routine is a faster version of sqlite3PutVarint() that only
** works for 32-bit positive integers and which is optimized for
** the common case of small integers. A MACRO version, putVarint32,
** is provided which inlines the single-byte case. All code should use
** the MACRO version as this function assumes the single-byte case has
** already been handled.
*/
SQLITE_PRIVATE int
sqlite3PutVarint32(unsigned char *p, u32 v)
{
#ifndef putVarint32
if((v & ~0x7f) == 0)
{
p[0] = v;
return 1;
}
#endif
if((v & ~0x3fff) == 0)
{
p[0] = (v >> 7) | 0x80;
p[1] = v & 0x7f;
return 2;
}
return sqlite3PutVarint(p, v);
}
/*
** Read a 64-bit variable-length integer from memory starting at p[0].
** Return the number of bytes read. The value is stored in *v.
*/
SQLITE_PRIVATE int
sqlite3GetVarint(const unsigned char *p, u64 * v)
{
u32 a, b, s;
a = *p;
// a: p0 (unmasked)
if(!(a & 0x80))
{
*v = a;
return 1;
}
p++;
b = *p;
// b: p1 (unmasked)
if(!(b & 0x80))
{
a &= 0x7f;
a = a << 7;
a |= b;
*v = a;
return 2;
}
p++;
a = a << 14;
a |= *p;
// a: p0<<14 | p2 (unmasked)
if(!(a & 0x80))
{
a &= (0x7f << 14) | (0x7f);
b &= 0x7f;
b = b << 7;
a |= b;
*v = a;
return 3;
}
// CSE1 from below
a &= (0x7f << 14) | (0x7f);
p++;
b = b << 14;
b |= *p;
// b: p1<<14 | p3 (unmasked)
if(!(b & 0x80))
{
b &= (0x7f << 14) | (0x7f);
// moved CSE1 up
// a &= (0x7f<<14)|(0x7f);
a = a << 7;
a |= b;
*v = a;
return 4;
}
// a: p0<<14 | p2 (masked)
// b: p1<<14 | p3 (unmasked)
// 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked)
// moved CSE1 up
// a &= (0x7f<<14)|(0x7f);
b &= (0x7f << 14) | (0x7f);
s = a;
// s: p0<<14 | p2 (masked)
p++;
a = a << 14;
a |= *p;
// a: p0<<28 | p2<<14 | p4 (unmasked)
if(!(a & 0x80))
{
// we can skip these cause they were (effectively) done above in calc'ing s
// a &= (0x7f<<28)|(0x7f<<14)|(0x7f);
// b &= (0x7f<<14)|(0x7f);
b = b << 7;
a |= b;
s = s >> 18;
*v = ((u64) s) << 32 | a;
return 5;
}
// 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked)
s = s << 7;
s |= b;
// s: p0<<21 | p1<<14 | p2<<7 | p3 (masked)
p++;
b = b << 14;
b |= *p;
// b: p1<<28 | p3<<14 | p5 (unmasked)
if(!(b & 0x80))
{
// we can skip this cause it was (effectively) done above in calc'ing s
// b &= (0x7f<<28)|(0x7f<<14)|(0x7f);
a &= (0x7f << 14) | (0x7f);
a = a << 7;
a |= b;
s = s >> 18;
*v = ((u64) s) << 32 | a;
return 6;
}
p++;
a = a << 14;
a |= *p;
// a: p2<<28 | p4<<14 | p6 (unmasked)
if(!(a & 0x80))
{
a &= (0x7f << 28) | (0x7f << 14) | (0x7f);
b &= (0x7f << 14) | (0x7f);
b = b << 7;
a |= b;
s = s >> 11;
*v = ((u64) s) << 32 | a;
return 7;
}
// CSE2 from below
a &= (0x7f << 14) | (0x7f);
p++;
b = b << 14;
b |= *p;
// b: p3<<28 | p5<<14 | p7 (unmasked)
if(!(b & 0x80))
{
b &= (0x7f << 28) | (0x7f << 14) | (0x7f);
// moved CSE2 up
// a &= (0x7f<<14)|(0x7f);
a = a << 7;
a |= b;
s = s >> 4;
*v = ((u64) s) << 32 | a;
return 8;
}
p++;
a = a << 15;
a |= *p;
// a: p4<<29 | p6<<15 | p8 (unmasked)
// moved CSE2 up
// a &= (0x7f<<29)|(0x7f<<15)|(0xff);
b &= (0x7f << 14) | (0x7f);
b = b << 8;
a |= b;
s = s << 4;
b = p[-4];
b &= 0x7f;
b = b >> 3;
s |= b;
*v = ((u64) s) << 32 | a;
return 9;
}
/*
** Read a 32-bit variable-length integer from memory starting at p[0].
** Return the number of bytes read. The value is stored in *v.
** A MACRO version, getVarint32, is provided which inlines the
** single-byte case. All code should use the MACRO version as
** this function assumes the single-byte case has already been handled.
*/
SQLITE_PRIVATE int
sqlite3GetVarint32(const unsigned char *p, u32 * v)
{
u32 a, b;
a = *p;
// a: p0 (unmasked)
#ifndef getVarint32
if(!(a & 0x80))
{
*v = a;
return 1;
}
#endif
p++;
b = *p;
// b: p1 (unmasked)
if(!(b & 0x80))
{
a &= 0x7f;
a = a << 7;
*v = a | b;
return 2;
}
p++;
a = a << 14;
a |= *p;
// a: p0<<14 | p2 (unmasked)
if(!(a & 0x80))
{
a &= (0x7f << 14) | (0x7f);
b &= 0x7f;
b = b << 7;
*v = a | b;
return 3;
}
p++;
b = b << 14;
b |= *p;
// b: p1<<14 | p3 (unmasked)
if(!(b & 0x80))
{
b &= (0x7f << 14) | (0x7f);
a &= (0x7f << 14) | (0x7f);
a = a << 7;
*v = a | b;
return 4;
}
p++;
a = a << 14;
a |= *p;
// a: p0<<28 | p2<<14 | p4 (unmasked)
if(!(a & 0x80))
{
a &= (0x7f << 28) | (0x7f << 14) | (0x7f);
b &= (0x7f << 28) | (0x7f << 14) | (0x7f);
b = b << 7;
*v = a | b;
return 5;
}
/* We can only reach this point when reading a corrupt database
** file. In that case we are not in any hurry. Use the (relatively
** slow) general-purpose sqlite3GetVarint() routine to extract the
** value. */
{
u64 v64;
int n;
p -= 4;
n = sqlite3GetVarint(p, &v64);
assert(n > 5 && n <= 9);
*v = (u32) v64;
return n;
}
}
/*
** Return the number of bytes that will be needed to store the given
** 64-bit integer.
*/
SQLITE_PRIVATE int
sqlite3VarintLen(u64 v)
{
int i = 0;
do
{
i++;
v >>= 7;
}
while (v != 0 && i < 9);
return i;
}
/*
** Read or write a four-byte big-endian integer value.
*/
SQLITE_PRIVATE u32
sqlite3Get4byte(const u8 * p)
{
return (p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3];
}
SQLITE_PRIVATE void
sqlite3Put4byte(unsigned char *p, u32 v)
{
p[0] = v >> 24;
p[1] = v >> 16;
p[2] = v >> 8;
p[3] = v;
}
#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
/*
** Translate a single byte of Hex into an integer.
** This routinen only works if h really is a valid hexadecimal
** character: 0..9a..fA..F
*/
static int
hexToInt(int h)
{
assert((h >= '0' && h <= '9') || (h >= 'a' && h <= 'f') || (h >= 'A' && h <= 'F'));
#ifdef SQLITE_ASCII
h += 9 * (1 & (h >> 6));
#endif
#ifdef SQLITE_EBCDIC
h += 9 * (1 & ~(h >> 4));
#endif
return h & 0xf;
}
#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
/*
** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
** value. Return a pointer to its binary value. Space to hold the
** binary value has been obtained from malloc and must be freed by
** the calling routine.
*/
SQLITE_PRIVATE void *
sqlite3HexToBlob(sqlite3 * db, const char *z, int n)
{
char *zBlob;
int i;
zBlob = (char *) sqlite3DbMallocRaw(db, n / 2 + 1);
n--;
if(zBlob)
{
for (i = 0; i < n; i += 2)
{
zBlob[i / 2] = (hexToInt(z[i]) << 4) | hexToInt(z[i + 1]);
}
zBlob[i / 2] = 0;
}
return zBlob;
}
#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
/*
** Change the sqlite.magic from SQLITE_MAGIC_OPEN to SQLITE_MAGIC_BUSY.
** Return an error (non-zero) if the magic was not SQLITE_MAGIC_OPEN
** when this routine is called.
**
** This routine is called when entering an SQLite API. The SQLITE_MAGIC_OPEN
** value indicates that the database connection passed into the API is
** open and is not being used by another thread. By changing the value
** to SQLITE_MAGIC_BUSY we indicate that the connection is in use.
** sqlite3SafetyOff() below will change the value back to SQLITE_MAGIC_OPEN
** when the API exits.
**
** This routine is a attempt to detect if two threads use the
** same sqlite* pointer at the same time. There is a race
** condition so it is possible that the error is not detected.
** But usually the problem will be seen. The result will be an
** error which can be used to debug the application that is
** using SQLite incorrectly.
**
** Ticket #202: If db->magic is not a valid open value, take care not
** to modify the db structure at all. It could be that db is a stale
** pointer. In other words, it could be that there has been a prior
** call to sqlite3_close(db) and db has been deallocated. And we do
** not want to write into deallocated memory.
*/
#ifdef SQLITE_DEBUG
SQLITE_PRIVATE int
sqlite3SafetyOn(sqlite3 * db)
{
if(db->magic == SQLITE_MAGIC_OPEN)
{
db->magic = SQLITE_MAGIC_BUSY;
assert(sqlite3_mutex_held(db->mutex));
return 0;
}
else if(db->magic == SQLITE_MAGIC_BUSY)
{
db->magic = SQLITE_MAGIC_ERROR;
db->u1.isInterrupted = 1;
}
return 1;
}
#endif
/*
** Change the magic from SQLITE_MAGIC_BUSY to SQLITE_MAGIC_OPEN.
** Return an error (non-zero) if the magic was not SQLITE_MAGIC_BUSY
** when this routine is called.
*/
#ifdef SQLITE_DEBUG
SQLITE_PRIVATE int
sqlite3SafetyOff(sqlite3 * db)
{
if(db->magic == SQLITE_MAGIC_BUSY)
{
db->magic = SQLITE_MAGIC_OPEN;
assert(sqlite3_mutex_held(db->mutex));
return 0;
}
else
{
db->magic = SQLITE_MAGIC_ERROR;
db->u1.isInterrupted = 1;
return 1;
}
}
#endif
/*
** Check to make sure we have a valid db pointer. This test is not
** foolproof but it does provide some measure of protection against
** misuse of the interface such as passing in db pointers that are
** NULL or which have been previously closed. If this routine returns
** 1 it means that the db pointer is valid and 0 if it should not be
** dereferenced for any reason. The calling function should invoke
** SQLITE_MISUSE immediately.
**
** sqlite3SafetyCheckOk() requires that the db pointer be valid for
** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
** open properly and is not fit for general use but which can be
** used as an argument to sqlite3_errmsg() or sqlite3_close().
*/
SQLITE_PRIVATE int
sqlite3SafetyCheckOk(sqlite3 * db)
{
int magic;
if(db == 0)
return 0;
magic = db->magic;
if(magic != SQLITE_MAGIC_OPEN && magic != SQLITE_MAGIC_BUSY)
return 0;
return 1;
}
SQLITE_PRIVATE int
sqlite3SafetyCheckSickOrOk(sqlite3 * db)
{
int magic;
if(db == 0)
return 0;
magic = db->magic;
if(magic != SQLITE_MAGIC_SICK && magic != SQLITE_MAGIC_OPEN && magic != SQLITE_MAGIC_BUSY)
return 0;
return 1;
}
/************** End of util.c ************************************************/
/************** Begin file hash.c ********************************************/
/*
** 2001 September 22
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This is the implementation of generic hash-tables
** used in SQLite.
**
*/
/* Turn bulk memory into a hash table object by initializing the
** fields of the Hash structure.
**
** "pNew" is a pointer to the hash table that is to be initialized.
** keyClass is one of the constants SQLITE_HASH_INT, SQLITE_HASH_POINTER,
** SQLITE_HASH_BINARY, or SQLITE_HASH_STRING. The value of keyClass
** determines what kind of key the hash table will use. "copyKey" is
** true if the hash table should make its own private copy of keys and
** false if it should just use the supplied pointer. CopyKey only makes
** sense for SQLITE_HASH_STRING and SQLITE_HASH_BINARY and is ignored
** for other key classes.
*/
SQLITE_PRIVATE void
sqlite3HashInit(Hash * pNew, int keyClass, int copyKey)
{
assert(pNew != 0);
assert(keyClass >= SQLITE_HASH_STRING && keyClass <= SQLITE_HASH_BINARY);
pNew->keyClass = keyClass;
#if 0
if(keyClass == SQLITE_HASH_POINTER || keyClass == SQLITE_HASH_INT)
copyKey = 0;
#endif
pNew->copyKey = copyKey;
pNew->first = 0;
pNew->count = 0;
pNew->htsize = 0;
pNew->ht = 0;
}
/* Remove all entries from a hash table. Reclaim all memory.
** Call this routine to delete a hash table or to reset a hash table
** to the empty state.
*/
SQLITE_PRIVATE void
sqlite3HashClear(Hash * pH)
{
HashElem *elem; /* For looping over all elements of the table */
assert(pH != 0);
elem = pH->first;
pH->first = 0;
sqlite3_free(pH->ht);
pH->ht = 0;
pH->htsize = 0;
while (elem)
{
HashElem *next_elem = elem->next;
if(pH->copyKey && elem->pKey)
{
sqlite3_free(elem->pKey);
}
sqlite3_free(elem);
elem = next_elem;
}
pH->count = 0;
}
#if 0 /* NOT USED */
/*
** Hash and comparison functions when the mode is SQLITE_HASH_INT
*/
static int
intHash(const void *pKey, int nKey)
{
return nKey ^ (nKey << 8) ^ (nKey >> 8);
}
static int
intCompare(const void *pKey1, int n1, const void *pKey2, int n2)
{
return n2 - n1;
}
#endif
#if 0 /* NOT USED */
/*
** Hash and comparison functions when the mode is SQLITE_HASH_POINTER
*/
static int
ptrHash(const void *pKey, int nKey)
{
uptr x = Addr(pKey);
return x ^ (x << 8) ^ (x >> 8);
}
static int
ptrCompare(const void *pKey1, int n1, const void *pKey2, int n2)
{
if(pKey1 == pKey2)
return 0;
if(pKey1 < pKey2)
return -1;
return 1;
}
#endif
/*
** Hash and comparison functions when the mode is SQLITE_HASH_STRING
*/
static int
strHash(const void *pKey, int nKey)
{
const char *z = (const char *) pKey;
int h = 0;
if(nKey <= 0)
nKey = strlen(z);
while (nKey > 0)
{
h = (h << 3) ^ h ^ sqlite3UpperToLower[(unsigned char) *z++];
nKey--;
}
return h & 0x7fffffff;
}
static int
strCompare(const void *pKey1, int n1, const void *pKey2, int n2)
{
if(n1 != n2)
return 1;
return sqlite3StrNICmp((const char *) pKey1, (const char *) pKey2, n1);
}
/*
** Hash and comparison functions when the mode is SQLITE_HASH_BINARY
*/
static int
binHash(const void *pKey, int nKey)
{
int h = 0;
const char *z = (const char *) pKey;
while (nKey-- > 0)
{
h = (h << 3) ^ h ^ *(z++);
}
return h & 0x7fffffff;
}
static int
binCompare(const void *pKey1, int n1, const void *pKey2, int n2)
{
if(n1 != n2)
return 1;
return memcmp(pKey1, pKey2, n1);
}
/*
** Return a pointer to the appropriate hash function given the key class.
**
** The C syntax in this function definition may be unfamilar to some
** programmers, so we provide the following additional explanation:
**
** The name of the function is "hashFunction". The function takes a
** single parameter "keyClass". The return value of hashFunction()
** is a pointer to another function. Specifically, the return value
** of hashFunction() is a pointer to a function that takes two parameters
** with types "const void*" and "int" and returns an "int".
*/
static int (*hashFunction(int keyClass)) (const void *, int)
{
#if 0 /* HASH_INT and HASH_POINTER are never used */
switch (keyClass)
{
case SQLITE_HASH_INT:
return &intHash;
case SQLITE_HASH_POINTER:
return &ptrHash;
case SQLITE_HASH_STRING:
return &strHash;
case SQLITE_HASH_BINARY:
return &binHash;;
default:
break;
}
return 0;
#else
if(keyClass == SQLITE_HASH_STRING)
{
return &strHash;
}
else
{
assert(keyClass == SQLITE_HASH_BINARY);
return &binHash;
}
#endif
}
/*
** Return a pointer to the appropriate hash function given the key class.
**
** For help in interpreted the obscure C code in the function definition,
** see the header comment on the previous function.
*/
static int (*compareFunction(int keyClass)) (const void *, int, const void *, int)
{
#if 0 /* HASH_INT and HASH_POINTER are never used */
switch (keyClass)
{
case SQLITE_HASH_INT:
return &intCompare;
case SQLITE_HASH_POINTER:
return &ptrCompare;
case SQLITE_HASH_STRING:
return &strCompare;
case SQLITE_HASH_BINARY:
return &binCompare;
default:
break;
}
return 0;
#else
if(keyClass == SQLITE_HASH_STRING)
{
return &strCompare;
}
else
{
assert(keyClass == SQLITE_HASH_BINARY);
return &binCompare;
}
#endif
}
/* Link an element into the hash table
*/
static void
insertElement(Hash * pH, /* The complete hash table */
struct _ht *pEntry, /* The entry into which pNew is inserted */
HashElem * pNew /* The element to be inserted */
)
{
HashElem *pHead; /* First element already in pEntry */
pHead = pEntry->chain;
if(pHead)
{
pNew->next = pHead;
pNew->prev = pHead->prev;
if(pHead->prev)
{
pHead->prev->next = pNew;
}
else
{
pH->first = pNew;
}
pHead->prev = pNew;
}
else
{
pNew->next = pH->first;
if(pH->first)
{
pH->first->prev = pNew;
}
pNew->prev = 0;
pH->first = pNew;
}
pEntry->count++;
pEntry->chain = pNew;
}
/* Resize the hash table so that it cantains "new_size" buckets.
** "new_size" must be a power of 2. The hash table might fail
** to resize if sqlite3_malloc() fails.
*/
static void
rehash(Hash * pH, int new_size)
{
struct _ht *new_ht; /* The new hash table */
HashElem *elem, *next_elem; /* For looping over existing elements */
int (*xHash) (const void *, int); /* The hash function */
#ifdef SQLITE_MALLOC_SOFT_LIMIT
if(new_size * sizeof(struct _ht) > SQLITE_MALLOC_SOFT_LIMIT)
{
new_size = SQLITE_MALLOC_SOFT_LIMIT / sizeof(struct _ht);
}
if(new_size == pH->htsize)
return;
#endif
/* There is a call to sqlite3_malloc() inside rehash(). If there is
** already an allocation at pH->ht, then if this malloc() fails it
** is benign (since failing to resize a hash table is a performance
** hit only, not a fatal error).
*/
if(pH->htsize > 0)
sqlite3FaultBeginBenign(SQLITE_FAULTINJECTOR_MALLOC);
new_ht = (struct _ht *) sqlite3MallocZero(new_size * sizeof(struct _ht));
if(pH->htsize > 0)
sqlite3FaultEndBenign(SQLITE_FAULTINJECTOR_MALLOC);
if(new_ht == 0)
return;
sqlite3_free(pH->ht);
pH->ht = new_ht;
pH->htsize = new_size;
xHash = hashFunction(pH->keyClass);
for (elem = pH->first, pH->first = 0; elem; elem = next_elem)
{
int h = (*xHash) (elem->pKey, elem->nKey) & (new_size - 1);
next_elem = elem->next;
insertElement(pH, &new_ht[h], elem);
}
}
/* This function (for internal use only) locates an element in an
** hash table that matches the given key. The hash for this key has
** already been computed and is passed as the 4th parameter.
*/
static HashElem *
findElementGivenHash(const Hash * pH, /* The pH to be searched */
const void *pKey, /* The key we are searching for */
int nKey, int h /* The hash for this key. */
)
{
HashElem *elem; /* Used to loop thru the element list */
int count; /* Number of elements left to test */
int (*xCompare) (const void *, int, const void *, int); /* comparison function */
if(pH->ht)
{
struct _ht *pEntry = &pH->ht[h];
elem = pEntry->chain;
count = pEntry->count;
xCompare = compareFunction(pH->keyClass);
while (count-- && elem)
{
if((*xCompare) (elem->pKey, elem->nKey, pKey, nKey) == 0)
{
return elem;
}
elem = elem->next;
}
}
return 0;
}
/* Remove a single entry from the hash table given a pointer to that
** element and a hash on the element's key.
*/
static void
removeElementGivenHash(Hash * pH, /* The pH containing "elem" */
HashElem * elem, /* The element to be removed from the pH */
int h /* Hash value for the element */
)
{
struct _ht *pEntry;
if(elem->prev)
{
elem->prev->next = elem->next;
}
else
{
pH->first = elem->next;
}
if(elem->next)
{
elem->next->prev = elem->prev;
}
pEntry = &pH->ht[h];
if(pEntry->chain == elem)
{
pEntry->chain = elem->next;
}
pEntry->count--;
if(pEntry->count <= 0)
{
pEntry->chain = 0;
}
if(pH->copyKey)
{
sqlite3_free(elem->pKey);
}
sqlite3_free(elem);
pH->count--;
if(pH->count <= 0)
{
assert(pH->first == 0);
assert(pH->count == 0);
sqlite3HashClear(pH);
}
}
/* Attempt to locate an element of the hash table pH with a key
** that matches pKey,nKey. Return a pointer to the corresponding
** HashElem structure for this element if it is found, or NULL
** otherwise.
*/
SQLITE_PRIVATE HashElem *
sqlite3HashFindElem(const Hash * pH, const void *pKey, int nKey)
{
int h; /* A hash on key */
HashElem *elem; /* The element that matches key */
int (*xHash) (const void *, int); /* The hash function */
if(pH == 0 || pH->ht == 0)
return 0;
xHash = hashFunction(pH->keyClass);
assert(xHash != 0);
h = (*xHash) (pKey, nKey);
elem = findElementGivenHash(pH, pKey, nKey, h % pH->htsize);
return elem;
}
/* Attempt to locate an element of the hash table pH with a key
** that matches pKey,nKey. Return the data for this element if it is
** found, or NULL if there is no match.
*/
SQLITE_PRIVATE void *
sqlite3HashFind(const Hash * pH, const void *pKey, int nKey)
{
HashElem *elem; /* The element that matches key */
elem = sqlite3HashFindElem(pH, pKey, nKey);
return elem ? elem->data : 0;
}
/* Insert an element into the hash table pH. The key is pKey,nKey
** and the data is "data".
**
** If no element exists with a matching key, then a new
** element is created. A copy of the key is made if the copyKey
** flag is set. NULL is returned.
**
** If another element already exists with the same key, then the
** new data replaces the old data and the old data is returned.
** The key is not copied in this instance. If a malloc fails, then
** the new data is returned and the hash table is unchanged.
**
** If the "data" parameter to this function is NULL, then the
** element corresponding to "key" is removed from the hash table.
*/
SQLITE_PRIVATE void *
sqlite3HashInsert(Hash * pH, const void *pKey, int nKey, void *data)
{
int hraw; /* Raw hash value of the key */
int h; /* the hash of the key modulo hash table size */
HashElem *elem; /* Used to loop thru the element list */
HashElem *new_elem; /* New element added to the pH */
int (*xHash) (const void *, int); /* The hash function */
assert(pH != 0);
xHash = hashFunction(pH->keyClass);
assert(xHash != 0);
hraw = (*xHash) (pKey, nKey);
if(pH->htsize)
{
h = hraw % pH->htsize;
elem = findElementGivenHash(pH, pKey, nKey, h);
if(elem)
{
void *old_data = elem->data;
if(data == 0)
{
removeElementGivenHash(pH, elem, h);
}
else
{
elem->data = data;
if(!pH->copyKey)
{
elem->pKey = (void *) pKey;
}
assert(nKey == elem->nKey);
}
return old_data;
}
}
if(data == 0)
return 0;
new_elem = (HashElem *) sqlite3_malloc(sizeof(HashElem));
if(new_elem == 0)
return data;
if(pH->copyKey && pKey != 0)
{
new_elem->pKey = sqlite3_malloc(nKey);
if(new_elem->pKey == 0)
{
sqlite3_free(new_elem);
return data;
}
memcpy((void *) new_elem->pKey, pKey, nKey);
}
else
{
new_elem->pKey = (void *) pKey;
}
new_elem->nKey = nKey;
pH->count++;
if(pH->htsize == 0)
{
rehash(pH, 128 / sizeof(pH->ht[0]));
if(pH->htsize == 0)
{
pH->count = 0;
if(pH->copyKey)
{
sqlite3_free(new_elem->pKey);
}
sqlite3_free(new_elem);
return data;
}
}
if(pH->count > pH->htsize)
{
rehash(pH, pH->htsize * 2);
}
assert(pH->htsize > 0);
h = hraw % pH->htsize;
insertElement(pH, &pH->ht[h], new_elem);
new_elem->data = data;
return 0;
}
/************** End of hash.c ************************************************/
/************** Begin file opcodes.c *****************************************/
/* Automatically generated. Do not edit */
/* See the mkopcodec.awk script for details. */
#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
SQLITE_PRIVATE const char *
sqlite3OpcodeName(int i)
{
static const char *const azName[] = { "?",
/* 1 */ "VNext",
/* 2 */ "Affinity",
/* 3 */ "Column",
/* 4 */ "SetCookie",
/* 5 */ "Sequence",
/* 6 */ "MoveGt",
/* 7 */ "RowKey",
/* 8 */ "SCopy",
/* 9 */ "OpenWrite",
/* 10 */ "If",
/* 11 */ "VRowid",
/* 12 */ "CollSeq",
/* 13 */ "OpenRead",
/* 14 */ "Expire",
/* 15 */ "AutoCommit",
/* 16 */ "Not",
/* 17 */ "IntegrityCk",
/* 18 */ "Sort",
/* 19 */ "Copy",
/* 20 */ "Trace",
/* 21 */ "Function",
/* 22 */ "IfNeg",
/* 23 */ "Noop",
/* 24 */ "Return",
/* 25 */ "NewRowid",
/* 26 */ "Variable",
/* 27 */ "String",
/* 28 */ "RealAffinity",
/* 29 */ "VRename",
/* 30 */ "ParseSchema",
/* 31 */ "VOpen",
/* 32 */ "Close",
/* 33 */ "CreateIndex",
/* 34 */ "IsUnique",
/* 35 */ "NotFound",
/* 36 */ "Int64",
/* 37 */ "MustBeInt",
/* 38 */ "Halt",
/* 39 */ "Rowid",
/* 40 */ "IdxLT",
/* 41 */ "AddImm",
/* 42 */ "Statement",
/* 43 */ "RowData",
/* 44 */ "MemMax",
/* 45 */ "NotExists",
/* 46 */ "Gosub",
/* 47 */ "Integer",
/* 48 */ "Prev",
/* 49 */ "VColumn",
/* 50 */ "CreateTable",
/* 51 */ "Last",
/* 52 */ "IncrVacuum",
/* 53 */ "IdxRowid",
/* 54 */ "ResetCount",
/* 55 */ "FifoWrite",
/* 56 */ "ContextPush",
/* 57 */ "DropTrigger",
/* 58 */ "DropIndex",
/* 59 */ "IdxGE",
/* 60 */ "Or",
/* 61 */ "And",
/* 62 */ "IdxDelete",
/* 63 */ "Vacuum",
/* 64 */ "MoveLe",
/* 65 */ "IsNull",
/* 66 */ "NotNull",
/* 67 */ "Ne",
/* 68 */ "Eq",
/* 69 */ "Gt",
/* 70 */ "Le",
/* 71 */ "Lt",
/* 72 */ "Ge",
/* 73 */ "IfNot",
/* 74 */ "BitAnd",
/* 75 */ "BitOr",
/* 76 */ "ShiftLeft",
/* 77 */ "ShiftRight",
/* 78 */ "Add",
/* 79 */ "Subtract",
/* 80 */ "Multiply",
/* 81 */ "Divide",
/* 82 */ "Remainder",
/* 83 */ "Concat",
/* 84 */ "DropTable",
/* 85 */ "MakeRecord",
/* 86 */ "ResultRow",
/* 87 */ "BitNot",
/* 88 */ "String8",
/* 89 */ "Delete",
/* 90 */ "AggFinal",
/* 91 */ "Goto",
/* 92 */ "TableLock",
/* 93 */ "FifoRead",
/* 94 */ "Clear",
/* 95 */ "MoveLt",
/* 96 */ "VerifyCookie",
/* 97 */ "AggStep",
/* 98 */ "SetNumColumns",
/* 99 */ "Transaction",
/* 100 */ "VFilter",
/* 101 */ "VDestroy",
/* 102 */ "ContextPop",
/* 103 */ "Next",
/* 104 */ "IdxInsert",
/* 105 */ "Insert",
/* 106 */ "Destroy",
/* 107 */ "ReadCookie",
/* 108 */ "ForceInt",
/* 109 */ "LoadAnalysis",
/* 110 */ "Explain",
/* 111 */ "OpenPseudo",
/* 112 */ "OpenEphemeral",
/* 113 */ "Null",
/* 114 */ "Move",
/* 115 */ "Blob",
/* 116 */ "Rewind",
/* 117 */ "MoveGe",
/* 118 */ "VBegin",
/* 119 */ "VUpdate",
/* 120 */ "IfZero",
/* 121 */ "VCreate",
/* 122 */ "Found",
/* 123 */ "IfPos",
/* 124 */ "NullRow",
/* 125 */ "Real",
/* 126 */ "NotUsed_126",
/* 127 */ "NotUsed_127",
/* 128 */ "NotUsed_128",
/* 129 */ "NotUsed_129",
/* 130 */ "NotUsed_130",
/* 131 */ "NotUsed_131",
/* 132 */ "NotUsed_132",
/* 133 */ "NotUsed_133",
/* 134 */ "NotUsed_134",
/* 135 */ "NotUsed_135",
/* 136 */ "NotUsed_136",
/* 137 */ "NotUsed_137",
/* 138 */ "ToText",
/* 139 */ "ToBlob",
/* 140 */ "ToNumeric",
/* 141 */ "ToInt",
/* 142 */ "ToReal",
};
return azName[i];
}
#endif
/************** End of opcodes.c *********************************************/
/************** Begin file os_os2.c ******************************************/
/*
** 2006 Feb 14
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** This file contains code that is specific to OS/2.
*/
#if OS_OS2
/*
** A Note About Memory Allocation:
**
** This driver uses malloc()/free() directly rather than going through
** the SQLite-wrappers sqlite3_malloc()/sqlite3_free(). Those wrappers
** are designed for use on embedded systems where memory is scarce and
** malloc failures happen frequently. OS/2 does not typically run on
** embedded systems, and when it does the developers normally have bigger
** problems to worry about than running out of memory. So there is not
** a compelling need to use the wrappers.
**
** But there is a good reason to not use the wrappers. If we use the
** wrappers then we will get simulated malloc() failures within this
** driver. And that causes all kinds of problems for our tests. We
** could enhance SQLite to deal with simulated malloc failures within
** the OS driver, but the code to deal with those failure would not
** be exercised on Linux (which does not need to malloc() in the driver)
** and so we would have difficulty writing coverage tests for that
** code. Better to leave the code out, we think.
**
** The point of this discussion is as follows: When creating a new
** OS layer for an embedded system, if you use this file as an example,
** avoid the use of malloc()/free(). Those routines work ok on OS/2
** desktops but not so well in embedded systems.
*/
/*
** Macros used to determine whether or not to use threads.
*/
#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE
# define SQLITE_OS2_THREADS 1
#endif
/*
** Include code that is common to all os_*.c files
*/
/************** Include os_common.h in the middle of os_os2.c ****************/
/************** Begin file os_common.h ***************************************/
/*
** 2004 May 22
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** This file contains macros and a little bit of code that is common to
** all of the platform-specific files (os_*.c) and is #included into those
** files.
**
** This file should be #included by the os_*.c files only. It is not a
** general purpose header file.
*/
/*
** At least two bugs have slipped in because we changed the MEMORY_DEBUG
** macro to SQLITE_DEBUG and some older makefiles have not yet made the
** switch. The following code should catch this problem at compile-time.
*/
#ifdef MEMORY_DEBUG
# error "The MEMORY_DEBUG macro is obsolete. Use SQLITE_DEBUG instead."
#endif
/*
* When testing, this global variable stores the location of the
* pending-byte in the database file.
*/
#ifdef SQLITE_TEST
SQLITE_API unsigned int sqlite3_pending_byte = 0x40000000;
#endif
#ifdef SQLITE_DEBUG
SQLITE_PRIVATE int sqlite3OSTrace = 0;
#define OSTRACE1(X) if( sqlite3OSTrace ) sqlite3DebugPrintf(X)
#define OSTRACE2(X,Y) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y)
#define OSTRACE3(X,Y,Z) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z)
#define OSTRACE4(X,Y,Z,A) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z,A)
#define OSTRACE5(X,Y,Z,A,B) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z,A,B)
#define OSTRACE6(X,Y,Z,A,B,C) \
if(sqlite3OSTrace) sqlite3DebugPrintf(X,Y,Z,A,B,C)
#define OSTRACE7(X,Y,Z,A,B,C,D) \
if(sqlite3OSTrace) sqlite3DebugPrintf(X,Y,Z,A,B,C,D)
#else
#define OSTRACE1(X)
#define OSTRACE2(X,Y)
#define OSTRACE3(X,Y,Z)
#define OSTRACE4(X,Y,Z,A)
#define OSTRACE5(X,Y,Z,A,B)
#define OSTRACE6(X,Y,Z,A,B,C)
#define OSTRACE7(X,Y,Z,A,B,C,D)
#endif
/*
** Macros for performance tracing. Normally turned off. Only works
** on i486 hardware.
*/
#ifdef SQLITE_PERFORMANCE_TRACE
__inline__ unsigned long long int
hwtime(void)
{
unsigned long long int x;
__asm__("rdtsc\n\t" "mov %%edx, %%ecx\n\t":"=A"(x));
return x;
}
static unsigned long long int g_start;
static unsigned int elapse;
#define TIMER_START g_start=hwtime()
#define TIMER_END elapse=hwtime()-g_start
#define TIMER_ELAPSED elapse
#else
#define TIMER_START
#define TIMER_END
#define TIMER_ELAPSED 0
#endif
/*
** If we compile with the SQLITE_TEST macro set, then the following block
** of code will give us the ability to simulate a disk I/O error. This
** is used for testing the I/O recovery logic.
*/
#ifdef SQLITE_TEST
SQLITE_API int sqlite3_io_error_hit = 0; /* Total number of I/O Errors */
SQLITE_API int sqlite3_io_error_hardhit = 0; /* Number of non-benign errors */
SQLITE_API int sqlite3_io_error_pending = 0; /* Count down to first I/O error */
SQLITE_API int sqlite3_io_error_persist = 0; /* True if I/O errors persist */
SQLITE_API int sqlite3_io_error_benign = 0; /* True if errors are benign */
SQLITE_API int sqlite3_diskfull_pending = 0;
SQLITE_API int sqlite3_diskfull = 0;
#define SimulateIOErrorBenign(X) sqlite3_io_error_benign=(X)
#define SimulateIOError(CODE) \
if( (sqlite3_io_error_persist && sqlite3_io_error_hit) \
|| sqlite3_io_error_pending-- == 1 ) \
{ local_ioerr(); CODE; }
static void
local_ioerr()
{
IOTRACE(("IOERR\n"));
sqlite3_io_error_hit++;
if(!sqlite3_io_error_benign)
sqlite3_io_error_hardhit++;
}
#define SimulateDiskfullError(CODE) \
if( sqlite3_diskfull_pending ){ \
if( sqlite3_diskfull_pending == 1 ){ \
local_ioerr(); \
sqlite3_diskfull = 1; \
sqlite3_io_error_hit = 1; \
CODE; \
}else{ \
sqlite3_diskfull_pending--; \
} \
}
#else
#define SimulateIOErrorBenign(X)
#define SimulateIOError(A)
#define SimulateDiskfullError(A)
#endif
/*
** When testing, keep a count of the number of open files.
*/
#ifdef SQLITE_TEST
SQLITE_API int sqlite3_open_file_count = 0;
#define OpenCounter(X) sqlite3_open_file_count+=(X)
#else
#define OpenCounter(X)
#endif
/************** End of os_common.h *******************************************/
/************** Continuing where we left off in os_os2.c *********************/
/*
** The os2File structure is subclass of sqlite3_file specific for the OS/2
** protability layer.
*/
typedef struct os2File os2File;
struct os2File
{
const sqlite3_io_methods *pMethod; /* Always the first entry */
HFILE h; /* Handle for accessing the file */
char *pathToDel; /* Name of file to delete on close, NULL if not */
unsigned char locktype; /* Type of lock currently held on this file */
};
#define LOCK_TIMEOUT 10L /* the default locking timeout */
/*****************************************************************************
** The next group of routines implement the I/O methods specified
** by the sqlite3_io_methods object.
******************************************************************************/
/*
** Close a file.
*/
int
os2Close(sqlite3_file * id)
{
APIRET rc = NO_ERROR;
os2File *pFile;
if(id && (pFile = (os2File *) id) != 0)
{
OSTRACE2("CLOSE %d\n", pFile->h);
rc = DosClose(pFile->h);
pFile->locktype = NO_LOCK;
if(pFile->pathToDel != NULL)
{
rc = DosForceDelete((PSZ) pFile->pathToDel);
free(pFile->pathToDel);
pFile->pathToDel = NULL;
}
id = 0;
OpenCounter(-1);
}
return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR;
}
/*
** Read data from a file into a buffer. Return SQLITE_OK if all
** bytes were read successfully and SQLITE_IOERR if anything goes
** wrong.
*/
int
os2Read(sqlite3_file * id, /* File to read from */
void *pBuf, /* Write content into this buffer */
int amt, /* Number of bytes to read */
sqlite3_int64 offset /* Begin reading at this offset */
)
{
ULONG fileLocation = 0L;
ULONG got;
os2File *pFile = (os2File *) id;
assert(id != 0);
SimulateIOError(return SQLITE_IOERR_READ);
OSTRACE3("READ %d lock=%d\n", pFile->h, pFile->locktype);
if(DosSetFilePtr(pFile->h, offset, FILE_BEGIN, &fileLocation) != NO_ERROR)
{
return SQLITE_IOERR;
}
if(DosRead(pFile->h, pBuf, amt, &got) != NO_ERROR)
{
return SQLITE_IOERR_READ;
}
if(got == (ULONG) amt)
return SQLITE_OK;
else
{
memset(&((char *) pBuf)[got], 0, amt - got);
return SQLITE_IOERR_SHORT_READ;
}
}
/*
** Write data from a buffer into a file. Return SQLITE_OK on success
** or some other error code on failure.
*/
int
os2Write(sqlite3_file * id, /* File to write into */
const void *pBuf, /* The bytes to be written */
int amt, /* Number of bytes to write */
sqlite3_int64 offset /* Offset into the file to begin writing at */
)
{
ULONG fileLocation = 0L;
APIRET rc = NO_ERROR;
ULONG wrote;
os2File *pFile = (os2File *) id;
assert(id != 0);
SimulateIOError(return SQLITE_IOERR_WRITE);
SimulateDiskfullError(return SQLITE_FULL);
OSTRACE3("WRITE %d lock=%d\n", pFile->h, pFile->locktype);
if(DosSetFilePtr(pFile->h, offset, FILE_BEGIN, &fileLocation) != NO_ERROR)
{
return SQLITE_IOERR;
}
assert(amt > 0);
while (amt > 0 &&
(rc = DosWrite(pFile->h, (PVOID) pBuf, amt, &wrote)) == NO_ERROR && wrote > 0)
{
amt -= wrote;
pBuf = &((char *) pBuf)[wrote];
}
return (rc != NO_ERROR || amt > (int) wrote) ? SQLITE_FULL : SQLITE_OK;
}
/*
** Truncate an open file to a specified size
*/
int
os2Truncate(sqlite3_file * id, i64 nByte)
{
APIRET rc = NO_ERROR;
os2File *pFile = (os2File *) id;
OSTRACE3("TRUNCATE %d %lld\n", pFile->h, nByte);
SimulateIOError(return SQLITE_IOERR_TRUNCATE);
rc = DosSetFileSize(pFile->h, nByte);
return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR;
}
#ifdef SQLITE_TEST
/*
** Count the number of fullsyncs and normal syncs. This is used to test
** that syncs and fullsyncs are occuring at the right times.
*/
SQLITE_API int sqlite3_sync_count = 0;
SQLITE_API int sqlite3_fullsync_count = 0;
#endif
/*
** Make sure all writes to a particular file are committed to disk.
*/
int
os2Sync(sqlite3_file * id, int flags)
{
os2File *pFile = (os2File *) id;
OSTRACE3("SYNC %d lock=%d\n", pFile->h, pFile->locktype);
#ifdef SQLITE_TEST
if(flags & SQLITE_SYNC_FULL)
{
sqlite3_fullsync_count++;
}
sqlite3_sync_count++;
#endif
return DosResetBuffer(pFile->h) == NO_ERROR ? SQLITE_OK : SQLITE_IOERR;
}
/*
** Determine the current size of a file in bytes
*/
int
os2FileSize(sqlite3_file * id, sqlite3_int64 * pSize)
{
APIRET rc = NO_ERROR;
FILESTATUS3 fsts3FileInfo;
memset(&fsts3FileInfo, 0, sizeof(fsts3FileInfo));
assert(id != 0);
SimulateIOError(return SQLITE_IOERR);
rc = DosQueryFileInfo(((os2File *) id)->h, FIL_STANDARD, &fsts3FileInfo,
sizeof(FILESTATUS3));
if(rc == NO_ERROR)
{
*pSize = fsts3FileInfo.cbFile;
return SQLITE_OK;
}
else
{
return SQLITE_IOERR;
}
}
/*
** Acquire a reader lock.
*/
static int
getReadLock(os2File * pFile)
{
FILELOCK LockArea, UnlockArea;
APIRET res;
memset(&LockArea, 0, sizeof(LockArea));
memset(&UnlockArea, 0, sizeof(UnlockArea));
LockArea.lOffset = SHARED_FIRST;
LockArea.lRange = SHARED_SIZE;
UnlockArea.lOffset = 0L;
UnlockArea.lRange = 0L;
res = DosSetFileLocks(pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 1L);
OSTRACE3("GETREADLOCK %d res=%d\n", pFile->h, res);
return res;
}
/*
** Undo a readlock
*/
static int
unlockReadLock(os2File * id)
{
FILELOCK LockArea, UnlockArea;
APIRET res;
memset(&LockArea, 0, sizeof(LockArea));
memset(&UnlockArea, 0, sizeof(UnlockArea));
LockArea.lOffset = 0L;
LockArea.lRange = 0L;
UnlockArea.lOffset = SHARED_FIRST;
UnlockArea.lRange = SHARED_SIZE;
res = DosSetFileLocks(id->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 1L);
OSTRACE3("UNLOCK-READLOCK file handle=%d res=%d?\n", id->h, res);
return res;
}
/*
** Lock the file with the lock specified by parameter locktype - one
** of the following:
**
** (1) SHARED_LOCK
** (2) RESERVED_LOCK
** (3) PENDING_LOCK
** (4) EXCLUSIVE_LOCK
**
** Sometimes when requesting one lock state, additional lock states
** are inserted in between. The locking might fail on one of the later
** transitions leaving the lock state different from what it started but
** still short of its goal. The following chart shows the allowed
** transitions and the inserted intermediate states:
**
** UNLOCKED -> SHARED
** SHARED -> RESERVED
** SHARED -> (PENDING) -> EXCLUSIVE
** RESERVED -> (PENDING) -> EXCLUSIVE
** PENDING -> EXCLUSIVE
**
** This routine will only increase a lock. The os2Unlock() routine
** erases all locks at once and returns us immediately to locking level 0.
** It is not possible to lower the locking level one step at a time. You
** must go straight to locking level 0.
*/
int
os2Lock(sqlite3_file * id, int locktype)
{
int rc = SQLITE_OK; /* Return code from subroutines */
APIRET res = NO_ERROR; /* Result of an OS/2 lock call */
int newLocktype; /* Set pFile->locktype to this value before exiting */
int gotPendingLock = 0; /* True if we acquired a PENDING lock this time */
FILELOCK LockArea, UnlockArea;
os2File *pFile = (os2File *) id;
memset(&LockArea, 0, sizeof(LockArea));
memset(&UnlockArea, 0, sizeof(UnlockArea));
assert(pFile != 0);
OSTRACE4("LOCK %d %d was %d\n", pFile->h, locktype, pFile->locktype);
/* If there is already a lock of this type or more restrictive on the
** os2File, do nothing. Don't use the end_lock: exit path, as
** sqlite3_mutex_enter() hasn't been called yet.
*/
if(pFile->locktype >= locktype)
{
OSTRACE3("LOCK %d %d ok (already held)\n", pFile->h, locktype);
return SQLITE_OK;
}
/* Make sure the locking sequence is correct
*/
assert(pFile->locktype != NO_LOCK || locktype == SHARED_LOCK);
assert(locktype != PENDING_LOCK);
assert(locktype != RESERVED_LOCK || pFile->locktype == SHARED_LOCK);
/* Lock the PENDING_LOCK byte if we need to acquire a PENDING lock or
** a SHARED lock. If we are acquiring a SHARED lock, the acquisition of
** the PENDING_LOCK byte is temporary.
*/
newLocktype = pFile->locktype;
if(pFile->locktype == NO_LOCK
|| (locktype == EXCLUSIVE_LOCK && pFile->locktype == RESERVED_LOCK))
{
LockArea.lOffset = PENDING_BYTE;
LockArea.lRange = 1L;
UnlockArea.lOffset = 0L;
UnlockArea.lRange = 0L;
/* wait longer than LOCK_TIMEOUT here not to have to try multiple times */
res = DosSetFileLocks(pFile->h, &UnlockArea, &LockArea, 100L, 0L);
if(res == NO_ERROR)
{
gotPendingLock = 1;
OSTRACE3("LOCK %d pending lock boolean set. res=%d\n", pFile->h, res);
}
}
/* Acquire a shared lock
*/
if(locktype == SHARED_LOCK && res == NO_ERROR)
{
assert(pFile->locktype == NO_LOCK);
res = getReadLock(pFile);
if(res == NO_ERROR)
{
newLocktype = SHARED_LOCK;
}
OSTRACE3("LOCK %d acquire shared lock. res=%d\n", pFile->h, res);
}
/* Acquire a RESERVED lock
*/
if(locktype == RESERVED_LOCK && res == NO_ERROR)
{
assert(pFile->locktype == SHARED_LOCK);
LockArea.lOffset = RESERVED_BYTE;
LockArea.lRange = 1L;
UnlockArea.lOffset = 0L;
UnlockArea.lRange = 0L;
res = DosSetFileLocks(pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L);
if(res == NO_ERROR)
{
newLocktype = RESERVED_LOCK;
}
OSTRACE3("LOCK %d acquire reserved lock. res=%d\n", pFile->h, res);
}
/* Acquire a PENDING lock
*/
if(locktype == EXCLUSIVE_LOCK && res == NO_ERROR)
{
newLocktype = PENDING_LOCK;
gotPendingLock = 0;
OSTRACE2("LOCK %d acquire pending lock. pending lock boolean unset.\n", pFile->h);
}
/* Acquire an EXCLUSIVE lock
*/
if(locktype == EXCLUSIVE_LOCK && res == NO_ERROR)
{
assert(pFile->locktype >= SHARED_LOCK);
res = unlockReadLock(pFile);
OSTRACE2("unreadlock = %d\n", res);
LockArea.lOffset = SHARED_FIRST;
LockArea.lRange = SHARED_SIZE;
UnlockArea.lOffset = 0L;
UnlockArea.lRange = 0L;
res = DosSetFileLocks(pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L);
if(res == NO_ERROR)
{
newLocktype = EXCLUSIVE_LOCK;
}
else
{
OSTRACE2("OS/2 error-code = %d\n", res);
getReadLock(pFile);
}
OSTRACE3("LOCK %d acquire exclusive lock. res=%d\n", pFile->h, res);
}
/* If we are holding a PENDING lock that ought to be released, then
** release it now.
*/
if(gotPendingLock && locktype == SHARED_LOCK)
{
int r;
LockArea.lOffset = 0L;
LockArea.lRange = 0L;
UnlockArea.lOffset = PENDING_BYTE;
UnlockArea.lRange = 1L;
r = DosSetFileLocks(pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L);
OSTRACE3("LOCK %d unlocking pending/is shared. r=%d\n", pFile->h, r);
}
/* Update the state of the lock has held in the file descriptor then
** return the appropriate result code.
*/
if(res == NO_ERROR)
{
rc = SQLITE_OK;
}
else
{
OSTRACE4("LOCK FAILED %d trying for %d but got %d\n", pFile->h,
locktype, newLocktype);
rc = SQLITE_BUSY;
}
pFile->locktype = newLocktype;
OSTRACE3("LOCK %d now %d\n", pFile->h, pFile->locktype);
return rc;
}
/*
** This routine checks if there is a RESERVED lock held on the specified
** file by this or any other process. If such a lock is held, return
** non-zero, otherwise zero.
*/
int
os2CheckReservedLock(sqlite3_file * id)
{
int r = 0;
os2File *pFile = (os2File *) id;
assert(pFile != 0);
if(pFile->locktype >= RESERVED_LOCK)
{
r = 1;
OSTRACE3("TEST WR-LOCK %d %d (local)\n", pFile->h, r);
}
else
{
FILELOCK LockArea, UnlockArea;
APIRET rc = NO_ERROR;
memset(&LockArea, 0, sizeof(LockArea));
memset(&UnlockArea, 0, sizeof(UnlockArea));
LockArea.lOffset = RESERVED_BYTE;
LockArea.lRange = 1L;
UnlockArea.lOffset = 0L;
UnlockArea.lRange = 0L;
rc = DosSetFileLocks(pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L);
OSTRACE3("TEST WR-LOCK %d lock reserved byte rc=%d\n", pFile->h, rc);
if(rc == NO_ERROR)
{
APIRET rcu = NO_ERROR; /* return code for unlocking */
LockArea.lOffset = 0L;
LockArea.lRange = 0L;
UnlockArea.lOffset = RESERVED_BYTE;
UnlockArea.lRange = 1L;
rcu = DosSetFileLocks(pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L);
OSTRACE3("TEST WR-LOCK %d unlock reserved byte r=%d\n", pFile->h, rcu);
}
r = !(rc == NO_ERROR);
OSTRACE3("TEST WR-LOCK %d %d (remote)\n", pFile->h, r);
}
return r;
}
/*
** Lower the locking level on file descriptor id to locktype. locktype
** must be either NO_LOCK or SHARED_LOCK.
**
** If the locking level of the file descriptor is already at or below
** the requested locking level, this routine is a no-op.
**
** It is not possible for this routine to fail if the second argument
** is NO_LOCK. If the second argument is SHARED_LOCK then this routine
** might return SQLITE_IOERR;
*/
int
os2Unlock(sqlite3_file * id, int locktype)
{
int type;
os2File *pFile = (os2File *) id;
APIRET rc = SQLITE_OK;
APIRET res = NO_ERROR;
FILELOCK LockArea, UnlockArea;
memset(&LockArea, 0, sizeof(LockArea));
memset(&UnlockArea, 0, sizeof(UnlockArea));
assert(pFile != 0);
assert(locktype <= SHARED_LOCK);
OSTRACE4("UNLOCK %d to %d was %d\n", pFile->h, locktype, pFile->locktype);
type = pFile->locktype;
if(type >= EXCLUSIVE_LOCK)
{
LockArea.lOffset = 0L;
LockArea.lRange = 0L;
UnlockArea.lOffset = SHARED_FIRST;
UnlockArea.lRange = SHARED_SIZE;
res = DosSetFileLocks(pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L);
OSTRACE3("UNLOCK %d exclusive lock res=%d\n", pFile->h, res);
if(locktype == SHARED_LOCK && getReadLock(pFile) != NO_ERROR)
{
/* This should never happen. We should always be able to
** reacquire the read lock */
OSTRACE3("UNLOCK %d to %d getReadLock() failed\n", pFile->h, locktype);
rc = SQLITE_IOERR_UNLOCK;
}
}
if(type >= RESERVED_LOCK)
{
LockArea.lOffset = 0L;
LockArea.lRange = 0L;
UnlockArea.lOffset = RESERVED_BYTE;
UnlockArea.lRange = 1L;
res = DosSetFileLocks(pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L);
OSTRACE3("UNLOCK %d reserved res=%d\n", pFile->h, res);
}
if(locktype == NO_LOCK && type >= SHARED_LOCK)
{
res = unlockReadLock(pFile);
OSTRACE5("UNLOCK %d is %d want %d res=%d\n", pFile->h, type, locktype, res);
}
if(type >= PENDING_LOCK)
{
LockArea.lOffset = 0L;
LockArea.lRange = 0L;
UnlockArea.lOffset = PENDING_BYTE;
UnlockArea.lRange = 1L;
res = DosSetFileLocks(pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L);
OSTRACE3("UNLOCK %d pending res=%d\n", pFile->h, res);
}
pFile->locktype = locktype;
OSTRACE3("UNLOCK %d now %d\n", pFile->h, pFile->locktype);
return rc;
}
/*
** Control and query of the open file handle.
*/
static int
os2FileControl(sqlite3_file * id, int op, void *pArg)
{
switch (op)
{
case SQLITE_FCNTL_LOCKSTATE:
{
*(int *) pArg = ((os2File *) id)->locktype;
OSTRACE3("FCNTL_LOCKSTATE %d lock=%d\n", ((os2File *) id)->h,
((os2File *) id)->locktype);
return SQLITE_OK;
}
}
return SQLITE_ERROR;
}
/*
** Return the sector size in bytes of the underlying block device for
** the specified file. This is almost always 512 bytes, but may be
** larger for some devices.
**
** SQLite code assumes this function cannot fail. It also assumes that
** if two files are created in the same file-system directory (i.e.
** a database and its journal file) that the sector size will be the
** same for both.
*/
static int
os2SectorSize(sqlite3_file * id)
{
return SQLITE_DEFAULT_SECTOR_SIZE;
}
/*
** Return a vector of device characteristics.
*/
static int
os2DeviceCharacteristics(sqlite3_file * id)
{
return 0;
}
/*
** Helper function to convert UTF-8 filenames to local OS/2 codepage.
** The two-step process: first convert the incoming UTF-8 string
** into UCS-2 and then from UCS-2 to the current codepage.
** The returned char pointer has to be freed.
*/
char *
convertUtf8PathToCp(const char *in)
{
UconvObject uconv;
UniChar ucsUtf8Cp[12], tempPath[CCHMAXPATH];
char *out;
int rc = 0;
out = (char *) calloc(CCHMAXPATH, 1);
/* determine string for the conversion of UTF-8 which is CP1208 */
rc = UniMapCpToUcsCp(1208, ucsUtf8Cp, 12);
rc = UniCreateUconvObject(ucsUtf8Cp, &uconv);
rc = UniStrToUcs(uconv, tempPath, (char *) in, CCHMAXPATH);
rc = UniFreeUconvObject(uconv);
/* conversion for current codepage which can be used for paths */
rc = UniCreateUconvObject((UniChar *) L"@path=yes", &uconv);
rc = UniStrFromUcs(uconv, out, tempPath, CCHMAXPATH);
rc = UniFreeUconvObject(uconv);
return out;
}
/*
** Helper function to convert filenames from local codepage to UTF-8.
** The two-step process: first convert the incoming codepage-specific
** string into UCS-2 and then from UCS-2 to the codepage of UTF-8.
** The returned char pointer has to be freed.
*/
char *
convertCpPathToUtf8(const char *in)
{
UconvObject uconv;
UniChar ucsUtf8Cp[12], tempPath[CCHMAXPATH];
char *out;
int rc = 0;
out = (char *) calloc(CCHMAXPATH, 1);
/* conversion for current codepage which can be used for paths */
rc = UniCreateUconvObject((UniChar *) L"@path=yes", &uconv);
rc = UniStrToUcs(uconv, tempPath, (char *) in, CCHMAXPATH);
rc = UniFreeUconvObject(uconv);
/* determine string for the conversion of UTF-8 which is CP1208 */
rc = UniMapCpToUcsCp(1208, ucsUtf8Cp, 12);
rc = UniCreateUconvObject(ucsUtf8Cp, &uconv);
rc = UniStrFromUcs(uconv, out, tempPath, CCHMAXPATH);
rc = UniFreeUconvObject(uconv);
return out;
}
/*
** This vector defines all the methods that can operate on an
** sqlite3_file for os2.
*/
static const sqlite3_io_methods os2IoMethod = {
1, /* iVersion */
os2Close,
os2Read,
os2Write,
os2Truncate,
os2Sync,
os2FileSize,
os2Lock,
os2Unlock,
os2CheckReservedLock,
os2FileControl,
os2SectorSize,
os2DeviceCharacteristics
};
/***************************************************************************
** Here ends the I/O methods that form the sqlite3_io_methods object.
**
** The next block of code implements the VFS methods.
****************************************************************************/
/*
** Open a file.
*/
static int
os2Open(sqlite3_vfs * pVfs, /* Not used */
const char *zName, /* Name of the file */
sqlite3_file * id, /* Write the SQLite file handle here */
int flags, /* Open mode flags */
int *pOutFlags /* Status return flags */
)
{
HFILE h;
ULONG ulFileAttribute = 0;
ULONG ulOpenFlags = 0;
ULONG ulOpenMode = 0;
os2File *pFile = (os2File *) id;
APIRET rc = NO_ERROR;
ULONG ulAction;
memset(pFile, 0, sizeof(*pFile));
OSTRACE2("OPEN want %d\n", flags);
//ulOpenMode = flags & SQLITE_OPEN_READWRITE ? OPEN_ACCESS_READWRITE : OPEN_ACCESS_READONLY;
if(flags & SQLITE_OPEN_READWRITE)
{
ulOpenMode |= OPEN_ACCESS_READWRITE;
OSTRACE1("OPEN read/write\n");
}
else
{
ulOpenMode |= OPEN_ACCESS_READONLY;
OSTRACE1("OPEN read only\n");
}
//ulOpenFlags = flags & SQLITE_OPEN_CREATE ? OPEN_ACTION_CREATE_IF_NEW : OPEN_ACTION_FAIL_IF_NEW;
if(flags & SQLITE_OPEN_CREATE)
{
ulOpenFlags |= OPEN_ACTION_OPEN_IF_EXISTS | OPEN_ACTION_CREATE_IF_NEW;
OSTRACE1("OPEN open new/create\n");
}
else
{
ulOpenFlags |= OPEN_ACTION_OPEN_IF_EXISTS | OPEN_ACTION_FAIL_IF_NEW;
OSTRACE1("OPEN open existing\n");
}
//ulOpenMode |= flags & SQLITE_OPEN_MAIN_DB ? OPEN_SHARE_DENYNONE : OPEN_SHARE_DENYWRITE;
if(flags & SQLITE_OPEN_MAIN_DB)
{
ulOpenMode |= OPEN_SHARE_DENYNONE;
OSTRACE1("OPEN share read/write\n");
}
else
{
ulOpenMode |= OPEN_SHARE_DENYWRITE;
OSTRACE1("OPEN share read only\n");
}
if(flags & (SQLITE_OPEN_TEMP_DB | SQLITE_OPEN_TEMP_JOURNAL | SQLITE_OPEN_SUBJOURNAL))
{
char pathUtf8[CCHMAXPATH];
//ulFileAttribute = FILE_HIDDEN; //for debugging, we want to make sure it is deleted
ulFileAttribute = FILE_NORMAL;
sqlite3OsFullPathname(pVfs, zName, CCHMAXPATH, pathUtf8);
pFile->pathToDel = convertUtf8PathToCp(pathUtf8);
OSTRACE1("OPEN hidden/delete on close file attributes\n");
}
else
{
ulFileAttribute = FILE_ARCHIVED | FILE_NORMAL;
pFile->pathToDel = NULL;
OSTRACE1("OPEN normal file attribute\n");
}
/* always open in random access mode for possibly better speed */
ulOpenMode |= OPEN_FLAGS_RANDOM;
ulOpenMode |= OPEN_FLAGS_FAIL_ON_ERROR;
ulOpenMode |= OPEN_FLAGS_NOINHERIT;
char *zNameCp = convertUtf8PathToCp(zName);
rc = DosOpen((PSZ) zNameCp,
&h, &ulAction, 0L, ulFileAttribute, ulOpenFlags, ulOpenMode, (PEAOP2) NULL);
free(zNameCp);
if(rc != NO_ERROR)
{
OSTRACE7("OPEN Invalid handle rc=%d: zName=%s, ulAction=%#lx, ulAttr=%#lx, ulFlags=%#lx, ulMode=%#lx\n", rc, zName, ulAction, ulFileAttribute, ulOpenFlags, ulOpenMode);
free(pFile->pathToDel);
pFile->pathToDel = NULL;
if(flags & SQLITE_OPEN_READWRITE)
{
OSTRACE2("OPEN %d Invalid handle\n",
((flags | SQLITE_OPEN_READONLY) & ~SQLITE_OPEN_READWRITE));
return os2Open(0, zName, id,
((flags | SQLITE_OPEN_READONLY) & ~SQLITE_OPEN_READWRITE),
pOutFlags);
}
else
{
return SQLITE_CANTOPEN;
}
}
if(pOutFlags)
{
*pOutFlags =
flags & SQLITE_OPEN_READWRITE ? SQLITE_OPEN_READWRITE :
SQLITE_OPEN_READONLY;
}
pFile->pMethod = &os2IoMethod;
pFile->h = h;
OpenCounter(+1);
OSTRACE3("OPEN %d pOutFlags=%d\n", pFile->h, pOutFlags);
return SQLITE_OK;
}
/*
** Delete the named file.
*/
int
os2Delete(sqlite3_vfs * pVfs, /* Not used on os2 */
const char *zFilename, /* Name of file to delete */
int syncDir /* Not used on os2 */
)
{
APIRET rc = NO_ERROR;
SimulateIOError(return SQLITE_IOERR_DELETE);
char *zFilenameCp = convertUtf8PathToCp(zFilename);
rc = DosDelete((PSZ) zFilenameCp);
free(zFilenameCp);
OSTRACE2("DELETE \"%s\"\n", zFilename);
return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR;
}
/*
** Check the existance and status of a file.
*/
static int
os2Access(sqlite3_vfs * pVfs, /* Not used on os2 */
const char *zFilename, /* Name of file to check */
int flags /* Type of test to make on this file */
)
{
FILESTATUS3 fsts3ConfigInfo;
APIRET rc = NO_ERROR;
memset(&fsts3ConfigInfo, 0, sizeof(fsts3ConfigInfo));
char *zFilenameCp = convertUtf8PathToCp(zFilename);
rc = DosQueryPathInfo((PSZ) zFilenameCp, FIL_STANDARD,
&fsts3ConfigInfo, sizeof(FILESTATUS3));
free(zFilenameCp);
OSTRACE4("ACCESS fsts3ConfigInfo.attrFile=%d flags=%d rc=%d\n",
fsts3ConfigInfo.attrFile, flags, rc);
switch (flags)
{
case SQLITE_ACCESS_READ:
case SQLITE_ACCESS_EXISTS:
rc = (rc == NO_ERROR);
OSTRACE3("ACCESS %s access of read and exists rc=%d\n", zFilename, rc);
break;
case SQLITE_ACCESS_READWRITE:
rc = (fsts3ConfigInfo.attrFile & FILE_READONLY) == 0;
OSTRACE3("ACCESS %s access of read/write rc=%d\n", zFilename, rc);
break;
default:
assert(!"Invalid flags argument");
}
return rc;
}
/*
** Create a temporary file name in zBuf. zBuf must be big enough to
** hold at pVfs->mxPathname characters.
*/
static int
os2GetTempname(sqlite3_vfs * pVfs, int nBuf, char *zBuf)
{
static const unsigned char zChars[] =
"abcdefghijklmnopqrstuvwxyz" "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "0123456789";
int i, j;
char zTempPathBuf[3];
PSZ zTempPath = (PSZ) & zTempPathBuf;
char *zTempPathUTF;
if(DosScanEnv((PSZ) "TEMP", &zTempPath))
{
if(DosScanEnv((PSZ) "TMP", &zTempPath))
{
if(DosScanEnv((PSZ) "TMPDIR", &zTempPath))
{
ULONG ulDriveNum = 0, ulDriveMap = 0;
DosQueryCurrentDisk(&ulDriveNum, &ulDriveMap);
sprintf((char *) zTempPath, "%c:", (char) ('A' + ulDriveNum - 1));
}
}
}
/* strip off a trailing slashes or backslashes, otherwise we would get *
* multiple (back)slashes which causes DosOpen() to fail */
j = strlen(zTempPath);
while (j > 0 && (zTempPath[j - 1] == '\\' || zTempPath[j - 1] == '/'))
{
j--;
}
zTempPath[j] = '\0';
zTempPathUTF = convertCpPathToUtf8(zTempPath);
sqlite3_snprintf(nBuf - 30, zBuf, "%s\\" SQLITE_TEMP_FILE_PREFIX, zTempPathUTF);
free(zTempPathUTF);
j = strlen(zBuf);
sqlite3_randomness(20, &zBuf[j]);
for (i = 0; i < 20; i++, j++)
{
zBuf[j] = (char) zChars[((unsigned char) zBuf[j]) % (sizeof(zChars) - 1)];
}
zBuf[j] = 0;
OSTRACE2("TEMP FILENAME: %s\n", zBuf);
return SQLITE_OK;
}
/*
** Turn a relative pathname into a full pathname. Write the full
** pathname into zFull[]. zFull[] will be at least pVfs->mxPathname
** bytes in size.
*/
static int
os2FullPathname(sqlite3_vfs * pVfs, /* Pointer to vfs object */
const char *zRelative, /* Possibly relative input path */
int nFull, /* Size of output buffer in bytes */
char *zFull /* Output buffer */
)
{
char *zRelativeCp = convertUtf8PathToCp(zRelative);
char zFullCp[CCHMAXPATH];
char *zFullUTF;
APIRET rc = DosQueryPathInfo(zRelativeCp, FIL_QUERYFULLNAME, zFullCp,
CCHMAXPATH);
free(zRelativeCp);
zFullUTF = convertCpPathToUtf8(zFullCp);
sqlite3_snprintf(nFull, zFull, zFullUTF);
free(zFullUTF);
return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR;
}
#ifndef SQLITE_OMIT_LOAD_EXTENSION
/*
** Interfaces for opening a shared library, finding entry points
** within the shared library, and closing the shared library.
*/
/*
** Interfaces for opening a shared library, finding entry points
** within the shared library, and closing the shared library.
*/
static void *
os2DlOpen(sqlite3_vfs * pVfs, const char *zFilename)
{
UCHAR loadErr[256];
HMODULE hmod;
APIRET rc;
char *zFilenameCp = convertUtf8PathToCp(zFilename);
rc = DosLoadModule((PSZ) loadErr, sizeof(loadErr), zFilenameCp, &hmod);
free(zFilenameCp);
return rc != NO_ERROR ? 0 : (void *) hmod;
}
/*
** A no-op since the error code is returned on the DosLoadModule call.
** os2Dlopen returns zero if DosLoadModule is not successful.
*/
static void
os2DlError(sqlite3_vfs * pVfs, int nBuf, char *zBufOut)
{
/* no-op */
}
void *
os2DlSym(sqlite3_vfs * pVfs, void *pHandle, const char *zSymbol)
{
PFN pfn;
APIRET rc;
rc = DosQueryProcAddr((HMODULE) pHandle, 0L, zSymbol, &pfn);
if(rc != NO_ERROR)
{
/* if the symbol itself was not found, search again for the same
* symbol with an extra underscore, that might be needed depending
* on the calling convention */
char _zSymbol[256] = "_";
strncat(_zSymbol, zSymbol, 255);
rc = DosQueryProcAddr((HMODULE) pHandle, 0L, _zSymbol, &pfn);
}
return rc != NO_ERROR ? 0 : (void *) pfn;
}
void
os2DlClose(sqlite3_vfs * pVfs, void *pHandle)
{
DosFreeModule((HMODULE) pHandle);
}
#else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
#define os2DlOpen 0
#define os2DlError 0
#define os2DlSym 0
#define os2DlClose 0
#endif
/*
** Write up to nBuf bytes of randomness into zBuf.
*/
static int
os2Randomness(sqlite3_vfs * pVfs, int nBuf, char *zBuf)
{
ULONG sizeofULong = sizeof(ULONG);
int n = 0;
if(sizeof(DATETIME) <= nBuf - n)
{
DATETIME x;
DosGetDateTime(&x);
memcpy(&zBuf[n], &x, sizeof(x));
n += sizeof(x);
}
if(sizeofULong <= nBuf - n)
{
PPIB ppib;
DosGetInfoBlocks(NULL, &ppib);
memcpy(&zBuf[n], &ppib->pib_ulpid, sizeofULong);
n += sizeofULong;
}
if(sizeofULong <= nBuf - n)
{
PTIB ptib;
DosGetInfoBlocks(&ptib, NULL);
memcpy(&zBuf[n], &ptib->tib_ptib2->tib2_ultid, sizeofULong);
n += sizeofULong;
}
/* if we still haven't filled the buffer yet the following will */
/* grab everything once instead of making several calls for a single item */
if(sizeofULong <= nBuf - n)
{
ULONG ulSysInfo[QSV_MAX];
DosQuerySysInfo(1L, QSV_MAX, ulSysInfo, sizeofULong * QSV_MAX);
memcpy(&zBuf[n], &ulSysInfo[QSV_MS_COUNT - 1], sizeofULong);
n += sizeofULong;
if(sizeofULong <= nBuf - n)
{
memcpy(&zBuf[n], &ulSysInfo[QSV_TIMER_INTERVAL - 1], sizeofULong);
n += sizeofULong;
}
if(sizeofULong <= nBuf - n)
{
memcpy(&zBuf[n], &ulSysInfo[QSV_TIME_LOW - 1], sizeofULong);
n += sizeofULong;
}
if(sizeofULong <= nBuf - n)
{
memcpy(&zBuf[n], &ulSysInfo[QSV_TIME_HIGH - 1], sizeofULong);
n += sizeofULong;
}
if(sizeofULong <= nBuf - n)
{
memcpy(&zBuf[n], &ulSysInfo[QSV_TOTAVAILMEM - 1], sizeofULong);
n += sizeofULong;
}
}
return n;
}
/*
** Sleep for a little while. Return the amount of time slept.
** The argument is the number of microseconds we want to sleep.
** The return value is the number of microseconds of sleep actually
** requested from the underlying operating system, a number which
** might be greater than or equal to the argument, but not less
** than the argument.
*/
static int
os2Sleep(sqlite3_vfs * pVfs, int microsec)
{
DosSleep((microsec / 1000));
return microsec;
}
/*
** The following variable, if set to a non-zero value, becomes the result
** returned from sqlite3OsCurrentTime(). This is used for testing.
*/
#ifdef SQLITE_TEST
SQLITE_API int sqlite3_current_time = 0;
#endif
/*
** Find the current time (in Universal Coordinated Time). Write the
** current time and date as a Julian Day number into *prNow and
** return 0. Return 1 if the time and date cannot be found.
*/
int
os2CurrentTime(sqlite3_vfs * pVfs, double *prNow)
{
double now;
SHORT minute; /* needs to be able to cope with negative timezone offset */
USHORT second, hour, day, month, year;
DATETIME dt;
DosGetDateTime(&dt);
second = (USHORT) dt.seconds;
minute = (SHORT) dt.minutes + dt.timezone;
hour = (USHORT) dt.hours;
day = (USHORT) dt.day;
month = (USHORT) dt.month;
year = (USHORT) dt.year;
/* Calculations from http://www.astro.keele.ac.uk/~rno/Astronomy/hjd.html
http://www.astro.keele.ac.uk/~rno/Astronomy/hjd-0.1.c */
/* Calculate the Julian days */
now = day - 32076 +
1461 * (year + 4800 + (month - 14) / 12) / 4 +
367 * (month - 2 - (month - 14) / 12 * 12) / 12 -
3 * ((year + 4900 + (month - 14) / 12) / 100) / 4;
/* Add the fractional hours, mins and seconds */
now += (hour + 12.0) / 24.0;
now += minute / 1440.0;
now += second / 86400.0;
*prNow = now;
#ifdef SQLITE_TEST
if(sqlite3_current_time)
{
*prNow = sqlite3_current_time / 86400.0 + 2440587.5;
}
#endif
return 0;
}
/*
** Return a pointer to the sqlite3DefaultVfs structure. We use
** a function rather than give the structure global scope because
** some compilers (MSVC) do not allow forward declarations of
** initialized structures.
*/
SQLITE_PRIVATE sqlite3_vfs *
sqlite3OsDefaultVfs(void)
{
static sqlite3_vfs os2Vfs = {
1, /* iVersion */
sizeof(os2File), /* szOsFile */
CCHMAXPATH, /* mxPathname */
0, /* pNext */
"os2", /* zName */
0, /* pAppData */
os2Open, /* xOpen */
os2Delete, /* xDelete */
os2Access, /* xAccess */
os2GetTempname, /* xGetTempname */
os2FullPathname, /* xFullPathname */
os2DlOpen, /* xDlOpen */
os2DlError, /* xDlError */
os2DlSym, /* xDlSym */
os2DlClose, /* xDlClose */
os2Randomness, /* xRandomness */
os2Sleep, /* xSleep */
os2CurrentTime /* xCurrentTime */
};
return &os2Vfs;
}
#endif /* OS_OS2 */
/************** End of os_os2.c **********************************************/
/************** Begin file os_unix.c *****************************************/
/*
** 2004 May 22
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** This file contains code that is specific to Unix systems.
*/
#if OS_UNIX /* This file is used on unix only */
/* #define SQLITE_ENABLE_LOCKING_STYLE 0 */
/*
** These #defines should enable >2GB file support on Posix if the
** underlying operating system supports it. If the OS lacks
** large file support, these should be no-ops.
**
** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
** on the compiler command line. This is necessary if you are compiling
** on a recent machine (ex: RedHat 7.2) but you want your code to work
** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2
** without this option, LFS is enable. But LFS does not exist in the kernel
** in RedHat 6.0, so the code won't work. Hence, for maximum binary
** portability you should omit LFS.
*/
#ifndef SQLITE_DISABLE_LFS
# define _LARGE_FILE 1
# ifndef _FILE_OFFSET_BITS
# define _FILE_OFFSET_BITS 64
# endif
# define _LARGEFILE_SOURCE 1
#endif
/*
** standard include files.
*/
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/time.h>
#include <errno.h>
#ifdef SQLITE_ENABLE_LOCKING_STYLE
#include <sys/ioctl.h>
#include <sys/param.h>
#include <sys/mount.h>
#endif /* SQLITE_ENABLE_LOCKING_STYLE */
/*
** If we are to be thread-safe, include the pthreads header and define
** the SQLITE_UNIX_THREADS macro.
*/
#if SQLITE_THREADSAFE
# define SQLITE_UNIX_THREADS 1
#endif
/*
** Default permissions when creating a new file
*/
#ifndef SQLITE_DEFAULT_FILE_PERMISSIONS
# define SQLITE_DEFAULT_FILE_PERMISSIONS 0644
#endif
/*
** Maximum supported path-length.
*/
#define MAX_PATHNAME 512
/*
** The unixFile structure is subclass of sqlite3_file specific for the unix
** protability layer.
*/
typedef struct unixFile unixFile;
struct unixFile
{
sqlite3_io_methods const *pMethod; /* Always the first entry */
#ifdef SQLITE_TEST
/* In test mode, increase the size of this structure a bit so that
** it is larger than the struct CrashFile defined in test6.c.
*/
char aPadding[32];
#endif
struct openCnt *pOpen; /* Info about all open fd's on this inode */
struct lockInfo *pLock; /* Info about locks on this inode */
#ifdef SQLITE_ENABLE_LOCKING_STYLE
void *lockingContext; /* Locking style specific state */
#endif /* SQLITE_ENABLE_LOCKING_STYLE */
int h; /* The file descriptor */
unsigned char locktype; /* The type of lock held on this fd */
int dirfd; /* File descriptor for the directory */
#if SQLITE_THREADSAFE
pthread_t tid; /* The thread that "owns" this unixFile */
#endif
};
/*
** Include code that is common to all os_*.c files
*/
/************** Include os_common.h in the middle of os_unix.c ***************/
/************** Begin file os_common.h ***************************************/
/*
** 2004 May 22
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** This file contains macros and a little bit of code that is common to
** all of the platform-specific files (os_*.c) and is #included into those
** files.
**
** This file should be #included by the os_*.c files only. It is not a
** general purpose header file.
*/
/*
** At least two bugs have slipped in because we changed the MEMORY_DEBUG
** macro to SQLITE_DEBUG and some older makefiles have not yet made the
** switch. The following code should catch this problem at compile-time.
*/
#ifdef MEMORY_DEBUG
# error "The MEMORY_DEBUG macro is obsolete. Use SQLITE_DEBUG instead."
#endif
/*
* When testing, this global variable stores the location of the
* pending-byte in the database file.
*/
#ifdef SQLITE_TEST
SQLITE_API unsigned int sqlite3_pending_byte = 0x40000000;
#endif
#ifdef SQLITE_DEBUG
SQLITE_PRIVATE int sqlite3OSTrace = 0;
#define OSTRACE1(X) if( sqlite3OSTrace ) sqlite3DebugPrintf(X)
#define OSTRACE2(X,Y) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y)
#define OSTRACE3(X,Y,Z) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z)
#define OSTRACE4(X,Y,Z,A) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z,A)
#define OSTRACE5(X,Y,Z,A,B) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z,A,B)
#define OSTRACE6(X,Y,Z,A,B,C) \
if(sqlite3OSTrace) sqlite3DebugPrintf(X,Y,Z,A,B,C)
#define OSTRACE7(X,Y,Z,A,B,C,D) \
if(sqlite3OSTrace) sqlite3DebugPrintf(X,Y,Z,A,B,C,D)
#else
#define OSTRACE1(X)
#define OSTRACE2(X,Y)
#define OSTRACE3(X,Y,Z)
#define OSTRACE4(X,Y,Z,A)
#define OSTRACE5(X,Y,Z,A,B)
#define OSTRACE6(X,Y,Z,A,B,C)
#define OSTRACE7(X,Y,Z,A,B,C,D)
#endif
/*
** Macros for performance tracing. Normally turned off. Only works
** on i486 hardware.
*/
#ifdef SQLITE_PERFORMANCE_TRACE
__inline__ unsigned long long int
hwtime(void)
{
unsigned long long int x;
__asm__("rdtsc\n\t" "mov %%edx, %%ecx\n\t":"=A"(x));
return x;
}
static unsigned long long int g_start;
static unsigned int elapse;
#define TIMER_START g_start=hwtime()
#define TIMER_END elapse=hwtime()-g_start
#define TIMER_ELAPSED elapse
#else
#define TIMER_START
#define TIMER_END
#define TIMER_ELAPSED 0
#endif
/*
** If we compile with the SQLITE_TEST macro set, then the following block
** of code will give us the ability to simulate a disk I/O error. This
** is used for testing the I/O recovery logic.
*/
#ifdef SQLITE_TEST
SQLITE_API int sqlite3_io_error_hit = 0; /* Total number of I/O Errors */
SQLITE_API int sqlite3_io_error_hardhit = 0; /* Number of non-benign errors */
SQLITE_API int sqlite3_io_error_pending = 0; /* Count down to first I/O error */
SQLITE_API int sqlite3_io_error_persist = 0; /* True if I/O errors persist */
SQLITE_API int sqlite3_io_error_benign = 0; /* True if errors are benign */
SQLITE_API int sqlite3_diskfull_pending = 0;
SQLITE_API int sqlite3_diskfull = 0;
#define SimulateIOErrorBenign(X) sqlite3_io_error_benign=(X)
#define SimulateIOError(CODE) \
if( (sqlite3_io_error_persist && sqlite3_io_error_hit) \
|| sqlite3_io_error_pending-- == 1 ) \
{ local_ioerr(); CODE; }
static void
local_ioerr()
{
IOTRACE(("IOERR\n"));
sqlite3_io_error_hit++;
if(!sqlite3_io_error_benign)
sqlite3_io_error_hardhit++;
}
#define SimulateDiskfullError(CODE) \
if( sqlite3_diskfull_pending ){ \
if( sqlite3_diskfull_pending == 1 ){ \
local_ioerr(); \
sqlite3_diskfull = 1; \
sqlite3_io_error_hit = 1; \
CODE; \
}else{ \
sqlite3_diskfull_pending--; \
} \
}
#else
#define SimulateIOErrorBenign(X)
#define SimulateIOError(A)
#define SimulateDiskfullError(A)
#endif
/*
** When testing, keep a count of the number of open files.
*/
#ifdef SQLITE_TEST
SQLITE_API int sqlite3_open_file_count = 0;
#define OpenCounter(X) sqlite3_open_file_count+=(X)
#else
#define OpenCounter(X)
#endif
/************** End of os_common.h *******************************************/
/************** Continuing where we left off in os_unix.c ********************/
/*
** Define various macros that are missing from some systems.
*/
#ifndef O_LARGEFILE
# define O_LARGEFILE 0
#endif
#ifdef SQLITE_DISABLE_LFS
# undef O_LARGEFILE
# define O_LARGEFILE 0
#endif
#ifndef O_NOFOLLOW
# define O_NOFOLLOW 0
#endif
#ifndef O_BINARY
# define O_BINARY 0
#endif
/*
** The DJGPP compiler environment looks mostly like Unix, but it
** lacks the fcntl() system call. So redefine fcntl() to be something
** that always succeeds. This means that locking does not occur under
** DJGPP. But it is DOS - what did you expect?
*/
#ifdef __DJGPP__
# define fcntl(A,B,C) 0
#endif
/*
** The threadid macro resolves to the thread-id or to 0. Used for
** testing and debugging only.
*/
#if SQLITE_THREADSAFE
#define threadid pthread_self()
#else
#define threadid 0
#endif
/*
** Set or check the unixFile.tid field. This field is set when an unixFile
** is first opened. All subsequent uses of the unixFile verify that the
** same thread is operating on the unixFile. Some operating systems do
** not allow locks to be overridden by other threads and that restriction
** means that sqlite3* database handles cannot be moved from one thread
** to another. This logic makes sure a user does not try to do that
** by mistake.
**
** Version 3.3.1 (2006-01-15): unixFile can be moved from one thread to
** another as long as we are running on a system that supports threads
** overriding each others locks (which now the most common behavior)
** or if no locks are held. But the unixFile.pLock field needs to be
** recomputed because its key includes the thread-id. See the
** transferOwnership() function below for additional information
*/
#if SQLITE_THREADSAFE
# define SET_THREADID(X) (X)->tid = pthread_self()
# define CHECK_THREADID(X) (threadsOverrideEachOthersLocks==0 && \
!pthread_equal((X)->tid, pthread_self()))
#else
# define SET_THREADID(X)
# define CHECK_THREADID(X) 0
#endif
/*
** Here is the dirt on POSIX advisory locks: ANSI STD 1003.1 (1996)
** section 6.5.2.2 lines 483 through 490 specify that when a process
** sets or clears a lock, that operation overrides any prior locks set
** by the same process. It does not explicitly say so, but this implies
** that it overrides locks set by the same process using a different
** file descriptor. Consider this test case:
**
** int fd1 = open("./file1", O_RDWR|O_CREAT, 0644);
** int fd2 = open("./file2", O_RDWR|O_CREAT, 0644);
**
** Suppose ./file1 and ./file2 are really the same file (because
** one is a hard or symbolic link to the other) then if you set
** an exclusive lock on fd1, then try to get an exclusive lock
** on fd2, it works. I would have expected the second lock to
** fail since there was already a lock on the file due to fd1.
** But not so. Since both locks came from the same process, the
** second overrides the first, even though they were on different
** file descriptors opened on different file names.
**
** Bummer. If you ask me, this is broken. Badly broken. It means
** that we cannot use POSIX locks to synchronize file access among
** competing threads of the same process. POSIX locks will work fine
** to synchronize access for threads in separate processes, but not
** threads within the same process.
**
** To work around the problem, SQLite has to manage file locks internally
** on its own. Whenever a new database is opened, we have to find the
** specific inode of the database file (the inode is determined by the
** st_dev and st_ino fields of the stat structure that fstat() fills in)
** and check for locks already existing on that inode. When locks are
** created or removed, we have to look at our own internal record of the
** locks to see if another thread has previously set a lock on that same
** inode.
**
** The sqlite3_file structure for POSIX is no longer just an integer file
** descriptor. It is now a structure that holds the integer file
** descriptor and a pointer to a structure that describes the internal
** locks on the corresponding inode. There is one locking structure
** per inode, so if the same inode is opened twice, both unixFile structures
** point to the same locking structure. The locking structure keeps
** a reference count (so we will know when to delete it) and a "cnt"
** field that tells us its internal lock status. cnt==0 means the
** file is unlocked. cnt==-1 means the file has an exclusive lock.
** cnt>0 means there are cnt shared locks on the file.
**
** Any attempt to lock or unlock a file first checks the locking
** structure. The fcntl() system call is only invoked to set a
** POSIX lock if the internal lock structure transitions between
** a locked and an unlocked state.
**
** 2004-Jan-11:
** More recent discoveries about POSIX advisory locks. (The more
** I discover, the more I realize the a POSIX advisory locks are
** an abomination.)
**
** If you close a file descriptor that points to a file that has locks,
** all locks on that file that are owned by the current process are
** released. To work around this problem, each unixFile structure contains
** a pointer to an openCnt structure. There is one openCnt structure
** per open inode, which means that multiple unixFile can point to a single
** openCnt. When an attempt is made to close an unixFile, if there are
** other unixFile open on the same inode that are holding locks, the call
** to close() the file descriptor is deferred until all of the locks clear.
** The openCnt structure keeps a list of file descriptors that need to
** be closed and that list is walked (and cleared) when the last lock
** clears.
**
** First, under Linux threads, because each thread has a separate
** process ID, lock operations in one thread do not override locks
** to the same file in other threads. Linux threads behave like
** separate processes in this respect. But, if you close a file
** descriptor in linux threads, all locks are cleared, even locks
** on other threads and even though the other threads have different
** process IDs. Linux threads is inconsistent in this respect.
** (I'm beginning to think that linux threads is an abomination too.)
** The consequence of this all is that the hash table for the lockInfo
** structure has to include the process id as part of its key because
** locks in different threads are treated as distinct. But the
** openCnt structure should not include the process id in its
** key because close() clears lock on all threads, not just the current
** thread. Were it not for this goofiness in linux threads, we could
** combine the lockInfo and openCnt structures into a single structure.
**
** 2004-Jun-28:
** On some versions of linux, threads can override each others locks.
** On others not. Sometimes you can change the behavior on the same
** system by setting the LD_ASSUME_KERNEL environment variable. The
** POSIX standard is silent as to which behavior is correct, as far
** as I can tell, so other versions of unix might show the same
** inconsistency. There is no little doubt in my mind that posix
** advisory locks and linux threads are profoundly broken.
**
** To work around the inconsistencies, we have to test at runtime
** whether or not threads can override each others locks. This test
** is run once, the first time any lock is attempted. A static
** variable is set to record the results of this test for future
** use.
*/
/*
** An instance of the following structure serves as the key used
** to locate a particular lockInfo structure given its inode.
**
** If threads cannot override each others locks, then we set the
** lockKey.tid field to the thread ID. If threads can override
** each others locks then tid is always set to zero. tid is omitted
** if we compile without threading support.
*/
struct lockKey
{
dev_t dev; /* Device number */
ino_t ino; /* Inode number */
#if SQLITE_THREADSAFE
pthread_t tid; /* Thread ID or zero if threads can override each other */
#endif
};
/*
** An instance of the following structure is allocated for each open
** inode on each thread with a different process ID. (Threads have
** different process IDs on linux, but not on most other unixes.)
**
** A single inode can have multiple file descriptors, so each unixFile
** structure contains a pointer to an instance of this object and this
** object keeps a count of the number of unixFile pointing to it.
*/
struct lockInfo
{
struct lockKey key; /* The lookup key */
int cnt; /* Number of SHARED locks held */
int locktype; /* One of SHARED_LOCK, RESERVED_LOCK etc. */
int nRef; /* Number of pointers to this structure */
};
/*
** An instance of the following structure serves as the key used
** to locate a particular openCnt structure given its inode. This
** is the same as the lockKey except that the thread ID is omitted.
*/
struct openKey
{
dev_t dev; /* Device number */
ino_t ino; /* Inode number */
};
/*
** An instance of the following structure is allocated for each open
** inode. This structure keeps track of the number of locks on that
** inode. If a close is attempted against an inode that is holding
** locks, the close is deferred until all locks clear by adding the
** file descriptor to be closed to the pending list.
*/
struct openCnt
{
struct openKey key; /* The lookup key */
int nRef; /* Number of pointers to this structure */
int nLock; /* Number of outstanding locks */
int nPending; /* Number of pending close() operations */
int *aPending; /* Malloced space holding fd's awaiting a close() */
};
/*
** These hash tables map inodes and file descriptors (really, lockKey and
** openKey structures) into lockInfo and openCnt structures. Access to
** these hash tables must be protected by a mutex.
*/
static Hash lockHash = { SQLITE_HASH_BINARY, 0, 0, 0, 0, 0 };
static Hash openHash = { SQLITE_HASH_BINARY, 0, 0, 0, 0, 0 };
#ifdef SQLITE_ENABLE_LOCKING_STYLE
/*
** The locking styles are associated with the different file locking
** capabilities supported by different file systems.
**
** POSIX locking style fully supports shared and exclusive byte-range locks
** ADP locking only supports exclusive byte-range locks
** FLOCK only supports a single file-global exclusive lock
** DOTLOCK isn't a true locking style, it refers to the use of a special
** file named the same as the database file with a '.lock' extension, this
** can be used on file systems that do not offer any reliable file locking
** NO locking means that no locking will be attempted, this is only used for
** read-only file systems currently
** UNSUPPORTED means that no locking will be attempted, this is only used for
** file systems that are known to be unsupported
*/
typedef enum
{
posixLockingStyle = 0, /* standard posix-advisory locks */
afpLockingStyle, /* use afp locks */
flockLockingStyle, /* use flock() */
dotlockLockingStyle, /* use <file>.lock files */
noLockingStyle, /* useful for read-only file system */
unsupportedLockingStyle /* indicates unsupported file system */
} sqlite3LockingStyle;
#endif /* SQLITE_ENABLE_LOCKING_STYLE */
/*
** Helper functions to obtain and relinquish the global mutex.
*/
static void
enterMutex()
{
sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
}
static void
leaveMutex()
{
sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
}
#if SQLITE_THREADSAFE
/*
** This variable records whether or not threads can override each others
** locks.
**
** 0: No. Threads cannot override each others locks.
** 1: Yes. Threads can override each others locks.
** -1: We don't know yet.
**
** On some systems, we know at compile-time if threads can override each
** others locks. On those systems, the SQLITE_THREAD_OVERRIDE_LOCK macro
** will be set appropriately. On other systems, we have to check at
** runtime. On these latter systems, SQLTIE_THREAD_OVERRIDE_LOCK is
** undefined.
**
** This variable normally has file scope only. But during testing, we make
** it a global so that the test code can change its value in order to verify
** that the right stuff happens in either case.
*/
#ifndef SQLITE_THREAD_OVERRIDE_LOCK
# define SQLITE_THREAD_OVERRIDE_LOCK -1
#endif
#ifdef SQLITE_TEST
int threadsOverrideEachOthersLocks = SQLITE_THREAD_OVERRIDE_LOCK;
#else
static int threadsOverrideEachOthersLocks = SQLITE_THREAD_OVERRIDE_LOCK;
#endif
/*
** This structure holds information passed into individual test
** threads by the testThreadLockingBehavior() routine.
*/
struct threadTestData
{
int fd; /* File to be locked */
struct flock lock; /* The locking operation */
int result; /* Result of the locking operation */
};
#ifdef SQLITE_LOCK_TRACE
/*
** Print out information about all locking operations.
**
** This routine is used for troubleshooting locks on multithreaded
** platforms. Enable by compiling with the -DSQLITE_LOCK_TRACE
** command-line option on the compiler. This code is normally
** turned off.
*/
static int
lockTrace(int fd, int op, struct flock *p)
{
char *zOpName, *zType;
int s;
int savedErrno;
if(op == F_GETLK)
{
zOpName = "GETLK";
}
else if(op == F_SETLK)
{
zOpName = "SETLK";
}
else
{
s = fcntl(fd, op, p);
sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s);
return s;
}
if(p->l_type == F_RDLCK)
{
zType = "RDLCK";
}
else if(p->l_type == F_WRLCK)
{
zType = "WRLCK";
}
else if(p->l_type == F_UNLCK)
{
zType = "UNLCK";
}
else
{
assert(0);
}
assert(p->l_whence == SEEK_SET);
s = fcntl(fd, op, p);
savedErrno = errno;
sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n",
threadid, fd, zOpName, zType, (int) p->l_start, (int) p->l_len,
(int) p->l_pid, s);
if(s == (-1) && op == F_SETLK && (p->l_type == F_RDLCK || p->l_type == F_WRLCK))
{
struct flock l2;
l2 = *p;
fcntl(fd, F_GETLK, &l2);
if(l2.l_type == F_RDLCK)
{
zType = "RDLCK";
}
else if(l2.l_type == F_WRLCK)
{
zType = "WRLCK";
}
else if(l2.l_type == F_UNLCK)
{
zType = "UNLCK";
}
else
{
assert(0);
}
sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n",
zType, (int) l2.l_start, (int) l2.l_len, (int) l2.l_pid);
}
errno = savedErrno;
return s;
}
#define fcntl lockTrace
#endif /* SQLITE_LOCK_TRACE */
/*
** The testThreadLockingBehavior() routine launches two separate
** threads on this routine. This routine attempts to lock a file
** descriptor then returns. The success or failure of that attempt
** allows the testThreadLockingBehavior() procedure to determine
** whether or not threads can override each others locks.
*/
static void *
threadLockingTest(void *pArg)
{
struct threadTestData *pData = (struct threadTestData *) pArg;
pData->result = fcntl(pData->fd, F_SETLK, &pData->lock);
return pArg;
}
/*
** This procedure attempts to determine whether or not threads
** can override each others locks then sets the
** threadsOverrideEachOthersLocks variable appropriately.
*/
static void
testThreadLockingBehavior(int fd_orig)
{
int fd;
struct threadTestData d[2];
pthread_t t[2];
fd = dup(fd_orig);
if(fd < 0)
return;
memset(d, 0, sizeof(d));
d[0].fd = fd;
d[0].lock.l_type = F_RDLCK;
d[0].lock.l_len = 1;
d[0].lock.l_start = 0;
d[0].lock.l_whence = SEEK_SET;
d[1] = d[0];
d[1].lock.l_type = F_WRLCK;
pthread_create(&t[0], 0, threadLockingTest, &d[0]);
pthread_create(&t[1], 0, threadLockingTest, &d[1]);
pthread_join(t[0], 0);
pthread_join(t[1], 0);
close(fd);
threadsOverrideEachOthersLocks = d[0].result == 0 && d[1].result == 0;
}
#endif /* SQLITE_THREADSAFE */
/*
** Release a lockInfo structure previously allocated by findLockInfo().
*/
static void
releaseLockInfo(struct lockInfo *pLock)
{
if(pLock == NULL)
return;
pLock->nRef--;
if(pLock->nRef == 0)
{
sqlite3HashInsert(&lockHash, &pLock->key, sizeof(pLock->key), 0);
sqlite3_free(pLock);
}
}
/*
** Release a openCnt structure previously allocated by findLockInfo().
*/
static void
releaseOpenCnt(struct openCnt *pOpen)
{
if(pOpen == NULL)
return;
pOpen->nRef--;
if(pOpen->nRef == 0)
{
sqlite3HashInsert(&openHash, &pOpen->key, sizeof(pOpen->key), 0);
free(pOpen->aPending);
sqlite3_free(pOpen);
}
}
#ifdef SQLITE_ENABLE_LOCKING_STYLE
/*
** Tests a byte-range locking query to see if byte range locks are
** supported, if not we fall back to dotlockLockingStyle.
*/
static sqlite3LockingStyle
sqlite3TestLockingStyle(const char *filePath, int fd)
{
/* test byte-range lock using fcntl */
struct flock lockInfo;
lockInfo.l_len = 1;
lockInfo.l_start = 0;
lockInfo.l_whence = SEEK_SET;
lockInfo.l_type = F_RDLCK;
if(fcntl(fd, F_GETLK, &lockInfo) != -1)
{
return posixLockingStyle;
}
/* testing for flock can give false positives. So if if the above test
** fails, then we fall back to using dot-lock style locking.
*/
return dotlockLockingStyle;
}
/*
** Examines the f_fstypename entry in the statfs structure as returned by
** stat() for the file system hosting the database file, assigns the
** appropriate locking style based on its value. These values and
** assignments are based on Darwin/OSX behavior and have not been tested on
** other systems.
*/
static sqlite3LockingStyle
sqlite3DetectLockingStyle(const char *filePath, int fd)
{
#ifdef SQLITE_FIXED_LOCKING_STYLE
return (sqlite3LockingStyle) SQLITE_FIXED_LOCKING_STYLE;
#else
struct statfs fsInfo;
if(statfs(filePath, &fsInfo) == -1)
{
return sqlite3TestLockingStyle(filePath, fd);
}
if(fsInfo.f_flags & MNT_RDONLY)
{
return noLockingStyle;
}
if(strcmp(fsInfo.f_fstypename, "hfs") == 0 || strcmp(fsInfo.f_fstypename, "ufs") == 0)
{
return posixLockingStyle;
}
if(strcmp(fsInfo.f_fstypename, "afpfs") == 0)
{
return afpLockingStyle;
}
if(strcmp(fsInfo.f_fstypename, "nfs") == 0)
{
return sqlite3TestLockingStyle(filePath, fd);
}
if(strcmp(fsInfo.f_fstypename, "smbfs") == 0)
{
return flockLockingStyle;
}
if(strcmp(fsInfo.f_fstypename, "msdos") == 0)
{
return dotlockLockingStyle;
}
if(strcmp(fsInfo.f_fstypename, "webdav") == 0)
{
return unsupportedLockingStyle;
}
return sqlite3TestLockingStyle(filePath, fd);
#endif /* SQLITE_FIXED_LOCKING_STYLE */
}
#endif /* SQLITE_ENABLE_LOCKING_STYLE */
/*
** Given a file descriptor, locate lockInfo and openCnt structures that
** describes that file descriptor. Create new ones if necessary. The
** return values might be uninitialized if an error occurs.
**
** Return an appropriate error code.
*/
static int
findLockInfo(int fd, /* The file descriptor used in the key */
struct lockInfo **ppLock, /* Return the lockInfo structure here */
struct openCnt **ppOpen /* Return the openCnt structure here */
)
{
int rc;
struct lockKey key1;
struct openKey key2;
struct stat statbuf;
struct lockInfo *pLock;
struct openCnt *pOpen;
rc = fstat(fd, &statbuf);
if(rc != 0)
{
#ifdef EOVERFLOW
if(errno == EOVERFLOW)
return SQLITE_NOLFS;
#endif
return SQLITE_IOERR;
}
memset(&key1, 0, sizeof(key1));
key1.dev = statbuf.st_dev;
key1.ino = statbuf.st_ino;
#if SQLITE_THREADSAFE
if(threadsOverrideEachOthersLocks < 0)
{
testThreadLockingBehavior(fd);
}
key1.tid = threadsOverrideEachOthersLocks ? 0 : pthread_self();
#endif
memset(&key2, 0, sizeof(key2));
key2.dev = statbuf.st_dev;
key2.ino = statbuf.st_ino;
pLock = (struct lockInfo *) sqlite3HashFind(&lockHash, &key1, sizeof(key1));
if(pLock == 0)
{
struct lockInfo *pOld;
pLock = sqlite3_malloc(sizeof(*pLock));
if(pLock == 0)
{
rc = SQLITE_NOMEM;
goto exit_findlockinfo;
}
pLock->key = key1;
pLock->nRef = 1;
pLock->cnt = 0;
pLock->locktype = 0;
pOld = sqlite3HashInsert(&lockHash, &pLock->key, sizeof(key1), pLock);
if(pOld != 0)
{
assert(pOld == pLock);
sqlite3_free(pLock);
rc = SQLITE_NOMEM;
goto exit_findlockinfo;
}
}
else
{
pLock->nRef++;
}
*ppLock = pLock;
if(ppOpen != 0)
{
pOpen = (struct openCnt *) sqlite3HashFind(&openHash, &key2, sizeof(key2));
if(pOpen == 0)
{
struct openCnt *pOld;
pOpen = sqlite3_malloc(sizeof(*pOpen));
if(pOpen == 0)
{
releaseLockInfo(pLock);
rc = SQLITE_NOMEM;
goto exit_findlockinfo;
}
pOpen->key = key2;
pOpen->nRef = 1;
pOpen->nLock = 0;
pOpen->nPending = 0;
pOpen->aPending = 0;
pOld = sqlite3HashInsert(&openHash, &pOpen->key, sizeof(key2), pOpen);
if(pOld != 0)
{
assert(pOld == pOpen);
sqlite3_free(pOpen);
releaseLockInfo(pLock);
rc = SQLITE_NOMEM;
goto exit_findlockinfo;
}
}
else
{
pOpen->nRef++;
}
*ppOpen = pOpen;
}
exit_findlockinfo:
return rc;
}
#ifdef SQLITE_DEBUG
/*
** Helper function for printing out trace information from debugging
** binaries. This returns the string represetation of the supplied
** integer lock-type.
*/
static const char *
locktypeName(int locktype)
{
switch (locktype)
{
case NO_LOCK:
return "NONE";
case SHARED_LOCK:
return "SHARED";
case RESERVED_LOCK:
return "RESERVED";
case PENDING_LOCK:
return "PENDING";
case EXCLUSIVE_LOCK:
return "EXCLUSIVE";
}
return "ERROR";
}
#endif
/*
** If we are currently in a different thread than the thread that the
** unixFile argument belongs to, then transfer ownership of the unixFile
** over to the current thread.
**
** A unixFile is only owned by a thread on systems where one thread is
** unable to override locks created by a different thread. RedHat9 is
** an example of such a system.
**
** Ownership transfer is only allowed if the unixFile is currently unlocked.
** If the unixFile is locked and an ownership is wrong, then return
** SQLITE_MISUSE. SQLITE_OK is returned if everything works.
*/
#if SQLITE_THREADSAFE
static int
transferOwnership(unixFile * pFile)
{
int rc;
pthread_t hSelf;
if(threadsOverrideEachOthersLocks)
{
/* Ownership transfers not needed on this system */
return SQLITE_OK;
}
hSelf = pthread_self();
if(pthread_equal(pFile->tid, hSelf))
{
/* We are still in the same thread */
OSTRACE1("No-transfer, same thread\n");
return SQLITE_OK;
}
if(pFile->locktype != NO_LOCK)
{
/* We cannot change ownership while we are holding a lock! */
return SQLITE_MISUSE;
}
OSTRACE4("Transfer ownership of %d from %d to %d\n", pFile->h, pFile->tid, hSelf);
pFile->tid = hSelf;
if(pFile->pLock != NULL)
{
releaseLockInfo(pFile->pLock);
rc = findLockInfo(pFile->h, &pFile->pLock, 0);
OSTRACE5("LOCK %d is now %s(%s,%d)\n", pFile->h,
locktypeName(pFile->locktype),
locktypeName(pFile->pLock->locktype), pFile->pLock->cnt);
return rc;
}
else
{
return SQLITE_OK;
}
}
#else
/* On single-threaded builds, ownership transfer is a no-op */
# define transferOwnership(X) SQLITE_OK
#endif
/*
** Seek to the offset passed as the second argument, then read cnt
** bytes into pBuf. Return the number of bytes actually read.
**
** NB: If you define USE_PREAD or USE_PREAD64, then it might also
** be necessary to define _XOPEN_SOURCE to be 500. This varies from
** one system to another. Since SQLite does not define USE_PREAD
** any any form by default, we will not attempt to define _XOPEN_SOURCE.
** See tickets #2741 and #2681.
*/
static int
seekAndRead(unixFile * id, sqlite3_int64 offset, void *pBuf, int cnt)
{
int got;
i64 newOffset;
TIMER_START;
#if defined(USE_PREAD)
got = pread(id->h, pBuf, cnt, offset);
SimulateIOError(got = -1);
#elif defined(USE_PREAD64)
got = pread64(id->h, pBuf, cnt, offset);
SimulateIOError(got = -1);
#else
newOffset = lseek(id->h, offset, SEEK_SET);
SimulateIOError(newOffset--);
if(newOffset != offset)
{
return -1;
}
got = read(id->h, pBuf, cnt);
#endif
TIMER_END;
OSTRACE5("READ %-3d %5d %7lld %d\n", id->h, got, offset, TIMER_ELAPSED);
return got;
}
/*
** Read data from a file into a buffer. Return SQLITE_OK if all
** bytes were read successfully and SQLITE_IOERR if anything goes
** wrong.
*/
static int
unixRead(sqlite3_file * id, void *pBuf, int amt, sqlite3_int64 offset)
{
int got;
assert(id);
got = seekAndRead((unixFile *) id, offset, pBuf, amt);
if(got == amt)
{
return SQLITE_OK;
}
else if(got < 0)
{
return SQLITE_IOERR_READ;
}
else
{
memset(&((char *) pBuf)[got], 0, amt - got);
return SQLITE_IOERR_SHORT_READ;
}
}
/*
** Seek to the offset in id->offset then read cnt bytes into pBuf.
** Return the number of bytes actually read. Update the offset.
*/
static int
seekAndWrite(unixFile * id, i64 offset, const void *pBuf, int cnt)
{
int got;
i64 newOffset;
TIMER_START;
#if defined(USE_PREAD)
got = pwrite(id->h, pBuf, cnt, offset);
#elif defined(USE_PREAD64)
got = pwrite64(id->h, pBuf, cnt, offset);
#else
newOffset = lseek(id->h, offset, SEEK_SET);
if(newOffset != offset)
{
return -1;
}
got = write(id->h, pBuf, cnt);
#endif
TIMER_END;
OSTRACE5("WRITE %-3d %5d %7lld %d\n", id->h, got, offset, TIMER_ELAPSED);
return got;
}
/*
** Write data from a buffer into a file. Return SQLITE_OK on success
** or some other error code on failure.
*/
static int
unixWrite(sqlite3_file * id, const void *pBuf, int amt, sqlite3_int64 offset)
{
int wrote = 0;
assert(id);
assert(amt > 0);
while (amt > 0 && (wrote = seekAndWrite((unixFile *) id, offset, pBuf, amt)) > 0)
{
amt -= wrote;
offset += wrote;
pBuf = &((char *) pBuf)[wrote];
}
SimulateIOError((wrote = (-1), amt = 1));
SimulateDiskfullError((wrote = 0, amt = 1));
if(amt > 0)
{
if(wrote < 0)
{
return SQLITE_IOERR_WRITE;
}
else
{
return SQLITE_FULL;
}
}
return SQLITE_OK;
}
#ifdef SQLITE_TEST
/*
** Count the number of fullsyncs and normal syncs. This is used to test
** that syncs and fullsyncs are occuring at the right times.
*/
SQLITE_API int sqlite3_sync_count = 0;
SQLITE_API int sqlite3_fullsync_count = 0;
#endif
/*
** Use the fdatasync() API only if the HAVE_FDATASYNC macro is defined.
** Otherwise use fsync() in its place.
*/
#ifndef HAVE_FDATASYNC
# define fdatasync fsync
#endif
/*
** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not
** the F_FULLFSYNC macro is defined. F_FULLFSYNC is currently
** only available on Mac OS X. But that could change.
*/
#ifdef F_FULLFSYNC
# define HAVE_FULLFSYNC 1
#else
# define HAVE_FULLFSYNC 0
#endif
/*
** The fsync() system call does not work as advertised on many
** unix systems. The following procedure is an attempt to make
** it work better.
**
** The SQLITE_NO_SYNC macro disables all fsync()s. This is useful
** for testing when we want to run through the test suite quickly.
** You are strongly advised *not* to deploy with SQLITE_NO_SYNC
** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash
** or power failure will likely corrupt the database file.
*/
static int
full_fsync(int fd, int fullSync, int dataOnly)
{
int rc;
/* Record the number of times that we do a normal fsync() and
** FULLSYNC. This is used during testing to verify that this procedure
** gets called with the correct arguments.
*/
#ifdef SQLITE_TEST
if(fullSync)
sqlite3_fullsync_count++;
sqlite3_sync_count++;
#endif
/* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
** no-op
*/
#ifdef SQLITE_NO_SYNC
rc = SQLITE_OK;
#else
#if HAVE_FULLFSYNC
if(fullSync)
{
rc = fcntl(fd, F_FULLFSYNC, 0);
}
else
{
rc = 1;
}
/* If the FULLFSYNC failed, fall back to attempting an fsync().
* It shouldn't be possible for fullfsync to fail on the local
* file system (on OSX), so failure indicates that FULLFSYNC
* isn't supported for this file system. So, attempt an fsync
* and (for now) ignore the overhead of a superfluous fcntl call.
* It'd be better to detect fullfsync support once and avoid
* the fcntl call every time sync is called.
*/
if(rc)
rc = fsync(fd);
#else
if(dataOnly)
{
rc = fdatasync(fd);
}
else
{
rc = fsync(fd);
}
#endif /* HAVE_FULLFSYNC */
#endif /* defined(SQLITE_NO_SYNC) */
return rc;
}
/*
** Make sure all writes to a particular file are committed to disk.
**
** If dataOnly==0 then both the file itself and its metadata (file
** size, access time, etc) are synced. If dataOnly!=0 then only the
** file data is synced.
**
** Under Unix, also make sure that the directory entry for the file
** has been created by fsync-ing the directory that contains the file.
** If we do not do this and we encounter a power failure, the directory
** entry for the journal might not exist after we reboot. The next
** SQLite to access the file will not know that the journal exists (because
** the directory entry for the journal was never created) and the transaction
** will not roll back - possibly leading to database corruption.
*/
static int
unixSync(sqlite3_file * id, int flags)
{
int rc;
unixFile *pFile = (unixFile *) id;
int isDataOnly = (flags & SQLITE_SYNC_DATAONLY);
int isFullsync = (flags & 0x0F) == SQLITE_SYNC_FULL;
/* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */
assert((flags & 0x0F) == SQLITE_SYNC_NORMAL || (flags & 0x0F) == SQLITE_SYNC_FULL);
assert(pFile);
OSTRACE2("SYNC %-3d\n", pFile->h);
rc = full_fsync(pFile->h, isFullsync, isDataOnly);
SimulateIOError(rc = 1);
if(rc)
{
return SQLITE_IOERR_FSYNC;
}
if(pFile->dirfd >= 0)
{
OSTRACE4("DIRSYNC %-3d (have_fullfsync=%d fullsync=%d)\n", pFile->dirfd,
HAVE_FULLFSYNC, isFullsync);
#ifndef SQLITE_DISABLE_DIRSYNC
/* The directory sync is only attempted if full_fsync is
** turned off or unavailable. If a full_fsync occurred above,
** then the directory sync is superfluous.
*/
if((!HAVE_FULLFSYNC || !isFullsync) && full_fsync(pFile->dirfd, 0, 0))
{
/*
** We have received multiple reports of fsync() returning
** errors when applied to directories on certain file systems.
** A failed directory sync is not a big deal. So it seems
** better to ignore the error. Ticket #1657
*/
/* return SQLITE_IOERR; */
}
#endif
close(pFile->dirfd); /* Only need to sync once, so close the directory */
pFile->dirfd = -1; /* when we are done. */
}
return SQLITE_OK;
}
/*
** Truncate an open file to a specified size
*/
static int
unixTruncate(sqlite3_file * id, i64 nByte)
{
int rc;
assert(id);
SimulateIOError(return SQLITE_IOERR_TRUNCATE);
rc = ftruncate(((unixFile *) id)->h, (off_t) nByte);
if(rc)
{
return SQLITE_IOERR_TRUNCATE;
}
else
{
return SQLITE_OK;
}
}
/*
** Determine the current size of a file in bytes
*/
static int
unixFileSize(sqlite3_file * id, i64 * pSize)
{
int rc;
struct stat buf;
assert(id);
rc = fstat(((unixFile *) id)->h, &buf);
SimulateIOError(rc = 1);
if(rc != 0)
{
return SQLITE_IOERR_FSTAT;
}
*pSize = buf.st_size;
return SQLITE_OK;
}
/*
** This routine checks if there is a RESERVED lock held on the specified
** file by this or any other process. If such a lock is held, return
** non-zero. If the file is unlocked or holds only SHARED locks, then
** return zero.
*/
static int
unixCheckReservedLock(sqlite3_file * id)
{
int r = 0;
unixFile *pFile = (unixFile *) id;
assert(pFile);
enterMutex(); /* Because pFile->pLock is shared across threads */
/* Check if a thread in this process holds such a lock */
if(pFile->pLock->locktype > SHARED_LOCK)
{
r = 1;
}
/* Otherwise see if some other process holds it.
*/
if(!r)
{
struct flock lock;
lock.l_whence = SEEK_SET;
lock.l_start = RESERVED_BYTE;
lock.l_len = 1;
lock.l_type = F_WRLCK;
fcntl(pFile->h, F_GETLK, &lock);
if(lock.l_type != F_UNLCK)
{
r = 1;
}
}
leaveMutex();
OSTRACE3("TEST WR-LOCK %d %d\n", pFile->h, r);
return r;
}
/*
** Lock the file with the lock specified by parameter locktype - one
** of the following:
**
** (1) SHARED_LOCK
** (2) RESERVED_LOCK
** (3) PENDING_LOCK
** (4) EXCLUSIVE_LOCK
**
** Sometimes when requesting one lock state, additional lock states
** are inserted in between. The locking might fail on one of the later
** transitions leaving the lock state different from what it started but
** still short of its goal. The following chart shows the allowed
** transitions and the inserted intermediate states:
**
** UNLOCKED -> SHARED
** SHARED -> RESERVED
** SHARED -> (PENDING) -> EXCLUSIVE
** RESERVED -> (PENDING) -> EXCLUSIVE
** PENDING -> EXCLUSIVE
**
** This routine will only increase a lock. Use the sqlite3OsUnlock()
** routine to lower a locking level.
*/
static int
unixLock(sqlite3_file * id, int locktype)
{
/* The following describes the implementation of the various locks and
** lock transitions in terms of the POSIX advisory shared and exclusive
** lock primitives (called read-locks and write-locks below, to avoid
** confusion with SQLite lock names). The algorithms are complicated
** slightly in order to be compatible with windows systems simultaneously
** accessing the same database file, in case that is ever required.
**
** Symbols defined in os.h indentify the 'pending byte' and the 'reserved
** byte', each single bytes at well known offsets, and the 'shared byte
** range', a range of 510 bytes at a well known offset.
**
** To obtain a SHARED lock, a read-lock is obtained on the 'pending
** byte'. If this is successful, a random byte from the 'shared byte
** range' is read-locked and the lock on the 'pending byte' released.
**
** A process may only obtain a RESERVED lock after it has a SHARED lock.
** A RESERVED lock is implemented by grabbing a write-lock on the
** 'reserved byte'.
**
** A process may only obtain a PENDING lock after it has obtained a
** SHARED lock. A PENDING lock is implemented by obtaining a write-lock
** on the 'pending byte'. This ensures that no new SHARED locks can be
** obtained, but existing SHARED locks are allowed to persist. A process
** does not have to obtain a RESERVED lock on the way to a PENDING lock.
** This property is used by the algorithm for rolling back a journal file
** after a crash.
**
** An EXCLUSIVE lock, obtained after a PENDING lock is held, is
** implemented by obtaining a write-lock on the entire 'shared byte
** range'. Since all other locks require a read-lock on one of the bytes
** within this range, this ensures that no other locks are held on the
** database.
**
** The reason a single byte cannot be used instead of the 'shared byte
** range' is that some versions of windows do not support read-locks. By
** locking a random byte from a range, concurrent SHARED locks may exist
** even if the locking primitive used is always a write-lock.
*/
int rc = SQLITE_OK;
unixFile *pFile = (unixFile *) id;
struct lockInfo *pLock = pFile->pLock;
struct flock lock;
int s;
assert(pFile);
OSTRACE7("LOCK %d %s was %s(%s,%d) pid=%d\n", pFile->h,
locktypeName(locktype), locktypeName(pFile->locktype),
locktypeName(pLock->locktype), pLock->cnt, getpid());
/* If there is already a lock of this type or more restrictive on the
** unixFile, do nothing. Don't use the end_lock: exit path, as
** enterMutex() hasn't been called yet.
*/
if(pFile->locktype >= locktype)
{
OSTRACE3("LOCK %d %s ok (already held)\n", pFile->h, locktypeName(locktype));
return SQLITE_OK;
}
/* Make sure the locking sequence is correct
*/
assert(pFile->locktype != NO_LOCK || locktype == SHARED_LOCK);
assert(locktype != PENDING_LOCK);
assert(locktype != RESERVED_LOCK || pFile->locktype == SHARED_LOCK);
/* This mutex is needed because pFile->pLock is shared across threads
*/
enterMutex();
/* Make sure the current thread owns the pFile.
*/
rc = transferOwnership(pFile);
if(rc != SQLITE_OK)
{
leaveMutex();
return rc;
}
pLock = pFile->pLock;
/* If some thread using this PID has a lock via a different unixFile*
** handle that precludes the requested lock, return BUSY.
*/
if((pFile->locktype != pLock->locktype &&
(pLock->locktype >= PENDING_LOCK || locktype > SHARED_LOCK)))
{
rc = SQLITE_BUSY;
goto end_lock;
}
/* If a SHARED lock is requested, and some thread using this PID already
** has a SHARED or RESERVED lock, then increment reference counts and
** return SQLITE_OK.
*/
if(locktype == SHARED_LOCK &&
(pLock->locktype == SHARED_LOCK || pLock->locktype == RESERVED_LOCK))
{
assert(locktype == SHARED_LOCK);
assert(pFile->locktype == 0);
assert(pLock->cnt > 0);
pFile->locktype = SHARED_LOCK;
pLock->cnt++;
pFile->pOpen->nLock++;
goto end_lock;
}
lock.l_len = 1L;
lock.l_whence = SEEK_SET;
/* A PENDING lock is needed before acquiring a SHARED lock and before
** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will
** be released.
*/
if(locktype == SHARED_LOCK
|| (locktype == EXCLUSIVE_LOCK && pFile->locktype < PENDING_LOCK))
{
lock.l_type = (locktype == SHARED_LOCK ? F_RDLCK : F_WRLCK);
lock.l_start = PENDING_BYTE;
s = fcntl(pFile->h, F_SETLK, &lock);
if(s == (-1))
{
rc = (errno == EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
goto end_lock;
}
}
/* If control gets to this point, then actually go ahead and make
** operating system calls for the specified lock.
*/
if(locktype == SHARED_LOCK)
{
assert(pLock->cnt == 0);
assert(pLock->locktype == 0);
/* Now get the read-lock */
lock.l_start = SHARED_FIRST;
lock.l_len = SHARED_SIZE;
s = fcntl(pFile->h, F_SETLK, &lock);
/* Drop the temporary PENDING lock */
lock.l_start = PENDING_BYTE;
lock.l_len = 1L;
lock.l_type = F_UNLCK;
if(fcntl(pFile->h, F_SETLK, &lock) != 0)
{
rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
goto end_lock;
}
if(s == (-1))
{
rc = (errno == EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
}
else
{
pFile->locktype = SHARED_LOCK;
pFile->pOpen->nLock++;
pLock->cnt = 1;
}
}
else if(locktype == EXCLUSIVE_LOCK && pLock->cnt > 1)
{
/* We are trying for an exclusive lock but another thread in this
** same process is still holding a shared lock. */
rc = SQLITE_BUSY;
}
else
{
/* The request was for a RESERVED or EXCLUSIVE lock. It is
** assumed that there is a SHARED or greater lock on the file
** already.
*/
assert(0 != pFile->locktype);
lock.l_type = F_WRLCK;
switch (locktype)
{
case RESERVED_LOCK:
lock.l_start = RESERVED_BYTE;
break;
case EXCLUSIVE_LOCK:
lock.l_start = SHARED_FIRST;
lock.l_len = SHARED_SIZE;
break;
default:
assert(0);
}
s = fcntl(pFile->h, F_SETLK, &lock);
if(s == (-1))
{
rc = (errno == EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
}
}
if(rc == SQLITE_OK)
{
pFile->locktype = locktype;
pLock->locktype = locktype;
}
else if(locktype == EXCLUSIVE_LOCK)
{
pFile->locktype = PENDING_LOCK;
pLock->locktype = PENDING_LOCK;
}
end_lock:
leaveMutex();
OSTRACE4("LOCK %d %s %s\n", pFile->h, locktypeName(locktype),
rc == SQLITE_OK ? "ok" : "failed");
return rc;
}
/*
** Lower the locking level on file descriptor pFile to locktype. locktype
** must be either NO_LOCK or SHARED_LOCK.
**
** If the locking level of the file descriptor is already at or below
** the requested locking level, this routine is a no-op.
*/
static int
unixUnlock(sqlite3_file * id, int locktype)
{
struct lockInfo *pLock;
struct flock lock;
int rc = SQLITE_OK;
unixFile *pFile = (unixFile *) id;
int h;
assert(pFile);
OSTRACE7("UNLOCK %d %d was %d(%d,%d) pid=%d\n", pFile->h, locktype,
pFile->locktype, pFile->pLock->locktype, pFile->pLock->cnt, getpid());
assert(locktype <= SHARED_LOCK);
if(pFile->locktype <= locktype)
{
return SQLITE_OK;
}
if(CHECK_THREADID(pFile))
{
return SQLITE_MISUSE;
}
enterMutex();
h = pFile->h;
pLock = pFile->pLock;
assert(pLock->cnt != 0);
if(pFile->locktype > SHARED_LOCK)
{
assert(pLock->locktype == pFile->locktype);
SimulateIOErrorBenign(1);
SimulateIOError(h = (-1)) SimulateIOErrorBenign(0);
if(locktype == SHARED_LOCK)
{
lock.l_type = F_RDLCK;
lock.l_whence = SEEK_SET;
lock.l_start = SHARED_FIRST;
lock.l_len = SHARED_SIZE;
if(fcntl(h, F_SETLK, &lock) == (-1))
{
rc = SQLITE_IOERR_RDLOCK;
}
}
lock.l_type = F_UNLCK;
lock.l_whence = SEEK_SET;
lock.l_start = PENDING_BYTE;
lock.l_len = 2L;
assert(PENDING_BYTE + 1 == RESERVED_BYTE);
if(fcntl(h, F_SETLK, &lock) != (-1))
{
pLock->locktype = SHARED_LOCK;
}
else
{
rc = SQLITE_IOERR_UNLOCK;
}
}
if(locktype == NO_LOCK)
{
struct openCnt *pOpen;
/* Decrement the shared lock counter. Release the lock using an
** OS call only when all threads in this same process have released
** the lock.
*/
pLock->cnt--;
if(pLock->cnt == 0)
{
lock.l_type = F_UNLCK;
lock.l_whence = SEEK_SET;
lock.l_start = lock.l_len = 0L;
SimulateIOErrorBenign(1);
SimulateIOError(h = (-1)) SimulateIOErrorBenign(0);
if(fcntl(h, F_SETLK, &lock) != (-1))
{
pLock->locktype = NO_LOCK;
}
else
{
rc = SQLITE_IOERR_UNLOCK;
pLock->cnt = 1;
}
}
/* Decrement the count of locks against this same file. When the
** count reaches zero, close any other file descriptors whose close
** was deferred because of outstanding locks.
*/
if(rc == SQLITE_OK)
{
pOpen = pFile->pOpen;
pOpen->nLock--;
assert(pOpen->nLock >= 0);
if(pOpen->nLock == 0 && pOpen->nPending > 0)
{
int i;
for (i = 0; i < pOpen->nPending; i++)
{
close(pOpen->aPending[i]);
}
free(pOpen->aPending);
pOpen->nPending = 0;
pOpen->aPending = 0;
}
}
}
leaveMutex();
if(rc == SQLITE_OK)
pFile->locktype = locktype;
return rc;
}
/*
** Close a file.
*/
static int
unixClose(sqlite3_file * id)
{
unixFile *pFile = (unixFile *) id;
if(!pFile)
return SQLITE_OK;
unixUnlock(id, NO_LOCK);
if(pFile->dirfd >= 0)
close(pFile->dirfd);
pFile->dirfd = -1;
enterMutex();
if(pFile->pOpen->nLock)
{
/* If there are outstanding locks, do not actually close the file just
** yet because that would clear those locks. Instead, add the file
** descriptor to pOpen->aPending. It will be automatically closed when
** the last lock is cleared.
*/
int *aNew;
struct openCnt *pOpen = pFile->pOpen;
aNew = realloc(pOpen->aPending, (pOpen->nPending + 1) * sizeof(int));
if(aNew == 0)
{
/* If a malloc fails, just leak the file descriptor */
}
else
{
pOpen->aPending = aNew;
pOpen->aPending[pOpen->nPending] = pFile->h;
pOpen->nPending++;
}
}
else
{
/* There are no outstanding locks so we can close the file immediately */
close(pFile->h);
}
releaseLockInfo(pFile->pLock);
releaseOpenCnt(pFile->pOpen);
leaveMutex();
OSTRACE2("CLOSE %-3d\n", pFile->h);
OpenCounter(-1);
memset(pFile, 0, sizeof(unixFile));
return SQLITE_OK;
}
#ifdef SQLITE_ENABLE_LOCKING_STYLE
#pragma mark AFP Support
/*
** The afpLockingContext structure contains all afp lock specific state
*/
typedef struct afpLockingContext afpLockingContext;
struct afpLockingContext
{
unsigned long long sharedLockByte;
const char *filePath;
};
struct ByteRangeLockPB2
{
unsigned long long offset; /* offset to first byte to lock */
unsigned long long length; /* nbr of bytes to lock */
unsigned long long retRangeStart; /* nbr of 1st byte locked if successful */
unsigned char unLockFlag; /* 1 = unlock, 0 = lock */
unsigned char startEndFlag; /* 1=rel to end of fork, 0=rel to start */
int fd; /* file desc to assoc this lock with */
};
#define afpfsByteRangeLock2FSCTL _IOWR('z', 23, struct ByteRangeLockPB2)
/*
** Return 0 on success, 1 on failure. To match the behavior of the
** normal posix file locking (used in unixLock for example), we should
** provide 'richer' return codes - specifically to differentiate between
** 'file busy' and 'file system error' results.
*/
static int
_AFPFSSetLock(const char *path,
int fd, unsigned long long offset, unsigned long long length, int setLockFlag)
{
struct ByteRangeLockPB2 pb;
int err;
pb.unLockFlag = setLockFlag ? 0 : 1;
pb.startEndFlag = 0;
pb.offset = offset;
pb.length = length;
pb.fd = fd;
OSTRACE5("AFPLOCK setting lock %s for %d in range %llx:%llx\n",
(setLockFlag ? "ON" : "OFF"), fd, offset, length);
err = fsctl(path, afpfsByteRangeLock2FSCTL, &pb, 0);
if(err == -1)
{
OSTRACE4("AFPLOCK failed to fsctl() '%s' %d %s\n", path, errno, strerror(errno));
return 1; /* error */
}
else
{
return 0;
}
}
/*
** This routine checks if there is a RESERVED lock held on the specified
** file by this or any other process. If such a lock is held, return
** non-zero. If the file is unlocked or holds only SHARED locks, then
** return zero.
*/
static int
afpUnixCheckReservedLock(sqlite3_file * id)
{
int r = 0;
unixFile *pFile = (unixFile *) id;
assert(pFile);
afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
/* Check if a thread in this process holds such a lock */
if(pFile->locktype > SHARED_LOCK)
{
r = 1;
}
/* Otherwise see if some other process holds it.
*/
if(!r)
{
/* lock the byte */
int failed = _AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1, 1);
if(failed)
{
/* if we failed to get the lock then someone else must have it */
r = 1;
}
else
{
/* if we succeeded in taking the reserved lock, unlock it to restore
** the original state */
_AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1, 0);
}
}
OSTRACE3("TEST WR-LOCK %d %d\n", pFile->h, r);
return r;
}
/* AFP-style locking following the behavior of unixLock, see the unixLock
** function comments for details of lock management. */
static int
afpUnixLock(sqlite3_file * id, int locktype)
{
int rc = SQLITE_OK;
unixFile *pFile = (unixFile *) id;
afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
int gotPendingLock = 0;
assert(pFile);
OSTRACE5("LOCK %d %s was %s pid=%d\n", pFile->h,
locktypeName(locktype), locktypeName(pFile->locktype), getpid());
/* If there is already a lock of this type or more restrictive on the
** unixFile, do nothing. Don't use the afp_end_lock: exit path, as
** enterMutex() hasn't been called yet.
*/
if(pFile->locktype >= locktype)
{
OSTRACE3("LOCK %d %s ok (already held)\n", pFile->h, locktypeName(locktype));
return SQLITE_OK;
}
/* Make sure the locking sequence is correct
*/
assert(pFile->locktype != NO_LOCK || locktype == SHARED_LOCK);
assert(locktype != PENDING_LOCK);
assert(locktype != RESERVED_LOCK || pFile->locktype == SHARED_LOCK);
/* This mutex is needed because pFile->pLock is shared across threads
*/
enterMutex();
/* Make sure the current thread owns the pFile.
*/
rc = transferOwnership(pFile);
if(rc != SQLITE_OK)
{
leaveMutex();
return rc;
}
/* A PENDING lock is needed before acquiring a SHARED lock and before
** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will
** be released.
*/
if(locktype == SHARED_LOCK
|| (locktype == EXCLUSIVE_LOCK && pFile->locktype < PENDING_LOCK))
{
int failed;
failed = _AFPFSSetLock(context->filePath, pFile->h, PENDING_BYTE, 1, 1);
if(failed)
{
rc = SQLITE_BUSY;
goto afp_end_lock;
}
}
/* If control gets to this point, then actually go ahead and make
** operating system calls for the specified lock.
*/
if(locktype == SHARED_LOCK)
{
int lk, failed;
int tries = 0;
/* Now get the read-lock */
/* note that the quality of the randomness doesn't matter that much */
lk = random();
context->sharedLockByte = (lk & 0x7fffffff) % (SHARED_SIZE - 1);
failed = _AFPFSSetLock(context->filePath, pFile->h,
SHARED_FIRST + context->sharedLockByte, 1, 1);
/* Drop the temporary PENDING lock */
if(_AFPFSSetLock(context->filePath, pFile->h, PENDING_BYTE, 1, 0))
{
rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
goto afp_end_lock;
}
if(failed)
{
rc = SQLITE_BUSY;
}
else
{
pFile->locktype = SHARED_LOCK;
}
}
else
{
/* The request was for a RESERVED or EXCLUSIVE lock. It is
** assumed that there is a SHARED or greater lock on the file
** already.
*/
int failed = 0;
assert(0 != pFile->locktype);
if(locktype >= RESERVED_LOCK && pFile->locktype < RESERVED_LOCK)
{
/* Acquire a RESERVED lock */
failed = _AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1, 1);
}
if(!failed && locktype == EXCLUSIVE_LOCK)
{
/* Acquire an EXCLUSIVE lock */
/* Remove the shared lock before trying the range. we'll need to
** reestablish the shared lock if we can't get the afpUnixUnlock
*/
if(!_AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST +
context->sharedLockByte, 1, 0))
{
/* now attemmpt to get the exclusive lock range */
failed = _AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST,
SHARED_SIZE, 1);
if(failed
&& _AFPFSSetLock(context->filePath, pFile->h,
SHARED_FIRST + context->sharedLockByte, 1, 1))
{
rc = SQLITE_IOERR_RDLOCK; /* this should never happen */
}
}
else
{
/* */
rc = SQLITE_IOERR_UNLOCK; /* this should never happen */
}
}
if(failed && rc == SQLITE_OK)
{
rc = SQLITE_BUSY;
}
}
if(rc == SQLITE_OK)
{
pFile->locktype = locktype;
}
else if(locktype == EXCLUSIVE_LOCK)
{
pFile->locktype = PENDING_LOCK;
}
afp_end_lock:
leaveMutex();
OSTRACE4("LOCK %d %s %s\n", pFile->h, locktypeName(locktype),
rc == SQLITE_OK ? "ok" : "failed");
return rc;
}
/*
** Lower the locking level on file descriptor pFile to locktype. locktype
** must be either NO_LOCK or SHARED_LOCK.
**
** If the locking level of the file descriptor is already at or below
** the requested locking level, this routine is a no-op.
*/
static int
afpUnixUnlock(sqlite3_file * id, int locktype)
{
struct flock lock;
int rc = SQLITE_OK;
unixFile *pFile = (unixFile *) id;
afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
assert(pFile);
OSTRACE5("UNLOCK %d %d was %d pid=%d\n", pFile->h, locktype, pFile->locktype, getpid());
assert(locktype <= SHARED_LOCK);
if(pFile->locktype <= locktype)
{
return SQLITE_OK;
}
if(CHECK_THREADID(pFile))
{
return SQLITE_MISUSE;
}
enterMutex();
if(pFile->locktype > SHARED_LOCK)
{
if(locktype == SHARED_LOCK)
{
int failed = 0;
/* unlock the exclusive range - then re-establish the shared lock */
if(pFile->locktype == EXCLUSIVE_LOCK)
{
failed = _AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST,
SHARED_SIZE, 0);
if(!failed)
{
/* successfully removed the exclusive lock */
if(_AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST +
context->sharedLockByte, 1, 1))
{
/* failed to re-establish our shared lock */
rc = SQLITE_IOERR_RDLOCK; /* This should never happen */
}
}
else
{
/* This should never happen - failed to unlock the exclusive range */
rc = SQLITE_IOERR_UNLOCK;
}
}
}
if(rc == SQLITE_OK && pFile->locktype >= PENDING_LOCK)
{
if(_AFPFSSetLock(context->filePath, pFile->h, PENDING_BYTE, 1, 0))
{
/* failed to release the pending lock */
rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
}
}
if(rc == SQLITE_OK && pFile->locktype >= RESERVED_LOCK)
{
if(_AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1, 0))
{
/* failed to release the reserved lock */
rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
}
}
}
if(locktype == NO_LOCK)
{
int failed = _AFPFSSetLock(context->filePath, pFile->h,
SHARED_FIRST + context->sharedLockByte, 1, 0);
if(failed)
{
rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
}
}
if(rc == SQLITE_OK)
pFile->locktype = locktype;
leaveMutex();
return rc;
}
/*
** Close a file & cleanup AFP specific locking context
*/
static int
afpUnixClose(sqlite3_file * id)
{
unixFile *pFile = (unixFile *) id;
if(!pFile)
return SQLITE_OK;
afpUnixUnlock(id, NO_LOCK);
sqlite3_free(pFile->lockingContext);
if(pFile->dirfd >= 0)
close(pFile->dirfd);
pFile->dirfd = -1;
enterMutex();
close(pFile->h);
leaveMutex();
OSTRACE2("CLOSE %-3d\n", pFile->h);
OpenCounter(-1);
memset(pFile, 0, sizeof(unixFile));
return SQLITE_OK;
}
#pragma mark flock() style locking
/*
** The flockLockingContext is not used
*/
typedef void flockLockingContext;
static int
flockUnixCheckReservedLock(sqlite3_file * id)
{
unixFile *pFile = (unixFile *) id;
if(pFile->locktype == RESERVED_LOCK)
{
return 1; /* already have a reserved lock */
}
else
{
/* attempt to get the lock */
int rc = flock(pFile->h, LOCK_EX | LOCK_NB);
if(!rc)
{
/* got the lock, unlock it */
flock(pFile->h, LOCK_UN);
return 0; /* no one has it reserved */
}
return 1; /* someone else might have it reserved */
}
}
static int
flockUnixLock(sqlite3_file * id, int locktype)
{
unixFile *pFile = (unixFile *) id;
/* if we already have a lock, it is exclusive.
** Just adjust level and punt on outta here. */
if(pFile->locktype > NO_LOCK)
{
pFile->locktype = locktype;
return SQLITE_OK;
}
/* grab an exclusive lock */
int rc = flock(pFile->h, LOCK_EX | LOCK_NB);
if(rc)
{
/* didn't get, must be busy */
return SQLITE_BUSY;
}
else
{
/* got it, set the type and return ok */
pFile->locktype = locktype;
return SQLITE_OK;
}
}
static int
flockUnixUnlock(sqlite3_file * id, int locktype)
{
unixFile *pFile = (unixFile *) id;
assert(locktype <= SHARED_LOCK);
/* no-op if possible */
if(pFile->locktype == locktype)
{
return SQLITE_OK;
}
/* shared can just be set because we always have an exclusive */
if(locktype == SHARED_LOCK)
{
pFile->locktype = locktype;
return SQLITE_OK;
}
/* no, really, unlock. */
int rc = flock(pFile->h, LOCK_UN);
if(rc)
return SQLITE_IOERR_UNLOCK;
else
{
pFile->locktype = NO_LOCK;
return SQLITE_OK;
}
}
/*
** Close a file.
*/
static int
flockUnixClose(sqlite3_file * id)
{
unixFile *pFile = (unixFile *) id;
if(!pFile)
return SQLITE_OK;
flockUnixUnlock(id, NO_LOCK);
if(pFile->dirfd >= 0)
close(pFile->dirfd);
pFile->dirfd = -1;
enterMutex();
close(pFile->h);
leaveMutex();
OSTRACE2("CLOSE %-3d\n", pFile->h);
OpenCounter(-1);
memset(pFile, 0, sizeof(unixFile));
return SQLITE_OK;
}
#pragma mark Old-School .lock file based locking
/*
** The dotlockLockingContext structure contains all dotlock (.lock) lock
** specific state
*/
typedef struct dotlockLockingContext dotlockLockingContext;
struct dotlockLockingContext
{
char *lockPath;
};
static int
dotlockUnixCheckReservedLock(sqlite3_file * id)
{
unixFile *pFile = (unixFile *) id;
dotlockLockingContext *context;
context = (dotlockLockingContext *) pFile->lockingContext;
if(pFile->locktype == RESERVED_LOCK)
{
return 1; /* already have a reserved lock */
}
else
{
struct stat statBuf;
if(lstat(context->lockPath, &statBuf) == 0)
{
/* file exists, someone else has the lock */
return 1;
}
else
{
/* file does not exist, we could have it if we want it */
return 0;
}
}
}
static int
dotlockUnixLock(sqlite3_file * id, int locktype)
{
unixFile *pFile = (unixFile *) id;
dotlockLockingContext *context;
int fd;
context = (dotlockLockingContext *) pFile->lockingContext;
/* if we already have a lock, it is exclusive.
** Just adjust level and punt on outta here. */
if(pFile->locktype > NO_LOCK)
{
pFile->locktype = locktype;
/* Always update the timestamp on the old file */
utimes(context->lockPath, NULL);
return SQLITE_OK;
}
/* check to see if lock file already exists */
struct stat statBuf;
if(lstat(context->lockPath, &statBuf) == 0)
{
return SQLITE_BUSY; /* it does, busy */
}
/* grab an exclusive lock */
fd = open(context->lockPath, O_RDONLY | O_CREAT | O_EXCL, 0600);
if(fd < 0)
{
/* failed to open/create the file, someone else may have stolen the lock */
return SQLITE_BUSY;
}
close(fd);
/* got it, set the type and return ok */
pFile->locktype = locktype;
return SQLITE_OK;
}
static int
dotlockUnixUnlock(sqlite3_file * id, int locktype)
{
unixFile *pFile = (unixFile *) id;
dotlockLockingContext *context;
context = (dotlockLockingContext *) pFile->lockingContext;
assert(locktype <= SHARED_LOCK);
/* no-op if possible */
if(pFile->locktype == locktype)
{
return SQLITE_OK;
}
/* shared can just be set because we always have an exclusive */
if(locktype == SHARED_LOCK)
{
pFile->locktype = locktype;
return SQLITE_OK;
}
/* no, really, unlock. */
unlink(context->lockPath);
pFile->locktype = NO_LOCK;
return SQLITE_OK;
}
/*
** Close a file.
*/
static int
dotlockUnixClose(sqlite3_file * id)
{
unixFile *pFile = (unixFile *) id;
if(!pFile)
return SQLITE_OK;
dotlockUnixUnlock(id, NO_LOCK);
sqlite3_free(pFile->lockingContext);
if(pFile->dirfd >= 0)
close(pFile->dirfd);
pFile->dirfd = -1;
enterMutex();
close(pFile->h);
leaveMutex();
OSTRACE2("CLOSE %-3d\n", pFile->h);
OpenCounter(-1);
memset(pFile, 0, sizeof(unixFile));
return SQLITE_OK;
}
#pragma mark No locking
/*
** The nolockLockingContext is void
*/
typedef void nolockLockingContext;
static int
nolockUnixCheckReservedLock(sqlite3_file * id)
{
return 0;
}
static int
nolockUnixLock(sqlite3_file * id, int locktype)
{
return SQLITE_OK;
}
static int
nolockUnixUnlock(sqlite3_file * id, int locktype)
{
return SQLITE_OK;
}
/*
** Close a file.
*/
static int
nolockUnixClose(sqlite3_file * id)
{
unixFile *pFile = (unixFile *) id;
if(!pFile)
return SQLITE_OK;
if(pFile->dirfd >= 0)
close(pFile->dirfd);
pFile->dirfd = -1;
enterMutex();
close(pFile->h);
leaveMutex();
OSTRACE2("CLOSE %-3d\n", pFile->h);
OpenCounter(-1);
memset(pFile, 0, sizeof(unixFile));
return SQLITE_OK;
}
#endif /* SQLITE_ENABLE_LOCKING_STYLE */
/*
** Information and control of an open file handle.
*/
static int
unixFileControl(sqlite3_file * id, int op, void *pArg)
{
switch (op)
{
case SQLITE_FCNTL_LOCKSTATE:
{
*(int *) pArg = ((unixFile *) id)->locktype;
return SQLITE_OK;
}
}
return SQLITE_ERROR;
}
/*
** Return the sector size in bytes of the underlying block device for
** the specified file. This is almost always 512 bytes, but may be
** larger for some devices.
**
** SQLite code assumes this function cannot fail. It also assumes that
** if two files are created in the same file-system directory (i.e.
** a database and its journal file) that the sector size will be the
** same for both.
*/
static int
unixSectorSize(sqlite3_file * id)
{
return SQLITE_DEFAULT_SECTOR_SIZE;
}
/*
** Return the device characteristics for the file. This is always 0.
*/
static int
unixDeviceCharacteristics(sqlite3_file * id)
{
return 0;
}
/*
** This vector defines all the methods that can operate on an sqlite3_file
** for unix.
*/
static const sqlite3_io_methods sqlite3UnixIoMethod = {
1, /* iVersion */
unixClose,
unixRead,
unixWrite,
unixTruncate,
unixSync,
unixFileSize,
unixLock,
unixUnlock,
unixCheckReservedLock,
unixFileControl,
unixSectorSize,
unixDeviceCharacteristics
};
#ifdef SQLITE_ENABLE_LOCKING_STYLE
/*
** This vector defines all the methods that can operate on an sqlite3_file
** for unix with AFP style file locking.
*/
static const sqlite3_io_methods sqlite3AFPLockingUnixIoMethod = {
1, /* iVersion */
afpUnixClose,
unixRead,
unixWrite,
unixTruncate,
unixSync,
unixFileSize,
afpUnixLock,
afpUnixUnlock,
afpUnixCheckReservedLock,
unixFileControl,
unixSectorSize,
unixDeviceCharacteristics
};
/*
** This vector defines all the methods that can operate on an sqlite3_file
** for unix with flock() style file locking.
*/
static const sqlite3_io_methods sqlite3FlockLockingUnixIoMethod = {
1, /* iVersion */
flockUnixClose,
unixRead,
unixWrite,
unixTruncate,
unixSync,
unixFileSize,
flockUnixLock,
flockUnixUnlock,
flockUnixCheckReservedLock,
unixFileControl,
unixSectorSize,
unixDeviceCharacteristics
};
/*
** This vector defines all the methods that can operate on an sqlite3_file
** for unix with dotlock style file locking.
*/
static const sqlite3_io_methods sqlite3DotlockLockingUnixIoMethod = {
1, /* iVersion */
dotlockUnixClose,
unixRead,
unixWrite,
unixTruncate,
unixSync,
unixFileSize,
dotlockUnixLock,
dotlockUnixUnlock,
dotlockUnixCheckReservedLock,
unixFileControl,
unixSectorSize,
unixDeviceCharacteristics
};
/*
** This vector defines all the methods that can operate on an sqlite3_file
** for unix with nolock style file locking.
*/
static const sqlite3_io_methods sqlite3NolockLockingUnixIoMethod = {
1, /* iVersion */
nolockUnixClose,
unixRead,
unixWrite,
unixTruncate,
unixSync,
unixFileSize,
nolockUnixLock,
nolockUnixUnlock,
nolockUnixCheckReservedLock,
unixFileControl,
unixSectorSize,
unixDeviceCharacteristics
};
#endif /* SQLITE_ENABLE_LOCKING_STYLE */
/*
** Allocate memory for a new unixFile and initialize that unixFile.
** Write a pointer to the new unixFile into *pId.
** If we run out of memory, close the file and return an error.
*/
#ifdef SQLITE_ENABLE_LOCKING_STYLE
/*
** When locking extensions are enabled, the filepath and locking style
** are needed to determine the unixFile pMethod to use for locking operations.
** The locking-style specific lockingContext data structure is created
** and assigned here also.
*/
static int
fillInUnixFile(int h, /* Open file descriptor of file being opened */
int dirfd, /* Directory file descriptor */
sqlite3_file * pId, /* Write to the unixFile structure here */
const char *zFilename /* Name of the file being opened */
)
{
sqlite3LockingStyle lockingStyle;
unixFile *pNew = (unixFile *) pId;
int rc;
#ifdef FD_CLOEXEC
fcntl(h, F_SETFD, fcntl(h, F_GETFD, 0) | FD_CLOEXEC);
#endif
lockingStyle = sqlite3DetectLockingStyle(zFilename, h);
if(lockingStyle == posixLockingStyle)
{
enterMutex();
rc = findLockInfo(h, &pNew->pLock, &pNew->pOpen);
leaveMutex();
if(rc)
{
if(dirfd >= 0)
close(dirfd);
close(h);
return rc;
}
}
else
{
/* pLock and pOpen are only used for posix advisory locking */
pNew->pLock = NULL;
pNew->pOpen = NULL;
}
OSTRACE3("OPEN %-3d %s\n", h, zFilename);
pNew->dirfd = -1;
pNew->h = h;
pNew->dirfd = dirfd;
SET_THREADID(pNew);
switch (lockingStyle)
{
case afpLockingStyle:
{
/* afp locking uses the file path so it needs to be included in
** the afpLockingContext */
afpLockingContext *context;
pNew->pMethod = &sqlite3AFPLockingUnixIoMethod;
pNew->lockingContext = context = sqlite3_malloc(sizeof(*context));
if(context == 0)
{
close(h);
if(dirfd >= 0)
close(dirfd);
return SQLITE_NOMEM;
}
/* NB: zFilename exists and remains valid until the file is closed
** according to requirement F11141. So we do not need to make a
** copy of the filename. */
context->filePath = zFilename;
srandomdev();
break;
}
case flockLockingStyle:
/* flock locking doesn't need additional lockingContext information */
pNew->pMethod = &sqlite3FlockLockingUnixIoMethod;
break;
case dotlockLockingStyle:
{
/* dotlock locking uses the file path so it needs to be included in
** the dotlockLockingContext */
dotlockLockingContext *context;
int nFilename;
nFilename = strlen(zFilename);
pNew->pMethod = &sqlite3DotlockLockingUnixIoMethod;
pNew->lockingContext = context =
sqlite3_malloc(sizeof(*context) + nFilename + 6);
if(context == 0)
{
close(h);
if(dirfd >= 0)
close(dirfd);
return SQLITE_NOMEM;
}
context->lockPath = (char *) &context[1];
sqlite3_snprintf(nFilename, context->lockPath, "%s.lock", zFilename);
break;
}
case posixLockingStyle:
/* posix locking doesn't need additional lockingContext information */
pNew->pMethod = &sqlite3UnixIoMethod;
break;
case noLockingStyle:
case unsupportedLockingStyle:
default:
pNew->pMethod = &sqlite3NolockLockingUnixIoMethod;
}
OpenCounter(+1);
return SQLITE_OK;
}
#else /* SQLITE_ENABLE_LOCKING_STYLE */
static int
fillInUnixFile(int h, /* Open file descriptor on file being opened */
int dirfd, sqlite3_file * pId, /* Write to the unixFile structure here */
const char *zFilename /* Name of the file being opened */
)
{
unixFile *pNew = (unixFile *) pId;
int rc;
#ifdef FD_CLOEXEC
fcntl(h, F_SETFD, fcntl(h, F_GETFD, 0) | FD_CLOEXEC);
#endif
enterMutex();
rc = findLockInfo(h, &pNew->pLock, &pNew->pOpen);
leaveMutex();
if(rc)
{
if(dirfd >= 0)
close(dirfd);
close(h);
return rc;
}
OSTRACE3("OPEN %-3d %s\n", h, zFilename);
pNew->dirfd = -1;
pNew->h = h;
pNew->dirfd = dirfd;
SET_THREADID(pNew);
pNew->pMethod = &sqlite3UnixIoMethod;
OpenCounter(+1);
return SQLITE_OK;
}
#endif /* SQLITE_ENABLE_LOCKING_STYLE */
/*
** Open a file descriptor to the directory containing file zFilename.
** If successful, *pFd is set to the opened file descriptor and
** SQLITE_OK is returned. If an error occurs, either SQLITE_NOMEM
** or SQLITE_CANTOPEN is returned and *pFd is set to an undefined
** value.
**
** If SQLITE_OK is returned, the caller is responsible for closing
** the file descriptor *pFd using close().
*/
static int
openDirectory(const char *zFilename, int *pFd)
{
int ii;
int fd = -1;
char zDirname[MAX_PATHNAME + 1];
sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename);
for (ii = strlen(zDirname); ii >= 0 && zDirname[ii] != '/'; ii--);
if(ii > 0)
{
zDirname[ii] = '\0';
fd = open(zDirname, O_RDONLY | O_BINARY, 0);
if(fd >= 0)
{
#ifdef FD_CLOEXEC
fcntl(fd, F_SETFD, fcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
#endif
OSTRACE3("OPENDIR %-3d %s\n", fd, zDirname);
}
}
*pFd = fd;
return (fd >= 0 ? SQLITE_OK : SQLITE_CANTOPEN);
}
/*
** Open the file zPath.
**
** Previously, the SQLite OS layer used three functions in place of this
** one:
**
** sqlite3OsOpenReadWrite();
** sqlite3OsOpenReadOnly();
** sqlite3OsOpenExclusive();
**
** These calls correspond to the following combinations of flags:
**
** ReadWrite() -> (READWRITE | CREATE)
** ReadOnly() -> (READONLY)
** OpenExclusive() -> (READWRITE | CREATE | EXCLUSIVE)
**
** The old OpenExclusive() accepted a boolean argument - "delFlag". If
** true, the file was configured to be automatically deleted when the
** file handle closed. To achieve the same effect using this new
** interface, add the DELETEONCLOSE flag to those specified above for
** OpenExclusive().
*/
static int
unixOpen(sqlite3_vfs * pVfs, const char *zPath, sqlite3_file * pFile, int flags, int *pOutFlags)
{
int fd = 0; /* File descriptor returned by open() */
int dirfd = -1; /* Directory file descriptor */
int oflags = 0; /* Flags to pass to open() */
int eType = flags & 0xFFFFFF00; /* Type of file to open */
int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE);
int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE);
int isCreate = (flags & SQLITE_OPEN_CREATE);
int isReadonly = (flags & SQLITE_OPEN_READONLY);
int isReadWrite = (flags & SQLITE_OPEN_READWRITE);
/* If creating a master or main-file journal, this function will open
** a file-descriptor on the directory too. The first time unixSync()
** is called the directory file descriptor will be fsync()ed and close()d.
*/
int isOpenDirectory = (isCreate &&
(eType == SQLITE_OPEN_MASTER_JOURNAL
|| eType == SQLITE_OPEN_MAIN_JOURNAL));
/* Check the following statements are true:
**
** (a) Exactly one of the READWRITE and READONLY flags must be set, and
** (b) if CREATE is set, then READWRITE must also be set, and
** (c) if EXCLUSIVE is set, then CREATE must also be set.
** (d) if DELETEONCLOSE is set, then CREATE must also be set.
*/
assert((isReadonly == 0 || isReadWrite == 0) && (isReadWrite || isReadonly));
assert(isCreate == 0 || isReadWrite);
assert(isExclusive == 0 || isCreate);
assert(isDelete == 0 || isCreate);
/* The main DB, main journal, and master journal are never automatically
** deleted
*/
assert(eType != SQLITE_OPEN_MAIN_DB || !isDelete);
assert(eType != SQLITE_OPEN_MAIN_JOURNAL || !isDelete);
assert(eType != SQLITE_OPEN_MASTER_JOURNAL || !isDelete);
/* Assert that the upper layer has set one of the "file-type" flags. */
assert(eType == SQLITE_OPEN_MAIN_DB || eType == SQLITE_OPEN_TEMP_DB
|| eType == SQLITE_OPEN_MAIN_JOURNAL || eType == SQLITE_OPEN_TEMP_JOURNAL
|| eType == SQLITE_OPEN_SUBJOURNAL || eType == SQLITE_OPEN_MASTER_JOURNAL
|| eType == SQLITE_OPEN_TRANSIENT_DB);
if(isReadonly)
oflags |= O_RDONLY;
if(isReadWrite)
oflags |= O_RDWR;
if(isCreate)
oflags |= O_CREAT;
if(isExclusive)
oflags |= (O_EXCL | O_NOFOLLOW);
oflags |= (O_LARGEFILE | O_BINARY);
memset(pFile, 0, sizeof(unixFile));
fd = open(zPath, oflags, isDelete ? 0600 : SQLITE_DEFAULT_FILE_PERMISSIONS);
if(fd < 0 && errno != EISDIR && isReadWrite && !isExclusive)
{
/* Failed to open the file for read/write access. Try read-only. */
flags &= ~(SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE);
flags |= SQLITE_OPEN_READONLY;
return unixOpen(pVfs, zPath, pFile, flags, pOutFlags);
}
if(fd < 0)
{
return SQLITE_CANTOPEN;
}
if(isDelete)
{
unlink(zPath);
}
if(pOutFlags)
{
*pOutFlags = flags;
}
assert(fd != 0);
if(isOpenDirectory)
{
int rc = openDirectory(zPath, &dirfd);
if(rc != SQLITE_OK)
{
close(fd);
return rc;
}
}
return fillInUnixFile(fd, dirfd, pFile, zPath);
}
/*
** Delete the file at zPath. If the dirSync argument is true, fsync()
** the directory after deleting the file.
*/
static int
unixDelete(sqlite3_vfs * pVfs, const char *zPath, int dirSync)
{
int rc = SQLITE_OK;
SimulateIOError(return SQLITE_IOERR_DELETE);
unlink(zPath);
if(dirSync)
{
int fd;
rc = openDirectory(zPath, &fd);
if(rc == SQLITE_OK)
{
if(fsync(fd))
{
rc = SQLITE_IOERR_DIR_FSYNC;
}
close(fd);
}
}
return rc;
}
/*
** Test the existance of or access permissions of file zPath. The
** test performed depends on the value of flags:
**
** SQLITE_ACCESS_EXISTS: Return 1 if the file exists
** SQLITE_ACCESS_READWRITE: Return 1 if the file is read and writable.
** SQLITE_ACCESS_READONLY: Return 1 if the file is readable.
**
** Otherwise return 0.
*/
static int
unixAccess(sqlite3_vfs * pVfs, const char *zPath, int flags)
{
int amode = 0;
switch (flags)
{
case SQLITE_ACCESS_EXISTS:
amode = F_OK;
break;
case SQLITE_ACCESS_READWRITE:
amode = W_OK | R_OK;
break;
case SQLITE_ACCESS_READ:
amode = R_OK;
break;
default:
assert(!"Invalid flags argument");
}
return (access(zPath, amode) == 0);
}
/*
** Create a temporary file name in zBuf. zBuf must be allocated
** by the calling process and must be big enough to hold at least
** pVfs->mxPathname bytes.
*/
static int
unixGetTempname(sqlite3_vfs * pVfs, int nBuf, char *zBuf)
{
static const char *azDirs[] = {
0,
"/var/tmp",
"/usr/tmp",
"/tmp",
".",
};
static const unsigned char zChars[] =
"abcdefghijklmnopqrstuvwxyz" "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "0123456789";
int i, j;
struct stat buf;
const char *zDir = ".";
/* It's odd to simulate an io-error here, but really this is just
** using the io-error infrastructure to test that SQLite handles this
** function failing.
*/
SimulateIOError(return SQLITE_ERROR);
azDirs[0] = sqlite3_temp_directory;
for (i = 0; i < sizeof(azDirs) / sizeof(azDirs[0]); i++)
{
if(azDirs[i] == 0)
continue;
if(stat(azDirs[i], &buf))
continue;
if(!S_ISDIR(buf.st_mode))
continue;
if(access(azDirs[i], 07))
continue;
zDir = azDirs[i];
break;
}
/* Check that the output buffer is large enough for the temporary file
** name. If it is not, return SQLITE_ERROR.
*/
if((strlen(zDir) + strlen(SQLITE_TEMP_FILE_PREFIX) + 17) >= nBuf)
{
return SQLITE_ERROR;
}
do
{
assert(pVfs->mxPathname == MAX_PATHNAME);
sqlite3_snprintf(nBuf - 17, zBuf, "%s/" SQLITE_TEMP_FILE_PREFIX, zDir);
j = strlen(zBuf);
sqlite3_randomness(15, &zBuf[j]);
for (i = 0; i < 15; i++, j++)
{
zBuf[j] = (char) zChars[((unsigned char) zBuf[j]) % (sizeof(zChars) - 1)];
}
zBuf[j] = 0;
}
while (access(zBuf, 0) == 0);
return SQLITE_OK;
}
/*
** Turn a relative pathname into a full pathname. The relative path
** is stored as a nul-terminated string in the buffer pointed to by
** zPath.
**
** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes
** (in this case, MAX_PATHNAME bytes). The full-path is written to
** this buffer before returning.
*/
static int
unixFullPathname(sqlite3_vfs * pVfs, /* Pointer to vfs object */
const char *zPath, /* Possibly relative input path */
int nOut, /* Size of output buffer in bytes */
char *zOut /* Output buffer */
)
{
/* It's odd to simulate an io-error here, but really this is just
** using the io-error infrastructure to test that SQLite handles this
** function failing. This function could fail if, for example, the
** current working directly has been unlinked.
*/
SimulateIOError(return SQLITE_ERROR);
assert(pVfs->mxPathname == MAX_PATHNAME);
zOut[nOut - 1] = '\0';
if(zPath[0] == '/')
{
sqlite3_snprintf(nOut, zOut, "%s", zPath);
}
else
{
int nCwd;
if(getcwd(zOut, nOut - 1) == 0)
{
return SQLITE_CANTOPEN;
}
nCwd = strlen(zOut);
sqlite3_snprintf(nOut - nCwd, &zOut[nCwd], "/%s", zPath);
}
return SQLITE_OK;
#if 0
/*
** Remove "/./" path elements and convert "/A/./" path elements
** to just "/".
*/
if(zFull)
{
int i, j;
for (i = j = 0; zFull[i]; i++)
{
if(zFull[i] == '/')
{
if(zFull[i + 1] == '/')
continue;
if(zFull[i + 1] == '.' && zFull[i + 2] == '/')
{
i += 1;
continue;
}
if(zFull[i + 1] == '.' && zFull[i + 2] == '.'
&& zFull[i + 3] == '/')
{
while (j > 0 && zFull[j - 1] != '/')
{
j--;
}
i += 3;
continue;
}
}
zFull[j++] = zFull[i];
}
zFull[j] = 0;
}
#endif
}
#ifndef SQLITE_OMIT_LOAD_EXTENSION
/*
** Interfaces for opening a shared library, finding entry points
** within the shared library, and closing the shared library.
*/
#include <dlfcn.h>
static void *
unixDlOpen(sqlite3_vfs * pVfs, const char *zFilename)
{
return dlopen(zFilename, RTLD_NOW | RTLD_GLOBAL);
}
/*
** SQLite calls this function immediately after a call to unixDlSym() or
** unixDlOpen() fails (returns a null pointer). If a more detailed error
** message is available, it is written to zBufOut. If no error message
** is available, zBufOut is left unmodified and SQLite uses a default
** error message.
*/
static void
unixDlError(sqlite3_vfs * pVfs, int nBuf, char *zBufOut)
{
char *zErr;
enterMutex();
zErr = dlerror();
if(zErr)
{
sqlite3_snprintf(nBuf, zBufOut, "%s", zErr);
}
leaveMutex();
}
static void *
unixDlSym(sqlite3_vfs * pVfs, void *pHandle, const char *zSymbol)
{
return dlsym(pHandle, zSymbol);
}
static void
unixDlClose(sqlite3_vfs * pVfs, void *pHandle)
{
dlclose(pHandle);
}
#else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
#define unixDlOpen 0
#define unixDlError 0
#define unixDlSym 0
#define unixDlClose 0
#endif
/*
** Write nBuf bytes of random data to the supplied buffer zBuf.
*/
static int
unixRandomness(sqlite3_vfs * pVfs, int nBuf, char *zBuf)
{
assert(nBuf >= (sizeof(time_t) + sizeof(int)));
/* We have to initialize zBuf to prevent valgrind from reporting
** errors. The reports issued by valgrind are incorrect - we would
** prefer that the randomness be increased by making use of the
** uninitialized space in zBuf - but valgrind errors tend to worry
** some users. Rather than argue, it seems easier just to initialize
** the whole array and silence valgrind, even if that means less randomness
** in the random seed.
**
** When testing, initializing zBuf[] to zero is all we do. That means
** that we always use the same random number sequence. This makes the
** tests repeatable.
*/
memset(zBuf, 0, nBuf);
#if !defined(SQLITE_TEST)
{
int pid, fd;
int len = 0;
fd = open("/dev/urandom", O_RDONLY);
if(fd >= 0)
{
len = read(fd, zBuf, nBuf);
close(fd);
}
if(len < nBuf)
{
time_t t;
time(&t);
memcpy(zBuf, &t, sizeof(t));
pid = getpid();
memcpy(&zBuf[sizeof(t)], &pid, sizeof(pid));
}
}
#endif
return SQLITE_OK;
}
/*
** Sleep for a little while. Return the amount of time slept.
** The argument is the number of microseconds we want to sleep.
** The return value is the number of microseconds of sleep actually
** requested from the underlying operating system, a number which
** might be greater than or equal to the argument, but not less
** than the argument.
*/
static int
unixSleep(sqlite3_vfs * pVfs, int microseconds)
{
#if defined(HAVE_USLEEP) && HAVE_USLEEP
usleep(microseconds);
return microseconds;
#else
int seconds = (microseconds + 999999) / 1000000;
sleep(seconds);
return seconds * 1000000;
#endif
}
/*
** The following variable, if set to a non-zero value, becomes the result
** returned from sqlite3OsCurrentTime(). This is used for testing.
*/
#ifdef SQLITE_TEST
SQLITE_API int sqlite3_current_time = 0;
#endif
/*
** Find the current time (in Universal Coordinated Time). Write the
** current time and date as a Julian Day number into *prNow and
** return 0. Return 1 if the time and date cannot be found.
*/
static int
unixCurrentTime(sqlite3_vfs * pVfs, double *prNow)
{
#ifdef NO_GETTOD
time_t t;
time(&t);
*prNow = t / 86400.0 + 2440587.5;
#else
struct timeval sNow;
gettimeofday(&sNow, 0);
*prNow = 2440587.5 + sNow.tv_sec / 86400.0 + sNow.tv_usec / 86400000000.0;
#endif
#ifdef SQLITE_TEST
if(sqlite3_current_time)
{
*prNow = sqlite3_current_time / 86400.0 + 2440587.5;
}
#endif
return 0;
}
/*
** Return a pointer to the sqlite3DefaultVfs structure. We use
** a function rather than give the structure global scope because
** some compilers (MSVC) do not allow forward declarations of
** initialized structures.
*/
SQLITE_PRIVATE sqlite3_vfs *
sqlite3OsDefaultVfs(void)
{
static sqlite3_vfs unixVfs = {
1, /* iVersion */
sizeof(unixFile), /* szOsFile */
MAX_PATHNAME, /* mxPathname */
0, /* pNext */
"unix", /* zName */
0, /* pAppData */
unixOpen, /* xOpen */
unixDelete, /* xDelete */
unixAccess, /* xAccess */
unixGetTempname, /* xGetTempName */
unixFullPathname, /* xFullPathname */
unixDlOpen, /* xDlOpen */
unixDlError, /* xDlError */
unixDlSym, /* xDlSym */
unixDlClose, /* xDlClose */
unixRandomness, /* xRandomness */
unixSleep, /* xSleep */
unixCurrentTime /* xCurrentTime */
};
return &unixVfs;
}
#endif /* OS_UNIX */
/************** End of os_unix.c *********************************************/
/************** Begin file os_win.c ******************************************/
/*
** 2004 May 22
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** This file contains code that is specific to windows.
*/
#if OS_WIN /* This file is used for windows only */
/*
** A Note About Memory Allocation:
**
** This driver uses malloc()/free() directly rather than going through
** the SQLite-wrappers sqlite3_malloc()/sqlite3_free(). Those wrappers
** are designed for use on embedded systems where memory is scarce and
** malloc failures happen frequently. Win32 does not typically run on
** embedded systems, and when it does the developers normally have bigger
** problems to worry about than running out of memory. So there is not
** a compelling need to use the wrappers.
**
** But there is a good reason to not use the wrappers. If we use the
** wrappers then we will get simulated malloc() failures within this
** driver. And that causes all kinds of problems for our tests. We
** could enhance SQLite to deal with simulated malloc failures within
** the OS driver, but the code to deal with those failure would not
** be exercised on Linux (which does not need to malloc() in the driver)
** and so we would have difficulty writing coverage tests for that
** code. Better to leave the code out, we think.
**
** The point of this discussion is as follows: When creating a new
** OS layer for an embedded system, if you use this file as an example,
** avoid the use of malloc()/free(). Those routines work ok on windows
** desktops but not so well in embedded systems.
*/
#include <winbase.h>
#ifdef __CYGWIN__
# include <sys/cygwin.h>
#endif
/*
** Macros used to determine whether or not to use threads.
*/
#if defined(THREADSAFE) && THREADSAFE
# define SQLITE_W32_THREADS 1
#endif
/*
** Include code that is common to all os_*.c files
*/
/************** Include os_common.h in the middle of os_win.c ****************/
/************** Begin file os_common.h ***************************************/
/*
** 2004 May 22
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** This file contains macros and a little bit of code that is common to
** all of the platform-specific files (os_*.c) and is #included into those
** files.
**
** This file should be #included by the os_*.c files only. It is not a
** general purpose header file.
*/
/*
** At least two bugs have slipped in because we changed the MEMORY_DEBUG
** macro to SQLITE_DEBUG and some older makefiles have not yet made the
** switch. The following code should catch this problem at compile-time.
*/
#ifdef MEMORY_DEBUG
# error "The MEMORY_DEBUG macro is obsolete. Use SQLITE_DEBUG instead."
#endif
/*
* When testing, this global variable stores the location of the
* pending-byte in the database file.
*/
#ifdef SQLITE_TEST
SQLITE_API unsigned int sqlite3_pending_byte = 0x40000000;
#endif
#ifdef SQLITE_DEBUG
SQLITE_PRIVATE int sqlite3OSTrace = 0;
#define OSTRACE1(X) if( sqlite3OSTrace ) sqlite3DebugPrintf(X)
#define OSTRACE2(X,Y) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y)
#define OSTRACE3(X,Y,Z) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z)
#define OSTRACE4(X,Y,Z,A) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z,A)
#define OSTRACE5(X,Y,Z,A,B) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z,A,B)
#define OSTRACE6(X,Y,Z,A,B,C) \
if(sqlite3OSTrace) sqlite3DebugPrintf(X,Y,Z,A,B,C)
#define OSTRACE7(X,Y,Z,A,B,C,D) \
if(sqlite3OSTrace) sqlite3DebugPrintf(X,Y,Z,A,B,C,D)
#else
#define OSTRACE1(X)
#define OSTRACE2(X,Y)
#define OSTRACE3(X,Y,Z)
#define OSTRACE4(X,Y,Z,A)
#define OSTRACE5(X,Y,Z,A,B)
#define OSTRACE6(X,Y,Z,A,B,C)
#define OSTRACE7(X,Y,Z,A,B,C,D)
#endif
/*
** Macros for performance tracing. Normally turned off. Only works
** on i486 hardware.
*/
#ifdef SQLITE_PERFORMANCE_TRACE
__inline__ unsigned long long int
hwtime(void)
{
unsigned long long int x;
__asm__("rdtsc\n\t" "mov %%edx, %%ecx\n\t":"=A"(x));
return x;
}
static unsigned long long int g_start;
static unsigned int elapse;
#define TIMER_START g_start=hwtime()
#define TIMER_END elapse=hwtime()-g_start
#define TIMER_ELAPSED elapse
#else
#define TIMER_START
#define TIMER_END
#define TIMER_ELAPSED 0
#endif
/*
** If we compile with the SQLITE_TEST macro set, then the following block
** of code will give us the ability to simulate a disk I/O error. This
** is used for testing the I/O recovery logic.
*/
#ifdef SQLITE_TEST
SQLITE_API int sqlite3_io_error_hit = 0; /* Total number of I/O Errors */
SQLITE_API int sqlite3_io_error_hardhit = 0; /* Number of non-benign errors */
SQLITE_API int sqlite3_io_error_pending = 0; /* Count down to first I/O error */
SQLITE_API int sqlite3_io_error_persist = 0; /* True if I/O errors persist */
SQLITE_API int sqlite3_io_error_benign = 0; /* True if errors are benign */
SQLITE_API int sqlite3_diskfull_pending = 0;
SQLITE_API int sqlite3_diskfull = 0;
#define SimulateIOErrorBenign(X) sqlite3_io_error_benign=(X)
#define SimulateIOError(CODE) \
if( (sqlite3_io_error_persist && sqlite3_io_error_hit) \
|| sqlite3_io_error_pending-- == 1 ) \
{ local_ioerr(); CODE; }
static void
local_ioerr()
{
IOTRACE(("IOERR\n"));
sqlite3_io_error_hit++;
if(!sqlite3_io_error_benign)
sqlite3_io_error_hardhit++;
}
#define SimulateDiskfullError(CODE) \
if( sqlite3_diskfull_pending ){ \
if( sqlite3_diskfull_pending == 1 ){ \
local_ioerr(); \
sqlite3_diskfull = 1; \
sqlite3_io_error_hit = 1; \
CODE; \
}else{ \
sqlite3_diskfull_pending--; \
} \
}
#else
#define SimulateIOErrorBenign(X)
#define SimulateIOError(A)
#define SimulateDiskfullError(A)
#endif
/*
** When testing, keep a count of the number of open files.
*/
#ifdef SQLITE_TEST
SQLITE_API int sqlite3_open_file_count = 0;
#define OpenCounter(X) sqlite3_open_file_count+=(X)
#else
#define OpenCounter(X)
#endif
/************** End of os_common.h *******************************************/
/************** Continuing where we left off in os_win.c *********************/
/*
** Determine if we are dealing with WindowsCE - which has a much
** reduced API.
*/
#if defined(_WIN32_WCE)
# define OS_WINCE 1
# define AreFileApisANSI() 1
#else
# define OS_WINCE 0
#endif
/*
** WinCE lacks native support for file locking so we have to fake it
** with some code of our own.
*/
#if OS_WINCE
typedef struct winceLock
{
int nReaders; /* Number of reader locks obtained */
BOOL bPending; /* Indicates a pending lock has been obtained */
BOOL bReserved; /* Indicates a reserved lock has been obtained */
BOOL bExclusive; /* Indicates an exclusive lock has been obtained */
} winceLock;
#endif
/*
** The winFile structure is a subclass of sqlite3_file* specific to the win32
** portability layer.
*/
typedef struct winFile winFile;
struct winFile
{
const sqlite3_io_methods *pMethod; /* Must be first */
HANDLE h; /* Handle for accessing the file */
unsigned char locktype; /* Type of lock currently held on this file */
short sharedLockByte; /* Randomly chosen byte used as a shared lock */
#if OS_WINCE
WCHAR *zDeleteOnClose; /* Name of file to delete when closing */
HANDLE hMutex; /* Mutex used to control access to shared lock */
HANDLE hShared; /* Shared memory segment used for locking */
winceLock local; /* Locks obtained by this instance of winFile */
winceLock *shared; /* Global shared lock memory for the file */
#endif
};
/*
** The following variable is (normally) set once and never changes
** thereafter. It records whether the operating system is Win95
** or WinNT.
**
** 0: Operating system unknown.
** 1: Operating system is Win95.
** 2: Operating system is WinNT.
**
** In order to facilitate testing on a WinNT system, the test fixture
** can manually set this value to 1 to emulate Win98 behavior.
*/
#ifdef SQLITE_TEST
SQLITE_API int sqlite3_os_type = 0;
#else
static int sqlite3_os_type = 0;
#endif
/*
** Return true (non-zero) if we are running under WinNT, Win2K, WinXP,
** or WinCE. Return false (zero) for Win95, Win98, or WinME.
**
** Here is an interesting observation: Win95, Win98, and WinME lack
** the LockFileEx() API. But we can still statically link against that
** API as long as we don't call it win running Win95/98/ME. A call to
** this routine is used to determine if the host is Win95/98/ME or
** WinNT/2K/XP so that we will know whether or not we can safely call
** the LockFileEx() API.
*/
#if OS_WINCE
# define isNT() (1)
#else
static int
isNT(void)
{
if(sqlite3_os_type == 0)
{
OSVERSIONINFO sInfo;
sInfo.dwOSVersionInfoSize = sizeof(sInfo);
GetVersionEx(&sInfo);
sqlite3_os_type = sInfo.dwPlatformId == VER_PLATFORM_WIN32_NT ? 2 : 1;
}
return sqlite3_os_type == 2;
}
#endif /* OS_WINCE */
/*
** Convert a UTF-8 string to microsoft unicode (UTF-16?).
**
** Space to hold the returned string is obtained from malloc.
*/
static WCHAR *
utf8ToUnicode(const char *zFilename)
{
int nChar;
WCHAR *zWideFilename;
nChar = MultiByteToWideChar(CP_UTF8, 0, zFilename, -1, NULL, 0);
zWideFilename = malloc(nChar * sizeof(zWideFilename[0]));
if(zWideFilename == 0)
{
return 0;
}
nChar = MultiByteToWideChar(CP_UTF8, 0, zFilename, -1, zWideFilename, nChar);
if(nChar == 0)
{
free(zWideFilename);
zWideFilename = 0;
}
return zWideFilename;
}
/*
** Convert microsoft unicode to UTF-8. Space to hold the returned string is
** obtained from malloc().
*/
static char *
unicodeToUtf8(const WCHAR * zWideFilename)
{
int nByte;
char *zFilename;
nByte = WideCharToMultiByte(CP_UTF8, 0, zWideFilename, -1, 0, 0, 0, 0);
zFilename = malloc(nByte);
if(zFilename == 0)
{
return 0;
}
nByte = WideCharToMultiByte(CP_UTF8, 0, zWideFilename, -1, zFilename, nByte, 0, 0);
if(nByte == 0)
{
free(zFilename);
zFilename = 0;
}
return zFilename;
}
/*
** Convert an ansi string to microsoft unicode, based on the
** current codepage settings for file apis.
**
** Space to hold the returned string is obtained
** from malloc.
*/
static WCHAR *
mbcsToUnicode(const char *zFilename)
{
int nByte;
WCHAR *zMbcsFilename;
int codepage = AreFileApisANSI()? CP_ACP : CP_OEMCP;
nByte = MultiByteToWideChar(codepage, 0, zFilename, -1, NULL, 0) * sizeof(WCHAR);
zMbcsFilename = malloc(nByte * sizeof(zMbcsFilename[0]));
if(zMbcsFilename == 0)
{
return 0;
}
nByte = MultiByteToWideChar(codepage, 0, zFilename, -1, zMbcsFilename, nByte);
if(nByte == 0)
{
free(zMbcsFilename);
zMbcsFilename = 0;
}
return zMbcsFilename;
}
/*
** Convert microsoft unicode to multibyte character string, based on the
** user's Ansi codepage.
**
** Space to hold the returned string is obtained from
** malloc().
*/
static char *
unicodeToMbcs(const WCHAR * zWideFilename)
{
int nByte;
char *zFilename;
int codepage = AreFileApisANSI()? CP_ACP : CP_OEMCP;
nByte = WideCharToMultiByte(codepage, 0, zWideFilename, -1, 0, 0, 0, 0);
zFilename = malloc(nByte);
if(zFilename == 0)
{
return 0;
}
nByte = WideCharToMultiByte(codepage, 0, zWideFilename, -1, zFilename, nByte, 0, 0);
if(nByte == 0)
{
free(zFilename);
zFilename = 0;
}
return zFilename;
}
/*
** Convert multibyte character string to UTF-8. Space to hold the
** returned string is obtained from malloc().
*/
static char *
mbcsToUtf8(const char *zFilename)
{
char *zFilenameUtf8;
WCHAR *zTmpWide;
zTmpWide = mbcsToUnicode(zFilename);
if(zTmpWide == 0)
{
return 0;
}
zFilenameUtf8 = unicodeToUtf8(zTmpWide);
free(zTmpWide);
return zFilenameUtf8;
}
/*
** Convert UTF-8 to multibyte character string. Space to hold the
** returned string is obtained from malloc().
*/
static char *
utf8ToMbcs(const char *zFilename)
{
char *zFilenameMbcs;
WCHAR *zTmpWide;
zTmpWide = utf8ToUnicode(zFilename);
if(zTmpWide == 0)
{
return 0;
}
zFilenameMbcs = unicodeToMbcs(zTmpWide);
free(zTmpWide);
return zFilenameMbcs;
}
#if OS_WINCE
/*************************************************************************
** This section contains code for WinCE only.
*/
/*
** WindowsCE does not have a localtime() function. So create a
** substitute.
*/
struct tm *__cdecl
localtime(const time_t * t)
{
static struct tm y;
FILETIME uTm, lTm;
SYSTEMTIME pTm;
sqlite3_int64 t64;
t64 = *t;
t64 = (t64 + 11644473600) * 10000000;
uTm.dwLowDateTime = t64 & 0xFFFFFFFF;
uTm.dwHighDateTime = t64 >> 32;
FileTimeToLocalFileTime(&uTm, &lTm);
FileTimeToSystemTime(&lTm, &pTm);
y.tm_year = pTm.wYear - 1900;
y.tm_mon = pTm.wMonth - 1;
y.tm_wday = pTm.wDayOfWeek;
y.tm_mday = pTm.wDay;
y.tm_hour = pTm.wHour;
y.tm_min = pTm.wMinute;
y.tm_sec = pTm.wSecond;
return &y;
}
/* This will never be called, but defined to make the code compile */
#define GetTempPathA(a,b)
#define LockFile(a,b,c,d,e) winceLockFile(&a, b, c, d, e)
#define UnlockFile(a,b,c,d,e) winceUnlockFile(&a, b, c, d, e)
#define LockFileEx(a,b,c,d,e,f) winceLockFileEx(&a, b, c, d, e, f)
#define HANDLE_TO_WINFILE(a) (winFile*)&((char*)a)[-offsetof(winFile,h)]
/*
** Acquire a lock on the handle h
*/
static void
winceMutexAcquire(HANDLE h)
{
DWORD dwErr;
do
{
dwErr = WaitForSingleObject(h, INFINITE);
}
while (dwErr != WAIT_OBJECT_0 && dwErr != WAIT_ABANDONED);
}
/*
** Release a lock acquired by winceMutexAcquire()
*/
#define winceMutexRelease(h) ReleaseMutex(h)
/*
** Create the mutex and shared memory used for locking in the file
** descriptor pFile
*/
static BOOL
winceCreateLock(const char *zFilename, winFile * pFile)
{
WCHAR *zTok;
WCHAR *zName = utf8ToUnicode(zFilename);
BOOL bInit = TRUE;
/* Initialize the local lockdata */
ZeroMemory(&pFile->local, sizeof(pFile->local));
/* Replace the backslashes from the filename and lowercase it
** to derive a mutex name. */
zTok = CharLowerW(zName);
for (; *zTok; zTok++)
{
if(*zTok == '\\')
*zTok = '_';
}
/* Create/open the named mutex */
pFile->hMutex = CreateMutexW(NULL, FALSE, zName);
if(!pFile->hMutex)
{
free(zName);
return FALSE;
}
/* Acquire the mutex before continuing */
winceMutexAcquire(pFile->hMutex);
/* Since the names of named mutexes, semaphores, file mappings etc are
** case-sensitive, take advantage of that by uppercasing the mutex name
** and using that as the shared filemapping name.
*/
CharUpperW(zName);
pFile->hShared = CreateFileMappingW(INVALID_HANDLE_VALUE, NULL,
PAGE_READWRITE, 0, sizeof(winceLock), zName);
/* Set a flag that indicates we're the first to create the memory so it
** must be zero-initialized */
if(GetLastError() == ERROR_ALREADY_EXISTS)
{
bInit = FALSE;
}
free(zName);
/* If we succeeded in making the shared memory handle, map it. */
if(pFile->hShared)
{
pFile->shared = (winceLock *) MapViewOfFile(pFile->hShared,
FILE_MAP_READ | FILE_MAP_WRITE, 0, 0,
sizeof(winceLock));
/* If mapping failed, close the shared memory handle and erase it */
if(!pFile->shared)
{
CloseHandle(pFile->hShared);
pFile->hShared = NULL;
}
}
/* If shared memory could not be created, then close the mutex and fail */
if(pFile->hShared == NULL)
{
winceMutexRelease(pFile->hMutex);
CloseHandle(pFile->hMutex);
pFile->hMutex = NULL;
return FALSE;
}
/* Initialize the shared memory if we're supposed to */
if(bInit)
{
ZeroMemory(pFile->shared, sizeof(winceLock));
}
winceMutexRelease(pFile->hMutex);
return TRUE;
}
/*
** Destroy the part of winFile that deals with wince locks
*/
static void
winceDestroyLock(winFile * pFile)
{
if(pFile->hMutex)
{
/* Acquire the mutex */
winceMutexAcquire(pFile->hMutex);
/* The following blocks should probably assert in debug mode, but they
are to cleanup in case any locks remained open */
if(pFile->local.nReaders)
{
pFile->shared->nReaders--;
}
if(pFile->local.bReserved)
{
pFile->shared->bReserved = FALSE;
}
if(pFile->local.bPending)
{
pFile->shared->bPending = FALSE;
}
if(pFile->local.bExclusive)
{
pFile->shared->bExclusive = FALSE;
}
/* De-reference and close our copy of the shared memory handle */
UnmapViewOfFile(pFile->shared);
CloseHandle(pFile->hShared);
/* Done with the mutex */
winceMutexRelease(pFile->hMutex);
CloseHandle(pFile->hMutex);
pFile->hMutex = NULL;
}
}
/*
** An implementation of the LockFile() API of windows for wince
*/
static BOOL
winceLockFile(HANDLE * phFile,
DWORD dwFileOffsetLow,
DWORD dwFileOffsetHigh, DWORD nNumberOfBytesToLockLow, DWORD nNumberOfBytesToLockHigh)
{
winFile *pFile = HANDLE_TO_WINFILE(phFile);
BOOL bReturn = FALSE;
if(!pFile->hMutex)
return TRUE;
winceMutexAcquire(pFile->hMutex);
/* Wanting an exclusive lock? */
if(dwFileOffsetLow == SHARED_FIRST && nNumberOfBytesToLockLow == SHARED_SIZE)
{
if(pFile->shared->nReaders == 0 && pFile->shared->bExclusive == 0)
{
pFile->shared->bExclusive = TRUE;
pFile->local.bExclusive = TRUE;
bReturn = TRUE;
}
}
/* Want a read-only lock? */
else if((dwFileOffsetLow >= SHARED_FIRST &&
dwFileOffsetLow < SHARED_FIRST + SHARED_SIZE) && nNumberOfBytesToLockLow == 1)
{
if(pFile->shared->bExclusive == 0)
{
pFile->local.nReaders++;
if(pFile->local.nReaders == 1)
{
pFile->shared->nReaders++;
}
bReturn = TRUE;
}
}
/* Want a pending lock? */
else if(dwFileOffsetLow == PENDING_BYTE && nNumberOfBytesToLockLow == 1)
{
/* If no pending lock has been acquired, then acquire it */
if(pFile->shared->bPending == 0)
{
pFile->shared->bPending = TRUE;
pFile->local.bPending = TRUE;
bReturn = TRUE;
}
}
/* Want a reserved lock? */
else if(dwFileOffsetLow == RESERVED_BYTE && nNumberOfBytesToLockLow == 1)
{
if(pFile->shared->bReserved == 0)
{
pFile->shared->bReserved = TRUE;
pFile->local.bReserved = TRUE;
bReturn = TRUE;
}
}
winceMutexRelease(pFile->hMutex);
return bReturn;
}
/*
** An implementation of the UnlockFile API of windows for wince
*/
static BOOL
winceUnlockFile(HANDLE * phFile,
DWORD dwFileOffsetLow,
DWORD dwFileOffsetHigh,
DWORD nNumberOfBytesToUnlockLow, DWORD nNumberOfBytesToUnlockHigh)
{
winFile *pFile = HANDLE_TO_WINFILE(phFile);
BOOL bReturn = FALSE;
if(!pFile->hMutex)
return TRUE;
winceMutexAcquire(pFile->hMutex);
/* Releasing a reader lock or an exclusive lock */
if(dwFileOffsetLow >= SHARED_FIRST && dwFileOffsetLow < SHARED_FIRST + SHARED_SIZE)
{
/* Did we have an exclusive lock? */
if(pFile->local.bExclusive)
{
pFile->local.bExclusive = FALSE;
pFile->shared->bExclusive = FALSE;
bReturn = TRUE;
}
/* Did we just have a reader lock? */
else if(pFile->local.nReaders)
{
pFile->local.nReaders--;
if(pFile->local.nReaders == 0)
{
pFile->shared->nReaders--;
}
bReturn = TRUE;
}
}
/* Releasing a pending lock */
else if(dwFileOffsetLow == PENDING_BYTE && nNumberOfBytesToUnlockLow == 1)
{
if(pFile->local.bPending)
{
pFile->local.bPending = FALSE;
pFile->shared->bPending = FALSE;
bReturn = TRUE;
}
}
/* Releasing a reserved lock */
else if(dwFileOffsetLow == RESERVED_BYTE && nNumberOfBytesToUnlockLow == 1)
{
if(pFile->local.bReserved)
{
pFile->local.bReserved = FALSE;
pFile->shared->bReserved = FALSE;
bReturn = TRUE;
}
}
winceMutexRelease(pFile->hMutex);
return bReturn;
}
/*
** An implementation of the LockFileEx() API of windows for wince
*/
static BOOL
winceLockFileEx(HANDLE * phFile,
DWORD dwFlags,
DWORD dwReserved,
DWORD nNumberOfBytesToLockLow,
DWORD nNumberOfBytesToLockHigh, LPOVERLAPPED lpOverlapped)
{
/* If the caller wants a shared read lock, forward this call
** to winceLockFile */
if(lpOverlapped->Offset == SHARED_FIRST &&
dwFlags == 1 && nNumberOfBytesToLockLow == SHARED_SIZE)
{
return winceLockFile(phFile, SHARED_FIRST, 0, 1, 0);
}
return FALSE;
}
/*
** End of the special code for wince
*****************************************************************************/
#endif /* OS_WINCE */
/*****************************************************************************
** The next group of routines implement the I/O methods specified
** by the sqlite3_io_methods object.
******************************************************************************/
/*
** Close a file.
**
** It is reported that an attempt to close a handle might sometimes
** fail. This is a very unreasonable result, but windows is notorious
** for being unreasonable so I do not doubt that it might happen. If
** the close fails, we pause for 100 milliseconds and try again. As
** many as MX_CLOSE_ATTEMPT attempts to close the handle are made before
** giving up and returning an error.
*/
#define MX_CLOSE_ATTEMPT 3
static int
winClose(sqlite3_file * id)
{
int rc, cnt = 0;
winFile *pFile = (winFile *) id;
OSTRACE2("CLOSE %d\n", pFile->h);
do
{
rc = CloseHandle(pFile->h);
}
while (rc == 0 && cnt++ < MX_CLOSE_ATTEMPT && (Sleep(100), 1));
#if OS_WINCE
#define WINCE_DELETION_ATTEMPTS 3
winceDestroyLock(pFile);
if(pFile->zDeleteOnClose)
{
int cnt = 0;
while (DeleteFileW(pFile->zDeleteOnClose) == 0
&& GetFileAttributesW(pFile->zDeleteOnClose) != 0xffffffff
&& cnt++ < WINCE_DELETION_ATTEMPTS)
{
Sleep(100); /* Wait a little before trying again */
}
free(pFile->zDeleteOnClose);
}
#endif
OpenCounter(-1);
return rc ? SQLITE_OK : SQLITE_IOERR;
}
/*
** Some microsoft compilers lack this definition.
*/
#ifndef INVALID_SET_FILE_POINTER
# define INVALID_SET_FILE_POINTER ((DWORD)-1)
#endif
/*
** Read data from a file into a buffer. Return SQLITE_OK if all
** bytes were read successfully and SQLITE_IOERR if anything goes
** wrong.
*/
static int
winRead(sqlite3_file * id, /* File to read from */
void *pBuf, /* Write content into this buffer */
int amt, /* Number of bytes to read */
sqlite3_int64 offset /* Begin reading at this offset */
)
{
LONG upperBits = (offset >> 32) & 0x7fffffff;
LONG lowerBits = offset & 0xffffffff;
DWORD rc;
DWORD got;
winFile *pFile = (winFile *) id;
assert(id != 0);
SimulateIOError(return SQLITE_IOERR_READ);
OSTRACE3("READ %d lock=%d\n", pFile->h, pFile->locktype);
rc = SetFilePointer(pFile->h, lowerBits, &upperBits, FILE_BEGIN);
if(rc == INVALID_SET_FILE_POINTER && GetLastError() != NO_ERROR)
{
return SQLITE_FULL;
}
if(!ReadFile(pFile->h, pBuf, amt, &got, 0))
{
return SQLITE_IOERR_READ;
}
if(got == (DWORD) amt)
{
return SQLITE_OK;
}
else
{
memset(&((char *) pBuf)[got], 0, amt - got);
return SQLITE_IOERR_SHORT_READ;
}
}
/*
** Write data from a buffer into a file. Return SQLITE_OK on success
** or some other error code on failure.
*/
static int
winWrite(sqlite3_file * id, /* File to write into */
const void *pBuf, /* The bytes to be written */
int amt, /* Number of bytes to write */
sqlite3_int64 offset /* Offset into the file to begin writing at */
)
{
LONG upperBits = (offset >> 32) & 0x7fffffff;
LONG lowerBits = offset & 0xffffffff;
DWORD rc;
DWORD wrote;
winFile *pFile = (winFile *) id;
assert(id != 0);
SimulateIOError(return SQLITE_IOERR_WRITE);
SimulateDiskfullError(return SQLITE_FULL);
OSTRACE3("WRITE %d lock=%d\n", pFile->h, pFile->locktype);
rc = SetFilePointer(pFile->h, lowerBits, &upperBits, FILE_BEGIN);
if(rc == INVALID_SET_FILE_POINTER && GetLastError() != NO_ERROR)
{
return SQLITE_FULL;
}
assert(amt > 0);
while (amt > 0 && (rc = WriteFile(pFile->h, pBuf, amt, &wrote, 0)) != 0 && wrote > 0)
{
amt -= wrote;
pBuf = &((char *) pBuf)[wrote];
}
if(!rc || amt > (int) wrote)
{
return SQLITE_FULL;
}
return SQLITE_OK;
}
/*
** Truncate an open file to a specified size
*/
static int
winTruncate(sqlite3_file * id, sqlite3_int64 nByte)
{
LONG upperBits = (nByte >> 32) & 0x7fffffff;
LONG lowerBits = nByte & 0xffffffff;
winFile *pFile = (winFile *) id;
OSTRACE3("TRUNCATE %d %lld\n", pFile->h, nByte);
SimulateIOError(return SQLITE_IOERR_TRUNCATE);
SetFilePointer(pFile->h, lowerBits, &upperBits, FILE_BEGIN);
SetEndOfFile(pFile->h);
return SQLITE_OK;
}
#ifdef SQLITE_TEST
/*
** Count the number of fullsyncs and normal syncs. This is used to test
** that syncs and fullsyncs are occuring at the right times.
*/
SQLITE_API int sqlite3_sync_count = 0;
SQLITE_API int sqlite3_fullsync_count = 0;
#endif
/*
** Make sure all writes to a particular file are committed to disk.
*/
static int
winSync(sqlite3_file * id, int flags)
{
winFile *pFile = (winFile *) id;
OSTRACE3("SYNC %d lock=%d\n", pFile->h, pFile->locktype);
#ifdef SQLITE_TEST
if(flags & SQLITE_SYNC_FULL)
{
sqlite3_fullsync_count++;
}
sqlite3_sync_count++;
#endif
if(FlushFileBuffers(pFile->h))
{
return SQLITE_OK;
}
else
{
return SQLITE_IOERR;
}
}
/*
** Determine the current size of a file in bytes
*/
static int
winFileSize(sqlite3_file * id, sqlite3_int64 * pSize)
{
winFile *pFile = (winFile *) id;
DWORD upperBits, lowerBits;
SimulateIOError(return SQLITE_IOERR_FSTAT);
lowerBits = GetFileSize(pFile->h, &upperBits);
*pSize = (((sqlite3_int64) upperBits) << 32) + lowerBits;
return SQLITE_OK;
}
/*
** LOCKFILE_FAIL_IMMEDIATELY is undefined on some Windows systems.
*/
#ifndef LOCKFILE_FAIL_IMMEDIATELY
# define LOCKFILE_FAIL_IMMEDIATELY 1
#endif
/*
** Acquire a reader lock.
** Different API routines are called depending on whether or not this
** is Win95 or WinNT.
*/
static int
getReadLock(winFile * pFile)
{
int res;
if(isNT())
{
OVERLAPPED ovlp;
ovlp.Offset = SHARED_FIRST;
ovlp.OffsetHigh = 0;
ovlp.hEvent = 0;
res = LockFileEx(pFile->h, LOCKFILE_FAIL_IMMEDIATELY, 0, SHARED_SIZE, 0, &ovlp);
}
else
{
int lk;
sqlite3_randomness(sizeof(lk), &lk);
pFile->sharedLockByte = (lk & 0x7fffffff) % (SHARED_SIZE - 1);
res = LockFile(pFile->h, SHARED_FIRST + pFile->sharedLockByte, 0, 1, 0);
}
return res;
}
/*
** Undo a readlock
*/
static int
unlockReadLock(winFile * pFile)
{
int res;
if(isNT())
{
res = UnlockFile(pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0);
}
else
{
res = UnlockFile(pFile->h, SHARED_FIRST + pFile->sharedLockByte, 0, 1, 0);
}
return res;
}
/*
** Lock the file with the lock specified by parameter locktype - one
** of the following:
**
** (1) SHARED_LOCK
** (2) RESERVED_LOCK
** (3) PENDING_LOCK
** (4) EXCLUSIVE_LOCK
**
** Sometimes when requesting one lock state, additional lock states
** are inserted in between. The locking might fail on one of the later
** transitions leaving the lock state different from what it started but
** still short of its goal. The following chart shows the allowed
** transitions and the inserted intermediate states:
**
** UNLOCKED -> SHARED
** SHARED -> RESERVED
** SHARED -> (PENDING) -> EXCLUSIVE
** RESERVED -> (PENDING) -> EXCLUSIVE
** PENDING -> EXCLUSIVE
**
** This routine will only increase a lock. The winUnlock() routine
** erases all locks at once and returns us immediately to locking level 0.
** It is not possible to lower the locking level one step at a time. You
** must go straight to locking level 0.
*/
static int
winLock(sqlite3_file * id, int locktype)
{
int rc = SQLITE_OK; /* Return code from subroutines */
int res = 1; /* Result of a windows lock call */
int newLocktype; /* Set pFile->locktype to this value before exiting */
int gotPendingLock = 0; /* True if we acquired a PENDING lock this time */
winFile *pFile = (winFile *) id;
assert(pFile != 0);
OSTRACE5("LOCK %d %d was %d(%d)\n",
pFile->h, locktype, pFile->locktype, pFile->sharedLockByte);
/* If there is already a lock of this type or more restrictive on the
** OsFile, do nothing. Don't use the end_lock: exit path, as
** sqlite3OsEnterMutex() hasn't been called yet.
*/
if(pFile->locktype >= locktype)
{
return SQLITE_OK;
}
/* Make sure the locking sequence is correct
*/
assert(pFile->locktype != NO_LOCK || locktype == SHARED_LOCK);
assert(locktype != PENDING_LOCK);
assert(locktype != RESERVED_LOCK || pFile->locktype == SHARED_LOCK);
/* Lock the PENDING_LOCK byte if we need to acquire a PENDING lock or
** a SHARED lock. If we are acquiring a SHARED lock, the acquisition of
** the PENDING_LOCK byte is temporary.
*/
newLocktype = pFile->locktype;
if(pFile->locktype == NO_LOCK
|| (locktype == EXCLUSIVE_LOCK && pFile->locktype == RESERVED_LOCK))
{
int cnt = 3;
while (cnt-- > 0 && (res = LockFile(pFile->h, PENDING_BYTE, 0, 1, 0)) == 0)
{
/* Try 3 times to get the pending lock. The pending lock might be
** held by another reader process who will release it momentarily.
*/
OSTRACE2("could not get a PENDING lock. cnt=%d\n", cnt);
Sleep(1);
}
gotPendingLock = res;
}
/* Acquire a shared lock
*/
if(locktype == SHARED_LOCK && res)
{
assert(pFile->locktype == NO_LOCK);
res = getReadLock(pFile);
if(res)
{
newLocktype = SHARED_LOCK;
}
}
/* Acquire a RESERVED lock
*/
if(locktype == RESERVED_LOCK && res)
{
assert(pFile->locktype == SHARED_LOCK);
res = LockFile(pFile->h, RESERVED_BYTE, 0, 1, 0);
if(res)
{
newLocktype = RESERVED_LOCK;
}
}
/* Acquire a PENDING lock
*/
if(locktype == EXCLUSIVE_LOCK && res)
{
newLocktype = PENDING_LOCK;
gotPendingLock = 0;
}
/* Acquire an EXCLUSIVE lock
*/
if(locktype == EXCLUSIVE_LOCK && res)
{
assert(pFile->locktype >= SHARED_LOCK);
res = unlockReadLock(pFile);
OSTRACE2("unreadlock = %d\n", res);
res = LockFile(pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0);
if(res)
{
newLocktype = EXCLUSIVE_LOCK;
}
else
{
OSTRACE2("error-code = %d\n", GetLastError());
getReadLock(pFile);
}
}
/* If we are holding a PENDING lock that ought to be released, then
** release it now.
*/
if(gotPendingLock && locktype == SHARED_LOCK)
{
UnlockFile(pFile->h, PENDING_BYTE, 0, 1, 0);
}
/* Update the state of the lock has held in the file descriptor then
** return the appropriate result code.
*/
if(res)
{
rc = SQLITE_OK;
}
else
{
OSTRACE4("LOCK FAILED %d trying for %d but got %d\n", pFile->h,
locktype, newLocktype);
rc = SQLITE_BUSY;
}
pFile->locktype = newLocktype;
return rc;
}
/*
** This routine checks if there is a RESERVED lock held on the specified
** file by this or any other process. If such a lock is held, return
** non-zero, otherwise zero.
*/
static int
winCheckReservedLock(sqlite3_file * id)
{
int rc;
winFile *pFile = (winFile *) id;
assert(pFile != 0);
if(pFile->locktype >= RESERVED_LOCK)
{
rc = 1;
OSTRACE3("TEST WR-LOCK %d %d (local)\n", pFile->h, rc);
}
else
{
rc = LockFile(pFile->h, RESERVED_BYTE, 0, 1, 0);
if(rc)
{
UnlockFile(pFile->h, RESERVED_BYTE, 0, 1, 0);
}
rc = !rc;
OSTRACE3("TEST WR-LOCK %d %d (remote)\n", pFile->h, rc);
}
return rc;
}
/*
** Lower the locking level on file descriptor id to locktype. locktype
** must be either NO_LOCK or SHARED_LOCK.
**
** If the locking level of the file descriptor is already at or below
** the requested locking level, this routine is a no-op.
**
** It is not possible for this routine to fail if the second argument
** is NO_LOCK. If the second argument is SHARED_LOCK then this routine
** might return SQLITE_IOERR;
*/
static int
winUnlock(sqlite3_file * id, int locktype)
{
int type;
winFile *pFile = (winFile *) id;
int rc = SQLITE_OK;
assert(pFile != 0);
assert(locktype <= SHARED_LOCK);
OSTRACE5("UNLOCK %d to %d was %d(%d)\n", pFile->h, locktype,
pFile->locktype, pFile->sharedLockByte);
type = pFile->locktype;
if(type >= EXCLUSIVE_LOCK)
{
UnlockFile(pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0);
if(locktype == SHARED_LOCK && !getReadLock(pFile))
{
/* This should never happen. We should always be able to
** reacquire the read lock */
rc = SQLITE_IOERR_UNLOCK;
}
}
if(type >= RESERVED_LOCK)
{
UnlockFile(pFile->h, RESERVED_BYTE, 0, 1, 0);
}
if(locktype == NO_LOCK && type >= SHARED_LOCK)
{
unlockReadLock(pFile);
}
if(type >= PENDING_LOCK)
{
UnlockFile(pFile->h, PENDING_BYTE, 0, 1, 0);
}
pFile->locktype = locktype;
return rc;
}
/*
** Control and query of the open file handle.
*/
static int
winFileControl(sqlite3_file * id, int op, void *pArg)
{
switch (op)
{
case SQLITE_FCNTL_LOCKSTATE:
{
*(int *) pArg = ((winFile *) id)->locktype;
return SQLITE_OK;
}
}
return SQLITE_ERROR;
}
/*
** Return the sector size in bytes of the underlying block device for
** the specified file. This is almost always 512 bytes, but may be
** larger for some devices.
**
** SQLite code assumes this function cannot fail. It also assumes that
** if two files are created in the same file-system directory (i.e.
** a database and its journal file) that the sector size will be the
** same for both.
*/
static int
winSectorSize(sqlite3_file * id)
{
return SQLITE_DEFAULT_SECTOR_SIZE;
}
/*
** Return a vector of device characteristics.
*/
static int
winDeviceCharacteristics(sqlite3_file * id)
{
return 0;
}
/*
** This vector defines all the methods that can operate on an
** sqlite3_file for win32.
*/
static const sqlite3_io_methods winIoMethod = {
1, /* iVersion */
winClose,
winRead,
winWrite,
winTruncate,
winSync,
winFileSize,
winLock,
winUnlock,
winCheckReservedLock,
winFileControl,
winSectorSize,
winDeviceCharacteristics
};
/***************************************************************************
** Here ends the I/O methods that form the sqlite3_io_methods object.
**
** The next block of code implements the VFS methods.
****************************************************************************/
/*
** Convert a UTF-8 filename into whatever form the underlying
** operating system wants filenames in. Space to hold the result
** is obtained from malloc and must be freed by the calling
** function.
*/
static void *
convertUtf8Filename(const char *zFilename)
{
void *zConverted = 0;
if(isNT())
{
zConverted = utf8ToUnicode(zFilename);
}
else
{
zConverted = utf8ToMbcs(zFilename);
}
/* caller will handle out of memory */
return zConverted;
}
/*
** Open a file.
*/
static int
winOpen(sqlite3_vfs * pVfs, /* Not used */
const char *zName, /* Name of the file (UTF-8) */
sqlite3_file * id, /* Write the SQLite file handle here */
int flags, /* Open mode flags */
int *pOutFlags /* Status return flags */
)
{
HANDLE h;
DWORD dwDesiredAccess;
DWORD dwShareMode;
DWORD dwCreationDisposition;
DWORD dwFlagsAndAttributes = 0;
int isTemp;
winFile *pFile = (winFile *) id;
void *zConverted = convertUtf8Filename(zName);
if(zConverted == 0)
{
return SQLITE_NOMEM;
}
if(flags & SQLITE_OPEN_READWRITE)
{
dwDesiredAccess = GENERIC_READ | GENERIC_WRITE;
}
else
{
dwDesiredAccess = GENERIC_READ;
}
if(flags & SQLITE_OPEN_CREATE)
{
dwCreationDisposition = OPEN_ALWAYS;
}
else
{
dwCreationDisposition = OPEN_EXISTING;
}
if(flags & SQLITE_OPEN_MAIN_DB)
{
dwShareMode = FILE_SHARE_READ | FILE_SHARE_WRITE;
}
else
{
dwShareMode = 0;
}
if(flags & SQLITE_OPEN_DELETEONCLOSE)
{
#if OS_WINCE
dwFlagsAndAttributes = FILE_ATTRIBUTE_HIDDEN;
#else
dwFlagsAndAttributes = FILE_ATTRIBUTE_TEMPORARY
| FILE_ATTRIBUTE_HIDDEN | FILE_FLAG_DELETE_ON_CLOSE;
#endif
isTemp = 1;
}
else
{
dwFlagsAndAttributes = FILE_ATTRIBUTE_NORMAL;
isTemp = 0;
}
/* Reports from the internet are that performance is always
** better if FILE_FLAG_RANDOM_ACCESS is used. Ticket #2699. */
dwFlagsAndAttributes |= FILE_FLAG_RANDOM_ACCESS;
if(isNT())
{
h = CreateFileW((WCHAR *) zConverted,
dwDesiredAccess,
dwShareMode,
NULL, dwCreationDisposition, dwFlagsAndAttributes, NULL);
}
else
{
#if OS_WINCE
return SQLITE_NOMEM;
#else
h = CreateFileA((char *) zConverted,
dwDesiredAccess,
dwShareMode,
NULL, dwCreationDisposition, dwFlagsAndAttributes, NULL);
#endif
}
if(h == INVALID_HANDLE_VALUE)
{
free(zConverted);
if(flags & SQLITE_OPEN_READWRITE)
{
return winOpen(0, zName, id,
((flags | SQLITE_OPEN_READONLY) & ~SQLITE_OPEN_READWRITE),
pOutFlags);
}
else
{
return SQLITE_CANTOPEN;
}
}
if(pOutFlags)
{
if(flags & SQLITE_OPEN_READWRITE)
{
*pOutFlags = SQLITE_OPEN_READWRITE;
}
else
{
*pOutFlags = SQLITE_OPEN_READONLY;
}
}
memset(pFile, 0, sizeof(*pFile));
pFile->pMethod = &winIoMethod;
pFile->h = h;
#if OS_WINCE
if((flags & (SQLITE_OPEN_READWRITE | SQLITE_OPEN_MAIN_DB)) ==
(SQLITE_OPEN_READWRITE | SQLITE_OPEN_MAIN_DB) && !winceCreateLock(zName, pFile))
{
CloseHandle(h);
free(zConverted);
return SQLITE_CANTOPEN;
}
if(isTemp)
{
pFile->zDeleteOnClose = zConverted;
}
else
#endif
{
free(zConverted);
}
OpenCounter(+1);
return SQLITE_OK;
}
/*
** Delete the named file.
**
** Note that windows does not allow a file to be deleted if some other
** process has it open. Sometimes a virus scanner or indexing program
** will open a journal file shortly after it is created in order to do
** whatever does. While this other process is holding the
** file open, we will be unable to delete it. To work around this
** problem, we delay 100 milliseconds and try to delete again. Up
** to MX_DELETION_ATTEMPTs deletion attempts are run before giving
** up and returning an error.
*/
#define MX_DELETION_ATTEMPTS 5
static int
winDelete(sqlite3_vfs * pVfs, /* Not used on win32 */
const char *zFilename, /* Name of file to delete */
int syncDir /* Not used on win32 */
)
{
int cnt = 0;
int rc;
void *zConverted = convertUtf8Filename(zFilename);
if(zConverted == 0)
{
return SQLITE_NOMEM;
}
SimulateIOError(return SQLITE_IOERR_DELETE);
if(isNT())
{
do
{
DeleteFileW(zConverted);
}
while ((rc = GetFileAttributesW(zConverted)) != 0xffffffff
&& cnt++ < MX_DELETION_ATTEMPTS && (Sleep(100), 1));
}
else
{
#if OS_WINCE
return SQLITE_NOMEM;
#else
do
{
DeleteFileA(zConverted);
}
while ((rc = GetFileAttributesA(zConverted)) != 0xffffffff
&& cnt++ < MX_DELETION_ATTEMPTS && (Sleep(100), 1));
#endif
}
free(zConverted);
OSTRACE2("DELETE \"%s\"\n", zFilename);
return rc == 0xffffffff ? SQLITE_OK : SQLITE_IOERR_DELETE;
}
/*
** Check the existance and status of a file.
*/
static int
winAccess(sqlite3_vfs * pVfs, /* Not used on win32 */
const char *zFilename, /* Name of file to check */
int flags /* Type of test to make on this file */
)
{
DWORD attr;
int rc;
void *zConverted = convertUtf8Filename(zFilename);
if(zConverted == 0)
{
return SQLITE_NOMEM;
}
if(isNT())
{
attr = GetFileAttributesW((WCHAR *) zConverted);
}
else
{
#if OS_WINCE
return SQLITE_NOMEM;
#else
attr = GetFileAttributesA((char *) zConverted);
#endif
}
free(zConverted);
switch (flags)
{
case SQLITE_ACCESS_READ:
case SQLITE_ACCESS_EXISTS:
rc = attr != 0xffffffff;
break;
case SQLITE_ACCESS_READWRITE:
rc = (attr & FILE_ATTRIBUTE_READONLY) == 0;
break;
default:
assert(!"Invalid flags argument");
}
return rc;
}
/*
** Create a temporary file name in zBuf. zBuf must be big enough to
** hold at pVfs->mxPathname characters.
*/
static int
winGetTempname(sqlite3_vfs * pVfs, int nBuf, char *zBuf)
{
static char zChars[] =
"abcdefghijklmnopqrstuvwxyz" "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "0123456789";
int i, j;
char zTempPath[MAX_PATH + 1];
if(sqlite3_temp_directory)
{
sqlite3_snprintf(MAX_PATH - 30, zTempPath, "%s", sqlite3_temp_directory);
}
else if(isNT())
{
char *zMulti;
WCHAR zWidePath[MAX_PATH];
GetTempPathW(MAX_PATH - 30, zWidePath);
zMulti = unicodeToUtf8(zWidePath);
if(zMulti)
{
sqlite3_snprintf(MAX_PATH - 30, zTempPath, "%s", zMulti);
free(zMulti);
}
else
{
return SQLITE_NOMEM;
}
}
else
{
char *zUtf8;
char zMbcsPath[MAX_PATH];
GetTempPathA(MAX_PATH - 30, zMbcsPath);
zUtf8 = mbcsToUtf8(zMbcsPath);
if(zUtf8)
{
sqlite3_snprintf(MAX_PATH - 30, zTempPath, "%s", zUtf8);
free(zUtf8);
}
else
{
return SQLITE_NOMEM;
}
}
for (i = strlen(zTempPath); i > 0 && zTempPath[i - 1] == '\\'; i--)
{
}
zTempPath[i] = 0;
sqlite3_snprintf(nBuf - 30, zBuf, "%s\\" SQLITE_TEMP_FILE_PREFIX, zTempPath);
j = strlen(zBuf);
sqlite3_randomness(20, &zBuf[j]);
for (i = 0; i < 20; i++, j++)
{
zBuf[j] = (char) zChars[((unsigned char) zBuf[j]) % (sizeof(zChars) - 1)];
}
zBuf[j] = 0;
OSTRACE2("TEMP FILENAME: %s\n", zBuf);
return SQLITE_OK;
}
/*
** Turn a relative pathname into a full pathname. Write the full
** pathname into zOut[]. zOut[] will be at least pVfs->mxPathname
** bytes in size.
*/
static int
winFullPathname(sqlite3_vfs * pVfs, /* Pointer to vfs object */
const char *zRelative, /* Possibly relative input path */
int nFull, /* Size of output buffer in bytes */
char *zFull /* Output buffer */
)
{
#if defined(__CYGWIN__)
cygwin_conv_to_full_win32_path(zRelative, zFull);
return SQLITE_OK;
#endif
#if OS_WINCE
/* WinCE has no concept of a relative pathname, or so I am told. */
sqlite3_snprintf(pVfs->mxPathname, zFull, "%s", zRelative);
return SQLITE_OK;
#endif
#if !OS_WINCE && !defined(__CYGWIN__)
int nByte;
void *zConverted;
char *zOut;
zConverted = convertUtf8Filename(zRelative);
if(isNT())
{
WCHAR *zTemp;
nByte = GetFullPathNameW((WCHAR *) zConverted, 0, 0, 0) + 3;
zTemp = malloc(nByte * sizeof(zTemp[0]));
if(zTemp == 0)
{
free(zConverted);
return SQLITE_NOMEM;
}
GetFullPathNameW((WCHAR *) zConverted, nByte, zTemp, 0);
free(zConverted);
zOut = unicodeToUtf8(zTemp);
free(zTemp);
}
else
{
char *zTemp;
nByte = GetFullPathNameA((char *) zConverted, 0, 0, 0) + 3;
zTemp = malloc(nByte * sizeof(zTemp[0]));
if(zTemp == 0)
{
free(zConverted);
return SQLITE_NOMEM;
}
GetFullPathNameA((char *) zConverted, nByte, zTemp, 0);
free(zConverted);
zOut = mbcsToUtf8(zTemp);
free(zTemp);
}
if(zOut)
{
sqlite3_snprintf(pVfs->mxPathname, zFull, "%s", zOut);
free(zOut);
return SQLITE_OK;
}
else
{
return SQLITE_NOMEM;
}
#endif
}
#ifndef SQLITE_OMIT_LOAD_EXTENSION
/*
** Interfaces for opening a shared library, finding entry points
** within the shared library, and closing the shared library.
*/
/*
** Interfaces for opening a shared library, finding entry points
** within the shared library, and closing the shared library.
*/
static void *
winDlOpen(sqlite3_vfs * pVfs, const char *zFilename)
{
HANDLE h;
void *zConverted = convertUtf8Filename(zFilename);
if(zConverted == 0)
{
return 0;
}
if(isNT())
{
h = LoadLibraryW((WCHAR *) zConverted);
}
else
{
#if OS_WINCE
return 0;
#else
h = LoadLibraryA((char *) zConverted);
#endif
}
free(zConverted);
return (void *) h;
}
static void
winDlError(sqlite3_vfs * pVfs, int nBuf, char *zBufOut)
{
#if OS_WINCE
int error = GetLastError();
if(error > 0x7FFFFFF)
{
sqlite3_snprintf(nBuf, zBufOut, "OsError 0x%x", error);
}
else
{
sqlite3_snprintf(nBuf, zBufOut, "OsError %d", error);
}
#else
FormatMessageA(FORMAT_MESSAGE_FROM_SYSTEM, NULL, GetLastError(), 0, zBufOut, nBuf - 1, 0);
#endif
}
void *
winDlSym(sqlite3_vfs * pVfs, void *pHandle, const char *zSymbol)
{
#if OS_WINCE
/* The GetProcAddressA() routine is only available on wince. */
return GetProcAddressA((HANDLE) pHandle, zSymbol);
#else
/* All other windows platforms expect GetProcAddress() to take
** an Ansi string regardless of the _UNICODE setting */
return GetProcAddress((HANDLE) pHandle, zSymbol);
#endif
}
void
winDlClose(sqlite3_vfs * pVfs, void *pHandle)
{
FreeLibrary((HANDLE) pHandle);
}
#else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
#define winDlOpen 0
#define winDlError 0
#define winDlSym 0
#define winDlClose 0
#endif
/*
** Write up to nBuf bytes of randomness into zBuf.
*/
static int
winRandomness(sqlite3_vfs * pVfs, int nBuf, char *zBuf)
{
int n = 0;
if(sizeof(SYSTEMTIME) <= nBuf - n)
{
SYSTEMTIME x;
GetSystemTime(&x);
memcpy(&zBuf[n], &x, sizeof(x));
n += sizeof(x);
}
if(sizeof(DWORD) <= nBuf - n)
{
DWORD pid = GetCurrentProcessId();
memcpy(&zBuf[n], &pid, sizeof(pid));
n += sizeof(pid);
}
if(sizeof(DWORD) <= nBuf - n)
{
DWORD cnt = GetTickCount();
memcpy(&zBuf[n], &cnt, sizeof(cnt));
n += sizeof(cnt);
}
if(sizeof(LARGE_INTEGER) <= nBuf - n)
{
LARGE_INTEGER i;
QueryPerformanceCounter(&i);
memcpy(&zBuf[n], &i, sizeof(i));
n += sizeof(i);
}
return n;
}
/*
** Sleep for a little while. Return the amount of time slept.
*/
static int
winSleep(sqlite3_vfs * pVfs, int microsec)
{
Sleep((microsec + 999) / 1000);
return ((microsec + 999) / 1000) * 1000;
}
/*
** The following variable, if set to a non-zero value, becomes the result
** returned from sqlite3OsCurrentTime(). This is used for testing.
*/
#ifdef SQLITE_TEST
SQLITE_API int sqlite3_current_time = 0;
#endif
/*
** Find the current time (in Universal Coordinated Time). Write the
** current time and date as a Julian Day number into *prNow and
** return 0. Return 1 if the time and date cannot be found.
*/
int
winCurrentTime(sqlite3_vfs * pVfs, double *prNow)
{
FILETIME ft;
/* FILETIME structure is a 64-bit value representing the number of
100-nanosecond intervals since January 1, 1601 (= JD 2305813.5).
*/
double now;
#if OS_WINCE
SYSTEMTIME time;
GetSystemTime(&time);
SystemTimeToFileTime(&time, &ft);
#else
GetSystemTimeAsFileTime(&ft);
#endif
now = ((double) ft.dwHighDateTime) * 4294967296.0;
*prNow = (now + ft.dwLowDateTime) / 864000000000.0 + 2305813.5;
#ifdef SQLITE_TEST
if(sqlite3_current_time)
{
*prNow = sqlite3_current_time / 86400.0 + 2440587.5;
}
#endif
return 0;
}
/*
** Return a pointer to the sqlite3DefaultVfs structure. We use
** a function rather than give the structure global scope because
** some compilers (MSVC) do not allow forward declarations of
** initialized structures.
*/
SQLITE_PRIVATE sqlite3_vfs *
sqlite3OsDefaultVfs(void)
{
static sqlite3_vfs winVfs = {
1, /* iVersion */
sizeof(winFile), /* szOsFile */
MAX_PATH, /* mxPathname */
0, /* pNext */
"win32", /* zName */
0, /* pAppData */
winOpen, /* xOpen */
winDelete, /* xDelete */
winAccess, /* xAccess */
winGetTempname, /* xGetTempName */
winFullPathname, /* xFullPathname */
winDlOpen, /* xDlOpen */
winDlError, /* xDlError */
winDlSym, /* xDlSym */
winDlClose, /* xDlClose */
winRandomness, /* xRandomness */
winSleep, /* xSleep */
winCurrentTime /* xCurrentTime */
};
return &winVfs;
}
#endif /* OS_WIN */
/************** End of os_win.c **********************************************/
/************** Begin file bitvec.c ******************************************/
/*
** 2008 February 16
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file implements an object that represents a fixed-length
** bitmap. Bits are numbered starting with 1.
**
** A bitmap is used to record what pages a database file have been
** journalled during a transaction. Usually only a few pages are
** journalled. So the bitmap is usually sparse and has low cardinality.
** But sometimes (for example when during a DROP of a large table) most
** or all of the pages get journalled. In those cases, the bitmap becomes
** dense. The algorithm needs to handle both cases well.
**
** The size of the bitmap is fixed when the object is created.
**
** All bits are clear when the bitmap is created. Individual bits
** may be set or cleared one at a time.
**
** Test operations are about 100 times more common that set operations.
** Clear operations are exceedingly rare. There are usually between
** 5 and 500 set operations per Bitvec object, though the number of sets can
** sometimes grow into tens of thousands or larger. The size of the
** Bitvec object is the number of pages in the database file at the
** start of a transaction, and is thus usually less than a few thousand,
** but can be as large as 2 billion for a really big database.
**
*/
#define BITVEC_SZ 512
/* Round the union size down to the nearest pointer boundary, since that's how
** it will be aligned within the Bitvec struct. */
#define BITVEC_USIZE (((BITVEC_SZ-12)/sizeof(Bitvec*))*sizeof(Bitvec*))
#define BITVEC_NCHAR BITVEC_USIZE
#define BITVEC_NBIT (BITVEC_NCHAR*8)
#define BITVEC_NINT (BITVEC_USIZE/4)
#define BITVEC_MXHASH (BITVEC_NINT/2)
#define BITVEC_NPTR (BITVEC_USIZE/sizeof(Bitvec *))
#define BITVEC_HASH(X) (((X)*37)%BITVEC_NINT)
/*
** A bitmap is an instance of the following structure.
**
** This bitmap records the existance of zero or more bits
** with values between 1 and iSize, inclusive.
**
** There are three possible representations of the bitmap.
** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight
** bitmap. The least significant bit is bit 1.
**
** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is
** a hash table that will hold up to BITVEC_MXHASH distinct values.
**
** Otherwise, the value i is redirected into one of BITVEC_NPTR
** sub-bitmaps pointed to by Bitvec.u.apSub[]. Each subbitmap
** handles up to iDivisor separate values of i. apSub[0] holds
** values between 1 and iDivisor. apSub[1] holds values between
** iDivisor+1 and 2*iDivisor. apSub[N] holds values between
** N*iDivisor+1 and (N+1)*iDivisor. Each subbitmap is normalized
** to hold deal with values between 1 and iDivisor.
*/
struct Bitvec
{
u32 iSize; /* Maximum bit index */
u32 nSet; /* Number of bits that are set */
u32 iDivisor; /* Number of bits handled by each apSub[] entry */
union
{
u8 aBitmap[BITVEC_NCHAR]; /* Bitmap representation */
u32 aHash[BITVEC_NINT]; /* Hash table representation */
Bitvec *apSub[BITVEC_NPTR]; /* Recursive representation */
} u;
};
/*
** Create a new bitmap object able to handle bits between 0 and iSize,
** inclusive. Return a pointer to the new object. Return NULL if
** malloc fails.
*/
SQLITE_PRIVATE Bitvec *
sqlite3BitvecCreate(u32 iSize)
{
Bitvec *p;
assert(sizeof(*p) == BITVEC_SZ);
p = sqlite3MallocZero(sizeof(*p));
if(p)
{
p->iSize = iSize;
}
return p;
}
/*
** Check to see if the i-th bit is set. Return true or false.
** If p is NULL (if the bitmap has not been created) or if
** i is out of range, then return false.
*/
SQLITE_PRIVATE int
sqlite3BitvecTest(Bitvec * p, u32 i)
{
if(p == 0)
return 0;
if(i > p->iSize || i == 0)
return 0;
if(p->iSize <= BITVEC_NBIT)
{
i--;
return (p->u.aBitmap[i / 8] & (1 << (i & 7))) != 0;
}
if(p->iDivisor > 0)
{
u32 bin = (i - 1) / p->iDivisor;
i = (i - 1) % p->iDivisor + 1;
return sqlite3BitvecTest(p->u.apSub[bin], i);
}
else
{
u32 h = BITVEC_HASH(i);
while (p->u.aHash[h])
{
if(p->u.aHash[h] == i)
return 1;
h++;
if(h >= BITVEC_NINT)
h = 0;
}
return 0;
}
}
/*
** Set the i-th bit. Return 0 on success and an error code if
** anything goes wrong.
*/
SQLITE_PRIVATE int
sqlite3BitvecSet(Bitvec * p, u32 i)
{
u32 h;
assert(p != 0);
assert(i > 0);
assert(i <= p->iSize);
if(p->iSize <= BITVEC_NBIT)
{
i--;
p->u.aBitmap[i / 8] |= 1 << (i & 7);
return SQLITE_OK;
}
if(p->iDivisor)
{
u32 bin = (i - 1) / p->iDivisor;
i = (i - 1) % p->iDivisor + 1;
if(p->u.apSub[bin] == 0)
{
sqlite3FaultBeginBenign(SQLITE_FAULTINJECTOR_MALLOC);
p->u.apSub[bin] = sqlite3BitvecCreate(p->iDivisor);
sqlite3FaultEndBenign(SQLITE_FAULTINJECTOR_MALLOC);
if(p->u.apSub[bin] == 0)
return SQLITE_NOMEM;
}
return sqlite3BitvecSet(p->u.apSub[bin], i);
}
h = BITVEC_HASH(i);
while (p->u.aHash[h])
{
if(p->u.aHash[h] == i)
return SQLITE_OK;
h++;
if(h == BITVEC_NINT)
h = 0;
}
p->nSet++;
if(p->nSet >= BITVEC_MXHASH)
{
int j, rc;
u32 aiValues[BITVEC_NINT];
memcpy(aiValues, p->u.aHash, sizeof(aiValues));
memset(p->u.apSub, 0, sizeof(p->u.apSub[0]) * BITVEC_NPTR);
p->iDivisor = (p->iSize + BITVEC_NPTR - 1) / BITVEC_NPTR;
rc = sqlite3BitvecSet(p, i);
for (j = 0; j < BITVEC_NINT; j++)
{
if(aiValues[j])
rc |= sqlite3BitvecSet(p, aiValues[j]);
}
return rc;
}
p->u.aHash[h] = i;
return SQLITE_OK;
}
/*
** Clear the i-th bit. Return 0 on success and an error code if
** anything goes wrong.
*/
SQLITE_PRIVATE void
sqlite3BitvecClear(Bitvec * p, u32 i)
{
assert(p != 0);
assert(i > 0);
if(p->iSize <= BITVEC_NBIT)
{
i--;
p->u.aBitmap[i / 8] &= ~(1 << (i & 7));
}
else if(p->iDivisor)
{
u32 bin = (i - 1) / p->iDivisor;
i = (i - 1) % p->iDivisor + 1;
if(p->u.apSub[bin])
{
sqlite3BitvecClear(p->u.apSub[bin], i);
}
}
else
{
int j;
u32 aiValues[BITVEC_NINT];
memcpy(aiValues, p->u.aHash, sizeof(aiValues));
memset(p->u.aHash, 0, sizeof(p->u.aHash[0]) * BITVEC_NINT);
p->nSet = 0;
for (j = 0; j < BITVEC_NINT; j++)
{
if(aiValues[j] && aiValues[j] != i)
{
sqlite3BitvecSet(p, aiValues[j]);
}
}
}
}
/*
** Destroy a bitmap object. Reclaim all memory used.
*/
SQLITE_PRIVATE void
sqlite3BitvecDestroy(Bitvec * p)
{
if(p == 0)
return;
if(p->iDivisor)
{
int i;
for (i = 0; i < BITVEC_NPTR; i++)
{
sqlite3BitvecDestroy(p->u.apSub[i]);
}
}
sqlite3_free(p);
}
#ifndef SQLITE_OMIT_BUILTIN_TEST
/*
** Let V[] be an array of unsigned characters sufficient to hold
** up to N bits. Let I be an integer between 0 and N. 0<=I<N.
** Then the following macros can be used to set, clear, or test
** individual bits within V.
*/
#define SETBIT(V,I) V[I>>3] |= (1<<(I&7))
#define CLEARBIT(V,I) V[I>>3] &= ~(1<<(I&7))
#define TESTBIT(V,I) (V[I>>3]&(1<<(I&7)))!=0
/*
** This routine runs an extensive test of the Bitvec code.
**
** The input is an array of integers that acts as a program
** to test the Bitvec. The integers are opcodes followed
** by 0, 1, or 3 operands, depending on the opcode. Another
** opcode follows immediately after the last operand.
**
** There are 6 opcodes numbered from 0 through 5. 0 is the
** "halt" opcode and causes the test to end.
**
** 0 Halt and return the number of errors
** 1 N S X Set N bits beginning with S and incrementing by X
** 2 N S X Clear N bits beginning with S and incrementing by X
** 3 N Set N randomly chosen bits
** 4 N Clear N randomly chosen bits
** 5 N S X Set N bits from S increment X in array only, not in bitvec
**
** The opcodes 1 through 4 perform set and clear operations are performed
** on both a Bitvec object and on a linear array of bits obtained from malloc.
** Opcode 5 works on the linear array only, not on the Bitvec.
** Opcode 5 is used to deliberately induce a fault in order to
** confirm that error detection works.
**
** At the conclusion of the test the linear array is compared
** against the Bitvec object. If there are any differences,
** an error is returned. If they are the same, zero is returned.
**
** If a memory allocation error occurs, return -1.
*/
SQLITE_PRIVATE int
sqlite3BitvecBuiltinTest(int sz, int *aOp)
{
Bitvec *pBitvec = 0;
unsigned char *pV = 0;
int rc = -1;
int i, nx, pc, op;
/* Allocate the Bitvec to be tested and a linear array of
** bits to act as the reference */
pBitvec = sqlite3BitvecCreate(sz);
pV = sqlite3_malloc((sz + 7) / 8 + 1);
if(pBitvec == 0 || pV == 0)
goto bitvec_end;
memset(pV, 0, (sz + 7) / 8 + 1);
/* Run the program */
pc = 0;
while ((op = aOp[pc]) != 0)
{
switch (op)
{
case 1:
case 2:
case 5:
{
nx = 4;
i = aOp[pc + 2] - 1;
aOp[pc + 2] += aOp[pc + 3];
break;
}
case 3:
case 4:
default:
{
nx = 2;
sqlite3_randomness(sizeof(i), &i);
break;
}
}
if((--aOp[pc + 1]) > 0)
nx = 0;
pc += nx;
i = (i & 0x7fffffff) % sz;
if((op & 1) != 0)
{
SETBIT(pV, (i + 1));
if(op != 5)
{
if(sqlite3BitvecSet(pBitvec, i + 1))
goto bitvec_end;
}
}
else
{
CLEARBIT(pV, (i + 1));
sqlite3BitvecClear(pBitvec, i + 1);
}
}
/* Test to make sure the linear array exactly matches the
** Bitvec object. Start with the assumption that they do
** match (rc==0). Change rc to non-zero if a discrepancy
** is found.
*/
rc = sqlite3BitvecTest(0, 0) + sqlite3BitvecTest(pBitvec, sz + 1)
+ sqlite3BitvecTest(pBitvec, 0);
for (i = 1; i <= sz; i++)
{
if((TESTBIT(pV, i)) != sqlite3BitvecTest(pBitvec, i))
{
rc = i;
break;
}
}
/* Free allocated structure */
bitvec_end:
sqlite3_free(pV);
sqlite3BitvecDestroy(pBitvec);
return rc;
}
#endif /* SQLITE_OMIT_BUILTIN_TEST */
/************** End of bitvec.c **********************************************/
/************** Begin file pager.c *******************************************/
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This is the implementation of the page cache subsystem or "pager".
**
** The pager is used to access a database disk file. It implements
** atomic commit and rollback through the use of a journal file that
** is separate from the database file. The pager also implements file
** locking to prevent two processes from writing the same database
** file simultaneously, or one process from reading the database while
** another is writing.
**
*/
#ifndef SQLITE_OMIT_DISKIO
/*
** Macros for troubleshooting. Normally turned off
*/
#if 0
#define sqlite3DebugPrintf printf
#define PAGERTRACE1(X) sqlite3DebugPrintf(X)
#define PAGERTRACE2(X,Y) sqlite3DebugPrintf(X,Y)
#define PAGERTRACE3(X,Y,Z) sqlite3DebugPrintf(X,Y,Z)
#define PAGERTRACE4(X,Y,Z,W) sqlite3DebugPrintf(X,Y,Z,W)
#define PAGERTRACE5(X,Y,Z,W,V) sqlite3DebugPrintf(X,Y,Z,W,V)
#else
#define PAGERTRACE1(X)
#define PAGERTRACE2(X,Y)
#define PAGERTRACE3(X,Y,Z)
#define PAGERTRACE4(X,Y,Z,W)
#define PAGERTRACE5(X,Y,Z,W,V)
#endif
/*
** The following two macros are used within the PAGERTRACEX() macros above
** to print out file-descriptors.
**
** PAGERID() takes a pointer to a Pager struct as its argument. The
** associated file-descriptor is returned. FILEHANDLEID() takes an sqlite3_file
** struct as its argument.
*/
#define PAGERID(p) ((int)(p->fd))
#define FILEHANDLEID(fd) ((int)fd)
/*
** The page cache as a whole is always in one of the following
** states:
**
** PAGER_UNLOCK The page cache is not currently reading or
** writing the database file. There is no
** data held in memory. This is the initial
** state.
**
** PAGER_SHARED The page cache is reading the database.
** Writing is not permitted. There can be
** multiple readers accessing the same database
** file at the same time.
**
** PAGER_RESERVED This process has reserved the database for writing
** but has not yet made any changes. Only one process
** at a time can reserve the database. The original
** database file has not been modified so other
** processes may still be reading the on-disk
** database file.
**
** PAGER_EXCLUSIVE The page cache is writing the database.
** Access is exclusive. No other processes or
** threads can be reading or writing while one
** process is writing.
**
** PAGER_SYNCED The pager moves to this state from PAGER_EXCLUSIVE
** after all dirty pages have been written to the
** database file and the file has been synced to
** disk. All that remains to do is to remove or
** truncate the journal file and the transaction
** will be committed.
**
** The page cache comes up in PAGER_UNLOCK. The first time a
** sqlite3PagerGet() occurs, the state transitions to PAGER_SHARED.
** After all pages have been released using sqlite_page_unref(),
** the state transitions back to PAGER_UNLOCK. The first time
** that sqlite3PagerWrite() is called, the state transitions to
** PAGER_RESERVED. (Note that sqlite3PagerWrite() can only be
** called on an outstanding page which means that the pager must
** be in PAGER_SHARED before it transitions to PAGER_RESERVED.)
** PAGER_RESERVED means that there is an open rollback journal.
** The transition to PAGER_EXCLUSIVE occurs before any changes
** are made to the database file, though writes to the rollback
** journal occurs with just PAGER_RESERVED. After an sqlite3PagerRollback()
** or sqlite3PagerCommitPhaseTwo(), the state can go back to PAGER_SHARED,
** or it can stay at PAGER_EXCLUSIVE if we are in exclusive access mode.
*/
#define PAGER_UNLOCK 0
#define PAGER_SHARED 1 /* same as SHARED_LOCK */
#define PAGER_RESERVED 2 /* same as RESERVED_LOCK */
#define PAGER_EXCLUSIVE 4 /* same as EXCLUSIVE_LOCK */
#define PAGER_SYNCED 5
/*
** If the SQLITE_BUSY_RESERVED_LOCK macro is set to true at compile-time,
** then failed attempts to get a reserved lock will invoke the busy callback.
** This is off by default. To see why, consider the following scenario:
**
** Suppose thread A already has a shared lock and wants a reserved lock.
** Thread B already has a reserved lock and wants an exclusive lock. If
** both threads are using their busy callbacks, it might be a long time
** be for one of the threads give up and allows the other to proceed.
** But if the thread trying to get the reserved lock gives up quickly
** (if it never invokes its busy callback) then the contention will be
** resolved quickly.
*/
#ifndef SQLITE_BUSY_RESERVED_LOCK
# define SQLITE_BUSY_RESERVED_LOCK 0
#endif
/*
** This macro rounds values up so that if the value is an address it
** is guaranteed to be an address that is aligned to an 8-byte boundary.
*/
#define FORCE_ALIGNMENT(X) (((X)+7)&~7)
typedef struct PgHdr PgHdr;
/*
** Each pager stores all currently unreferenced pages in a list sorted
** in least-recently-used (LRU) order (i.e. the first item on the list has
** not been referenced in a long time, the last item has been recently
** used). An instance of this structure is included as part of each
** pager structure for this purpose (variable Pager.lru).
**
** Additionally, if memory-management is enabled, all unreferenced pages
** are stored in a global LRU list (global variable sqlite3LruPageList).
**
** In both cases, the PagerLruList.pFirstSynced variable points to
** the first page in the corresponding list that does not require an
** fsync() operation before its memory can be reclaimed. If no such
** page exists, PagerLruList.pFirstSynced is set to NULL.
*/
typedef struct PagerLruList PagerLruList;
struct PagerLruList
{
PgHdr *pFirst; /* First page in LRU list */
PgHdr *pLast; /* Last page in LRU list (the most recently used) */
PgHdr *pFirstSynced; /* First page in list with PgHdr.needSync==0 */
};
/*
** The following structure contains the next and previous pointers used
** to link a PgHdr structure into a PagerLruList linked list.
*/
typedef struct PagerLruLink PagerLruLink;
struct PagerLruLink
{
PgHdr *pNext;
PgHdr *pPrev;
};
/*
** Each in-memory image of a page begins with the following header.
** This header is only visible to this pager module. The client
** code that calls pager sees only the data that follows the header.
**
** Client code should call sqlite3PagerWrite() on a page prior to making
** any modifications to that page. The first time sqlite3PagerWrite()
** is called, the original page contents are written into the rollback
** journal and PgHdr.inJournal and PgHdr.needSync are set. Later, once
** the journal page has made it onto the disk surface, PgHdr.needSync
** is cleared. The modified page cannot be written back into the original
** database file until the journal pages has been synced to disk and the
** PgHdr.needSync has been cleared.
**
** The PgHdr.dirty flag is set when sqlite3PagerWrite() is called and
** is cleared again when the page content is written back to the original
** database file.
**
** Details of important structure elements:
**
** needSync
**
** If this is true, this means that it is not safe to write the page
** content to the database because the original content needed
** for rollback has not by synced to the main rollback journal.
** The original content may have been written to the rollback journal
** but it has not yet been synced. So we cannot write to the database
** file because power failure might cause the page in the journal file
** to never reach the disk. It is as if the write to the journal file
** does not occur until the journal file is synced.
**
** This flag is false if the page content exactly matches what
** currently exists in the database file. The needSync flag is also
** false if the original content has been written to the main rollback
** journal and synced. If the page represents a new page that has
** been added onto the end of the database during the current
** transaction, the needSync flag is true until the original database
** size in the journal header has been synced to disk.
**
** inJournal
**
** This is true if the original page has been written into the main
** rollback journal. This is always false for new pages added to
** the end of the database file during the current transaction.
** And this flag says nothing about whether or not the journal
** has been synced to disk. For pages that are in the original
** database file, the following expression should always be true:
**
** inJournal = sqlite3BitvecTest(pPager->pInJournal, pgno)
**
** The pPager->pInJournal object is only valid for the original
** pages of the database, not new pages that are added to the end
** of the database, so obviously the above expression cannot be
** valid for new pages. For new pages inJournal is always 0.
**
** dirty
**
** When true, this means that the content of the page has been
** modified and needs to be written back to the database file.
** If false, it means that either the content of the page is
** unchanged or else the content is unimportant and we do not
** care whether or not it is preserved.
**
** alwaysRollback
**
** This means that the sqlite3PagerDontRollback() API should be
** ignored for this page. The DontRollback() API attempts to say
** that the content of the page on disk is unimportant (it is an
** unused page on the freelist) so that it is unnecessary to
** rollback changes to this page because the content of the page
** can change without changing the meaning of the database. This
** flag overrides any DontRollback() attempt. This flag is set
** when a page that originally contained valid data is added to
** the freelist. Later in the same transaction, this page might
** be pulled from the freelist and reused for something different
** and at that point the DontRollback() API will be called because
** pages taken from the freelist do not need to be protected by
** the rollback journal. But this flag says that the page was
** not originally part of the freelist so that it still needs to
** be rolled back in spite of any subsequent DontRollback() calls.
**
** needRead
**
** This flag means (when true) that the content of the page has
** not yet been loaded from disk. The in-memory content is just
** garbage. (Actually, we zero the content, but you should not
** make any assumptions about the content nevertheless.) If the
** content is needed in the future, it should be read from the
** original database file.
*/
struct PgHdr
{
Pager *pPager; /* The pager to which this page belongs */
Pgno pgno; /* The page number for this page */
PgHdr *pNextHash, *pPrevHash; /* Hash collision chain for PgHdr.pgno */
PagerLruLink free; /* Next and previous free pages */
PgHdr *pNextAll; /* A list of all pages */
u8 inJournal; /* TRUE if has been written to journal */
u8 dirty; /* TRUE if we need to write back changes */
u8 needSync; /* Sync journal before writing this page */
u8 alwaysRollback; /* Disable DontRollback() for this page */
u8 needRead; /* Read content if PagerWrite() is called */
short int nRef; /* Number of users of this page */
PgHdr *pDirty, *pPrevDirty; /* Dirty pages */
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
PagerLruLink gfree; /* Global list of nRef==0 pages */
#endif
#ifdef SQLITE_CHECK_PAGES
u32 pageHash;
#endif
void *pData; /* Page data */
/* Pager.nExtra bytes of local data appended to this header */
};
/*
** For an in-memory only database, some extra information is recorded about
** each page so that changes can be rolled back. (Journal files are not
** used for in-memory databases.) The following information is added to
** the end of every EXTRA block for in-memory databases.
**
** This information could have been added directly to the PgHdr structure.
** But then it would take up an extra 8 bytes of storage on every PgHdr
** even for disk-based databases. Splitting it out saves 8 bytes. This
** is only a savings of 0.8% but those percentages add up.
*/
typedef struct PgHistory PgHistory;
struct PgHistory
{
u8 *pOrig; /* Original page text. Restore to this on a full rollback */
u8 *pStmt; /* Text as it was at the beginning of the current statement */
PgHdr *pNextStmt, *pPrevStmt; /* List of pages in the statement journal */
u8 inStmt; /* TRUE if in the statement subjournal */
};
/*
** A macro used for invoking the codec if there is one
*/
#ifdef SQLITE_HAS_CODEC
# define CODEC1(P,D,N,X) if( P->xCodec!=0 ){ P->xCodec(P->pCodecArg,D,N,X); }
# define CODEC2(P,D,N,X) ((char*)(P->xCodec!=0?P->xCodec(P->pCodecArg,D,N,X):D))
#else
# define CODEC1(P,D,N,X) /* NO-OP */
# define CODEC2(P,D,N,X) ((char*)D)
#endif
/*
** Convert a pointer to a PgHdr into a pointer to its data
** and back again.
*/
#define PGHDR_TO_DATA(P) ((P)->pData)
#define PGHDR_TO_EXTRA(G,P) ((void*)&((G)[1]))
#define PGHDR_TO_HIST(P,PGR) \
((PgHistory*)&((char*)(&(P)[1]))[(PGR)->nExtra])
/*
** A open page cache is an instance of the following structure.
**
** Pager.errCode may be set to SQLITE_IOERR, SQLITE_CORRUPT, or
** or SQLITE_FULL. Once one of the first three errors occurs, it persists
** and is returned as the result of every major pager API call. The
** SQLITE_FULL return code is slightly different. It persists only until the
** next successful rollback is performed on the pager cache. Also,
** SQLITE_FULL does not affect the sqlite3PagerGet() and sqlite3PagerLookup()
** APIs, they may still be used successfully.
*/
struct Pager
{
sqlite3_vfs *pVfs; /* OS functions to use for IO */
u8 journalOpen; /* True if journal file descriptors is valid */
u8 journalStarted; /* True if header of journal is synced */
u8 useJournal; /* Use a rollback journal on this file */
u8 noReadlock; /* Do not bother to obtain readlocks */
u8 stmtOpen; /* True if the statement subjournal is open */
u8 stmtInUse; /* True we are in a statement subtransaction */
u8 stmtAutoopen; /* Open stmt journal when main journal is opened */
u8 noSync; /* Do not sync the journal if true */
u8 fullSync; /* Do extra syncs of the journal for robustness */
u8 sync_flags; /* One of SYNC_NORMAL or SYNC_FULL */
u8 state; /* PAGER_UNLOCK, _SHARED, _RESERVED, etc. */
u8 tempFile; /* zFilename is a temporary file */
u8 readOnly; /* True for a read-only database */
u8 needSync; /* True if an fsync() is needed on the journal */
u8 dirtyCache; /* True if cached pages have changed */
u8 alwaysRollback; /* Disable DontRollback() for all pages */
u8 memDb; /* True to inhibit all file I/O */
u8 setMaster; /* True if a m-j name has been written to jrnl */
u8 doNotSync; /* Boolean. While true, do not spill the cache */
u8 exclusiveMode; /* Boolean. True if locking_mode==EXCLUSIVE */
u8 journalMode; /* On of the PAGER_JOURNALMODE_* values */
u8 dbModified; /* True if there are any changes to the Db */
u8 changeCountDone; /* Set after incrementing the change-counter */
u32 vfsFlags; /* Flags for sqlite3_vfs.xOpen() */
int errCode; /* One of several kinds of errors */
int dbSize; /* Number of pages in the file */
int origDbSize; /* dbSize before the current change */
int stmtSize; /* Size of database (in pages) at stmt_begin() */
int nRec; /* Number of pages written to the journal */
u32 cksumInit; /* Quasi-random value added to every checksum */
int stmtNRec; /* Number of records in stmt subjournal */
int nExtra; /* Add this many bytes to each in-memory page */
int pageSize; /* Number of bytes in a page */
int nPage; /* Total number of in-memory pages */
int nRef; /* Number of in-memory pages with PgHdr.nRef>0 */
int mxPage; /* Maximum number of pages to hold in cache */
Pgno mxPgno; /* Maximum allowed size of the database */
Bitvec *pInJournal; /* One bit for each page in the database file */
Bitvec *pInStmt; /* One bit for each page in the database */
char *zFilename; /* Name of the database file */
char *zJournal; /* Name of the journal file */
char *zDirectory; /* Directory hold database and journal files */
char *zStmtJrnl; /* Name of the statement journal file */
sqlite3_file *fd, *jfd; /* File descriptors for database and journal */
sqlite3_file *stfd; /* File descriptor for the statement subjournal */
BusyHandler *pBusyHandler; /* Pointer to sqlite.busyHandler */
PagerLruList lru; /* LRU list of free pages */
PgHdr *pAll; /* List of all pages */
PgHdr *pStmt; /* List of pages in the statement subjournal */
PgHdr *pDirty; /* List of all dirty pages */
i64 journalOff; /* Current byte offset in the journal file */
i64 journalHdr; /* Byte offset to previous journal header */
i64 stmtHdrOff; /* First journal header written this statement */
i64 stmtCksum; /* cksumInit when statement was started */
i64 stmtJSize; /* Size of journal at stmt_begin() */
int sectorSize; /* Assumed sector size during rollback */
#ifdef SQLITE_TEST
int nHit, nMiss; /* Cache hits and missing */
int nRead, nWrite; /* Database pages read/written */
#endif
void (*xDestructor) (DbPage *, int); /* Call this routine when freeing pages */
void (*xReiniter) (DbPage *, int); /* Call this routine when reloading pages */
#ifdef SQLITE_HAS_CODEC
void *(*xCodec) (void *, void *, Pgno, int); /* Routine for en/decoding data */
void *pCodecArg; /* First argument to xCodec() */
#endif
int nHash; /* Size of the pager hash table */
PgHdr **aHash; /* Hash table to map page number to PgHdr */
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
Pager *pNext; /* Doubly linked list of pagers on which */
Pager *pPrev; /* sqlite3_release_memory() will work */
int iInUseMM; /* Non-zero if unavailable to MM */
int iInUseDB; /* Non-zero if in sqlite3_release_memory() */
#endif
char *pTmpSpace; /* Pager.pageSize bytes of space for tmp use */
char dbFileVers[16]; /* Changes whenever database file changes */
};
/*
** The following global variables hold counters used for
** testing purposes only. These variables do not exist in
** a non-testing build. These variables are not thread-safe.
*/
#ifdef SQLITE_TEST
SQLITE_API int sqlite3_pager_readdb_count = 0; /* Number of full pages read from DB */
SQLITE_API int sqlite3_pager_writedb_count = 0; /* Number of full pages written to DB */
SQLITE_API int sqlite3_pager_writej_count = 0; /* Number of pages written to journal */
SQLITE_API int sqlite3_pager_pgfree_count = 0; /* Number of cache pages freed */
# define PAGER_INCR(v) v++
#else
# define PAGER_INCR(v)
#endif
/*
** The following variable points to the head of a double-linked list
** of all pagers that are eligible for page stealing by the
** sqlite3_release_memory() interface. Access to this list is
** protected by the SQLITE_MUTEX_STATIC_MEM2 mutex.
*/
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
static Pager *sqlite3PagerList = 0;
static PagerLruList sqlite3LruPageList = { 0, 0, 0 };
#endif
/*
** Journal files begin with the following magic string. The data
** was obtained from /dev/random. It is used only as a sanity check.
**
** Since version 2.8.0, the journal format contains additional sanity
** checking information. If the power fails while the journal is begin
** written, semi-random garbage data might appear in the journal
** file after power is restored. If an attempt is then made
** to roll the journal back, the database could be corrupted. The additional
** sanity checking data is an attempt to discover the garbage in the
** journal and ignore it.
**
** The sanity checking information for the new journal format consists
** of a 32-bit checksum on each page of data. The checksum covers both
** the page number and the pPager->pageSize bytes of data for the page.
** This cksum is initialized to a 32-bit random value that appears in the
** journal file right after the header. The random initializer is important,
** because garbage data that appears at the end of a journal is likely
** data that was once in other files that have now been deleted. If the
** garbage data came from an obsolete journal file, the checksums might
** be correct. But by initializing the checksum to random value which
** is different for every journal, we minimize that risk.
*/
static const unsigned char aJournalMagic[] = {
0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd7,
};
/*
** The size of the header and of each page in the journal is determined
** by the following macros.
*/
#define JOURNAL_PG_SZ(pPager) ((pPager->pageSize) + 8)
/*
** The journal header size for this pager. In the future, this could be
** set to some value read from the disk controller. The important
** characteristic is that it is the same size as a disk sector.
*/
#define JOURNAL_HDR_SZ(pPager) (pPager->sectorSize)
/*
** The macro MEMDB is true if we are dealing with an in-memory database.
** We do this as a macro so that if the SQLITE_OMIT_MEMORYDB macro is set,
** the value of MEMDB will be a constant and the compiler will optimize
** out code that would never execute.
*/
#ifdef SQLITE_OMIT_MEMORYDB
# define MEMDB 0
#else
# define MEMDB pPager->memDb
#endif
/*
** Page number PAGER_MJ_PGNO is never used in an SQLite database (it is
** reserved for working around a windows/posix incompatibility). It is
** used in the journal to signify that the remainder of the journal file
** is devoted to storing a master journal name - there are no more pages to
** roll back. See comments for function writeMasterJournal() for details.
*/
/* #define PAGER_MJ_PGNO(x) (PENDING_BYTE/((x)->pageSize)) */
#define PAGER_MJ_PGNO(x) ((PENDING_BYTE/((x)->pageSize))+1)
/*
** The maximum legal page number is (2^31 - 1).
*/
#define PAGER_MAX_PGNO 2147483647
/*
** The pagerEnter() and pagerLeave() routines acquire and release
** a mutex on each pager. The mutex is recursive.
**
** This is a special-purpose mutex. It only provides mutual exclusion
** between the Btree and the Memory Management sqlite3_release_memory()
** function. It does not prevent, for example, two Btrees from accessing
** the same pager at the same time. Other general-purpose mutexes in
** the btree layer handle that chore.
*/
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
static void
pagerEnter(Pager * p)
{
p->iInUseDB++;
if(p->iInUseMM && p->iInUseDB == 1)
{
#ifndef SQLITE_MUTEX_NOOP
sqlite3_mutex *mutex;
mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2);
#endif
p->iInUseDB = 0;
sqlite3_mutex_enter(mutex);
p->iInUseDB = 1;
sqlite3_mutex_leave(mutex);
}
assert(p->iInUseMM == 0);
}
static void
pagerLeave(Pager * p)
{
p->iInUseDB--;
assert(p->iInUseDB >= 0);
}
#else
# define pagerEnter(X)
# define pagerLeave(X)
#endif
/*
** Add page pPg to the end of the linked list managed by structure
** pList (pPg becomes the last entry in the list - the most recently
** used). Argument pLink should point to either pPg->free or pPg->gfree,
** depending on whether pPg is being added to the pager-specific or
** global LRU list.
*/
static void
listAdd(PagerLruList * pList, PagerLruLink * pLink, PgHdr * pPg)
{
pLink->pNext = 0;
pLink->pPrev = pList->pLast;
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
assert(pLink == &pPg->free || pLink == &pPg->gfree);
assert(pLink == &pPg->gfree || pList != &sqlite3LruPageList);
#endif
if(pList->pLast)
{
int iOff = (char *) pLink - (char *) pPg;
PagerLruLink *pLastLink = (PagerLruLink *) (&((u8 *) pList->pLast)[iOff]);
pLastLink->pNext = pPg;
}
else
{
assert(!pList->pFirst);
pList->pFirst = pPg;
}
pList->pLast = pPg;
if(!pList->pFirstSynced && pPg->needSync == 0)
{
pList->pFirstSynced = pPg;
}
}
/*
** Remove pPg from the list managed by the structure pointed to by pList.
**
** Argument pLink should point to either pPg->free or pPg->gfree, depending
** on whether pPg is being added to the pager-specific or global LRU list.
*/
static void
listRemove(PagerLruList * pList, PagerLruLink * pLink, PgHdr * pPg)
{
int iOff = (char *) pLink - (char *) pPg;
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
assert(pLink == &pPg->free || pLink == &pPg->gfree);
assert(pLink == &pPg->gfree || pList != &sqlite3LruPageList);
#endif
if(pPg == pList->pFirst)
{
pList->pFirst = pLink->pNext;
}
if(pPg == pList->pLast)
{
pList->pLast = pLink->pPrev;
}
if(pLink->pPrev)
{
PagerLruLink *pPrevLink = (PagerLruLink *) (&((u8 *) pLink->pPrev)[iOff]);
pPrevLink->pNext = pLink->pNext;
}
if(pLink->pNext)
{
PagerLruLink *pNextLink = (PagerLruLink *) (&((u8 *) pLink->pNext)[iOff]);
pNextLink->pPrev = pLink->pPrev;
}
if(pPg == pList->pFirstSynced)
{
PgHdr *p = pLink->pNext;
while (p && p->needSync)
{
PagerLruLink *pL = (PagerLruLink *) (&((u8 *) p)[iOff]);
p = pL->pNext;
}
pList->pFirstSynced = p;
}
pLink->pNext = pLink->pPrev = 0;
}
/*
** Add page pPg to the list of free pages for the pager. If
** memory-management is enabled, also add the page to the global
** list of free pages.
*/
static void
lruListAdd(PgHdr * pPg)
{
listAdd(&pPg->pPager->lru, &pPg->free, pPg);
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
if(!pPg->pPager->memDb)
{
sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
listAdd(&sqlite3LruPageList, &pPg->gfree, pPg);
sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
}
#endif
}
/*
** Remove page pPg from the list of free pages for the associated pager.
** If memory-management is enabled, also remove pPg from the global list
** of free pages.
*/
static void
lruListRemove(PgHdr * pPg)
{
listRemove(&pPg->pPager->lru, &pPg->free, pPg);
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
if(!pPg->pPager->memDb)
{
sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
listRemove(&sqlite3LruPageList, &pPg->gfree, pPg);
sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
}
#endif
}
/*
** This function is called just after the needSync flag has been cleared
** from all pages managed by pPager (usually because the journal file
** has just been synced). It updates the pPager->lru.pFirstSynced variable
** and, if memory-management is enabled, the sqlite3LruPageList.pFirstSynced
** variable also.
*/
static void
lruListSetFirstSynced(Pager * pPager)
{
pPager->lru.pFirstSynced = pPager->lru.pFirst;
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
if(!pPager->memDb)
{
PgHdr *p;
sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
for (p = sqlite3LruPageList.pFirst; p && p->needSync; p = p->gfree.pNext);
assert(p == pPager->lru.pFirstSynced || p == sqlite3LruPageList.pFirstSynced);
sqlite3LruPageList.pFirstSynced = p;
sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
}
#endif
}
/*
** Return true if page *pPg has already been written to the statement
** journal (or statement snapshot has been created, if *pPg is part
** of an in-memory database).
*/
static int
pageInStatement(PgHdr * pPg)
{
Pager *pPager = pPg->pPager;
if(MEMDB)
{
return PGHDR_TO_HIST(pPg, pPager)->inStmt;
}
else
{
return sqlite3BitvecTest(pPager->pInStmt, pPg->pgno);
}
}
/*
** Change the size of the pager hash table to N. N must be a power
** of two.
*/
static void
pager_resize_hash_table(Pager * pPager, int N)
{
PgHdr **aHash, *pPg;
assert(N > 0 && (N & (N - 1)) == 0);
#ifdef SQLITE_MALLOC_SOFT_LIMIT
if(N * sizeof(aHash[0]) > SQLITE_MALLOC_SOFT_LIMIT)
{
N = SQLITE_MALLOC_SOFT_LIMIT / sizeof(aHash[0]);
}
if(N == pPager->nHash)
return;
#endif
pagerLeave(pPager);
if(pPager->aHash != 0)
sqlite3FaultBeginBenign(SQLITE_FAULTINJECTOR_MALLOC);
aHash = sqlite3MallocZero(sizeof(aHash[0]) * N);
if(pPager->aHash != 0)
sqlite3FaultEndBenign(SQLITE_FAULTINJECTOR_MALLOC);
pagerEnter(pPager);
if(aHash == 0)
{
/* Failure to rehash is not an error. It is only a performance hit. */
return;
}
sqlite3_free(pPager->aHash);
pPager->nHash = N;
pPager->aHash = aHash;
for (pPg = pPager->pAll; pPg; pPg = pPg->pNextAll)
{
int h;
if(pPg->pgno == 0)
{
assert(pPg->pNextHash == 0 && pPg->pPrevHash == 0);
continue;
}
h = pPg->pgno & (N - 1);
pPg->pNextHash = aHash[h];
if(aHash[h])
{
aHash[h]->pPrevHash = pPg;
}
aHash[h] = pPg;
pPg->pPrevHash = 0;
}
}
/*
** Read a 32-bit integer from the given file descriptor. Store the integer
** that is read in *pRes. Return SQLITE_OK if everything worked, or an
** error code is something goes wrong.
**
** All values are stored on disk as big-endian.
*/
static int
read32bits(sqlite3_file * fd, i64 offset, u32 * pRes)
{
unsigned char ac[4];
int rc = sqlite3OsRead(fd, ac, sizeof(ac), offset);
if(rc == SQLITE_OK)
{
*pRes = sqlite3Get4byte(ac);
}
return rc;
}
/*
** Write a 32-bit integer into a string buffer in big-endian byte order.
*/
#define put32bits(A,B) sqlite3Put4byte((u8*)A,B)
/*
** Write a 32-bit integer into the given file descriptor. Return SQLITE_OK
** on success or an error code is something goes wrong.
*/
static int
write32bits(sqlite3_file * fd, i64 offset, u32 val)
{
char ac[4];
put32bits(ac, val);
return sqlite3OsWrite(fd, ac, 4, offset);
}
/*
** If file pFd is open, call sqlite3OsUnlock() on it.
*/
static int
osUnlock(sqlite3_file * pFd, int eLock)
{
if(!pFd->pMethods)
{
return SQLITE_OK;
}
return sqlite3OsUnlock(pFd, eLock);
}
/*
** This function determines whether or not the atomic-write optimization
** can be used with this pager. The optimization can be used if:
**
** (a) the value returned by OsDeviceCharacteristics() indicates that
** a database page may be written atomically, and
** (b) the value returned by OsSectorSize() is less than or equal
** to the page size.
**
** If the optimization cannot be used, 0 is returned. If it can be used,
** then the value returned is the size of the journal file when it
** contains rollback data for exactly one page.
*/
#ifdef SQLITE_ENABLE_ATOMIC_WRITE
static int
jrnlBufferSize(Pager * pPager)
{
int dc; /* Device characteristics */
int nSector; /* Sector size */
int nPage; /* Page size */
sqlite3_file *fd = pPager->fd;
if(fd->pMethods)
{
dc = sqlite3OsDeviceCharacteristics(fd);
nSector = sqlite3OsSectorSize(fd);
nPage = pPager->pageSize;
}
assert(SQLITE_IOCAP_ATOMIC512 == (512 >> 8));
assert(SQLITE_IOCAP_ATOMIC64K == (65536 >> 8));
if(!fd->pMethods || (dc & (SQLITE_IOCAP_ATOMIC | (nPage >> 8)) && nSector <= nPage))
{
return JOURNAL_HDR_SZ(pPager) + JOURNAL_PG_SZ(pPager);
}
return 0;
}
#endif
/*
** This function should be called when an error occurs within the pager
** code. The first argument is a pointer to the pager structure, the
** second the error-code about to be returned by a pager API function.
** The value returned is a copy of the second argument to this function.
**
** If the second argument is SQLITE_IOERR, SQLITE_CORRUPT, or SQLITE_FULL
** the error becomes persistent. Until the persisten error is cleared,
** subsequent API calls on this Pager will immediately return the same
** error code.
**
** A persistent error indicates that the contents of the pager-cache
** cannot be trusted. This state can be cleared by completely discarding
** the contents of the pager-cache. If a transaction was active when
** the persistent error occured, then the rollback journal may need
** to be replayed.
*/
static void pager_unlock(Pager * pPager);
static int
pager_error(Pager * pPager, int rc)
{
int rc2 = rc & 0xff;
assert(pPager->errCode == SQLITE_FULL ||
pPager->errCode == SQLITE_OK || (pPager->errCode & 0xff) == SQLITE_IOERR);
if(rc2 == SQLITE_FULL || rc2 == SQLITE_IOERR || rc2 == SQLITE_CORRUPT)
{
pPager->errCode = rc;
if(pPager->state == PAGER_UNLOCK && pPager->nRef == 0)
{
/* If the pager is already unlocked, call pager_unlock() now to
** clear the error state and ensure that the pager-cache is
** completely empty.
*/
pager_unlock(pPager);
}
}
return rc;
}
/*
** If SQLITE_CHECK_PAGES is defined then we do some sanity checking
** on the cache using a hash function. This is used for testing
** and debugging only.
*/
#ifdef SQLITE_CHECK_PAGES
/*
** Return a 32-bit hash of the page data for pPage.
*/
static u32
pager_datahash(int nByte, unsigned char *pData)
{
u32 hash = 0;
int i;
for (i = 0; i < nByte; i++)
{
hash = (hash * 1039) + pData[i];
}
return hash;
}
static u32
pager_pagehash(PgHdr * pPage)
{
return pager_datahash(pPage->pPager->pageSize, (unsigned char *) PGHDR_TO_DATA(pPage));
}
/*
** The CHECK_PAGE macro takes a PgHdr* as an argument. If SQLITE_CHECK_PAGES
** is defined, and NDEBUG is not defined, an assert() statement checks
** that the page is either dirty or still matches the calculated page-hash.
*/
#define CHECK_PAGE(x) checkPage(x)
static void
checkPage(PgHdr * pPg)
{
Pager *pPager = pPg->pPager;
assert(!pPg->pageHash || pPager->errCode || MEMDB || pPg->dirty ||
pPg->pageHash == pager_pagehash(pPg));
}
#else
#define pager_datahash(X,Y) 0
#define pager_pagehash(X) 0
#define CHECK_PAGE(x)
#endif
/*
** When this is called the journal file for pager pPager must be open.
** The master journal file name is read from the end of the file and
** written into memory supplied by the caller.
**
** zMaster must point to a buffer of at least nMaster bytes allocated by
** the caller. This should be sqlite3_vfs.mxPathname+1 (to ensure there is
** enough space to write the master journal name). If the master journal
** name in the journal is longer than nMaster bytes (including a
** nul-terminator), then this is handled as if no master journal name
** were present in the journal.
**
** If no master journal file name is present zMaster[0] is set to 0 and
** SQLITE_OK returned.
*/
static int
readMasterJournal(sqlite3_file * pJrnl, char *zMaster, int nMaster)
{
int rc;
u32 len;
i64 szJ;
u32 cksum;
int i;
unsigned char aMagic[8]; /* A buffer to hold the magic header */
zMaster[0] = '\0';
rc = sqlite3OsFileSize(pJrnl, &szJ);
if(rc != SQLITE_OK || szJ < 16)
return rc;
rc = read32bits(pJrnl, szJ - 16, &len);
if(rc != SQLITE_OK)
return rc;
if(len >= nMaster)
{
return SQLITE_OK;
}
rc = read32bits(pJrnl, szJ - 12, &cksum);
if(rc != SQLITE_OK)
return rc;
rc = sqlite3OsRead(pJrnl, aMagic, 8, szJ - 8);
if(rc != SQLITE_OK || memcmp(aMagic, aJournalMagic, 8))
return rc;
rc = sqlite3OsRead(pJrnl, zMaster, len, szJ - 16 - len);
if(rc != SQLITE_OK)
{
return rc;
}
zMaster[len] = '\0';
/* See if the checksum matches the master journal name */
for (i = 0; i < len; i++)
{
cksum -= zMaster[i];
}
if(cksum)
{
/* If the checksum doesn't add up, then one or more of the disk sectors
** containing the master journal filename is corrupted. This means
** definitely roll back, so just return SQLITE_OK and report a (nul)
** master-journal filename.
*/
zMaster[0] = '\0';
}
return SQLITE_OK;
}
/*
** Seek the journal file descriptor to the next sector boundary where a
** journal header may be read or written. Pager.journalOff is updated with
** the new seek offset.
**
** i.e for a sector size of 512:
**
** Input Offset Output Offset
** ---------------------------------------
** 0 0
** 512 512
** 100 512
** 2000 2048
**
*/
static void
seekJournalHdr(Pager * pPager)
{
i64 offset = 0;
i64 c = pPager->journalOff;
if(c)
{
offset = ((c - 1) / JOURNAL_HDR_SZ(pPager) + 1) * JOURNAL_HDR_SZ(pPager);
}
assert(offset % JOURNAL_HDR_SZ(pPager) == 0);
assert(offset >= c);
assert((offset - c) < JOURNAL_HDR_SZ(pPager));
pPager->journalOff = offset;
}
/*
** Write zeros over the header of the journal file. This has the
** effect of invalidating the journal file and committing the
** transaction.
*/
static int
zeroJournalHdr(Pager * pPager, int doTruncate)
{
int rc = SQLITE_OK;
static const char zeroHdr[28];
if(pPager->journalOff)
{
IOTRACE(("JZEROHDR %p\n", pPager)) if(doTruncate)
{
rc = sqlite3OsTruncate(pPager->jfd, 0);
}
else
{
rc = sqlite3OsWrite(pPager->jfd, zeroHdr, sizeof(zeroHdr), 0);
}
if(rc == SQLITE_OK)
{
rc = sqlite3OsSync(pPager->jfd, SQLITE_SYNC_DATAONLY | pPager->sync_flags);
}
}
return rc;
}
/*
** The journal file must be open when this routine is called. A journal
** header (JOURNAL_HDR_SZ bytes) is written into the journal file at the
** current location.
**
** The format for the journal header is as follows:
** - 8 bytes: Magic identifying journal format.
** - 4 bytes: Number of records in journal, or -1 no-sync mode is on.
** - 4 bytes: Random number used for page hash.
** - 4 bytes: Initial database page count.
** - 4 bytes: Sector size used by the process that wrote this journal.
** - 4 bytes: Database page size.
**
** Followed by (JOURNAL_HDR_SZ - 28) bytes of unused space.
*/
static int
writeJournalHdr(Pager * pPager)
{
int rc = SQLITE_OK;
char *zHeader = pPager->pTmpSpace;
int nHeader = pPager->pageSize;
int nWrite;
if(nHeader > JOURNAL_HDR_SZ(pPager))
{
nHeader = JOURNAL_HDR_SZ(pPager);
}
if(pPager->stmtHdrOff == 0)
{
pPager->stmtHdrOff = pPager->journalOff;
}
seekJournalHdr(pPager);
pPager->journalHdr = pPager->journalOff;
memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic));
/*
** Write the nRec Field - the number of page records that follow this
** journal header. Normally, zero is written to this value at this time.
** After the records are added to the journal (and the journal synced,
** if in full-sync mode), the zero is overwritten with the true number
** of records (see syncJournal()).
**
** A faster alternative is to write 0xFFFFFFFF to the nRec field. When
** reading the journal this value tells SQLite to assume that the
** rest of the journal file contains valid page records. This assumption
** is dangerous, as if a failure occured whilst writing to the journal
** file it may contain some garbage data. There are two scenarios
** where this risk can be ignored:
**
** * When the pager is in no-sync mode. Corruption can follow a
** power failure in this case anyway.
**
** * When the SQLITE_IOCAP_SAFE_APPEND flag is set. This guarantees
** that garbage data is never appended to the journal file.
*/
assert(pPager->fd->pMethods || pPager->noSync);
if((pPager->noSync)
|| (sqlite3OsDeviceCharacteristics(pPager->fd) & SQLITE_IOCAP_SAFE_APPEND))
{
put32bits(&zHeader[sizeof(aJournalMagic)], 0xffffffff);
}
else
{
put32bits(&zHeader[sizeof(aJournalMagic)], 0);
}
/* The random check-hash initialiser */
sqlite3_randomness(sizeof(pPager->cksumInit), &pPager->cksumInit);
put32bits(&zHeader[sizeof(aJournalMagic) + 4], pPager->cksumInit);
/* The initial database size */
put32bits(&zHeader[sizeof(aJournalMagic) + 8], pPager->dbSize);
/* The assumed sector size for this process */
put32bits(&zHeader[sizeof(aJournalMagic) + 12], pPager->sectorSize);
if(pPager->journalHdr == 0)
{
/* The page size */
put32bits(&zHeader[sizeof(aJournalMagic) + 16], pPager->pageSize);
}
for (nWrite = 0; rc == SQLITE_OK && nWrite < JOURNAL_HDR_SZ(pPager); nWrite += nHeader)
{
IOTRACE(("JHDR %p %lld %d\n", pPager, pPager->journalHdr, nHeader))
rc = sqlite3OsWrite(pPager->jfd, zHeader, nHeader, pPager->journalOff);
pPager->journalOff += nHeader;
}
return rc;
}
/*
** The journal file must be open when this is called. A journal header file
** (JOURNAL_HDR_SZ bytes) is read from the current location in the journal
** file. See comments above function writeJournalHdr() for a description of
** the journal header format.
**
** If the header is read successfully, *nRec is set to the number of
** page records following this header and *dbSize is set to the size of the
** database before the transaction began, in pages. Also, pPager->cksumInit
** is set to the value read from the journal header. SQLITE_OK is returned
** in this case.
**
** If the journal header file appears to be corrupted, SQLITE_DONE is
** returned and *nRec and *dbSize are not set. If JOURNAL_HDR_SZ bytes
** cannot be read from the journal file an error code is returned.
*/
static int
readJournalHdr(Pager * pPager, i64 journalSize, u32 * pNRec, u32 * pDbSize)
{
int rc;
unsigned char aMagic[8]; /* A buffer to hold the magic header */
i64 jrnlOff;
int iPageSize;
seekJournalHdr(pPager);
if(pPager->journalOff + JOURNAL_HDR_SZ(pPager) > journalSize)
{
return SQLITE_DONE;
}
jrnlOff = pPager->journalOff;
rc = sqlite3OsRead(pPager->jfd, aMagic, sizeof(aMagic), jrnlOff);
if(rc)
return rc;
jrnlOff += sizeof(aMagic);
if(memcmp(aMagic, aJournalMagic, sizeof(aMagic)) != 0)
{
return SQLITE_DONE;
}
rc = read32bits(pPager->jfd, jrnlOff, pNRec);
if(rc)
return rc;
rc = read32bits(pPager->jfd, jrnlOff + 4, &pPager->cksumInit);
if(rc)
return rc;
rc = read32bits(pPager->jfd, jrnlOff + 8, pDbSize);
if(rc)
return rc;
rc = read32bits(pPager->jfd, jrnlOff + 16, (u32 *) & iPageSize);
if(rc == SQLITE_OK
&& iPageSize >= 512
&& iPageSize <= SQLITE_MAX_PAGE_SIZE && ((iPageSize - 1) & iPageSize) == 0)
{
u16 pagesize = iPageSize;
rc = sqlite3PagerSetPagesize(pPager, &pagesize);
}
if(rc)
return rc;
/* Update the assumed sector-size to match the value used by
** the process that created this journal. If this journal was
** created by a process other than this one, then this routine
** is being called from within pager_playback(). The local value
** of Pager.sectorSize is restored at the end of that routine.
*/
rc = read32bits(pPager->jfd, jrnlOff + 12, (u32 *) & pPager->sectorSize);
if(rc)
return rc;
pPager->journalOff += JOURNAL_HDR_SZ(pPager);
return SQLITE_OK;
}
/*
** Write the supplied master journal name into the journal file for pager
** pPager at the current location. The master journal name must be the last
** thing written to a journal file. If the pager is in full-sync mode, the
** journal file descriptor is advanced to the next sector boundary before
** anything is written. The format is:
**
** + 4 bytes: PAGER_MJ_PGNO.
** + N bytes: length of master journal name.
** + 4 bytes: N
** + 4 bytes: Master journal name checksum.
** + 8 bytes: aJournalMagic[].
**
** The master journal page checksum is the sum of the bytes in the master
** journal name.
**
** If zMaster is a NULL pointer (occurs for a single database transaction),
** this call is a no-op.
*/
static int
writeMasterJournal(Pager * pPager, const char *zMaster)
{
int rc;
int len;
int i;
i64 jrnlOff;
i64 jrnlSize;
u32 cksum = 0;
char zBuf[sizeof(aJournalMagic) + 2 * 4];
if(!zMaster || pPager->setMaster)
return SQLITE_OK;
pPager->setMaster = 1;
len = strlen(zMaster);
for (i = 0; i < len; i++)
{
cksum += zMaster[i];
}
/* If in full-sync mode, advance to the next disk sector before writing
** the master journal name. This is in case the previous page written to
** the journal has already been synced.
*/
if(pPager->fullSync)
{
seekJournalHdr(pPager);
}
jrnlOff = pPager->journalOff;
pPager->journalOff += (len + 20);
rc = write32bits(pPager->jfd, jrnlOff, PAGER_MJ_PGNO(pPager));
if(rc != SQLITE_OK)
return rc;
jrnlOff += 4;
rc = sqlite3OsWrite(pPager->jfd, zMaster, len, jrnlOff);
if(rc != SQLITE_OK)
return rc;
jrnlOff += len;
put32bits(zBuf, len);
put32bits(&zBuf[4], cksum);
memcpy(&zBuf[8], aJournalMagic, sizeof(aJournalMagic));
rc = sqlite3OsWrite(pPager->jfd, zBuf, 8 + sizeof(aJournalMagic), jrnlOff);
jrnlOff += 8 + sizeof(aJournalMagic);
pPager->needSync = !pPager->noSync;
/* If the pager is in peristent-journal mode, then the physical
** journal-file may extend past the end of the master-journal name
** and 8 bytes of magic data just written to the file. This is
** dangerous because the code to rollback a hot-journal file
** will not be able to find the master-journal name to determine
** whether or not the journal is hot.
**
** Easiest thing to do in this scenario is to truncate the journal
** file to the required size.
*/
if((rc == SQLITE_OK)
&& (rc = sqlite3OsFileSize(pPager->jfd, &jrnlSize)) == SQLITE_OK && jrnlSize > jrnlOff)
{
rc = sqlite3OsTruncate(pPager->jfd, jrnlOff);
}
return rc;
}
/*
** Add or remove a page from the list of all pages that are in the
** statement journal.
**
** The Pager keeps a separate list of pages that are currently in
** the statement journal. This helps the sqlite3PagerStmtCommit()
** routine run MUCH faster for the common case where there are many
** pages in memory but only a few are in the statement journal.
*/
static void
page_add_to_stmt_list(PgHdr * pPg)
{
Pager *pPager = pPg->pPager;
PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
assert(MEMDB);
if(!pHist->inStmt)
{
assert(pHist->pPrevStmt == 0 && pHist->pNextStmt == 0);
if(pPager->pStmt)
{
PGHDR_TO_HIST(pPager->pStmt, pPager)->pPrevStmt = pPg;
}
pHist->pNextStmt = pPager->pStmt;
pPager->pStmt = pPg;
pHist->inStmt = 1;
}
}
/*
** Find a page in the hash table given its page number. Return
** a pointer to the page or NULL if not found.
*/
static PgHdr *
pager_lookup(Pager * pPager, Pgno pgno)
{
PgHdr *p;
if(pPager->aHash == 0)
return 0;
p = pPager->aHash[pgno & (pPager->nHash - 1)];
while (p && p->pgno != pgno)
{
p = p->pNextHash;
}
return p;
}
/*
** Clear the in-memory cache. This routine
** sets the state of the pager back to what it was when it was first
** opened. Any outstanding pages are invalidated and subsequent attempts
** to access those pages will likely result in a coredump.
*/
static void
pager_reset(Pager * pPager)
{
PgHdr *pPg, *pNext;
if(pPager->errCode)
return;
for (pPg = pPager->pAll; pPg; pPg = pNext)
{
IOTRACE(("PGFREE %p %d\n", pPager, pPg->pgno));
PAGER_INCR(sqlite3_pager_pgfree_count);
pNext = pPg->pNextAll;
lruListRemove(pPg);
sqlite3_free(pPg->pData);
sqlite3_free(pPg);
}
assert(pPager->lru.pFirst == 0);
assert(pPager->lru.pFirstSynced == 0);
assert(pPager->lru.pLast == 0);
pPager->pStmt = 0;
pPager->pAll = 0;
pPager->pDirty = 0;
pPager->nHash = 0;
sqlite3_free(pPager->aHash);
pPager->nPage = 0;
pPager->aHash = 0;
pPager->nRef = 0;
}
/*
** Unlock the database file.
**
** If the pager is currently in error state, discard the contents of
** the cache and reset the Pager structure internal state. If there is
** an open journal-file, then the next time a shared-lock is obtained
** on the pager file (by this or any other process), it will be
** treated as a hot-journal and rolled back.
*/
static void
pager_unlock(Pager * pPager)
{
if(!pPager->exclusiveMode)
{
if(!MEMDB)
{
int rc = osUnlock(pPager->fd, NO_LOCK);
if(rc)
pPager->errCode = rc;
pPager->dbSize = -1;
IOTRACE(("UNLOCK %p\n", pPager))
/* Always close the journal file when dropping the database lock.
** Otherwise, another connection with journal_mode=delete might
** delete the file out from under us.
*/
if(pPager->journalOpen)
{
sqlite3OsClose(pPager->jfd);
pPager->journalOpen = 0;
sqlite3BitvecDestroy(pPager->pInJournal);
pPager->pInJournal = 0;
}
/* If Pager.errCode is set, the contents of the pager cache cannot be
** trusted. Now that the pager file is unlocked, the contents of the
** cache can be discarded and the error code safely cleared.
*/
if(pPager->errCode)
{
if(rc == SQLITE_OK)
pPager->errCode = SQLITE_OK;
pager_reset(pPager);
if(pPager->stmtOpen)
{
sqlite3OsClose(pPager->stfd);
sqlite3BitvecDestroy(pPager->pInStmt);
pPager->pInStmt = 0;
}
pPager->stmtOpen = 0;
pPager->stmtInUse = 0;
pPager->journalOff = 0;
pPager->journalStarted = 0;
pPager->stmtAutoopen = 0;
pPager->origDbSize = 0;
}
}
if(!MEMDB || pPager->errCode == SQLITE_OK)
{
pPager->state = PAGER_UNLOCK;
pPager->changeCountDone = 0;
}
}
}
/*
** Execute a rollback if a transaction is active and unlock the
** database file. If the pager has already entered the error state,
** do not attempt the rollback.
*/
static void
pagerUnlockAndRollback(Pager * p)
{
/* assert( p->state>=PAGER_RESERVED || p->journalOpen==0 ); */
if(p->errCode == SQLITE_OK && p->state >= PAGER_RESERVED)
{
sqlite3FaultBeginBenign(-1);
sqlite3PagerRollback(p);
sqlite3FaultEndBenign(-1);
}
pager_unlock(p);
#if 0
assert(p->errCode || !p->journalOpen || (p->exclusiveMode && !p->journalOff));
assert(p->errCode || !p->stmtOpen || p->exclusiveMode);
#endif
}
/*
** This routine ends a transaction. A transaction is ended by either
** a COMMIT or a ROLLBACK.
**
** When this routine is called, the pager has the journal file open and
** a RESERVED or EXCLUSIVE lock on the database. This routine will release
** the database lock and acquires a SHARED lock in its place if that is
** the appropriate thing to do. Release locks usually is appropriate,
** unless we are in exclusive access mode or unless this is a
** COMMIT AND BEGIN or ROLLBACK AND BEGIN operation.
**
** The journal file is either deleted or truncated.
**
** TODO: Consider keeping the journal file open for temporary databases.
** This might give a performance improvement on windows where opening
** a file is an expensive operation.
*/
static int
pager_end_transaction(Pager * pPager, int hasMaster)
{
PgHdr *pPg;
int rc = SQLITE_OK;
int rc2 = SQLITE_OK;
assert(!MEMDB);
if(pPager->state < PAGER_RESERVED)
{
return SQLITE_OK;
}
sqlite3PagerStmtCommit(pPager);
if(pPager->stmtOpen && !pPager->exclusiveMode)
{
sqlite3OsClose(pPager->stfd);
pPager->stmtOpen = 0;
}
if(pPager->journalOpen)
{
if(pPager->exclusiveMode || pPager->journalMode == PAGER_JOURNALMODE_PERSIST)
{
rc = zeroJournalHdr(pPager, hasMaster);
pager_error(pPager, rc);
pPager->journalOff = 0;
pPager->journalStarted = 0;
}
else
{
sqlite3OsClose(pPager->jfd);
pPager->journalOpen = 0;
if(rc == SQLITE_OK)
{
rc = sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0);
}
}
sqlite3BitvecDestroy(pPager->pInJournal);
pPager->pInJournal = 0;
for (pPg = pPager->pAll; pPg; pPg = pPg->pNextAll)
{
pPg->inJournal = 0;
pPg->dirty = 0;
pPg->needSync = 0;
pPg->alwaysRollback = 0;
#ifdef SQLITE_CHECK_PAGES
pPg->pageHash = pager_pagehash(pPg);
#endif
}
pPager->pDirty = 0;
pPager->dirtyCache = 0;
pPager->nRec = 0;
}
else
{
assert(pPager->pInJournal == 0);
}
if(!pPager->exclusiveMode)
{
rc2 = osUnlock(pPager->fd, SHARED_LOCK);
pPager->state = PAGER_SHARED;
}
else if(pPager->state == PAGER_SYNCED)
{
pPager->state = PAGER_EXCLUSIVE;
}
pPager->origDbSize = 0;
pPager->setMaster = 0;
pPager->needSync = 0;
lruListSetFirstSynced(pPager);
pPager->dbSize = -1;
pPager->dbModified = 0;
return (rc == SQLITE_OK ? rc2 : rc);
}
/*
** Compute and return a checksum for the page of data.
**
** This is not a real checksum. It is really just the sum of the
** random initial value and the page number. We experimented with
** a checksum of the entire data, but that was found to be too slow.
**
** Note that the page number is stored at the beginning of data and
** the checksum is stored at the end. This is important. If journal
** corruption occurs due to a power failure, the most likely scenario
** is that one end or the other of the record will be changed. It is
** much less likely that the two ends of the journal record will be
** correct and the middle be corrupt. Thus, this "checksum" scheme,
** though fast and simple, catches the mostly likely kind of corruption.
**
** FIX ME: Consider adding every 200th (or so) byte of the data to the
** checksum. That way if a single page spans 3 or more disk sectors and
** only the middle sector is corrupt, we will still have a reasonable
** chance of failing the checksum and thus detecting the problem.
*/
static u32
pager_cksum(Pager * pPager, const u8 * aData)
{
u32 cksum = pPager->cksumInit;
int i = pPager->pageSize - 200;
while (i > 0)
{
cksum += aData[i];
i -= 200;
}
return cksum;
}
/* Forward declaration */
static void makeClean(PgHdr *);
/*
** Read a single page from the journal file opened on file descriptor
** jfd. Playback this one page.
**
** If useCksum==0 it means this journal does not use checksums. Checksums
** are not used in statement journals because statement journals do not
** need to survive power failures.
*/
static int
pager_playback_one_page(Pager * pPager, sqlite3_file * jfd, i64 offset, int useCksum)
{
int rc;
PgHdr *pPg; /* An existing page in the cache */
Pgno pgno; /* The page number of a page in journal */
u32 cksum; /* Checksum used for sanity checking */
u8 *aData = (u8 *) pPager->pTmpSpace; /* Temp storage for a page */
/* useCksum should be true for the main journal and false for
** statement journals. Verify that this is always the case
*/
assert(jfd == (useCksum ? pPager->jfd : pPager->stfd));
assert(aData);
rc = read32bits(jfd, offset, &pgno);
if(rc != SQLITE_OK)
return rc;
rc = sqlite3OsRead(jfd, aData, pPager->pageSize, offset + 4);
if(rc != SQLITE_OK)
return rc;
pPager->journalOff += pPager->pageSize + 4;
/* Sanity checking on the page. This is more important that I originally
** thought. If a power failure occurs while the journal is being written,
** it could cause invalid data to be written into the journal. We need to
** detect this invalid data (with high probability) and ignore it.
*/
if(pgno == 0 || pgno == PAGER_MJ_PGNO(pPager))
{
return SQLITE_DONE;
}
if(pgno > (unsigned) pPager->dbSize)
{
return SQLITE_OK;
}
if(useCksum)
{
rc = read32bits(jfd, offset + pPager->pageSize + 4, &cksum);
if(rc)
return rc;
pPager->journalOff += 4;
if(pager_cksum(pPager, aData) != cksum)
{
return SQLITE_DONE;
}
}
assert(pPager->state == PAGER_RESERVED || pPager->state >= PAGER_EXCLUSIVE);
/* If the pager is in RESERVED state, then there must be a copy of this
** page in the pager cache. In this case just update the pager cache,
** not the database file. The page is left marked dirty in this case.
**
** An exception to the above rule: If the database is in no-sync mode
** and a page is moved during an incremental vacuum then the page may
** not be in the pager cache. Later: if a malloc() or IO error occurs
** during a Movepage() call, then the page may not be in the cache
** either. So the condition described in the above paragraph is not
** assert()able.
**
** If in EXCLUSIVE state, then we update the pager cache if it exists
** and the main file. The page is then marked not dirty.
**
** Ticket #1171: The statement journal might contain page content that is
** different from the page content at the start of the transaction.
** This occurs when a page is changed prior to the start of a statement
** then changed again within the statement. When rolling back such a
** statement we must not write to the original database unless we know
** for certain that original page contents are synced into the main rollback
** journal. Otherwise, a power loss might leave modified data in the
** database file without an entry in the rollback journal that can
** restore the database to its original form. Two conditions must be
** met before writing to the database files. (1) the database must be
** locked. (2) we know that the original page content is fully synced
** in the main journal either because the page is not in cache or else
** the page is marked as needSync==0.
**
** 2008-04-14: When attempting to vacuum a corrupt database file, it
** is possible to fail a statement on a database that does not yet exist.
** Do not attempt to write if database file has never been opened.
*/
pPg = pager_lookup(pPager, pgno);
PAGERTRACE4("PLAYBACK %d page %d hash(%08x)\n",
PAGERID(pPager), pgno, pager_datahash(pPager->pageSize, aData));
if(pPager->state >= PAGER_EXCLUSIVE && (pPg == 0 || pPg->needSync == 0)
&& pPager->fd->pMethods)
{
i64 offset = (pgno - 1) * (i64) pPager->pageSize;
rc = sqlite3OsWrite(pPager->fd, aData, pPager->pageSize, offset);
if(pPg)
{
makeClean(pPg);
}
}
if(pPg)
{
/* No page should ever be explicitly rolled back that is in use, except
** for page 1 which is held in use in order to keep the lock on the
** database active. However such a page may be rolled back as a result
** of an internal error resulting in an automatic call to
** sqlite3PagerRollback().
*/
void *pData;
/* assert( pPg->nRef==0 || pPg->pgno==1 ); */
pData = PGHDR_TO_DATA(pPg);
memcpy(pData, aData, pPager->pageSize);
if(pPager->xReiniter)
{
pPager->xReiniter(pPg, pPager->pageSize);
}
#ifdef SQLITE_CHECK_PAGES
pPg->pageHash = pager_pagehash(pPg);
#endif
/* If this was page 1, then restore the value of Pager.dbFileVers.
** Do this before any decoding. */
if(pgno == 1)
{
memcpy(&pPager->dbFileVers, &((u8 *) pData)[24],
sizeof(pPager->dbFileVers));
}
/* Decode the page just read from disk */
CODEC1(pPager, pData, pPg->pgno, 3);
}
return rc;
}
/*
** Parameter zMaster is the name of a master journal file. A single journal
** file that referred to the master journal file has just been rolled back.
** This routine checks if it is possible to delete the master journal file,
** and does so if it is.
**
** Argument zMaster may point to Pager.pTmpSpace. So that buffer is not
** available for use within this function.
**
**
** The master journal file contains the names of all child journals.
** To tell if a master journal can be deleted, check to each of the
** children. If all children are either missing or do not refer to
** a different master journal, then this master journal can be deleted.
*/
static int
pager_delmaster(Pager * pPager, const char *zMaster)
{
sqlite3_vfs *pVfs = pPager->pVfs;
int rc;
int master_open = 0;
sqlite3_file *pMaster;
sqlite3_file *pJournal;
char *zMasterJournal = 0; /* Contents of master journal file */
i64 nMasterJournal; /* Size of master journal file */
/* Open the master journal file exclusively in case some other process
** is running this routine also. Not that it makes too much difference.
*/
pMaster = (sqlite3_file *) sqlite3_malloc(pVfs->szOsFile * 2);
pJournal = (sqlite3_file *) (((u8 *) pMaster) + pVfs->szOsFile);
if(!pMaster)
{
rc = SQLITE_NOMEM;
}
else
{
int flags = (SQLITE_OPEN_READONLY | SQLITE_OPEN_MASTER_JOURNAL);
rc = sqlite3OsOpen(pVfs, zMaster, pMaster, flags, 0);
}
if(rc != SQLITE_OK)
goto delmaster_out;
master_open = 1;
rc = sqlite3OsFileSize(pMaster, &nMasterJournal);
if(rc != SQLITE_OK)
goto delmaster_out;
if(nMasterJournal > 0)
{
char *zJournal;
char *zMasterPtr = 0;
int nMasterPtr = pPager->pVfs->mxPathname + 1;
/* Load the entire master journal file into space obtained from
** sqlite3_malloc() and pointed to by zMasterJournal.
*/
zMasterJournal = (char *) sqlite3_malloc(nMasterJournal + nMasterPtr);
if(!zMasterJournal)
{
rc = SQLITE_NOMEM;
goto delmaster_out;
}
zMasterPtr = &zMasterJournal[nMasterJournal];
rc = sqlite3OsRead(pMaster, zMasterJournal, nMasterJournal, 0);
if(rc != SQLITE_OK)
goto delmaster_out;
zJournal = zMasterJournal;
while ((zJournal - zMasterJournal) < nMasterJournal)
{
rc = sqlite3OsAccess(pVfs, zJournal, SQLITE_ACCESS_EXISTS);
if(rc != 0 && rc != 1)
{
rc = SQLITE_IOERR_NOMEM;
goto delmaster_out;
}
if(rc == 1)
{
/* One of the journals pointed to by the master journal exists.
** Open it and check if it points at the master journal. If
** so, return without deleting the master journal file.
*/
int c;
int flags = (SQLITE_OPEN_READONLY | SQLITE_OPEN_MAIN_JOURNAL);
rc = sqlite3OsOpen(pVfs, zJournal, pJournal, flags, 0);
if(rc != SQLITE_OK)
{
goto delmaster_out;
}
rc = readMasterJournal(pJournal, zMasterPtr, nMasterPtr);
sqlite3OsClose(pJournal);
if(rc != SQLITE_OK)
{
goto delmaster_out;
}
c = zMasterPtr[0] != 0 && strcmp(zMasterPtr, zMaster) == 0;
if(c)
{
/* We have a match. Do not delete the master journal file. */
goto delmaster_out;
}
}
zJournal += (strlen(zJournal) + 1);
}
}
rc = sqlite3OsDelete(pVfs, zMaster, 0);
delmaster_out:
if(zMasterJournal)
{
sqlite3_free(zMasterJournal);
}
if(master_open)
{
sqlite3OsClose(pMaster);
}
sqlite3_free(pMaster);
return rc;
}
static void pager_truncate_cache(Pager * pPager);
/*
** Truncate the main file of the given pager to the number of pages
** indicated. Also truncate the cached representation of the file.
**
** Might might be the case that the file on disk is smaller than nPage.
** This can happen, for example, if we are in the middle of a transaction
** which has extended the file size and the new pages are still all held
** in cache, then an INSERT or UPDATE does a statement rollback. Some
** operating system implementations can get confused if you try to
** truncate a file to some size that is larger than it currently is,
** so detect this case and write a single zero byte to the end of the new
** file instead.
*/
static int
pager_truncate(Pager * pPager, int nPage)
{
int rc = SQLITE_OK;
if(pPager->state >= PAGER_EXCLUSIVE && pPager->fd->pMethods)
{
i64 currentSize, newSize;
rc = sqlite3OsFileSize(pPager->fd, &currentSize);
newSize = pPager->pageSize * (i64) nPage;
if(rc == SQLITE_OK && currentSize != newSize)
{
if(currentSize > newSize)
{
rc = sqlite3OsTruncate(pPager->fd, newSize);
}
else
{
rc = sqlite3OsWrite(pPager->fd, "", 1, newSize - 1);
}
}
}
if(rc == SQLITE_OK)
{
pPager->dbSize = nPage;
pager_truncate_cache(pPager);
}
return rc;
}
/*
** Set the sectorSize for the given pager.
**
** The sector size is at least as big as the sector size reported
** by sqlite3OsSectorSize(). The minimum sector size is 512.
*/
static void
setSectorSize(Pager * pPager)
{
assert(pPager->fd->pMethods || pPager->tempFile);
if(!pPager->tempFile)
{
/* Sector size doesn't matter for temporary files. Also, the file
** may not have been opened yet, in whcih case the OsSectorSize()
** call will segfault.
*/
pPager->sectorSize = sqlite3OsSectorSize(pPager->fd);
}
if(pPager->sectorSize < 512)
{
pPager->sectorSize = 512;
}
}
/*
** Playback the journal and thus restore the database file to
** the state it was in before we started making changes.
**
** The journal file format is as follows:
**
** (1) 8 byte prefix. A copy of aJournalMagic[].
** (2) 4 byte big-endian integer which is the number of valid page records
** in the journal. If this value is 0xffffffff, then compute the
** number of page records from the journal size.
** (3) 4 byte big-endian integer which is the initial value for the
** sanity checksum.
** (4) 4 byte integer which is the number of pages to truncate the
** database to during a rollback.
** (5) 4 byte big-endian integer which is the sector size. The header
** is this many bytes in size.
** (6) 4 byte big-endian integer which is the page case.
** (7) 4 byte integer which is the number of bytes in the master journal
** name. The value may be zero (indicate that there is no master
** journal.)
** (8) N bytes of the master journal name. The name will be nul-terminated
** and might be shorter than the value read from (5). If the first byte
** of the name is \000 then there is no master journal. The master
** journal name is stored in UTF-8.
** (9) Zero or more pages instances, each as follows:
** + 4 byte page number.
** + pPager->pageSize bytes of data.
** + 4 byte checksum
**
** When we speak of the journal header, we mean the first 8 items above.
** Each entry in the journal is an instance of the 9th item.
**
** Call the value from the second bullet "nRec". nRec is the number of
** valid page entries in the journal. In most cases, you can compute the
** value of nRec from the size of the journal file. But if a power
** failure occurred while the journal was being written, it could be the
** case that the size of the journal file had already been increased but
** the extra entries had not yet made it safely to disk. In such a case,
** the value of nRec computed from the file size would be too large. For
** that reason, we always use the nRec value in the header.
**
** If the nRec value is 0xffffffff it means that nRec should be computed
** from the file size. This value is used when the user selects the
** no-sync option for the journal. A power failure could lead to corruption
** in this case. But for things like temporary table (which will be
** deleted when the power is restored) we don't care.
**
** If the file opened as the journal file is not a well-formed
** journal file then all pages up to the first corrupted page are rolled
** back (or no pages if the journal header is corrupted). The journal file
** is then deleted and SQLITE_OK returned, just as if no corruption had
** been encountered.
**
** If an I/O or malloc() error occurs, the journal-file is not deleted
** and an error code is returned.
*/
static int
pager_playback(Pager * pPager, int isHot)
{
sqlite3_vfs *pVfs = pPager->pVfs;
i64 szJ; /* Size of the journal file in bytes */
u32 nRec; /* Number of Records in the journal */
int i; /* Loop counter */
Pgno mxPg = 0; /* Size of the original file in pages */
int rc; /* Result code of a subroutine */
int res = 0; /* Value returned by sqlite3OsAccess() */
char *zMaster = 0; /* Name of master journal file if any */
/* Figure out how many records are in the journal. Abort early if
** the journal is empty.
*/
assert(pPager->journalOpen);
rc = sqlite3OsFileSize(pPager->jfd, &szJ);
if(rc != SQLITE_OK || szJ == 0)
{
goto end_playback;
}
/* Read the master journal name from the journal, if it is present.
** If a master journal file name is specified, but the file is not
** present on disk, then the journal is not hot and does not need to be
** played back.
*/
zMaster = pPager->pTmpSpace;
rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname + 1);
if(rc != SQLITE_OK || (zMaster[0]
&& (res =
sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS)) == 0))
{
zMaster = 0;
goto end_playback;
}
zMaster = 0;
if(res < 0)
{
rc = SQLITE_IOERR_NOMEM;
goto end_playback;
}
pPager->journalOff = 0;
/* This loop terminates either when the readJournalHdr() call returns
** SQLITE_DONE or an IO error occurs. */
while (1)
{
/* Read the next journal header from the journal file. If there are
** not enough bytes left in the journal file for a complete header, or
** it is corrupted, then a process must of failed while writing it.
** This indicates nothing more needs to be rolled back.
*/
rc = readJournalHdr(pPager, szJ, &nRec, &mxPg);
if(rc != SQLITE_OK)
{
if(rc == SQLITE_DONE)
{
rc = SQLITE_OK;
}
goto end_playback;
}
/* If nRec is 0xffffffff, then this journal was created by a process
** working in no-sync mode. This means that the rest of the journal
** file consists of pages, there are no more journal headers. Compute
** the value of nRec based on this assumption.
*/
if(nRec == 0xffffffff)
{
assert(pPager->journalOff == JOURNAL_HDR_SZ(pPager));
nRec = (szJ - JOURNAL_HDR_SZ(pPager)) / JOURNAL_PG_SZ(pPager);
}
/* If nRec is 0 and this rollback is of a transaction created by this
** process and if this is the final header in the journal, then it means
** that this part of the journal was being filled but has not yet been
** synced to disk. Compute the number of pages based on the remaining
** size of the file.
**
** The third term of the test was added to fix ticket #2565.
*/
if(nRec == 0 && !isHot &&
pPager->journalHdr + JOURNAL_HDR_SZ(pPager) == pPager->journalOff)
{
nRec = (szJ - pPager->journalOff) / JOURNAL_PG_SZ(pPager);
}
/* If this is the first header read from the journal, truncate the
** database file back to its original size.
*/
if(pPager->journalOff == JOURNAL_HDR_SZ(pPager))
{
rc = pager_truncate(pPager, mxPg);
if(rc != SQLITE_OK)
{
goto end_playback;
}
}
/* Copy original pages out of the journal and back into the database file.
*/
for (i = 0; i < nRec; i++)
{
rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1);
if(rc != SQLITE_OK)
{
if(rc == SQLITE_DONE)
{
rc = SQLITE_OK;
pPager->journalOff = szJ;
break;
}
else
{
goto end_playback;
}
}
}
}
/*NOTREACHED*/ assert(0);
end_playback:
if(rc == SQLITE_OK)
{
zMaster = pPager->pTmpSpace;
rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname + 1);
}
if(rc == SQLITE_OK)
{
rc = pager_end_transaction(pPager, zMaster[0] != '\0');
}
if(rc == SQLITE_OK && zMaster[0])
{
/* If there was a master journal and this routine will return success,
** see if it is possible to delete the master journal.
*/
rc = pager_delmaster(pPager, zMaster);
}
/* The Pager.sectorSize variable may have been updated while rolling
** back a journal created by a process with a different sector size
** value. Reset it to the correct value for this process.
*/
setSectorSize(pPager);
return rc;
}
/*
** Playback the statement journal.
**
** This is similar to playing back the transaction journal but with
** a few extra twists.
**
** (1) The number of pages in the database file at the start of
** the statement is stored in pPager->stmtSize, not in the
** journal file itself.
**
** (2) In addition to playing back the statement journal, also
** playback all pages of the transaction journal beginning
** at offset pPager->stmtJSize.
*/
static int
pager_stmt_playback(Pager * pPager)
{
i64 szJ; /* Size of the full journal */
i64 hdrOff;
int nRec; /* Number of Records */
int i; /* Loop counter */
int rc;
szJ = pPager->journalOff;
/* Set hdrOff to be the offset just after the end of the last journal
** page written before the first journal-header for this statement
** transaction was written, or the end of the file if no journal
** header was written.
*/
hdrOff = pPager->stmtHdrOff;
assert(pPager->fullSync || !hdrOff);
if(!hdrOff)
{
hdrOff = szJ;
}
/* Truncate the database back to its original size.
*/
rc = pager_truncate(pPager, pPager->stmtSize);
assert(pPager->state >= PAGER_SHARED);
/* Figure out how many records are in the statement journal.
*/
assert(pPager->stmtInUse && pPager->journalOpen);
nRec = pPager->stmtNRec;
/* Copy original pages out of the statement journal and back into the
** database file. Note that the statement journal omits checksums from
** each record since power-failure recovery is not important to statement
** journals.
*/
for (i = 0; i < nRec; i++)
{
i64 offset = i * (4 + pPager->pageSize);
rc = pager_playback_one_page(pPager, pPager->stfd, offset, 0);
assert(rc != SQLITE_DONE);
if(rc != SQLITE_OK)
goto end_stmt_playback;
}
/* Now roll some pages back from the transaction journal. Pager.stmtJSize
** was the size of the journal file when this statement was started, so
** everything after that needs to be rolled back, either into the
** database, the memory cache, or both.
**
** If it is not zero, then Pager.stmtHdrOff is the offset to the start
** of the first journal header written during this statement transaction.
*/
pPager->journalOff = pPager->stmtJSize;
pPager->cksumInit = pPager->stmtCksum;
while (pPager->journalOff < hdrOff)
{
rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1);
assert(rc != SQLITE_DONE);
if(rc != SQLITE_OK)
goto end_stmt_playback;
}
while (pPager->journalOff < szJ)
{
u32 nJRec; /* Number of Journal Records */
u32 dummy;
rc = readJournalHdr(pPager, szJ, &nJRec, &dummy);
if(rc != SQLITE_OK)
{
assert(rc != SQLITE_DONE);
goto end_stmt_playback;
}
if(nJRec == 0)
{
nJRec = (szJ - pPager->journalOff) / (pPager->pageSize + 8);
}
for (i = nJRec - 1; i >= 0 && pPager->journalOff < szJ; i--)
{
rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1);
assert(rc != SQLITE_DONE);
if(rc != SQLITE_OK)
goto end_stmt_playback;
}
}
pPager->journalOff = szJ;
end_stmt_playback:
if(rc == SQLITE_OK)
{
pPager->journalOff = szJ;
/* pager_reload_cache(pPager); */
}
return rc;
}
/*
** Change the maximum number of in-memory pages that are allowed.
*/
SQLITE_PRIVATE void
sqlite3PagerSetCachesize(Pager * pPager, int mxPage)
{
if(mxPage > 10)
{
pPager->mxPage = mxPage;
}
else
{
pPager->mxPage = 10;
}
}
/*
** Adjust the robustness of the database to damage due to OS crashes
** or power failures by changing the number of syncs()s when writing
** the rollback journal. There are three levels:
**
** OFF sqlite3OsSync() is never called. This is the default
** for temporary and transient files.
**
** NORMAL The journal is synced once before writes begin on the
** database. This is normally adequate protection, but
** it is theoretically possible, though very unlikely,
** that an inopertune power failure could leave the journal
** in a state which would cause damage to the database
** when it is rolled back.
**
** FULL The journal is synced twice before writes begin on the
** database (with some additional information - the nRec field
** of the journal header - being written in between the two
** syncs). If we assume that writing a
** single disk sector is atomic, then this mode provides
** assurance that the journal will not be corrupted to the
** point of causing damage to the database during rollback.
**
** Numeric values associated with these states are OFF==1, NORMAL=2,
** and FULL=3.
*/
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
SQLITE_PRIVATE void
sqlite3PagerSetSafetyLevel(Pager * pPager, int level, int full_fsync)
{
pPager->noSync = level == 1 || pPager->tempFile;
pPager->fullSync = level == 3 && !pPager->tempFile;
pPager->sync_flags = (full_fsync ? SQLITE_SYNC_FULL : SQLITE_SYNC_NORMAL);
if(pPager->noSync)
pPager->needSync = 0;
}
#endif
/*
** The following global variable is incremented whenever the library
** attempts to open a temporary file. This information is used for
** testing and analysis only.
*/
#ifdef SQLITE_TEST
SQLITE_API int sqlite3_opentemp_count = 0;
#endif
/*
** Open a temporary file.
**
** Write the file descriptor into *fd. Return SQLITE_OK on success or some
** other error code if we fail. The OS will automatically delete the temporary
** file when it is closed.
*/
static int
sqlite3PagerOpentemp(sqlite3_vfs * pVfs, /* The virtual file system layer */
sqlite3_file * pFile, /* Write the file descriptor here */
char *zFilename, /* Name of the file. Might be NULL */
int vfsFlags /* Flags passed through to the VFS */
)
{
int rc;
assert(zFilename != 0);
#ifdef SQLITE_TEST
sqlite3_opentemp_count++; /* Used for testing and analysis only */
#endif
vfsFlags |= SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE |
SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE;
rc = sqlite3OsOpen(pVfs, zFilename, pFile, vfsFlags, 0);
assert(rc != SQLITE_OK || pFile->pMethods);
return rc;
}
/*
** Create a new page cache and put a pointer to the page cache in *ppPager.
** The file to be cached need not exist. The file is not locked until
** the first call to sqlite3PagerGet() and is only held open until the
** last page is released using sqlite3PagerUnref().
**
** If zFilename is NULL then a randomly-named temporary file is created
** and used as the file to be cached. The file will be deleted
** automatically when it is closed.
**
** If zFilename is ":memory:" then all information is held in cache.
** It is never written to disk. This can be used to implement an
** in-memory database.
*/
SQLITE_PRIVATE int
sqlite3PagerOpen(sqlite3_vfs * pVfs, /* The virtual file system to use */
Pager ** ppPager, /* Return the Pager structure here */
const char *zFilename, /* Name of the database file to open */
int nExtra, /* Extra bytes append to each in-memory page */
int flags, /* flags controlling this file */
int vfsFlags /* flags passed through to sqlite3_vfs.xOpen() */
)
{
u8 *pPtr;
Pager *pPager = 0;
int rc = SQLITE_OK;
int i;
int tempFile = 0;
int memDb = 0;
int readOnly = 0;
int useJournal = (flags & PAGER_OMIT_JOURNAL) == 0;
int noReadlock = (flags & PAGER_NO_READLOCK) != 0;
int journalFileSize = sqlite3JournalSize(pVfs);
int nDefaultPage = SQLITE_DEFAULT_PAGE_SIZE;
char *zPathname;
int nPathname;
char *zStmtJrnl;
int nStmtJrnl;
/* The default return is a NULL pointer */
*ppPager = 0;
/* Compute the full pathname */
nPathname = pVfs->mxPathname + 1;
zPathname = sqlite3_malloc(nPathname * 2);
if(zPathname == 0)
{
return SQLITE_NOMEM;
}
if(zFilename && zFilename[0])
{
#ifndef SQLITE_OMIT_MEMORYDB
if(strcmp(zFilename, ":memory:") == 0)
{
memDb = 1;
zPathname[0] = 0;
}
else
#endif
{
rc = sqlite3OsFullPathname(pVfs, zFilename, nPathname, zPathname);
}
}
else
{
rc = sqlite3OsGetTempname(pVfs, nPathname, zPathname);
}
if(rc != SQLITE_OK)
{
sqlite3_free(zPathname);
return rc;
}
nPathname = strlen(zPathname);
/* Put the statement journal in temporary disk space since this is
** sometimes RAM disk or other optimized storage. Unlikely the main
** main journal file, the statement journal does not need to be
** colocated with the database nor does it need to be persistent.
*/
zStmtJrnl = &zPathname[nPathname + 1];
rc = sqlite3OsGetTempname(pVfs, pVfs->mxPathname + 1, zStmtJrnl);
if(rc != SQLITE_OK)
{
sqlite3_free(zPathname);
return rc;
}
nStmtJrnl = strlen(zStmtJrnl);
/* Allocate memory for the pager structure */
pPager = sqlite3MallocZero(sizeof(*pPager) + /* Pager structure */
journalFileSize + /* The journal file structure */
pVfs->szOsFile * 3 + /* The main db and two journal files */
3 * nPathname + 40 + /* zFilename, zDirectory, zJournal */
nStmtJrnl /* zStmtJrnl */
);
if(!pPager)
{
sqlite3_free(zPathname);
return SQLITE_NOMEM;
}
pPtr = (u8 *) & pPager[1];
pPager->vfsFlags = vfsFlags;
pPager->fd = (sqlite3_file *) & pPtr[pVfs->szOsFile * 0];
pPager->stfd = (sqlite3_file *) & pPtr[pVfs->szOsFile * 1];
pPager->jfd = (sqlite3_file *) & pPtr[pVfs->szOsFile * 2];
pPager->zFilename = (char *) &pPtr[pVfs->szOsFile * 2 + journalFileSize];
pPager->zDirectory = &pPager->zFilename[nPathname + 1];
pPager->zJournal = &pPager->zDirectory[nPathname + 1];
pPager->zStmtJrnl = &pPager->zJournal[nPathname + 10];
pPager->pVfs = pVfs;
memcpy(pPager->zFilename, zPathname, nPathname + 1);
memcpy(pPager->zStmtJrnl, zStmtJrnl, nStmtJrnl + 1);
sqlite3_free(zPathname);
/* Open the pager file.
*/
if(zFilename && zFilename[0] && !memDb)
{
if(nPathname > (pVfs->mxPathname - sizeof("-journal")))
{
rc = SQLITE_CANTOPEN;
}
else
{
int fout = 0;
rc = sqlite3OsOpen(pVfs, pPager->zFilename, pPager->fd,
pPager->vfsFlags, &fout);
readOnly = (fout & SQLITE_OPEN_READONLY);
/* If the file was successfully opened for read/write access,
** choose a default page size in case we have to create the
** database file. The default page size is the maximum of:
**
** + SQLITE_DEFAULT_PAGE_SIZE,
** + The value returned by sqlite3OsSectorSize()
** + The largest page size that can be written atomically.
*/
if(rc == SQLITE_OK && !readOnly)
{
int iSectorSize = sqlite3OsSectorSize(pPager->fd);
if(nDefaultPage < iSectorSize)
{
nDefaultPage = iSectorSize;
}
#ifdef SQLITE_ENABLE_ATOMIC_WRITE
{
int iDc = sqlite3OsDeviceCharacteristics(pPager->fd);
int ii;
assert(SQLITE_IOCAP_ATOMIC512 == (512 >> 8));
assert(SQLITE_IOCAP_ATOMIC64K == (65536 >> 8));
assert(SQLITE_MAX_DEFAULT_PAGE_SIZE <= 65536);
for (ii = nDefaultPage; ii <= SQLITE_MAX_DEFAULT_PAGE_SIZE;
ii = ii * 2)
{
if(iDc & (SQLITE_IOCAP_ATOMIC | (ii >> 8)))
nDefaultPage = ii;
}
}
#endif
if(nDefaultPage > SQLITE_MAX_DEFAULT_PAGE_SIZE)
{
nDefaultPage = SQLITE_MAX_DEFAULT_PAGE_SIZE;
}
}
}
}
else if(!memDb)
{
/* If a temporary file is requested, it is not opened immediately.
** In this case we accept the default page size and delay actually
** opening the file until the first call to OsWrite().
*/
tempFile = 1;
pPager->state = PAGER_EXCLUSIVE;
}
if(pPager && rc == SQLITE_OK)
{
pPager->pTmpSpace = sqlite3MallocZero(nDefaultPage);
}
/* If an error occured in either of the blocks above.
** Free the Pager structure and close the file.
** Since the pager is not allocated there is no need to set
** any Pager.errMask variables.
*/
if(!pPager || !pPager->pTmpSpace)
{
sqlite3OsClose(pPager->fd);
sqlite3_free(pPager);
return ((rc == SQLITE_OK) ? SQLITE_NOMEM : rc);
}
PAGERTRACE3("OPEN %d %s\n", FILEHANDLEID(pPager->fd), pPager->zFilename);
IOTRACE(("OPEN %p %s\n", pPager, pPager->zFilename))
/* Fill in Pager.zDirectory[] */
memcpy(pPager->zDirectory, pPager->zFilename, nPathname + 1);
for (i = strlen(pPager->zDirectory); i > 0 && pPager->zDirectory[i - 1] != '/'; i--)
{
}
if(i > 0)
pPager->zDirectory[i - 1] = 0;
/* Fill in Pager.zJournal[] */
memcpy(pPager->zJournal, pPager->zFilename, nPathname);
memcpy(&pPager->zJournal[nPathname], "-journal", 9);
/* pPager->journalOpen = 0; */
pPager->useJournal = useJournal && !memDb;
pPager->noReadlock = noReadlock && readOnly;
/* pPager->stmtOpen = 0; */
/* pPager->stmtInUse = 0; */
/* pPager->nRef = 0; */
pPager->dbSize = memDb - 1;
pPager->pageSize = nDefaultPage;
/* pPager->stmtSize = 0; */
/* pPager->stmtJSize = 0; */
/* pPager->nPage = 0; */
pPager->mxPage = 100;
pPager->mxPgno = SQLITE_MAX_PAGE_COUNT;
/* pPager->state = PAGER_UNLOCK; */
assert(pPager->state == (tempFile ? PAGER_EXCLUSIVE : PAGER_UNLOCK));
/* pPager->errMask = 0; */
pPager->tempFile = tempFile;
assert(tempFile == PAGER_LOCKINGMODE_NORMAL || tempFile == PAGER_LOCKINGMODE_EXCLUSIVE);
assert(PAGER_LOCKINGMODE_EXCLUSIVE == 1);
pPager->exclusiveMode = tempFile;
pPager->memDb = memDb;
pPager->readOnly = readOnly;
/* pPager->needSync = 0; */
pPager->noSync = pPager->tempFile || !useJournal;
pPager->fullSync = (pPager->noSync ? 0 : 1);
pPager->sync_flags = SQLITE_SYNC_NORMAL;
/* pPager->pFirst = 0; */
/* pPager->pFirstSynced = 0; */
/* pPager->pLast = 0; */
pPager->nExtra = FORCE_ALIGNMENT(nExtra);
assert(pPager->fd->pMethods || memDb || tempFile);
if(!memDb)
{
setSectorSize(pPager);
}
/* pPager->pBusyHandler = 0; */
/* memset(pPager->aHash, 0, sizeof(pPager->aHash)); */
*ppPager = pPager;
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
pPager->iInUseMM = 0;
pPager->iInUseDB = 0;
if(!memDb)
{
#ifndef SQLITE_MUTEX_NOOP
sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2);
#endif
sqlite3_mutex_enter(mutex);
pPager->pNext = sqlite3PagerList;
if(sqlite3PagerList)
{
assert(sqlite3PagerList->pPrev == 0);
sqlite3PagerList->pPrev = pPager;
}
pPager->pPrev = 0;
sqlite3PagerList = pPager;
sqlite3_mutex_leave(mutex);
}
#endif
return SQLITE_OK;
}
/*
** Set the busy handler function.
*/
SQLITE_PRIVATE void
sqlite3PagerSetBusyhandler(Pager * pPager, BusyHandler * pBusyHandler)
{
pPager->pBusyHandler = pBusyHandler;
}
/*
** Set the destructor for this pager. If not NULL, the destructor is called
** when the reference count on each page reaches zero. The destructor can
** be used to clean up information in the extra segment appended to each page.
**
** The destructor is not called as a result sqlite3PagerClose().
** Destructors are only called by sqlite3PagerUnref().
*/
SQLITE_PRIVATE void
sqlite3PagerSetDestructor(Pager * pPager, void (*xDesc) (DbPage *, int))
{
pPager->xDestructor = xDesc;
}
/*
** Set the reinitializer for this pager. If not NULL, the reinitializer
** is called when the content of a page in cache is restored to its original
** value as a result of a rollback. The callback gives higher-level code
** an opportunity to restore the EXTRA section to agree with the restored
** page data.
*/
SQLITE_PRIVATE void
sqlite3PagerSetReiniter(Pager * pPager, void (*xReinit) (DbPage *, int))
{
pPager->xReiniter = xReinit;
}
/*
** Set the page size to *pPageSize. If the suggest new page size is
** inappropriate, then an alternative page size is set to that
** value before returning.
*/
SQLITE_PRIVATE int
sqlite3PagerSetPagesize(Pager * pPager, u16 * pPageSize)
{
int rc = SQLITE_OK;
u16 pageSize = *pPageSize;
assert(pageSize == 0 || (pageSize >= 512 && pageSize <= SQLITE_MAX_PAGE_SIZE));
if(pageSize && pageSize != pPager->pageSize && !pPager->memDb && pPager->nRef == 0)
{
char *pNew = (char *) sqlite3_malloc(pageSize);
if(!pNew)
{
rc = SQLITE_NOMEM;
}
else
{
pagerEnter(pPager);
pager_reset(pPager);
pPager->pageSize = pageSize;
setSectorSize(pPager);
sqlite3_free(pPager->pTmpSpace);
pPager->pTmpSpace = pNew;
pagerLeave(pPager);
}
}
*pPageSize = pPager->pageSize;
return rc;
}
/*
** Return a pointer to the "temporary page" buffer held internally
** by the pager. This is a buffer that is big enough to hold the
** entire content of a database page. This buffer is used internally
** during rollback and will be overwritten whenever a rollback
** occurs. But other modules are free to use it too, as long as
** no rollbacks are happening.
*/
SQLITE_PRIVATE void *
sqlite3PagerTempSpace(Pager * pPager)
{
return pPager->pTmpSpace;
}
/*
** Attempt to set the maximum database page count if mxPage is positive.
** Make no changes if mxPage is zero or negative. And never reduce the
** maximum page count below the current size of the database.
**
** Regardless of mxPage, return the current maximum page count.
*/
SQLITE_PRIVATE int
sqlite3PagerMaxPageCount(Pager * pPager, int mxPage)
{
if(mxPage > 0)
{
pPager->mxPgno = mxPage;
}
sqlite3PagerPagecount(pPager);
return pPager->mxPgno;
}
/*
** The following set of routines are used to disable the simulated
** I/O error mechanism. These routines are used to avoid simulated
** errors in places where we do not care about errors.
**
** Unless -DSQLITE_TEST=1 is used, these routines are all no-ops
** and generate no code.
*/
#ifdef SQLITE_TEST
SQLITE_API extern int sqlite3_io_error_pending;
SQLITE_API extern int sqlite3_io_error_hit;
static int saved_cnt;
void
disable_simulated_io_errors(void)
{
saved_cnt = sqlite3_io_error_pending;
sqlite3_io_error_pending = -1;
}
void
enable_simulated_io_errors(void)
{
sqlite3_io_error_pending = saved_cnt;
}
#else
# define disable_simulated_io_errors()
# define enable_simulated_io_errors()
#endif
/*
** Read the first N bytes from the beginning of the file into memory
** that pDest points to.
**
** No error checking is done. The rational for this is that this function
** may be called even if the file does not exist or contain a header. In
** these cases sqlite3OsRead() will return an error, to which the correct
** response is to zero the memory at pDest and continue. A real IO error
** will presumably recur and be picked up later (Todo: Think about this).
*/
SQLITE_PRIVATE int
sqlite3PagerReadFileheader(Pager * pPager, int N, unsigned char *pDest)
{
int rc = SQLITE_OK;
memset(pDest, 0, N);
assert(MEMDB || pPager->fd->pMethods || pPager->tempFile);
if(pPager->fd->pMethods)
{
IOTRACE(("DBHDR %p 0 %d\n", pPager, N)) rc = sqlite3OsRead(pPager->fd, pDest, N, 0);
if(rc == SQLITE_IOERR_SHORT_READ)
{
rc = SQLITE_OK;
}
}
return rc;
}
/*
** Return the total number of pages in the disk file associated with
** pPager.
**
** If the PENDING_BYTE lies on the page directly after the end of the
** file, then consider this page part of the file too. For example, if
** PENDING_BYTE is byte 4096 (the first byte of page 5) and the size of the
** file is 4096 bytes, 5 is returned instead of 4.
*/
SQLITE_PRIVATE int
sqlite3PagerPagecount(Pager * pPager)
{
i64 n = 0;
int rc;
assert(pPager != 0);
if(pPager->errCode)
{
return -1;
}
if(pPager->dbSize >= 0)
{
n = pPager->dbSize;
}
else
{
assert(pPager->fd->pMethods || pPager->tempFile);
if((pPager->fd->pMethods) && (rc = sqlite3OsFileSize(pPager->fd, &n)) != SQLITE_OK)
{
pPager->nRef++;
pager_error(pPager, rc);
pPager->nRef--;
return -1;
}
if(n > 0 && n < pPager->pageSize)
{
n = 1;
}
else
{
n /= pPager->pageSize;
}
if(pPager->state != PAGER_UNLOCK)
{
pPager->dbSize = n;
}
}
if(n == (PENDING_BYTE / pPager->pageSize))
{
n++;
}
if(n > pPager->mxPgno)
{
pPager->mxPgno = n;
}
return n;
}
#ifndef SQLITE_OMIT_MEMORYDB
/*
** Clear a PgHistory block
*/
static void
clearHistory(PgHistory * pHist)
{
sqlite3_free(pHist->pOrig);
sqlite3_free(pHist->pStmt);
pHist->pOrig = 0;
pHist->pStmt = 0;
}
#else
#define clearHistory(x)
#endif
/*
** Forward declaration
*/
static int syncJournal(Pager *);
/*
** Unlink pPg from its hash chain. Also set the page number to 0 to indicate
** that the page is not part of any hash chain. This is required because the
** sqlite3PagerMovepage() routine can leave a page in the
** pNextFree/pPrevFree list that is not a part of any hash-chain.
*/
static void
unlinkHashChain(Pager * pPager, PgHdr * pPg)
{
if(pPg->pgno == 0)
{
assert(pPg->pNextHash == 0 && pPg->pPrevHash == 0);
return;
}
if(pPg->pNextHash)
{
pPg->pNextHash->pPrevHash = pPg->pPrevHash;
}
if(pPg->pPrevHash)
{
assert(pPager->aHash[pPg->pgno & (pPager->nHash - 1)] != pPg);
pPg->pPrevHash->pNextHash = pPg->pNextHash;
}
else
{
int h = pPg->pgno & (pPager->nHash - 1);
pPager->aHash[h] = pPg->pNextHash;
}
if(MEMDB)
{
clearHistory(PGHDR_TO_HIST(pPg, pPager));
}
pPg->pgno = 0;
pPg->pNextHash = pPg->pPrevHash = 0;
}
/*
** Unlink a page from the free list (the list of all pages where nRef==0)
** and from its hash collision chain.
*/
static void
unlinkPage(PgHdr * pPg)
{
Pager *pPager = pPg->pPager;
/* Unlink from free page list */
lruListRemove(pPg);
/* Unlink from the pgno hash table */
unlinkHashChain(pPager, pPg);
}
/*
** This routine is used to truncate the cache when a database
** is truncated. Drop from the cache all pages whose pgno is
** larger than pPager->dbSize and is unreferenced.
**
** Referenced pages larger than pPager->dbSize are zeroed.
**
** Actually, at the point this routine is called, it would be
** an error to have a referenced page. But rather than delete
** that page and guarantee a subsequent segfault, it seems better
** to zero it and hope that we error out sanely.
*/
static void
pager_truncate_cache(Pager * pPager)
{
PgHdr *pPg;
PgHdr **ppPg;
int dbSize = pPager->dbSize;
ppPg = &pPager->pAll;
while ((pPg = *ppPg) != 0)
{
if(pPg->pgno <= dbSize)
{
ppPg = &pPg->pNextAll;
}
else if(pPg->nRef > 0)
{
memset(PGHDR_TO_DATA(pPg), 0, pPager->pageSize);
ppPg = &pPg->pNextAll;
}
else
{
*ppPg = pPg->pNextAll;
IOTRACE(("PGFREE %p %d\n", pPager, pPg->pgno));
PAGER_INCR(sqlite3_pager_pgfree_count);
unlinkPage(pPg);
makeClean(pPg);
sqlite3_free(pPg->pData);
sqlite3_free(pPg);
pPager->nPage--;
}
}
}
/*
** Try to obtain a lock on a file. Invoke the busy callback if the lock
** is currently not available. Repeat until the busy callback returns
** false or until the lock succeeds.
**
** Return SQLITE_OK on success and an error code if we cannot obtain
** the lock.
*/
static int
pager_wait_on_lock(Pager * pPager, int locktype)
{
int rc;
/* The OS lock values must be the same as the Pager lock values */
assert(PAGER_SHARED == SHARED_LOCK);
assert(PAGER_RESERVED == RESERVED_LOCK);
assert(PAGER_EXCLUSIVE == EXCLUSIVE_LOCK);
/* If the file is currently unlocked then the size must be unknown */
assert(pPager->state >= PAGER_SHARED || pPager->dbSize < 0 || MEMDB);
if(pPager->state >= locktype)
{
rc = SQLITE_OK;
}
else
{
if(pPager->pBusyHandler)
pPager->pBusyHandler->nBusy = 0;
do
{
rc = sqlite3OsLock(pPager->fd, locktype);
}
while (rc == SQLITE_BUSY && sqlite3InvokeBusyHandler(pPager->pBusyHandler));
if(rc == SQLITE_OK)
{
pPager->state = locktype;
IOTRACE(("LOCK %p %d\n", pPager, locktype))}
}
return rc;
}
/*
** Truncate the file to the number of pages specified.
*/
SQLITE_PRIVATE int
sqlite3PagerTruncate(Pager * pPager, Pgno nPage)
{
int rc;
assert(pPager->state >= PAGER_SHARED || MEMDB);
sqlite3PagerPagecount(pPager);
if(pPager->errCode)
{
rc = pPager->errCode;
return rc;
}
if(nPage >= (unsigned) pPager->dbSize)
{
return SQLITE_OK;
}
if(MEMDB)
{
pPager->dbSize = nPage;
pager_truncate_cache(pPager);
return SQLITE_OK;
}
pagerEnter(pPager);
rc = syncJournal(pPager);
pagerLeave(pPager);
if(rc != SQLITE_OK)
{
return rc;
}
/* Get an exclusive lock on the database before truncating. */
pagerEnter(pPager);
rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
pagerLeave(pPager);
if(rc != SQLITE_OK)
{
return rc;
}
rc = pager_truncate(pPager, nPage);
return rc;
}
/*
** Shutdown the page cache. Free all memory and close all files.
**
** If a transaction was in progress when this routine is called, that
** transaction is rolled back. All outstanding pages are invalidated
** and their memory is freed. Any attempt to use a page associated
** with this page cache after this function returns will likely
** result in a coredump.
**
** This function always succeeds. If a transaction is active an attempt
** is made to roll it back. If an error occurs during the rollback
** a hot journal may be left in the filesystem but no error is returned
** to the caller.
*/
SQLITE_PRIVATE int
sqlite3PagerClose(Pager * pPager)
{
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
if(!MEMDB)
{
#ifndef SQLITE_MUTEX_NOOP
sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2);
#endif
sqlite3_mutex_enter(mutex);
if(pPager->pPrev)
{
pPager->pPrev->pNext = pPager->pNext;
}
else
{
sqlite3PagerList = pPager->pNext;
}
if(pPager->pNext)
{
pPager->pNext->pPrev = pPager->pPrev;
}
sqlite3_mutex_leave(mutex);
}
#endif
disable_simulated_io_errors();
sqlite3FaultBeginBenign(-1);
pPager->errCode = 0;
pPager->exclusiveMode = 0;
pager_reset(pPager);
pagerUnlockAndRollback(pPager);
enable_simulated_io_errors();
sqlite3FaultEndBenign(-1);
PAGERTRACE2("CLOSE %d\n", PAGERID(pPager));
IOTRACE(("CLOSE %p\n", pPager)) if(pPager->journalOpen)
{
sqlite3OsClose(pPager->jfd);
}
sqlite3BitvecDestroy(pPager->pInJournal);
if(pPager->stmtOpen)
{
sqlite3OsClose(pPager->stfd);
}
sqlite3OsClose(pPager->fd);
/* Temp files are automatically deleted by the OS
** if( pPager->tempFile ){
** sqlite3OsDelete(pPager->zFilename);
** }
*/
sqlite3_free(pPager->aHash);
sqlite3_free(pPager->pTmpSpace);
sqlite3_free(pPager);
return SQLITE_OK;
}
#if !defined(NDEBUG) || defined(SQLITE_TEST)
/*
** Return the page number for the given page data.
*/
SQLITE_PRIVATE Pgno
sqlite3PagerPagenumber(DbPage * p)
{
return p->pgno;
}
#endif
/*
** The page_ref() function increments the reference count for a page.
** If the page is currently on the freelist (the reference count is zero) then
** remove it from the freelist.
**
** For non-test systems, page_ref() is a macro that calls _page_ref()
** online of the reference count is zero. For test systems, page_ref()
** is a real function so that we can set breakpoints and trace it.
*/
static void
_page_ref(PgHdr * pPg)
{
if(pPg->nRef == 0)
{
/* The page is currently on the freelist. Remove it. */
lruListRemove(pPg);
pPg->pPager->nRef++;
}
pPg->nRef++;
}
#ifdef SQLITE_DEBUG
static void
page_ref(PgHdr * pPg)
{
if(pPg->nRef == 0)
{
_page_ref(pPg);
}
else
{
pPg->nRef++;
}
}
#else
# define page_ref(P) ((P)->nRef==0?_page_ref(P):(void)(P)->nRef++)
#endif
/*
** Increment the reference count for a page. The input pointer is
** a reference to the page data.
*/
SQLITE_PRIVATE int
sqlite3PagerRef(DbPage * pPg)
{
pagerEnter(pPg->pPager);
page_ref(pPg);
pagerLeave(pPg->pPager);
return SQLITE_OK;
}
/*
** Sync the journal. In other words, make sure all the pages that have
** been written to the journal have actually reached the surface of the
** disk. It is not safe to modify the original database file until after
** the journal has been synced. If the original database is modified before
** the journal is synced and a power failure occurs, the unsynced journal
** data would be lost and we would be unable to completely rollback the
** database changes. Database corruption would occur.
**
** This routine also updates the nRec field in the header of the journal.
** (See comments on the pager_playback() routine for additional information.)
** If the sync mode is FULL, two syncs will occur. First the whole journal
** is synced, then the nRec field is updated, then a second sync occurs.
**
** For temporary databases, we do not care if we are able to rollback
** after a power failure, so no sync occurs.
**
** If the IOCAP_SEQUENTIAL flag is set for the persistent media on which
** the database is stored, then OsSync() is never called on the journal
** file. In this case all that is required is to update the nRec field in
** the journal header.
**
** This routine clears the needSync field of every page current held in
** memory.
*/
static int
syncJournal(Pager * pPager)
{
PgHdr *pPg;
int rc = SQLITE_OK;
/* Sync the journal before modifying the main database
** (assuming there is a journal and it needs to be synced.)
*/
if(pPager->needSync)
{
if(!pPager->tempFile)
{
int iDc = sqlite3OsDeviceCharacteristics(pPager->fd);
assert(pPager->journalOpen);
if(0 == (iDc & SQLITE_IOCAP_SAFE_APPEND))
{
/* Write the nRec value into the journal file header. If in
** full-synchronous mode, sync the journal first. This ensures that
** all data has really hit the disk before nRec is updated to mark
** it as a candidate for rollback.
**
** This is not required if the persistent media supports the
** SAFE_APPEND property. Because in this case it is not possible
** for garbage data to be appended to the file, the nRec field
** is populated with 0xFFFFFFFF when the journal header is written
** and never needs to be updated.
*/
i64 jrnlOff;
if(pPager->fullSync && 0 == (iDc & SQLITE_IOCAP_SEQUENTIAL))
{
PAGERTRACE2("SYNC journal of %d\n", PAGERID(pPager));
IOTRACE(("JSYNC %p\n", pPager))
rc = sqlite3OsSync(pPager->jfd, pPager->sync_flags);
if(rc != 0)
return rc;
}
jrnlOff = pPager->journalHdr + sizeof(aJournalMagic);
IOTRACE(("JHDR %p %lld %d\n", pPager, jrnlOff, 4));
rc = write32bits(pPager->jfd, jrnlOff, pPager->nRec);
if(rc)
return rc;
}
if(0 == (iDc & SQLITE_IOCAP_SEQUENTIAL))
{
PAGERTRACE2("SYNC journal of %d\n", PAGERID(pPager));
IOTRACE(("JSYNC %p\n", pPager))
rc = sqlite3OsSync(pPager->jfd, pPager->sync_flags |
(pPager->sync_flags ==
SQLITE_SYNC_FULL ? SQLITE_SYNC_DATAONLY
: 0));
if(rc != 0)
return rc;
}
pPager->journalStarted = 1;
}
pPager->needSync = 0;
/* Erase the needSync flag from every page.
*/
for (pPg = pPager->pAll; pPg; pPg = pPg->pNextAll)
{
pPg->needSync = 0;
}
lruListSetFirstSynced(pPager);
}
#ifndef NDEBUG
/* If the Pager.needSync flag is clear then the PgHdr.needSync
** flag must also be clear for all pages. Verify that this
** invariant is true.
*/
else
{
for (pPg = pPager->pAll; pPg; pPg = pPg->pNextAll)
{
assert(pPg->needSync == 0);
}
assert(pPager->lru.pFirstSynced == pPager->lru.pFirst);
}
#endif
return rc;
}
/*
** Merge two lists of pages connected by pDirty and in pgno order.
** Do not both fixing the pPrevDirty pointers.
*/
static PgHdr *
merge_pagelist(PgHdr * pA, PgHdr * pB)
{
PgHdr result, *pTail;
pTail = &result;
while (pA && pB)
{
if(pA->pgno < pB->pgno)
{
pTail->pDirty = pA;
pTail = pA;
pA = pA->pDirty;
}
else
{
pTail->pDirty = pB;
pTail = pB;
pB = pB->pDirty;
}
}
if(pA)
{
pTail->pDirty = pA;
}
else if(pB)
{
pTail->pDirty = pB;
}
else
{
pTail->pDirty = 0;
}
return result.pDirty;
}
/*
** Sort the list of pages in accending order by pgno. Pages are
** connected by pDirty pointers. The pPrevDirty pointers are
** corrupted by this sort.
*/
#define N_SORT_BUCKET_ALLOC 25
#define N_SORT_BUCKET 25
#ifdef SQLITE_TEST
int sqlite3_pager_n_sort_bucket = 0;
#undef N_SORT_BUCKET
#define N_SORT_BUCKET \
(sqlite3_pager_n_sort_bucket?sqlite3_pager_n_sort_bucket:N_SORT_BUCKET_ALLOC)
#endif
static PgHdr *
sort_pagelist(PgHdr * pIn)
{
PgHdr *a[N_SORT_BUCKET_ALLOC], *p;
int i;
memset(a, 0, sizeof(a));
while (pIn)
{
p = pIn;
pIn = p->pDirty;
p->pDirty = 0;
for (i = 0; i < N_SORT_BUCKET - 1; i++)
{
if(a[i] == 0)
{
a[i] = p;
break;
}
else
{
p = merge_pagelist(a[i], p);
a[i] = 0;
}
}
if(i == N_SORT_BUCKET - 1)
{
/* Coverage: To get here, there need to be 2^(N_SORT_BUCKET)
** elements in the input list. This is possible, but impractical.
** Testing this line is the point of global variable
** sqlite3_pager_n_sort_bucket.
*/
a[i] = merge_pagelist(a[i], p);
}
}
p = a[0];
for (i = 1; i < N_SORT_BUCKET; i++)
{
p = merge_pagelist(p, a[i]);
}
return p;
}
/*
** Given a list of pages (connected by the PgHdr.pDirty pointer) write
** every one of those pages out to the database file and mark them all
** as clean.
*/
static int
pager_write_pagelist(PgHdr * pList)
{
Pager *pPager;
PgHdr *p;
int rc;
if(pList == 0)
return SQLITE_OK;
pPager = pList->pPager;
/* At this point there may be either a RESERVED or EXCLUSIVE lock on the
** database file. If there is already an EXCLUSIVE lock, the following
** calls to sqlite3OsLock() are no-ops.
**
** Moving the lock from RESERVED to EXCLUSIVE actually involves going
** through an intermediate state PENDING. A PENDING lock prevents new
** readers from attaching to the database but is unsufficient for us to
** write. The idea of a PENDING lock is to prevent new readers from
** coming in while we wait for existing readers to clear.
**
** While the pager is in the RESERVED state, the original database file
** is unchanged and we can rollback without having to playback the
** journal into the original database file. Once we transition to
** EXCLUSIVE, it means the database file has been changed and any rollback
** will require a journal playback.
*/
rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
if(rc != SQLITE_OK)
{
return rc;
}
pList = sort_pagelist(pList);
for (p = pList; p; p = p->pDirty)
{
assert(p->dirty);
p->dirty = 0;
}
while (pList)
{
/* If the file has not yet been opened, open it now. */
if(!pPager->fd->pMethods)
{
assert(pPager->tempFile);
rc = sqlite3PagerOpentemp(pPager->pVfs, pPager->fd, pPager->zFilename,
pPager->vfsFlags);
if(rc)
return rc;
}
/* If there are dirty pages in the page cache with page numbers greater
** than Pager.dbSize, this means sqlite3PagerTruncate() was called to
** make the file smaller (presumably by auto-vacuum code). Do not write
** any such pages to the file.
*/
if(pList->pgno <= pPager->dbSize)
{
i64 offset = (pList->pgno - 1) * (i64) pPager->pageSize;
char *pData = CODEC2(pPager, PGHDR_TO_DATA(pList), pList->pgno, 6);
PAGERTRACE4("STORE %d page %d hash(%08x)\n",
PAGERID(pPager), pList->pgno, pager_pagehash(pList));
IOTRACE(("PGOUT %p %d\n", pPager, pList->pgno));
rc = sqlite3OsWrite(pPager->fd, pData, pPager->pageSize, offset);
PAGER_INCR(sqlite3_pager_writedb_count);
PAGER_INCR(pPager->nWrite);
if(pList->pgno == 1)
{
memcpy(&pPager->dbFileVers, &pData[24], sizeof(pPager->dbFileVers));
}
}
#ifndef NDEBUG
else
{
PAGERTRACE3("NOSTORE %d page %d\n", PAGERID(pPager), pList->pgno);
}
#endif
if(rc)
return rc;
#ifdef SQLITE_CHECK_PAGES
pList->pageHash = pager_pagehash(pList);
#endif
pList = pList->pDirty;
}
return SQLITE_OK;
}
/*
** Collect every dirty page into a dirty list and
** return a pointer to the head of that list. All pages are
** collected even if they are still in use.
*/
static PgHdr *
pager_get_all_dirty_pages(Pager * pPager)
{
#ifndef NDEBUG
/* Verify the sanity of the dirty list when we are running
** in debugging mode. This is expensive, so do not
** do this on a normal build. */
int n1 = 0;
int n2 = 0;
PgHdr *p;
for (p = pPager->pAll; p; p = p->pNextAll)
{
if(p->dirty)
n1++;
}
for (p = pPager->pDirty; p; p = p->pDirty)
{
n2++;
}
assert(n1 == n2);
#endif
return pPager->pDirty;
}
/*
** Return 1 if there is a hot journal on the given pager.
** A hot journal is one that needs to be played back.
**
** If the current size of the database file is 0 but a journal file
** exists, that is probably an old journal left over from a prior
** database with the same name. Just delete the journal.
**
** Return negative if unable to determine the status of the journal.
**
** This routine does not open the journal file to examine its
** content. Hence, the journal might contain the name of a master
** journal file that has been deleted, and hence not be hot. Or
** the header of the journal might be zeroed out. This routine
** does not discover these cases of a non-hot journal - if the
** journal file exists and is not empty this routine assumes it
** is hot. The pager_playback() routine will discover that the
** journal file is not really hot and will no-op.
*/
static int
hasHotJournal(Pager * pPager)
{
sqlite3_vfs *pVfs = pPager->pVfs;
int rc;
if(!pPager->useJournal)
return 0;
if(!pPager->fd->pMethods)
return 0;
rc = sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS);
if(rc <= 0)
{
return rc;
}
if(sqlite3OsCheckReservedLock(pPager->fd))
{
return 0;
}
if(sqlite3PagerPagecount(pPager) == 0)
{
sqlite3OsDelete(pVfs, pPager->zJournal, 0);
return 0;
}
else
{
return 1;
}
}
/*
** Try to find a page in the cache that can be recycled.
**
** This routine may return SQLITE_IOERR, SQLITE_FULL or SQLITE_OK. It
** does not set the pPager->errCode variable.
*/
static int
pager_recycle(Pager * pPager, PgHdr ** ppPg)
{
PgHdr *pPg;
*ppPg = 0;
/* It is illegal to call this function unless the pager object
** pointed to by pPager has at least one free page (page with nRef==0).
*/
assert(!MEMDB);
assert(pPager->lru.pFirst);
/* Find a page to recycle. Try to locate a page that does not
** require us to do an fsync() on the journal.
*/
pPg = pPager->lru.pFirstSynced;
/* If we could not find a page that does not require an fsync()
** on the journal file then fsync the journal file. This is a
** very slow operation, so we work hard to avoid it. But sometimes
** it can't be helped.
*/
if(pPg == 0 && pPager->lru.pFirst)
{
int iDc = sqlite3OsDeviceCharacteristics(pPager->fd);
int rc = syncJournal(pPager);
if(rc != 0)
{
return rc;
}
if(pPager->fullSync && 0 == (iDc & SQLITE_IOCAP_SAFE_APPEND))
{
/* If in full-sync mode, write a new journal header into the
** journal file. This is done to avoid ever modifying a journal
** header that is involved in the rollback of pages that have
** already been written to the database (in case the header is
** trashed when the nRec field is updated).
*/
pPager->nRec = 0;
assert(pPager->journalOff > 0);
assert(pPager->doNotSync == 0);
rc = writeJournalHdr(pPager);
if(rc != 0)
{
return rc;
}
}
pPg = pPager->lru.pFirst;
}
assert(pPg->nRef == 0);
/* Write the page to the database file if it is dirty.
*/
if(pPg->dirty)
{
int rc;
assert(pPg->needSync == 0);
makeClean(pPg);
pPg->dirty = 1;
pPg->pDirty = 0;
rc = pager_write_pagelist(pPg);
pPg->dirty = 0;
if(rc != SQLITE_OK)
{
return rc;
}
}
assert(pPg->dirty == 0);
/* If the page we are recycling is marked as alwaysRollback, then
** set the global alwaysRollback flag, thus disabling the
** sqlite3PagerDontRollback() optimization for the rest of this transaction.
** It is necessary to do this because the page marked alwaysRollback
** might be reloaded at a later time but at that point we won't remember
** that is was marked alwaysRollback. This means that all pages must
** be marked as alwaysRollback from here on out.
*/
if(pPg->alwaysRollback)
{
IOTRACE(("ALWAYS_ROLLBACK %p\n", pPager)) pPager->alwaysRollback = 1;
}
/* Unlink the old page from the free list and the hash table
*/
unlinkPage(pPg);
assert(pPg->pgno == 0);
*ppPg = pPg;
return SQLITE_OK;
}
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
/*
** This function is called to free superfluous dynamically allocated memory
** held by the pager system. Memory in use by any SQLite pager allocated
** by the current thread may be sqlite3_free()ed.
**
** nReq is the number of bytes of memory required. Once this much has
** been released, the function returns. The return value is the total number
** of bytes of memory released.
*/
SQLITE_PRIVATE int
sqlite3PagerReleaseMemory(int nReq)
{
int nReleased = 0; /* Bytes of memory released so far */
Pager *pPager; /* For looping over pagers */
BusyHandler *savedBusy; /* Saved copy of the busy handler */
int rc = SQLITE_OK;
/* Acquire the memory-management mutex
*/
#ifndef SQLITE_MUTEX_NOOP
sqlite3_mutex *mutex; /* The MEM2 mutex */
mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2);
#endif
sqlite3_mutex_enter(mutex);
/* Signal all database connections that memory management wants
** to have access to the pagers.
*/
for (pPager = sqlite3PagerList; pPager; pPager = pPager->pNext)
{
pPager->iInUseMM = 1;
}
while (rc == SQLITE_OK && (nReq < 0 || nReleased < nReq))
{
PgHdr *pPg;
PgHdr *pRecycled;
/* Try to find a page to recycle that does not require a sync(). If
** this is not possible, find one that does require a sync().
*/
sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
pPg = sqlite3LruPageList.pFirstSynced;
while (pPg && (pPg->needSync || pPg->pPager->iInUseDB))
{
pPg = pPg->gfree.pNext;
}
if(!pPg)
{
pPg = sqlite3LruPageList.pFirst;
while (pPg && pPg->pPager->iInUseDB)
{
pPg = pPg->gfree.pNext;
}
}
sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
/* If pPg==0, then the block above has failed to find a page to
** recycle. In this case return early - no further memory will
** be released.
*/
if(!pPg)
break;
pPager = pPg->pPager;
assert(!pPg->needSync || pPg == pPager->lru.pFirst);
assert(pPg->needSync || pPg == pPager->lru.pFirstSynced);
savedBusy = pPager->pBusyHandler;
pPager->pBusyHandler = 0;
rc = pager_recycle(pPager, &pRecycled);
pPager->pBusyHandler = savedBusy;
assert(pRecycled == pPg || rc != SQLITE_OK);
if(rc == SQLITE_OK)
{
/* We've found a page to free. At this point the page has been
** removed from the page hash-table, free-list and synced-list
** (pFirstSynced). It is still in the all pages (pAll) list.
** Remove it from this list before freeing.
**
** Todo: Check the Pager.pStmt list to make sure this is Ok. It
** probably is though.
*/
PgHdr *pTmp;
assert(pPg);
if(pPg == pPager->pAll)
{
pPager->pAll = pPg->pNextAll;
}
else
{
for (pTmp = pPager->pAll; pTmp->pNextAll != pPg;
pTmp = pTmp->pNextAll)
{
}
pTmp->pNextAll = pPg->pNextAll;
}
nReleased += (sizeof(*pPg) + pPager->pageSize
+ sizeof(u32) + pPager->nExtra + MEMDB * sizeof(PgHistory));
IOTRACE(("PGFREE %p %d *\n", pPager, pPg->pgno));
PAGER_INCR(sqlite3_pager_pgfree_count);
sqlite3_free(pPg->pData);
sqlite3_free(pPg);
pPager->nPage--;
}
else
{
/* An error occured whilst writing to the database file or
** journal in pager_recycle(). The error is not returned to the
** caller of this function. Instead, set the Pager.errCode variable.
** The error will be returned to the user (or users, in the case
** of a shared pager cache) of the pager for which the error occured.
*/
assert((rc & 0xff) == SQLITE_IOERR ||
rc == SQLITE_FULL || rc == SQLITE_BUSY);
assert(pPager->state >= PAGER_RESERVED);
pager_error(pPager, rc);
}
}
/* Clear the memory management flags and release the mutex
*/
for (pPager = sqlite3PagerList; pPager; pPager = pPager->pNext)
{
pPager->iInUseMM = 0;
}
sqlite3_mutex_leave(mutex);
/* Return the number of bytes released
*/
return nReleased;
}
#endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
/*
** Read the content of page pPg out of the database file.
*/
static int
readDbPage(Pager * pPager, PgHdr * pPg, Pgno pgno)
{
int rc;
i64 offset;
assert(MEMDB == 0);
assert(pPager->fd->pMethods || pPager->tempFile);
if(!pPager->fd->pMethods)
{
return SQLITE_IOERR_SHORT_READ;
}
offset = (pgno - 1) * (i64) pPager->pageSize;
rc = sqlite3OsRead(pPager->fd, PGHDR_TO_DATA(pPg), pPager->pageSize, offset);
PAGER_INCR(sqlite3_pager_readdb_count);
PAGER_INCR(pPager->nRead);
IOTRACE(("PGIN %p %d\n", pPager, pgno));
if(pgno == 1)
{
memcpy(&pPager->dbFileVers, &((u8 *) PGHDR_TO_DATA(pPg))[24],
sizeof(pPager->dbFileVers));
}
CODEC1(pPager, PGHDR_TO_DATA(pPg), pPg->pgno, 3);
PAGERTRACE4("FETCH %d page %d hash(%08x)\n",
PAGERID(pPager), pPg->pgno, pager_pagehash(pPg));
return rc;
}
/*
** This function is called to obtain the shared lock required before
** data may be read from the pager cache. If the shared lock has already
** been obtained, this function is a no-op.
**
** Immediately after obtaining the shared lock (if required), this function
** checks for a hot-journal file. If one is found, an emergency rollback
** is performed immediately.
*/
static int
pagerSharedLock(Pager * pPager)
{
int rc = SQLITE_OK;
int isHot = 0;
/* If this database is opened for exclusive access, has no outstanding
** page references and is in an error-state, now is the chance to clear
** the error. Discard the contents of the pager-cache and treat any
** open journal file as a hot-journal.
*/
if(!MEMDB && pPager->exclusiveMode && pPager->nRef == 0 && pPager->errCode)
{
if(pPager->journalOpen)
{
isHot = 1;
}
pPager->errCode = SQLITE_OK;
pager_reset(pPager);
}
/* If the pager is still in an error state, do not proceed. The error
** state will be cleared at some point in the future when all page
** references are dropped and the cache can be discarded.
*/
if(pPager->errCode && pPager->errCode != SQLITE_FULL)
{
return pPager->errCode;
}
if(pPager->state == PAGER_UNLOCK || isHot)
{
sqlite3_vfs *pVfs = pPager->pVfs;
if(!MEMDB)
{
assert(pPager->nRef == 0);
if(!pPager->noReadlock)
{
rc = pager_wait_on_lock(pPager, SHARED_LOCK);
if(rc != SQLITE_OK)
{
assert(pPager->state == PAGER_UNLOCK);
return pager_error(pPager, rc);
}
assert(pPager->state >= SHARED_LOCK);
}
/* If a journal file exists, and there is no RESERVED lock on the
** database file, then it either needs to be played back or deleted.
*/
rc = hasHotJournal(pPager);
if(rc < 0)
{
rc = SQLITE_IOERR_NOMEM;
goto failed;
}
if(rc == 1 || isHot)
{
/* Get an EXCLUSIVE lock on the database file. At this point it is
** important that a RESERVED lock is not obtained on the way to the
** EXCLUSIVE lock. If it were, another process might open the
** database file, detect the RESERVED lock, and conclude that the
** database is safe to read while this process is still rolling it
** back.
**
** Because the intermediate RESERVED lock is not requested, the
** second process will get to this point in the code and fail to
** obtain its own EXCLUSIVE lock on the database file.
*/
if(pPager->state < EXCLUSIVE_LOCK)
{
rc = sqlite3OsLock(pPager->fd, EXCLUSIVE_LOCK);
if(rc != SQLITE_OK)
{
rc = pager_error(pPager, rc);
goto failed;
}
pPager->state = PAGER_EXCLUSIVE;
}
/* Open the journal for read/write access. This is because in
** exclusive-access mode the file descriptor will be kept open and
** possibly used for a transaction later on. On some systems, the
** OsTruncate() call used in exclusive-access mode also requires
** a read/write file handle.
*/
if(!isHot && pPager->journalOpen == 0)
{
int res =
sqlite3OsAccess(pVfs, pPager->zJournal,
SQLITE_ACCESS_EXISTS);
if(res == 1)
{
int fout = 0;
int f = SQLITE_OPEN_READWRITE |
SQLITE_OPEN_MAIN_JOURNAL;
assert(!pPager->tempFile);
rc = sqlite3OsOpen(pVfs, pPager->zJournal,
pPager->jfd, f, &fout);
assert(rc != SQLITE_OK || pPager->jfd->pMethods);
if(fout & SQLITE_OPEN_READONLY)
{
rc = SQLITE_BUSY;
sqlite3OsClose(pPager->jfd);
}
}
else if(res == 0)
{
/* If the journal does not exist, that means some other process
** has already rolled it back */
rc = SQLITE_BUSY;
}
else
{
/* If sqlite3OsAccess() returns a negative value, that means it
** failed a memory allocation */
rc = SQLITE_IOERR_NOMEM;
}
}
if(rc != SQLITE_OK)
{
if(rc != SQLITE_NOMEM && rc != SQLITE_IOERR_UNLOCK
&& rc != SQLITE_IOERR_NOMEM)
{
rc = SQLITE_BUSY;
}
goto failed;
}
pPager->journalOpen = 1;
pPager->journalStarted = 0;
pPager->journalOff = 0;
pPager->setMaster = 0;
pPager->journalHdr = 0;
/* Playback and delete the journal. Drop the database write
** lock and reacquire the read lock.
*/
rc = pager_playback(pPager, 1);
if(rc != SQLITE_OK)
{
rc = pager_error(pPager, rc);
goto failed;
}
assert(pPager->state == PAGER_SHARED ||
(pPager->exclusiveMode && pPager->state > PAGER_SHARED));
}
if(pPager->pAll)
{
/* The shared-lock has just been acquired on the database file
** and there are already pages in the cache (from a previous
** read or write transaction). Check to see if the database
** has been modified. If the database has changed, flush the
** cache.
**
** Database changes is detected by looking at 15 bytes beginning
** at offset 24 into the file. The first 4 of these 16 bytes are
** a 32-bit counter that is incremented with each change. The
** other bytes change randomly with each file change when
** a codec is in use.
**
** There is a vanishingly small chance that a change will not be
** detected. The chance of an undetected change is so small that
** it can be neglected.
*/
char dbFileVers[sizeof(pPager->dbFileVers)];
sqlite3PagerPagecount(pPager);
if(pPager->errCode)
{
rc = pPager->errCode;
goto failed;
}
if(pPager->dbSize > 0)
{
IOTRACE(("CKVERS %p %d\n", pPager, sizeof(dbFileVers)));
rc = sqlite3OsRead(pPager->fd, &dbFileVers,
sizeof(dbFileVers), 24);
if(rc != SQLITE_OK)
{
goto failed;
}
}
else
{
memset(dbFileVers, 0, sizeof(dbFileVers));
}
if(memcmp(pPager->dbFileVers, dbFileVers, sizeof(dbFileVers)) != 0)
{
pager_reset(pPager);
}
}
}
assert(pPager->exclusiveMode || pPager->state <= PAGER_SHARED);
if(pPager->state == PAGER_UNLOCK)
{
pPager->state = PAGER_SHARED;
}
}
failed:
if(rc != SQLITE_OK)
{
/* pager_unlock() is a no-op for exclusive mode and in-memory databases. */
pager_unlock(pPager);
}
return rc;
}
/*
** Allocate a PgHdr object. Either create a new one or reuse
** an existing one that is not otherwise in use.
**
** A new PgHdr structure is created if any of the following are
** true:
**
** (1) We have not exceeded our maximum allocated cache size
** as set by the "PRAGMA cache_size" command.
**
** (2) There are no unused PgHdr objects available at this time.
**
** (3) This is an in-memory database.
**
** (4) There are no PgHdr objects that do not require a journal
** file sync and a sync of the journal file is currently
** prohibited.
**
** Otherwise, reuse an existing PgHdr. In other words, reuse an
** existing PgHdr if all of the following are true:
**
** (1) We have reached or exceeded the maximum cache size
** allowed by "PRAGMA cache_size".
**
** (2) There is a PgHdr available with PgHdr->nRef==0
**
** (3) We are not in an in-memory database
**
** (4) Either there is an available PgHdr that does not need
** to be synced to disk or else disk syncing is currently
** allowed.
*/
static int
pagerAllocatePage(Pager * pPager, PgHdr ** ppPg)
{
int rc = SQLITE_OK;
PgHdr *pPg;
int nByteHdr;
/* Create a new PgHdr if any of the four conditions defined
** above are met: */
if(pPager->nPage < pPager->mxPage
|| pPager->lru.pFirst == 0
|| MEMDB || (pPager->lru.pFirstSynced == 0 && pPager->doNotSync))
{
void *pData;
if(pPager->nPage >= pPager->nHash)
{
pager_resize_hash_table(pPager,
pPager->nHash < 256 ? 256 : pPager->nHash * 2);
if(pPager->nHash == 0)
{
rc = SQLITE_NOMEM;
goto pager_allocate_out;
}
}
pagerLeave(pPager);
nByteHdr = sizeof(*pPg) + sizeof(u32) + pPager->nExtra + MEMDB * sizeof(PgHistory);
pPg = sqlite3_malloc(nByteHdr);
if(pPg)
{
pData = sqlite3_malloc(pPager->pageSize);
if(pData == 0)
{
sqlite3_free(pPg);
pPg = 0;
}
}
pagerEnter(pPager);
if(pPg == 0)
{
rc = SQLITE_NOMEM;
goto pager_allocate_out;
}
memset(pPg, 0, nByteHdr);
pPg->pData = pData;
pPg->pPager = pPager;
pPg->pNextAll = pPager->pAll;
pPager->pAll = pPg;
pPager->nPage++;
}
else
{
/* Recycle an existing page with a zero ref-count. */
rc = pager_recycle(pPager, &pPg);
if(rc == SQLITE_BUSY)
{
rc = SQLITE_IOERR_BLOCKED;
}
if(rc != SQLITE_OK)
{
goto pager_allocate_out;
}
assert(pPager->state >= SHARED_LOCK);
assert(pPg);
}
*ppPg = pPg;
pager_allocate_out:
return rc;
}
/*
** Make sure we have the content for a page. If the page was
** previously acquired with noContent==1, then the content was
** just initialized to zeros instead of being read from disk.
** But now we need the real data off of disk. So make sure we
** have it. Read it in if we do not have it already.
*/
static int
pager_get_content(PgHdr * pPg)
{
if(pPg->needRead)
{
int rc = readDbPage(pPg->pPager, pPg, pPg->pgno);
if(rc == SQLITE_OK)
{
pPg->needRead = 0;
}
else
{
return rc;
}
}
return SQLITE_OK;
}
/*
** Acquire a page.
**
** A read lock on the disk file is obtained when the first page is acquired.
** This read lock is dropped when the last page is released.
**
** This routine works for any page number greater than 0. If the database
** file is smaller than the requested page, then no actual disk
** read occurs and the memory image of the page is initialized to
** all zeros. The extra data appended to a page is always initialized
** to zeros the first time a page is loaded into memory.
**
** The acquisition might fail for several reasons. In all cases,
** an appropriate error code is returned and *ppPage is set to NULL.
**
** See also sqlite3PagerLookup(). Both this routine and Lookup() attempt
** to find a page in the in-memory cache first. If the page is not already
** in memory, this routine goes to disk to read it in whereas Lookup()
** just returns 0. This routine acquires a read-lock the first time it
** has to go to disk, and could also playback an old journal if necessary.
** Since Lookup() never goes to disk, it never has to deal with locks
** or journal files.
**
** If noContent is false, the page contents are actually read from disk.
** If noContent is true, it means that we do not care about the contents
** of the page at this time, so do not do a disk read. Just fill in the
** page content with zeros. But mark the fact that we have not read the
** content by setting the PgHdr.needRead flag. Later on, if
** sqlite3PagerWrite() is called on this page or if this routine is
** called again with noContent==0, that means that the content is needed
** and the disk read should occur at that point.
*/
static int
pagerAcquire(Pager * pPager, /* The pager open on the database file */
Pgno pgno, /* Page number to fetch */
DbPage ** ppPage, /* Write a pointer to the page here */
int noContent /* Do not bother reading content from disk if true */
)
{
PgHdr *pPg;
int rc;
assert(pPager->state == PAGER_UNLOCK || pPager->nRef > 0 || pgno == 1);
/* The maximum page number is 2^31. Return SQLITE_CORRUPT if a page
** number greater than this, or zero, is requested.
*/
if(pgno > PAGER_MAX_PGNO || pgno == 0 || pgno == PAGER_MJ_PGNO(pPager))
{
return SQLITE_CORRUPT_BKPT;
}
/* Make sure we have not hit any critical errors.
*/
assert(pPager != 0);
*ppPage = 0;
/* If this is the first page accessed, then get a SHARED lock
** on the database file. pagerSharedLock() is a no-op if
** a database lock is already held.
*/
rc = pagerSharedLock(pPager);
if(rc != SQLITE_OK)
{
return rc;
}
assert(pPager->state != PAGER_UNLOCK);
pPg = pager_lookup(pPager, pgno);
if(pPg == 0)
{
/* The requested page is not in the page cache. */
int nMax;
int h;
PAGER_INCR(pPager->nMiss);
rc = pagerAllocatePage(pPager, &pPg);
if(rc != SQLITE_OK)
{
return rc;
}
pPg->pgno = pgno;
assert(!MEMDB || pgno > pPager->stmtSize);
pPg->inJournal = sqlite3BitvecTest(pPager->pInJournal, pgno);
pPg->needSync = 0;
makeClean(pPg);
pPg->nRef = 1;
pPager->nRef++;
if(pPager->nExtra > 0)
{
memset(PGHDR_TO_EXTRA(pPg, pPager), 0, pPager->nExtra);
}
nMax = sqlite3PagerPagecount(pPager);
if(pPager->errCode)
{
rc = pPager->errCode;
sqlite3PagerUnref(pPg);
return rc;
}
/* Populate the page with data, either by reading from the database
** file, or by setting the entire page to zero.
*/
if(nMax < (int) pgno || MEMDB || (noContent && !pPager->alwaysRollback))
{
if(pgno > pPager->mxPgno)
{
sqlite3PagerUnref(pPg);
return SQLITE_FULL;
}
memset(PGHDR_TO_DATA(pPg), 0, pPager->pageSize);
pPg->needRead = noContent && !pPager->alwaysRollback;
IOTRACE(("ZERO %p %d\n", pPager, pgno));
}
else
{
rc = readDbPage(pPager, pPg, pgno);
if(rc != SQLITE_OK && rc != SQLITE_IOERR_SHORT_READ)
{
pPg->pgno = 0;
sqlite3PagerUnref(pPg);
return rc;
}
pPg->needRead = 0;
}
/* Link the page into the page hash table */
h = pgno & (pPager->nHash - 1);
assert(pgno != 0);
pPg->pNextHash = pPager->aHash[h];
pPager->aHash[h] = pPg;
if(pPg->pNextHash)
{
assert(pPg->pNextHash->pPrevHash == 0);
pPg->pNextHash->pPrevHash = pPg;
}
#ifdef SQLITE_CHECK_PAGES
pPg->pageHash = pager_pagehash(pPg);
#endif
}
else
{
/* The requested page is in the page cache. */
assert(pPager->nRef > 0 || pgno == 1);
PAGER_INCR(pPager->nHit);
if(!noContent)
{
rc = pager_get_content(pPg);
if(rc)
{
return rc;
}
}
page_ref(pPg);
}
*ppPage = pPg;
return SQLITE_OK;
}
SQLITE_PRIVATE int
sqlite3PagerAcquire(Pager * pPager, /* The pager open on the database file */
Pgno pgno, /* Page number to fetch */
DbPage ** ppPage, /* Write a pointer to the page here */
int noContent /* Do not bother reading content from disk if true */
)
{
int rc;
pagerEnter(pPager);
rc = pagerAcquire(pPager, pgno, ppPage, noContent);
pagerLeave(pPager);
return rc;
}
/*
** Acquire a page if it is already in the in-memory cache. Do
** not read the page from disk. Return a pointer to the page,
** or 0 if the page is not in cache.
**
** See also sqlite3PagerGet(). The difference between this routine
** and sqlite3PagerGet() is that _get() will go to the disk and read
** in the page if the page is not already in cache. This routine
** returns NULL if the page is not in cache or if a disk I/O error
** has ever happened.
*/
SQLITE_PRIVATE DbPage *
sqlite3PagerLookup(Pager * pPager, Pgno pgno)
{
PgHdr *pPg = 0;
assert(pPager != 0);
assert(pgno != 0);
pagerEnter(pPager);
if(pPager->state == PAGER_UNLOCK)
{
assert(!pPager->pAll || pPager->exclusiveMode);
}
else if(pPager->errCode && pPager->errCode != SQLITE_FULL)
{
/* Do nothing */
}
else if((pPg = pager_lookup(pPager, pgno)) != 0)
{
page_ref(pPg);
}
pagerLeave(pPager);
return pPg;
}
/*
** Release a page.
**
** If the number of references to the page drop to zero, then the
** page is added to the LRU list. When all references to all pages
** are released, a rollback occurs and the lock on the database is
** removed.
*/
SQLITE_PRIVATE int
sqlite3PagerUnref(DbPage * pPg)
{
Pager *pPager;
if(pPg == 0)
return SQLITE_OK;
pPager = pPg->pPager;
/* Decrement the reference count for this page
*/
assert(pPg->nRef > 0);
pagerEnter(pPg->pPager);
pPg->nRef--;
CHECK_PAGE(pPg);
/* When the number of references to a page reach 0, call the
** destructor and add the page to the freelist.
*/
if(pPg->nRef == 0)
{
lruListAdd(pPg);
if(pPager->xDestructor)
{
pPager->xDestructor(pPg, pPager->pageSize);
}
/* When all pages reach the freelist, drop the read lock from
** the database file.
*/
pPager->nRef--;
assert(pPager->nRef >= 0);
if(pPager->nRef == 0 && (!pPager->exclusiveMode || pPager->journalOff > 0))
{
pagerUnlockAndRollback(pPager);
}
}
pagerLeave(pPager);
return SQLITE_OK;
}
/*
** Create a journal file for pPager. There should already be a RESERVED
** or EXCLUSIVE lock on the database file when this routine is called.
**
** Return SQLITE_OK if everything. Return an error code and release the
** write lock if anything goes wrong.
*/
static int
pager_open_journal(Pager * pPager)
{
sqlite3_vfs *pVfs = pPager->pVfs;
int flags = (SQLITE_OPEN_READWRITE | SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_CREATE);
int rc;
assert(!MEMDB);
assert(pPager->state >= PAGER_RESERVED);
assert(pPager->useJournal);
assert(pPager->pInJournal == 0);
sqlite3PagerPagecount(pPager);
pagerLeave(pPager);
pPager->pInJournal = sqlite3BitvecCreate(pPager->dbSize);
pagerEnter(pPager);
if(pPager->pInJournal == 0)
{
rc = SQLITE_NOMEM;
goto failed_to_open_journal;
}
if(pPager->journalOpen == 0)
{
if(pPager->tempFile)
{
flags |= (SQLITE_OPEN_DELETEONCLOSE | SQLITE_OPEN_TEMP_JOURNAL);
}
else
{
flags |= (SQLITE_OPEN_MAIN_JOURNAL);
}
#ifdef SQLITE_ENABLE_ATOMIC_WRITE
rc = sqlite3JournalOpen(pVfs, pPager->zJournal, pPager->jfd, flags,
jrnlBufferSize(pPager));
#else
rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, flags, 0);
#endif
assert(rc != SQLITE_OK || pPager->jfd->pMethods);
pPager->journalOff = 0;
pPager->setMaster = 0;
pPager->journalHdr = 0;
if(rc != SQLITE_OK)
{
if(rc == SQLITE_NOMEM)
{
sqlite3OsDelete(pVfs, pPager->zJournal, 0);
}
goto failed_to_open_journal;
}
}
pPager->journalOpen = 1;
pPager->journalStarted = 0;
pPager->needSync = 0;
pPager->alwaysRollback = 0;
pPager->nRec = 0;
if(pPager->errCode)
{
rc = pPager->errCode;
goto failed_to_open_journal;
}
pPager->origDbSize = pPager->dbSize;
rc = writeJournalHdr(pPager);
if(pPager->stmtAutoopen && rc == SQLITE_OK)
{
rc = sqlite3PagerStmtBegin(pPager);
}
if(rc != SQLITE_OK && rc != SQLITE_NOMEM && rc != SQLITE_IOERR_NOMEM)
{
rc = pager_end_transaction(pPager, 0);
if(rc == SQLITE_OK)
{
rc = SQLITE_FULL;
}
}
return rc;
failed_to_open_journal:
sqlite3BitvecDestroy(pPager->pInJournal);
pPager->pInJournal = 0;
return rc;
}
/*
** Acquire a write-lock on the database. The lock is removed when
** the any of the following happen:
**
** * sqlite3PagerCommitPhaseTwo() is called.
** * sqlite3PagerRollback() is called.
** * sqlite3PagerClose() is called.
** * sqlite3PagerUnref() is called to on every outstanding page.
**
** The first parameter to this routine is a pointer to any open page of the
** database file. Nothing changes about the page - it is used merely to
** acquire a pointer to the Pager structure and as proof that there is
** already a read-lock on the database.
**
** The second parameter indicates how much space in bytes to reserve for a
** master journal file-name at the start of the journal when it is created.
**
** A journal file is opened if this is not a temporary file. For temporary
** files, the opening of the journal file is deferred until there is an
** actual need to write to the journal.
**
** If the database is already reserved for writing, this routine is a no-op.
**
** If exFlag is true, go ahead and get an EXCLUSIVE lock on the file
** immediately instead of waiting until we try to flush the cache. The
** exFlag is ignored if a transaction is already active.
*/
SQLITE_PRIVATE int
sqlite3PagerBegin(DbPage * pPg, int exFlag)
{
Pager *pPager = pPg->pPager;
int rc = SQLITE_OK;
pagerEnter(pPager);
assert(pPg->nRef > 0);
assert(pPager->state != PAGER_UNLOCK);
if(pPager->state == PAGER_SHARED)
{
assert(pPager->pInJournal == 0);
if(MEMDB)
{
pPager->state = PAGER_EXCLUSIVE;
pPager->origDbSize = pPager->dbSize;
}
else
{
rc = sqlite3OsLock(pPager->fd, RESERVED_LOCK);
if(rc == SQLITE_OK)
{
pPager->state = PAGER_RESERVED;
if(exFlag)
{
rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
}
}
if(rc != SQLITE_OK)
{
pagerLeave(pPager);
return rc;
}
pPager->dirtyCache = 0;
PAGERTRACE2("TRANSACTION %d\n", PAGERID(pPager));
if(pPager->useJournal && !pPager->tempFile
&& pPager->journalMode != PAGER_JOURNALMODE_OFF)
{
rc = pager_open_journal(pPager);
}
}
}
else if(pPager->journalOpen && pPager->journalOff == 0)
{
/* This happens when the pager was in exclusive-access mode the last
** time a (read or write) transaction was successfully concluded
** by this connection. Instead of deleting the journal file it was
** kept open and either was truncated to 0 bytes or its header was
** overwritten with zeros.
*/
assert(pPager->nRec == 0);
assert(pPager->origDbSize == 0);
assert(pPager->pInJournal == 0);
sqlite3PagerPagecount(pPager);
pagerLeave(pPager);
pPager->pInJournal = sqlite3BitvecCreate(pPager->dbSize);
pagerEnter(pPager);
if(!pPager->pInJournal)
{
rc = SQLITE_NOMEM;
}
else
{
pPager->origDbSize = pPager->dbSize;
rc = writeJournalHdr(pPager);
}
}
assert(!pPager->journalOpen || pPager->journalOff > 0 || rc != SQLITE_OK);
pagerLeave(pPager);
return rc;
}
/*
** Make a page dirty. Set its dirty flag and add it to the dirty
** page list.
*/
static void
makeDirty(PgHdr * pPg)
{
if(pPg->dirty == 0)
{
Pager *pPager = pPg->pPager;
pPg->dirty = 1;
pPg->pDirty = pPager->pDirty;
if(pPager->pDirty)
{
pPager->pDirty->pPrevDirty = pPg;
}
pPg->pPrevDirty = 0;
pPager->pDirty = pPg;
}
}
/*
** Make a page clean. Clear its dirty bit and remove it from the
** dirty page list.
*/
static void
makeClean(PgHdr * pPg)
{
if(pPg->dirty)
{
pPg->dirty = 0;
if(pPg->pDirty)
{
assert(pPg->pDirty->pPrevDirty == pPg);
pPg->pDirty->pPrevDirty = pPg->pPrevDirty;
}
if(pPg->pPrevDirty)
{
assert(pPg->pPrevDirty->pDirty == pPg);
pPg->pPrevDirty->pDirty = pPg->pDirty;
}
else
{
assert(pPg->pPager->pDirty == pPg);
pPg->pPager->pDirty = pPg->pDirty;
}
}
}
/*
** Mark a data page as writeable. The page is written into the journal
** if it is not there already. This routine must be called before making
** changes to a page.
**
** The first time this routine is called, the pager creates a new
** journal and acquires a RESERVED lock on the database. If the RESERVED
** lock could not be acquired, this routine returns SQLITE_BUSY. The
** calling routine must check for that return value and be careful not to
** change any page data until this routine returns SQLITE_OK.
**
** If the journal file could not be written because the disk is full,
** then this routine returns SQLITE_FULL and does an immediate rollback.
** All subsequent write attempts also return SQLITE_FULL until there
** is a call to sqlite3PagerCommit() or sqlite3PagerRollback() to
** reset.
*/
static int
pager_write(PgHdr * pPg)
{
void *pData = PGHDR_TO_DATA(pPg);
Pager *pPager = pPg->pPager;
int rc = SQLITE_OK;
/* Check for errors
*/
if(pPager->errCode)
{
return pPager->errCode;
}
if(pPager->readOnly)
{
return SQLITE_PERM;
}
assert(!pPager->setMaster);
CHECK_PAGE(pPg);
/* If this page was previously acquired with noContent==1, that means
** we didn't really read in the content of the page. This can happen
** (for example) when the page is being moved to the freelist. But
** now we are (perhaps) moving the page off of the freelist for
** reuse and we need to know its original content so that content
** can be stored in the rollback journal. So do the read at this
** time.
*/
rc = pager_get_content(pPg);
if(rc)
{
return rc;
}
/* Mark the page as dirty. If the page has already been written
** to the journal then we can return right away.
*/
makeDirty(pPg);
if(pPg->inJournal && (pageInStatement(pPg) || pPager->stmtInUse == 0))
{
pPager->dirtyCache = 1;
pPager->dbModified = 1;
}
else
{
/* If we get this far, it means that the page needs to be
** written to the transaction journal or the ckeckpoint journal
** or both.
**
** First check to see that the transaction journal exists and
** create it if it does not.
*/
assert(pPager->state != PAGER_UNLOCK);
rc = sqlite3PagerBegin(pPg, 0);
if(rc != SQLITE_OK)
{
return rc;
}
assert(pPager->state >= PAGER_RESERVED);
if(!pPager->journalOpen && pPager->useJournal
&& pPager->journalMode != PAGER_JOURNALMODE_OFF)
{
rc = pager_open_journal(pPager);
if(rc != SQLITE_OK)
return rc;
}
pPager->dirtyCache = 1;
pPager->dbModified = 1;
/* The transaction journal now exists and we have a RESERVED or an
** EXCLUSIVE lock on the main database file. Write the current page to
** the transaction journal if it is not there already.
*/
if(!pPg->inJournal && (pPager->journalOpen || MEMDB))
{
if((int) pPg->pgno <= pPager->origDbSize)
{
if(MEMDB)
{
PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
PAGERTRACE3("JOURNAL %d page %d\n", PAGERID(pPager),
pPg->pgno);
assert(pHist->pOrig == 0);
pHist->pOrig = sqlite3_malloc(pPager->pageSize);
if(!pHist->pOrig)
{
return SQLITE_NOMEM;
}
memcpy(pHist->pOrig, PGHDR_TO_DATA(pPg), pPager->pageSize);
}
else
{
u32 cksum;
char *pData2;
/* We should never write to the journal file the page that
** contains the database locks. The following assert verifies
** that we do not. */
assert(pPg->pgno != PAGER_MJ_PGNO(pPager));
pData2 = CODEC2(pPager, pData, pPg->pgno, 7);
cksum = pager_cksum(pPager, (u8 *) pData2);
rc = write32bits(pPager->jfd, pPager->journalOff,
pPg->pgno);
if(rc == SQLITE_OK)
{
rc = sqlite3OsWrite(pPager->jfd, pData2,
pPager->pageSize,
pPager->journalOff + 4);
pPager->journalOff += pPager->pageSize + 4;
}
if(rc == SQLITE_OK)
{
rc = write32bits(pPager->jfd, pPager->journalOff,
cksum);
pPager->journalOff += 4;
}
IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno,
pPager->journalOff, pPager->pageSize));
PAGER_INCR(sqlite3_pager_writej_count);
PAGERTRACE5("JOURNAL %d page %d needSync=%d hash(%08x)\n",
PAGERID(pPager), pPg->pgno, pPg->needSync,
pager_pagehash(pPg));
/* An error has occured writing to the journal file. The
** transaction will be rolled back by the layer above.
*/
if(rc != SQLITE_OK)
{
return rc;
}
pPager->nRec++;
assert(pPager->pInJournal != 0);
sqlite3BitvecSet(pPager->pInJournal, pPg->pgno);
pPg->needSync = !pPager->noSync;
if(pPager->stmtInUse)
{
sqlite3BitvecSet(pPager->pInStmt, pPg->pgno);
}
}
}
else
{
pPg->needSync = !pPager->journalStarted && !pPager->noSync;
PAGERTRACE4("APPEND %d page %d needSync=%d\n",
PAGERID(pPager), pPg->pgno, pPg->needSync);
}
if(pPg->needSync)
{
pPager->needSync = 1;
}
pPg->inJournal = 1;
}
/* If the statement journal is open and the page is not in it,
** then write the current page to the statement journal. Note that
** the statement journal format differs from the standard journal format
** in that it omits the checksums and the header.
*/
if(pPager->stmtInUse
&& !pageInStatement(pPg) && (int) pPg->pgno <= pPager->stmtSize)
{
assert(pPg->inJournal || (int) pPg->pgno > pPager->origDbSize);
if(MEMDB)
{
PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
assert(pHist->pStmt == 0);
pHist->pStmt = sqlite3_malloc(pPager->pageSize);
if(pHist->pStmt)
{
memcpy(pHist->pStmt, PGHDR_TO_DATA(pPg), pPager->pageSize);
}
PAGERTRACE3("STMT-JOURNAL %d page %d\n", PAGERID(pPager),
pPg->pgno);
page_add_to_stmt_list(pPg);
}
else
{
i64 offset = pPager->stmtNRec * (4 + pPager->pageSize);
char *pData2 = CODEC2(pPager, pData, pPg->pgno, 7);
rc = write32bits(pPager->stfd, offset, pPg->pgno);
if(rc == SQLITE_OK)
{
rc = sqlite3OsWrite(pPager->stfd, pData2, pPager->pageSize,
offset + 4);
}
PAGERTRACE3("STMT-JOURNAL %d page %d\n", PAGERID(pPager),
pPg->pgno);
if(rc != SQLITE_OK)
{
return rc;
}
pPager->stmtNRec++;
assert(pPager->pInStmt != 0);
sqlite3BitvecSet(pPager->pInStmt, pPg->pgno);
}
}
}
/* Update the database size and return.
*/
assert(pPager->state >= PAGER_SHARED);
if(pPager->dbSize < (int) pPg->pgno)
{
pPager->dbSize = pPg->pgno;
if(!MEMDB && pPager->dbSize == PENDING_BYTE / pPager->pageSize)
{
pPager->dbSize++;
}
}
return rc;
}
/*
** This function is used to mark a data-page as writable. It uses
** pager_write() to open a journal file (if it is not already open)
** and write the page *pData to the journal.
**
** The difference between this function and pager_write() is that this
** function also deals with the special case where 2 or more pages
** fit on a single disk sector. In this case all co-resident pages
** must have been written to the journal file before returning.
*/
SQLITE_PRIVATE int
sqlite3PagerWrite(DbPage * pDbPage)
{
int rc = SQLITE_OK;
PgHdr *pPg = pDbPage;
Pager *pPager = pPg->pPager;
Pgno nPagePerSector = (pPager->sectorSize / pPager->pageSize);
pagerEnter(pPager);
if(!MEMDB && nPagePerSector > 1)
{
Pgno nPageCount; /* Total number of pages in database file */
Pgno pg1; /* First page of the sector pPg is located on. */
int nPage; /* Number of pages starting at pg1 to journal */
int ii;
int needSync = 0;
/* Set the doNotSync flag to 1. This is because we cannot allow a journal
** header to be written between the pages journaled by this function.
*/
assert(pPager->doNotSync == 0);
pPager->doNotSync = 1;
/* This trick assumes that both the page-size and sector-size are
** an integer power of 2. It sets variable pg1 to the identifier
** of the first page of the sector pPg is located on.
*/
pg1 = ((pPg->pgno - 1) & ~(nPagePerSector - 1)) + 1;
nPageCount = sqlite3PagerPagecount(pPager);
if(pPg->pgno > nPageCount)
{
nPage = (pPg->pgno - pg1) + 1;
}
else if((pg1 + nPagePerSector - 1) > nPageCount)
{
nPage = nPageCount + 1 - pg1;
}
else
{
nPage = nPagePerSector;
}
assert(nPage > 0);
assert(pg1 <= pPg->pgno);
assert((pg1 + nPage) > pPg->pgno);
for (ii = 0; ii < nPage && rc == SQLITE_OK; ii++)
{
Pgno pg = pg1 + ii;
PgHdr *pPage;
if(pg == pPg->pgno || !sqlite3BitvecTest(pPager->pInJournal, pg))
{
if(pg != PAGER_MJ_PGNO(pPager))
{
rc = sqlite3PagerGet(pPager, pg, &pPage);
if(rc == SQLITE_OK)
{
rc = pager_write(pPage);
if(pPage->needSync)
{
needSync = 1;
}
sqlite3PagerUnref(pPage);
}
}
}
else if((pPage = pager_lookup(pPager, pg)) != 0)
{
if(pPage->needSync)
{
needSync = 1;
}
}
}
/* If the PgHdr.needSync flag is set for any of the nPage pages
** starting at pg1, then it needs to be set for all of them. Because
** writing to any of these nPage pages may damage the others, the
** journal file must contain sync()ed copies of all of them
** before any of them can be written out to the database file.
*/
if(needSync)
{
for (ii = 0; ii < nPage && needSync; ii++)
{
PgHdr *pPage = pager_lookup(pPager, pg1 + ii);
if(pPage)
pPage->needSync = 1;
}
assert(pPager->needSync);
}
assert(pPager->doNotSync == 1);
pPager->doNotSync = 0;
}
else
{
rc = pager_write(pDbPage);
}
pagerLeave(pPager);
return rc;
}
/*
** Return TRUE if the page given in the argument was previously passed
** to sqlite3PagerWrite(). In other words, return TRUE if it is ok
** to change the content of the page.
*/
#ifndef NDEBUG
SQLITE_PRIVATE int
sqlite3PagerIswriteable(DbPage * pPg)
{
return pPg->dirty;
}
#endif
/*
** A call to this routine tells the pager that it is not necessary to
** write the information on page pPg back to the disk, even though
** that page might be marked as dirty.
**
** The overlying software layer calls this routine when all of the data
** on the given page is unused. The pager marks the page as clean so
** that it does not get written to disk.
**
** Tests show that this optimization, together with the
** sqlite3PagerDontRollback() below, more than double the speed
** of large INSERT operations and quadruple the speed of large DELETEs.
**
** When this routine is called, set the alwaysRollback flag to true.
** Subsequent calls to sqlite3PagerDontRollback() for the same page
** will thereafter be ignored. This is necessary to avoid a problem
** where a page with data is added to the freelist during one part of
** a transaction then removed from the freelist during a later part
** of the same transaction and reused for some other purpose. When it
** is first added to the freelist, this routine is called. When reused,
** the sqlite3PagerDontRollback() routine is called. But because the
** page contains critical data, we still need to be sure it gets
** rolled back in spite of the sqlite3PagerDontRollback() call.
*/
SQLITE_PRIVATE void
sqlite3PagerDontWrite(DbPage * pDbPage)
{
PgHdr *pPg = pDbPage;
Pager *pPager = pPg->pPager;
if(MEMDB)
return;
pagerEnter(pPager);
pPg->alwaysRollback = 1;
if(pPg->dirty && !pPager->stmtInUse)
{
assert(pPager->state >= PAGER_SHARED);
if(pPager->dbSize == (int) pPg->pgno && pPager->origDbSize < pPager->dbSize)
{
/* If this pages is the last page in the file and the file has grown
** during the current transaction, then do NOT mark the page as clean.
** When the database file grows, we must make sure that the last page
** gets written at least once so that the disk file will be the correct
** size. If you do not write this page and the size of the file
** on the disk ends up being too small, that can lead to database
** corruption during the next transaction.
*/
}
else
{
PAGERTRACE3("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager));
IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno)) makeClean(pPg);
#ifdef SQLITE_CHECK_PAGES
pPg->pageHash = pager_pagehash(pPg);
#endif
}
}
pagerLeave(pPager);
}
/*
** A call to this routine tells the pager that if a rollback occurs,
** it is not necessary to restore the data on the given page. This
** means that the pager does not have to record the given page in the
** rollback journal.
**
** If we have not yet actually read the content of this page (if
** the PgHdr.needRead flag is set) then this routine acts as a promise
** that we will never need to read the page content in the future.
** so the needRead flag can be cleared at this point.
*/
SQLITE_PRIVATE void
sqlite3PagerDontRollback(DbPage * pPg)
{
Pager *pPager = pPg->pPager;
pagerEnter(pPager);
assert(pPager->state >= PAGER_RESERVED);
/* If the journal file is not open, or DontWrite() has been called on
** this page (DontWrite() sets the alwaysRollback flag), then this
** function is a no-op.
*/
if(pPager->journalOpen == 0 || pPg->alwaysRollback || pPager->alwaysRollback)
{
pagerLeave(pPager);
return;
}
assert(!MEMDB); /* For a memdb, pPager->journalOpen is always 0 */
#ifdef SQLITE_SECURE_DELETE
if(pPg->inJournal || (int) pPg->pgno > pPager->origDbSize)
{
return;
}
#endif
/* If SECURE_DELETE is disabled, then there is no way that this
** routine can be called on a page for which sqlite3PagerDontWrite()
** has not been previously called during the same transaction.
** And if DontWrite() has previously been called, the following
** conditions must be met.
*/
assert(!pPg->inJournal && (int) pPg->pgno <= pPager->origDbSize);
assert(pPager->pInJournal != 0);
sqlite3BitvecSet(pPager->pInJournal, pPg->pgno);
pPg->inJournal = 1;
pPg->needRead = 0;
if(pPager->stmtInUse)
{
assert(pPager->stmtSize >= pPager->origDbSize);
sqlite3BitvecSet(pPager->pInStmt, pPg->pgno);
}
PAGERTRACE3("DONT_ROLLBACK page %d of %d\n", pPg->pgno, PAGERID(pPager));
IOTRACE(("GARBAGE %p %d\n", pPager, pPg->pgno)) pagerLeave(pPager);
}
/*
** This routine is called to increment the database file change-counter,
** stored at byte 24 of the pager file.
*/
static int
pager_incr_changecounter(Pager * pPager, int isDirect)
{
PgHdr *pPgHdr;
u32 change_counter;
int rc = SQLITE_OK;
if(!pPager->changeCountDone)
{
/* Open page 1 of the file for writing. */
rc = sqlite3PagerGet(pPager, 1, &pPgHdr);
if(rc != SQLITE_OK)
return rc;
if(!isDirect)
{
rc = sqlite3PagerWrite(pPgHdr);
if(rc != SQLITE_OK)
{
sqlite3PagerUnref(pPgHdr);
return rc;
}
}
/* Increment the value just read and write it back to byte 24. */
change_counter = sqlite3Get4byte((u8 *) pPager->dbFileVers);
change_counter++;
put32bits(((char *) PGHDR_TO_DATA(pPgHdr)) + 24, change_counter);
if(isDirect && pPager->fd->pMethods)
{
const void *zBuf = PGHDR_TO_DATA(pPgHdr);
rc = sqlite3OsWrite(pPager->fd, zBuf, pPager->pageSize, 0);
}
/* Release the page reference. */
sqlite3PagerUnref(pPgHdr);
pPager->changeCountDone = 1;
}
return rc;
}
/*
** Sync the pager file to disk.
*/
SQLITE_PRIVATE int
sqlite3PagerSync(Pager * pPager)
{
int rc;
pagerEnter(pPager);
rc = sqlite3OsSync(pPager->fd, pPager->sync_flags);
pagerLeave(pPager);
return rc;
}
/*
** Sync the database file for the pager pPager. zMaster points to the name
** of a master journal file that should be written into the individual
** journal file. zMaster may be NULL, which is interpreted as no master
** journal (a single database transaction).
**
** This routine ensures that the journal is synced, all dirty pages written
** to the database file and the database file synced. The only thing that
** remains to commit the transaction is to delete the journal file (or
** master journal file if specified).
**
** Note that if zMaster==NULL, this does not overwrite a previous value
** passed to an sqlite3PagerCommitPhaseOne() call.
**
** If parameter nTrunc is non-zero, then the pager file is truncated to
** nTrunc pages (this is used by auto-vacuum databases).
**
** If the final parameter - noSync - is true, then the database file itself
** is not synced. The caller must call sqlite3PagerSync() directly to
** sync the database file before calling CommitPhaseTwo() to delete the
** journal file in this case.
*/
SQLITE_PRIVATE int
sqlite3PagerCommitPhaseOne(Pager * pPager, const char *zMaster, Pgno nTrunc, int noSync)
{
int rc = SQLITE_OK;
/* If no changes have been made, we can leave the transaction early.
*/
if(pPager->dbModified == 0 &&
(pPager->journalMode != PAGER_JOURNALMODE_DELETE || pPager->exclusiveMode != 0))
{
assert(pPager->dirtyCache == 0 || pPager->journalOpen == 0);
return SQLITE_OK;
}
PAGERTRACE4("DATABASE SYNC: File=%s zMaster=%s nTrunc=%d\n",
pPager->zFilename, zMaster, nTrunc);
pagerEnter(pPager);
/* If this is an in-memory db, or no pages have been written to, or this
** function has already been called, it is a no-op.
*/
if(pPager->state != PAGER_SYNCED && !MEMDB && pPager->dirtyCache)
{
PgHdr *pPg;
#ifdef SQLITE_ENABLE_ATOMIC_WRITE
/* The atomic-write optimization can be used if all of the
** following are true:
**
** + The file-system supports the atomic-write property for
** blocks of size page-size, and
** + This commit is not part of a multi-file transaction, and
** + Exactly one page has been modified and store in the journal file.
**
** If the optimization can be used, then the journal file will never
** be created for this transaction.
*/
int useAtomicWrite = (!zMaster &&
pPager->journalOpen &&
pPager->journalOff == jrnlBufferSize(pPager) &&
nTrunc == 0 &&
(0 == pPager->pDirty || 0 == pPager->pDirty->pDirty));
assert(pPager->journalOpen || pPager->journalMode == PAGER_JOURNALMODE_OFF);
if(useAtomicWrite)
{
/* Update the nRec field in the journal file. */
int offset = pPager->journalHdr + sizeof(aJournalMagic);
assert(pPager->nRec == 1);
rc = write32bits(pPager->jfd, offset, pPager->nRec);
/* Update the db file change counter. The following call will modify
** the in-memory representation of page 1 to include the updated
** change counter and then write page 1 directly to the database
** file. Because of the atomic-write property of the host file-system,
** this is safe.
*/
if(rc == SQLITE_OK)
{
rc = pager_incr_changecounter(pPager, 1);
}
}
else
{
rc = sqlite3JournalCreate(pPager->jfd);
}
if(!useAtomicWrite && rc == SQLITE_OK)
#endif
/* If a master journal file name has already been written to the
** journal file, then no sync is required. This happens when it is
** written, then the process fails to upgrade from a RESERVED to an
** EXCLUSIVE lock. The next time the process tries to commit the
** transaction the m-j name will have already been written.
*/
if(!pPager->setMaster)
{
rc = pager_incr_changecounter(pPager, 0);
if(rc != SQLITE_OK)
goto sync_exit;
#ifndef SQLITE_OMIT_AUTOVACUUM
if(nTrunc != 0)
{
/* If this transaction has made the database smaller, then all pages
** being discarded by the truncation must be written to the journal
** file.
*/
Pgno i;
int iSkip = PAGER_MJ_PGNO(pPager);
for (i = nTrunc + 1; i <= pPager->origDbSize; i++)
{
if(!sqlite3BitvecTest(pPager->pInJournal, i)
&& i != iSkip)
{
rc = sqlite3PagerGet(pPager, i, &pPg);
if(rc != SQLITE_OK)
goto sync_exit;
rc = sqlite3PagerWrite(pPg);
sqlite3PagerUnref(pPg);
if(rc != SQLITE_OK)
goto sync_exit;
}
}
}
#endif
rc = writeMasterJournal(pPager, zMaster);
if(rc != SQLITE_OK)
goto sync_exit;
rc = syncJournal(pPager);
}
if(rc != SQLITE_OK)
goto sync_exit;
#ifndef SQLITE_OMIT_AUTOVACUUM
if(nTrunc != 0)
{
rc = sqlite3PagerTruncate(pPager, nTrunc);
if(rc != SQLITE_OK)
goto sync_exit;
}
#endif
/* Write all dirty pages to the database file */
pPg = pager_get_all_dirty_pages(pPager);
rc = pager_write_pagelist(pPg);
if(rc != SQLITE_OK)
{
assert(rc != SQLITE_IOERR_BLOCKED);
/* The error might have left the dirty list all fouled up here,
** but that does not matter because if the if the dirty list did
** get corrupted, then the transaction will roll back and
** discard the dirty list. There is an assert in
** pager_get_all_dirty_pages() that verifies that no attempt
** is made to use an invalid dirty list.
*/
goto sync_exit;
}
pPager->pDirty = 0;
/* Sync the database file. */
if(!pPager->noSync && !noSync)
{
rc = sqlite3OsSync(pPager->fd, pPager->sync_flags);
}
IOTRACE(("DBSYNC %p\n", pPager)) pPager->state = PAGER_SYNCED;
}
else if(MEMDB && nTrunc != 0)
{
rc = sqlite3PagerTruncate(pPager, nTrunc);
}
sync_exit:
if(rc == SQLITE_IOERR_BLOCKED)
{
/* pager_incr_changecounter() may attempt to obtain an exclusive
* lock to spill the cache and return IOERR_BLOCKED. But since
* there is no chance the cache is inconsistent, it is
* better to return SQLITE_BUSY.
*/
rc = SQLITE_BUSY;
}
pagerLeave(pPager);
return rc;
}
/*
** Commit all changes to the database and release the write lock.
**
** If the commit fails for any reason, a rollback attempt is made
** and an error code is returned. If the commit worked, SQLITE_OK
** is returned.
*/
SQLITE_PRIVATE int
sqlite3PagerCommitPhaseTwo(Pager * pPager)
{
int rc;
PgHdr *pPg;
if(pPager->errCode)
{
return pPager->errCode;
}
if(pPager->state < PAGER_RESERVED)
{
return SQLITE_ERROR;
}
if(pPager->dbModified == 0 &&
(pPager->journalMode != PAGER_JOURNALMODE_DELETE || pPager->exclusiveMode != 0))
{
assert(pPager->dirtyCache == 0 || pPager->journalOpen == 0);
return SQLITE_OK;
}
pagerEnter(pPager);
PAGERTRACE2("COMMIT %d\n", PAGERID(pPager));
if(MEMDB)
{
pPg = pager_get_all_dirty_pages(pPager);
while (pPg)
{
PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
clearHistory(pHist);
pPg->dirty = 0;
pPg->inJournal = 0;
pHist->inStmt = 0;
pPg->needSync = 0;
pHist->pPrevStmt = pHist->pNextStmt = 0;
pPg = pPg->pDirty;
}
pPager->pDirty = 0;
#ifndef NDEBUG
for (pPg = pPager->pAll; pPg; pPg = pPg->pNextAll)
{
PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
assert(!pPg->alwaysRollback);
assert(!pHist->pOrig);
assert(!pHist->pStmt);
}
#endif
pPager->pStmt = 0;
pPager->state = PAGER_SHARED;
pagerLeave(pPager);
return SQLITE_OK;
}
assert(pPager->state == PAGER_SYNCED || !pPager->dirtyCache);
rc = pager_end_transaction(pPager, pPager->setMaster);
rc = pager_error(pPager, rc);
pagerLeave(pPager);
return rc;
}
/*
** Rollback all changes. The database falls back to PAGER_SHARED mode.
** All in-memory cache pages revert to their original data contents.
** The journal is deleted.
**
** This routine cannot fail unless some other process is not following
** the correct locking protocol or unless some other
** process is writing trash into the journal file (SQLITE_CORRUPT) or
** unless a prior malloc() failed (SQLITE_NOMEM). Appropriate error
** codes are returned for all these occasions. Otherwise,
** SQLITE_OK is returned.
*/
SQLITE_PRIVATE int
sqlite3PagerRollback(Pager * pPager)
{
int rc;
PAGERTRACE2("ROLLBACK %d\n", PAGERID(pPager));
if(MEMDB)
{
PgHdr *p;
for (p = pPager->pAll; p; p = p->pNextAll)
{
PgHistory *pHist;
assert(!p->alwaysRollback);
if(!p->dirty)
{
assert(!((PgHistory *) PGHDR_TO_HIST(p, pPager))->pOrig);
assert(!((PgHistory *) PGHDR_TO_HIST(p, pPager))->pStmt);
continue;
}
pHist = PGHDR_TO_HIST(p, pPager);
if(pHist->pOrig)
{
memcpy(PGHDR_TO_DATA(p), pHist->pOrig, pPager->pageSize);
PAGERTRACE3("ROLLBACK-PAGE %d of %d\n", p->pgno, PAGERID(pPager));
}
else
{
PAGERTRACE3("PAGE %d is clean on %d\n", p->pgno, PAGERID(pPager));
}
clearHistory(pHist);
p->dirty = 0;
p->inJournal = 0;
pHist->inStmt = 0;
pHist->pPrevStmt = pHist->pNextStmt = 0;
if(pPager->xReiniter)
{
pPager->xReiniter(p, pPager->pageSize);
}
}
pPager->pDirty = 0;
pPager->pStmt = 0;
pPager->dbSize = pPager->origDbSize;
pager_truncate_cache(pPager);
pPager->stmtInUse = 0;
pPager->state = PAGER_SHARED;
return SQLITE_OK;
}
pagerEnter(pPager);
if(!pPager->dirtyCache || !pPager->journalOpen)
{
rc = pager_end_transaction(pPager, pPager->setMaster);
pagerLeave(pPager);
return rc;
}
if(pPager->errCode && pPager->errCode != SQLITE_FULL)
{
if(pPager->state >= PAGER_EXCLUSIVE)
{
pager_playback(pPager, 0);
}
pagerLeave(pPager);
return pPager->errCode;
}
if(pPager->state == PAGER_RESERVED)
{
int rc2;
rc = pager_playback(pPager, 0);
rc2 = pager_end_transaction(pPager, pPager->setMaster);
if(rc == SQLITE_OK)
{
rc = rc2;
}
}
else
{
rc = pager_playback(pPager, 0);
}
/* pager_reset(pPager); */
pPager->dbSize = -1;
/* If an error occurs during a ROLLBACK, we can no longer trust the pager
** cache. So call pager_error() on the way out to make any error
** persistent.
*/
rc = pager_error(pPager, rc);
pagerLeave(pPager);
return rc;
}
/*
** Return TRUE if the database file is opened read-only. Return FALSE
** if the database is (in theory) writable.
*/
SQLITE_PRIVATE int
sqlite3PagerIsreadonly(Pager * pPager)
{
return pPager->readOnly;
}
/*
** Return the number of references to the pager.
*/
SQLITE_PRIVATE int
sqlite3PagerRefcount(Pager * pPager)
{
return pPager->nRef;
}
#ifdef SQLITE_TEST
/*
** This routine is used for testing and analysis only.
*/
SQLITE_PRIVATE int *
sqlite3PagerStats(Pager * pPager)
{
static int a[11];
a[0] = pPager->nRef;
a[1] = pPager->nPage;
a[2] = pPager->mxPage;
a[3] = pPager->dbSize;
a[4] = pPager->state;
a[5] = pPager->errCode;
a[6] = pPager->nHit;
a[7] = pPager->nMiss;
a[8] = 0; /* Used to be pPager->nOvfl */
a[9] = pPager->nRead;
a[10] = pPager->nWrite;
return a;
}
#endif
/*
** Set the statement rollback point.
**
** This routine should be called with the transaction journal already
** open. A new statement journal is created that can be used to rollback
** changes of a single SQL command within a larger transaction.
*/
static int
pagerStmtBegin(Pager * pPager)
{
int rc;
assert(!pPager->stmtInUse);
assert(pPager->state >= PAGER_SHARED);
assert(pPager->dbSize >= 0);
PAGERTRACE2("STMT-BEGIN %d\n", PAGERID(pPager));
if(MEMDB)
{
pPager->stmtInUse = 1;
pPager->stmtSize = pPager->dbSize;
return SQLITE_OK;
}
if(!pPager->journalOpen)
{
pPager->stmtAutoopen = 1;
return SQLITE_OK;
}
assert(pPager->journalOpen);
pagerLeave(pPager);
assert(pPager->pInStmt == 0);
pPager->pInStmt = sqlite3BitvecCreate(pPager->dbSize);
pagerEnter(pPager);
if(pPager->pInStmt == 0)
{
/* sqlite3OsLock(pPager->fd, SHARED_LOCK); */
return SQLITE_NOMEM;
}
pPager->stmtJSize = pPager->journalOff;
pPager->stmtSize = pPager->dbSize;
pPager->stmtHdrOff = 0;
pPager->stmtCksum = pPager->cksumInit;
if(!pPager->stmtOpen)
{
rc = sqlite3PagerOpentemp(pPager->pVfs, pPager->stfd, pPager->zStmtJrnl,
SQLITE_OPEN_SUBJOURNAL);
if(rc)
{
goto stmt_begin_failed;
}
pPager->stmtOpen = 1;
pPager->stmtNRec = 0;
}
pPager->stmtInUse = 1;
return SQLITE_OK;
stmt_begin_failed:
if(pPager->pInStmt)
{
sqlite3BitvecDestroy(pPager->pInStmt);
pPager->pInStmt = 0;
}
return rc;
}
SQLITE_PRIVATE int
sqlite3PagerStmtBegin(Pager * pPager)
{
int rc;
pagerEnter(pPager);
rc = pagerStmtBegin(pPager);
pagerLeave(pPager);
return rc;
}
/*
** Commit a statement.
*/
SQLITE_PRIVATE int
sqlite3PagerStmtCommit(Pager * pPager)
{
pagerEnter(pPager);
if(pPager->stmtInUse)
{
PgHdr *pPg, *pNext;
PAGERTRACE2("STMT-COMMIT %d\n", PAGERID(pPager));
if(!MEMDB)
{
/* sqlite3OsTruncate(pPager->stfd, 0); */
sqlite3BitvecDestroy(pPager->pInStmt);
pPager->pInStmt = 0;
}
else
{
for (pPg = pPager->pStmt; pPg; pPg = pNext)
{
PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
pNext = pHist->pNextStmt;
assert(pHist->inStmt);
pHist->inStmt = 0;
pHist->pPrevStmt = pHist->pNextStmt = 0;
sqlite3_free(pHist->pStmt);
pHist->pStmt = 0;
}
}
pPager->stmtNRec = 0;
pPager->stmtInUse = 0;
pPager->pStmt = 0;
}
pPager->stmtAutoopen = 0;
pagerLeave(pPager);
return SQLITE_OK;
}
/*
** Rollback a statement.
*/
SQLITE_PRIVATE int
sqlite3PagerStmtRollback(Pager * pPager)
{
int rc;
pagerEnter(pPager);
if(pPager->stmtInUse)
{
PAGERTRACE2("STMT-ROLLBACK %d\n", PAGERID(pPager));
if(MEMDB)
{
PgHdr *pPg;
PgHistory *pHist;
for (pPg = pPager->pStmt; pPg; pPg = pHist->pNextStmt)
{
pHist = PGHDR_TO_HIST(pPg, pPager);
if(pHist->pStmt)
{
memcpy(PGHDR_TO_DATA(pPg), pHist->pStmt, pPager->pageSize);
sqlite3_free(pHist->pStmt);
pHist->pStmt = 0;
}
}
pPager->dbSize = pPager->stmtSize;
pager_truncate_cache(pPager);
rc = SQLITE_OK;
}
else
{
rc = pager_stmt_playback(pPager);
}
sqlite3PagerStmtCommit(pPager);
}
else
{
rc = SQLITE_OK;
}
pPager->stmtAutoopen = 0;
pagerLeave(pPager);
return rc;
}
/*
** Return the full pathname of the database file.
*/
SQLITE_PRIVATE const char *
sqlite3PagerFilename(Pager * pPager)
{
return pPager->zFilename;
}
/*
** Return the VFS structure for the pager.
*/
SQLITE_PRIVATE const sqlite3_vfs *
sqlite3PagerVfs(Pager * pPager)
{
return pPager->pVfs;
}
/*
** Return the file handle for the database file associated
** with the pager. This might return NULL if the file has
** not yet been opened.
*/
SQLITE_PRIVATE sqlite3_file *
sqlite3PagerFile(Pager * pPager)
{
return pPager->fd;
}
/*
** Return the directory of the database file.
*/
SQLITE_PRIVATE const char *
sqlite3PagerDirname(Pager * pPager)
{
return pPager->zDirectory;
}
/*
** Return the full pathname of the journal file.
*/
SQLITE_PRIVATE const char *
sqlite3PagerJournalname(Pager * pPager)
{
return pPager->zJournal;
}
/*
** Return true if fsync() calls are disabled for this pager. Return FALSE
** if fsync()s are executed normally.
*/
SQLITE_PRIVATE int
sqlite3PagerNosync(Pager * pPager)
{
return pPager->noSync;
}
#ifdef SQLITE_HAS_CODEC
/*
** Set the codec for this pager
*/
SQLITE_PRIVATE void
sqlite3PagerSetCodec(Pager * pPager, void *(*xCodec) (void *, void *, Pgno, int), void *pCodecArg)
{
pPager->xCodec = xCodec;
pPager->pCodecArg = pCodecArg;
}
#endif
#ifndef SQLITE_OMIT_AUTOVACUUM
/*
** Move the page pPg to location pgno in the file.
**
** There must be no references to the page previously located at
** pgno (which we call pPgOld) though that page is allowed to be
** in cache. If the page previous located at pgno is not already
** in the rollback journal, it is not put there by by this routine.
**
** References to the page pPg remain valid. Updating any
** meta-data associated with pPg (i.e. data stored in the nExtra bytes
** allocated along with the page) is the responsibility of the caller.
**
** A transaction must be active when this routine is called. It used to be
** required that a statement transaction was not active, but this restriction
** has been removed (CREATE INDEX needs to move a page when a statement
** transaction is active).
*/
SQLITE_PRIVATE int
sqlite3PagerMovepage(Pager * pPager, DbPage * pPg, Pgno pgno)
{
PgHdr *pPgOld; /* The page being overwritten. */
int h;
Pgno needSyncPgno = 0;
pagerEnter(pPager);
assert(pPg->nRef > 0);
PAGERTRACE5("MOVE %d page %d (needSync=%d) moves to %d\n",
PAGERID(pPager), pPg->pgno, pPg->needSync, pgno);
IOTRACE(("MOVE %p %d %d\n", pPager, pPg->pgno, pgno)) pager_get_content(pPg);
if(pPg->needSync)
{
needSyncPgno = pPg->pgno;
assert(pPg->inJournal || (int) pgno > pPager->origDbSize);
assert(pPg->dirty);
assert(pPager->needSync);
}
/* Unlink pPg from its hash-chain */
unlinkHashChain(pPager, pPg);
/* If the cache contains a page with page-number pgno, remove it
** from its hash chain. Also, if the PgHdr.needSync was set for
** page pgno before the 'move' operation, it needs to be retained
** for the page moved there.
*/
pPg->needSync = 0;
pPgOld = pager_lookup(pPager, pgno);
if(pPgOld)
{
assert(pPgOld->nRef == 0);
unlinkHashChain(pPager, pPgOld);
makeClean(pPgOld);
pPg->needSync = pPgOld->needSync;
}
else
{
pPg->needSync = 0;
}
pPg->inJournal = sqlite3BitvecTest(pPager->pInJournal, pgno);
/* Change the page number for pPg and insert it into the new hash-chain. */
assert(pgno != 0);
pPg->pgno = pgno;
h = pgno & (pPager->nHash - 1);
if(pPager->aHash[h])
{
assert(pPager->aHash[h]->pPrevHash == 0);
pPager->aHash[h]->pPrevHash = pPg;
}
pPg->pNextHash = pPager->aHash[h];
pPager->aHash[h] = pPg;
pPg->pPrevHash = 0;
makeDirty(pPg);
pPager->dirtyCache = 1;
pPager->dbModified = 1;
if(needSyncPgno)
{
/* If needSyncPgno is non-zero, then the journal file needs to be
** sync()ed before any data is written to database file page needSyncPgno.
** Currently, no such page exists in the page-cache and the
** Pager.pInJournal bit has been set. This needs to be remedied by loading
** the page into the pager-cache and setting the PgHdr.needSync flag.
**
** If the attempt to load the page into the page-cache fails, (due
** to a malloc() or IO failure), clear the bit in the pInJournal[]
** array. Otherwise, if the page is loaded and written again in
** this transaction, it may be written to the database file before
** it is synced into the journal file. This way, it may end up in
** the journal file twice, but that is not a problem.
**
** The sqlite3PagerGet() call may cause the journal to sync. So make
** sure the Pager.needSync flag is set too.
*/
int rc;
PgHdr *pPgHdr;
assert(pPager->needSync);
rc = sqlite3PagerGet(pPager, needSyncPgno, &pPgHdr);
if(rc != SQLITE_OK)
{
if(pPager->pInJournal && (int) needSyncPgno <= pPager->origDbSize)
{
sqlite3BitvecClear(pPager->pInJournal, needSyncPgno);
}
pagerLeave(pPager);
return rc;
}
pPager->needSync = 1;
pPgHdr->needSync = 1;
pPgHdr->inJournal = 1;
makeDirty(pPgHdr);
sqlite3PagerUnref(pPgHdr);
}
pagerLeave(pPager);
return SQLITE_OK;
}
#endif
/*
** Return a pointer to the data for the specified page.
*/
SQLITE_PRIVATE void *
sqlite3PagerGetData(DbPage * pPg)
{
return PGHDR_TO_DATA(pPg);
}
/*
** Return a pointer to the Pager.nExtra bytes of "extra" space
** allocated along with the specified page.
*/
SQLITE_PRIVATE void *
sqlite3PagerGetExtra(DbPage * pPg)
{
Pager *pPager = pPg->pPager;
return (pPager ? PGHDR_TO_EXTRA(pPg, pPager) : 0);
}
/*
** Get/set the locking-mode for this pager. Parameter eMode must be one
** of PAGER_LOCKINGMODE_QUERY, PAGER_LOCKINGMODE_NORMAL or
** PAGER_LOCKINGMODE_EXCLUSIVE. If the parameter is not _QUERY, then
** the locking-mode is set to the value specified.
**
** The returned value is either PAGER_LOCKINGMODE_NORMAL or
** PAGER_LOCKINGMODE_EXCLUSIVE, indicating the current (possibly updated)
** locking-mode.
*/
SQLITE_PRIVATE int
sqlite3PagerLockingMode(Pager * pPager, int eMode)
{
assert(eMode == PAGER_LOCKINGMODE_QUERY
|| eMode == PAGER_LOCKINGMODE_NORMAL || eMode == PAGER_LOCKINGMODE_EXCLUSIVE);
assert(PAGER_LOCKINGMODE_QUERY < 0);
assert(PAGER_LOCKINGMODE_NORMAL >= 0 && PAGER_LOCKINGMODE_EXCLUSIVE >= 0);
if(eMode >= 0 && !pPager->tempFile)
{
pPager->exclusiveMode = eMode;
}
return (int) pPager->exclusiveMode;
}
/*
** Get/set the journal-mode for this pager. Parameter eMode must be one
** of PAGER_JOURNALMODE_QUERY, PAGER_JOURNALMODE_DELETE or
** PAGER_JOURNALMODE_PERSIST. If the parameter is not _QUERY, then
** the journal-mode is set to the value specified.
**
** The returned value is either PAGER_JOURNALMODE_DELETE or
** PAGER_JOURNALMODE_PERSIST, indicating the current (possibly updated)
** journal-mode.
*/
SQLITE_PRIVATE int
sqlite3PagerJournalMode(Pager * pPager, int eMode)
{
assert(eMode == PAGER_JOURNALMODE_QUERY
|| eMode == PAGER_JOURNALMODE_DELETE
|| eMode == PAGER_JOURNALMODE_PERSIST || eMode == PAGER_JOURNALMODE_OFF);
assert(PAGER_JOURNALMODE_QUERY < 0);
assert(PAGER_JOURNALMODE_DELETE >= 0 && PAGER_JOURNALMODE_PERSIST >= 0);
if(eMode >= 0)
{
pPager->journalMode = eMode;
}
return (int) pPager->journalMode;
}
#ifdef SQLITE_TEST
/*
** Print a listing of all referenced pages and their ref count.
*/
SQLITE_PRIVATE void
sqlite3PagerRefdump(Pager * pPager)
{
PgHdr *pPg;
for (pPg = pPager->pAll; pPg; pPg = pPg->pNextAll)
{
if(pPg->nRef <= 0)
continue;
sqlite3DebugPrintf("PAGE %3d addr=%p nRef=%d\n",
pPg->pgno, PGHDR_TO_DATA(pPg), pPg->nRef);
}
}
#endif
#endif /* SQLITE_OMIT_DISKIO */
/************** End of pager.c ***********************************************/
/************** Begin file btmutex.c *****************************************/
/*
** 2007 August 27
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
**
** This file contains code used to implement mutexes on Btree objects.
** This code really belongs in btree.c. But btree.c is getting too
** big and we want to break it down some. This packaged seemed like
** a good breakout.
*/
/************** Include btreeInt.h in the middle of btmutex.c ****************/
/************** Begin file btreeInt.h ****************************************/
/*
** 2004 April 6
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file implements a external (disk-based) database using BTrees.
** For a detailed discussion of BTrees, refer to
**
** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
** "Sorting And Searching", pages 473-480. Addison-Wesley
** Publishing Company, Reading, Massachusetts.
**
** The basic idea is that each page of the file contains N database
** entries and N+1 pointers to subpages.
**
** ----------------------------------------------------------------
** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N-1) | Ptr(N) |
** ----------------------------------------------------------------
**
** All of the keys on the page that Ptr(0) points to have values less
** than Key(0). All of the keys on page Ptr(1) and its subpages have
** values greater than Key(0) and less than Key(1). All of the keys
** on Ptr(N) and its subpages have values greater than Key(N-1). And
** so forth.
**
** Finding a particular key requires reading O(log(M)) pages from the
** disk where M is the number of entries in the tree.
**
** In this implementation, a single file can hold one or more separate
** BTrees. Each BTree is identified by the index of its root page. The
** key and data for any entry are combined to form the "payload". A
** fixed amount of payload can be carried directly on the database
** page. If the payload is larger than the preset amount then surplus
** bytes are stored on overflow pages. The payload for an entry
** and the preceding pointer are combined to form a "Cell". Each
** page has a small header which contains the Ptr(N) pointer and other
** information such as the size of key and data.
**
** FORMAT DETAILS
**
** The file is divided into pages. The first page is called page 1,
** the second is page 2, and so forth. A page number of zero indicates
** "no such page". The page size can be anything between 512 and 65536.
** Each page can be either a btree page, a freelist page or an overflow
** page.
**
** The first page is always a btree page. The first 100 bytes of the first
** page contain a special header (the "file header") that describes the file.
** The format of the file header is as follows:
**
** OFFSET SIZE DESCRIPTION
** 0 16 Header string: "SQLite format 3\000"
** 16 2 Page size in bytes.
** 18 1 File format write version
** 19 1 File format read version
** 20 1 Bytes of unused space at the end of each page
** 21 1 Max embedded payload fraction
** 22 1 Min embedded payload fraction
** 23 1 Min leaf payload fraction
** 24 4 File change counter
** 28 4 Reserved for future use
** 32 4 First freelist page
** 36 4 Number of freelist pages in the file
** 40 60 15 4-byte meta values passed to higher layers
**
** All of the integer values are big-endian (most significant byte first).
**
** The file change counter is incremented when the database is changed
** This counter allows other processes to know when the file has changed
** and thus when they need to flush their cache.
**
** The max embedded payload fraction is the amount of the total usable
** space in a page that can be consumed by a single cell for standard
** B-tree (non-LEAFDATA) tables. A value of 255 means 100%. The default
** is to limit the maximum cell size so that at least 4 cells will fit
** on one page. Thus the default max embedded payload fraction is 64.
**
** If the payload for a cell is larger than the max payload, then extra
** payload is spilled to overflow pages. Once an overflow page is allocated,
** as many bytes as possible are moved into the overflow pages without letting
** the cell size drop below the min embedded payload fraction.
**
** The min leaf payload fraction is like the min embedded payload fraction
** except that it applies to leaf nodes in a LEAFDATA tree. The maximum
** payload fraction for a LEAFDATA tree is always 100% (or 255) and it
** not specified in the header.
**
** Each btree pages is divided into three sections: The header, the
** cell pointer array, and the cell content area. Page 1 also has a 100-byte
** file header that occurs before the page header.
**
** |----------------|
** | file header | 100 bytes. Page 1 only.
** |----------------|
** | page header | 8 bytes for leaves. 12 bytes for interior nodes
** |----------------|
** | cell pointer | | 2 bytes per cell. Sorted order.
** | array | | Grows downward
** | | v
** |----------------|
** | unallocated |
** | space |
** |----------------| ^ Grows upwards
** | cell content | | Arbitrary order interspersed with freeblocks.
** | area | | and free space fragments.
** |----------------|
**
** The page headers looks like this:
**
** OFFSET SIZE DESCRIPTION
** 0 1 Flags. 1: intkey, 2: zerodata, 4: leafdata, 8: leaf
** 1 2 byte offset to the first freeblock
** 3 2 number of cells on this page
** 5 2 first byte of the cell content area
** 7 1 number of fragmented free bytes
** 8 4 Right child (the Ptr(N) value). Omitted on leaves.
**
** The flags define the format of this btree page. The leaf flag means that
** this page has no children. The zerodata flag means that this page carries
** only keys and no data. The intkey flag means that the key is a integer
** which is stored in the key size entry of the cell header rather than in
** the payload area.
**
** The cell pointer array begins on the first byte after the page header.
** The cell pointer array contains zero or more 2-byte numbers which are
** offsets from the beginning of the page to the cell content in the cell
** content area. The cell pointers occur in sorted order. The system strives
** to keep free space after the last cell pointer so that new cells can
** be easily added without having to defragment the page.
**
** Cell content is stored at the very end of the page and grows toward the
** beginning of the page.
**
** Unused space within the cell content area is collected into a linked list of
** freeblocks. Each freeblock is at least 4 bytes in size. The byte offset
** to the first freeblock is given in the header. Freeblocks occur in
** increasing order. Because a freeblock must be at least 4 bytes in size,
** any group of 3 or fewer unused bytes in the cell content area cannot
** exist on the freeblock chain. A group of 3 or fewer free bytes is called
** a fragment. The total number of bytes in all fragments is recorded.
** in the page header at offset 7.
**
** SIZE DESCRIPTION
** 2 Byte offset of the next freeblock
** 2 Bytes in this freeblock
**
** Cells are of variable length. Cells are stored in the cell content area at
** the end of the page. Pointers to the cells are in the cell pointer array
** that immediately follows the page header. Cells is not necessarily
** contiguous or in order, but cell pointers are contiguous and in order.
**
** Cell content makes use of variable length integers. A variable
** length integer is 1 to 9 bytes where the lower 7 bits of each
** byte are used. The integer consists of all bytes that have bit 8 set and
** the first byte with bit 8 clear. The most significant byte of the integer
** appears first. A variable-length integer may not be more than 9 bytes long.
** As a special case, all 8 bytes of the 9th byte are used as data. This
** allows a 64-bit integer to be encoded in 9 bytes.
**
** 0x00 becomes 0x00000000
** 0x7f becomes 0x0000007f
** 0x81 0x00 becomes 0x00000080
** 0x82 0x00 becomes 0x00000100
** 0x80 0x7f becomes 0x0000007f
** 0x8a 0x91 0xd1 0xac 0x78 becomes 0x12345678
** 0x81 0x81 0x81 0x81 0x01 becomes 0x10204081
**
** Variable length integers are used for rowids and to hold the number of
** bytes of key and data in a btree cell.
**
** The content of a cell looks like this:
**
** SIZE DESCRIPTION
** 4 Page number of the left child. Omitted if leaf flag is set.
** var Number of bytes of data. Omitted if the zerodata flag is set.
** var Number of bytes of key. Or the key itself if intkey flag is set.
** * Payload
** 4 First page of the overflow chain. Omitted if no overflow
**
** Overflow pages form a linked list. Each page except the last is completely
** filled with data (pagesize - 4 bytes). The last page can have as little
** as 1 byte of data.
**
** SIZE DESCRIPTION
** 4 Page number of next overflow page
** * Data
**
** Freelist pages come in two subtypes: trunk pages and leaf pages. The
** file header points to the first in a linked list of trunk page. Each trunk
** page points to multiple leaf pages. The content of a leaf page is
** unspecified. A trunk page looks like this:
**
** SIZE DESCRIPTION
** 4 Page number of next trunk page
** 4 Number of leaf pointers on this page
** * zero or more pages numbers of leaves
*/
/* Round up a number to the next larger multiple of 8. This is used
** to force 8-byte alignment on 64-bit architectures.
*/
#define ROUND8(x) ((x+7)&~7)
/* The following value is the maximum cell size assuming a maximum page
** size give above.
*/
#define MX_CELL_SIZE(pBt) (pBt->pageSize-8)
/* The maximum number of cells on a single page of the database. This
** assumes a minimum cell size of 6 bytes (4 bytes for the cell itself
** plus 2 bytes for the index to the cell in the page header). Such
** small cells will be rare, but they are possible.
*/
#define MX_CELL(pBt) ((pBt->pageSize-8)/6)
/* Forward declarations */
typedef struct MemPage MemPage;
typedef struct BtLock BtLock;
/*
** This is a magic string that appears at the beginning of every
** SQLite database in order to identify the file as a real database.
**
** You can change this value at compile-time by specifying a
** -DSQLITE_FILE_HEADER="..." on the compiler command-line. The
** header must be exactly 16 bytes including the zero-terminator so
** the string itself should be 15 characters long. If you change
** the header, then your custom library will not be able to read
** databases generated by the standard tools and the standard tools
** will not be able to read databases created by your custom library.
*/
#ifndef SQLITE_FILE_HEADER /* 123456789 123456 */
# define SQLITE_FILE_HEADER "SQLite format 3"
#endif
/*
** Page type flags. An ORed combination of these flags appear as the
** first byte of on-disk image of every BTree page.
*/
#define PTF_INTKEY 0x01
#define PTF_ZERODATA 0x02
#define PTF_LEAFDATA 0x04
#define PTF_LEAF 0x08
/*
** As each page of the file is loaded into memory, an instance of the following
** structure is appended and initialized to zero. This structure stores
** information about the page that is decoded from the raw file page.
**
** The pParent field points back to the parent page. This allows us to
** walk up the BTree from any leaf to the root. Care must be taken to
** unref() the parent page pointer when this page is no longer referenced.
** The pageDestructor() routine handles that chore.
**
** Access to all fields of this structure is controlled by the mutex
** stored in MemPage.pBt->mutex.
*/
struct MemPage
{
u8 isInit; /* True if previously initialized. MUST BE FIRST! */
u8 idxShift; /* True if Cell indices have changed */
u8 nOverflow; /* Number of overflow cell bodies in aCell[] */
u8 intKey; /* True if intkey flag is set */
u8 leaf; /* True if leaf flag is set */
u8 zeroData; /* True if table stores keys only */
u8 leafData; /* True if tables stores data on leaves only */
u8 hasData; /* True if this page stores data */
u8 hdrOffset; /* 100 for page 1. 0 otherwise */
u8 childPtrSize; /* 0 if leaf==1. 4 if leaf==0 */
u16 maxLocal; /* Copy of BtShared.maxLocal or BtShared.maxLeaf */
u16 minLocal; /* Copy of BtShared.minLocal or BtShared.minLeaf */
u16 cellOffset; /* Index in aData of first cell pointer */
u16 idxParent; /* Index in parent of this node */
u16 nFree; /* Number of free bytes on the page */
u16 nCell; /* Number of cells on this page, local and ovfl */
struct _OvflCell
{ /* Cells that will not fit on aData[] */
u8 *pCell; /* Pointers to the body of the overflow cell */
u16 idx; /* Insert this cell before idx-th non-overflow cell */
} aOvfl[5];
BtShared *pBt; /* Pointer to BtShared that this page is part of */
u8 *aData; /* Pointer to disk image of the page data */
DbPage *pDbPage; /* Pager page handle */
Pgno pgno; /* Page number for this page */
MemPage *pParent; /* The parent of this page. NULL for root */
};
/*
** The in-memory image of a disk page has the auxiliary information appended
** to the end. EXTRA_SIZE is the number of bytes of space needed to hold
** that extra information.
*/
#define EXTRA_SIZE sizeof(MemPage)
/* A Btree handle
**
** A database connection contains a pointer to an instance of
** this object for every database file that it has open. This structure
** is opaque to the database connection. The database connection cannot
** see the internals of this structure and only deals with pointers to
** this structure.
**
** For some database files, the same underlying database cache might be
** shared between multiple connections. In that case, each contection
** has it own pointer to this object. But each instance of this object
** points to the same BtShared object. The database cache and the
** schema associated with the database file are all contained within
** the BtShared object.
**
** All fields in this structure are accessed under sqlite3.mutex.
** The pBt pointer itself may not be changed while there exists cursors
** in the referenced BtShared that point back to this Btree since those
** cursors have to do go through this Btree to find their BtShared and
** they often do so without holding sqlite3.mutex.
*/
struct Btree
{
sqlite3 *db; /* The database connection holding this btree */
BtShared *pBt; /* Sharable content of this btree */
u8 inTrans; /* TRANS_NONE, TRANS_READ or TRANS_WRITE */
u8 sharable; /* True if we can share pBt with another db */
u8 locked; /* True if db currently has pBt locked */
int wantToLock; /* Number of nested calls to sqlite3BtreeEnter() */
Btree *pNext; /* List of other sharable Btrees from the same db */
Btree *pPrev; /* Back pointer of the same list */
};
/*
** Btree.inTrans may take one of the following values.
**
** If the shared-data extension is enabled, there may be multiple users
** of the Btree structure. At most one of these may open a write transaction,
** but any number may have active read transactions.
*/
#define TRANS_NONE 0
#define TRANS_READ 1
#define TRANS_WRITE 2
/*
** An instance of this object represents a single database file.
**
** A single database file can be in use as the same time by two
** or more database connections. When two or more connections are
** sharing the same database file, each connection has it own
** private Btree object for the file and each of those Btrees points
** to this one BtShared object. BtShared.nRef is the number of
** connections currently sharing this database file.
**
** Fields in this structure are accessed under the BtShared.mutex
** mutex, except for nRef and pNext which are accessed under the
** global SQLITE_MUTEX_STATIC_MASTER mutex. The pPager field
** may not be modified once it is initially set as long as nRef>0.
** The pSchema field may be set once under BtShared.mutex and
** thereafter is unchanged as long as nRef>0.
*/
struct BtShared
{
Pager *pPager; /* The page cache */
sqlite3 *db; /* Database connection currently using this Btree */
BtCursor *pCursor; /* A list of all open cursors */
MemPage *pPage1; /* First page of the database */
u8 inStmt; /* True if we are in a statement subtransaction */
u8 readOnly; /* True if the underlying file is readonly */
u8 maxEmbedFrac; /* Maximum payload as % of total page size */
u8 minEmbedFrac; /* Minimum payload as % of total page size */
u8 minLeafFrac; /* Minimum leaf payload as % of total page size */
u8 pageSizeFixed; /* True if the page size can no longer be changed */
#ifndef SQLITE_OMIT_AUTOVACUUM
u8 autoVacuum; /* True if auto-vacuum is enabled */
u8 incrVacuum; /* True if incr-vacuum is enabled */
Pgno nTrunc; /* Non-zero if the db will be truncated (incr vacuum) */
#endif
u16 pageSize; /* Total number of bytes on a page */
u16 usableSize; /* Number of usable bytes on each page */
int maxLocal; /* Maximum local payload in non-LEAFDATA tables */
int minLocal; /* Minimum local payload in non-LEAFDATA tables */
int maxLeaf; /* Maximum local payload in a LEAFDATA table */
int minLeaf; /* Minimum local payload in a LEAFDATA table */
u8 inTransaction; /* Transaction state */
int nTransaction; /* Number of open transactions (read + write) */
void *pSchema; /* Pointer to space allocated by sqlite3BtreeSchema() */
void (*xFreeSchema) (void *); /* Destructor for BtShared.pSchema */
sqlite3_mutex *mutex; /* Non-recursive mutex required to access this struct */
BusyHandler busyHdr; /* The busy handler for this btree */
#ifndef SQLITE_OMIT_SHARED_CACHE
int nRef; /* Number of references to this structure */
BtShared *pNext; /* Next on a list of sharable BtShared structs */
BtLock *pLock; /* List of locks held on this shared-btree struct */
Btree *pExclusive; /* Btree with an EXCLUSIVE lock on the whole db */
#endif
u8 *pTmpSpace; /* BtShared.pageSize bytes of space for tmp use */
};
/*
** An instance of the following structure is used to hold information
** about a cell. The parseCellPtr() function fills in this structure
** based on information extract from the raw disk page.
*/
typedef struct CellInfo CellInfo;
struct CellInfo
{
u8 *pCell; /* Pointer to the start of cell content */
i64 nKey; /* The key for INTKEY tables, or number of bytes in key */
u32 nData; /* Number of bytes of data */
u32 nPayload; /* Total amount of payload */
u16 nHeader; /* Size of the cell content header in bytes */
u16 nLocal; /* Amount of payload held locally */
u16 iOverflow; /* Offset to overflow page number. Zero if no overflow */
u16 nSize; /* Size of the cell content on the main b-tree page */
};
/*
** A cursor is a pointer to a particular entry within a particular
** b-tree within a database file.
**
** The entry is identified by its MemPage and the index in
** MemPage.aCell[] of the entry.
**
** When a single database file can shared by two more database connections,
** but cursors cannot be shared. Each cursor is associated with a
** particular database connection identified BtCursor.pBtree.db.
**
** Fields in this structure are accessed under the BtShared.mutex
** found at self->pBt->mutex.
*/
struct BtCursor
{
Btree *pBtree; /* The Btree to which this cursor belongs */
BtShared *pBt; /* The BtShared this cursor points to */
BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */
struct KeyInfo *pKeyInfo; /* Argument passed to comparison function */
Pgno pgnoRoot; /* The root page of this tree */
MemPage *pPage; /* Page that contains the entry */
int idx; /* Index of the entry in pPage->aCell[] */
CellInfo info; /* A parse of the cell we are pointing at */
u8 wrFlag; /* True if writable */
u8 atLast; /* Cursor pointing to the last entry */
u8 validNKey; /* True if info.nKey is valid */
u8 eState; /* One of the CURSOR_XXX constants (see below) */
void *pKey; /* Saved key that was cursor's last known position */
i64 nKey; /* Size of pKey, or last integer key */
int skip; /* (skip<0) -> Prev() is a no-op. (skip>0) -> Next() is */
#ifndef SQLITE_OMIT_INCRBLOB
u8 isIncrblobHandle; /* True if this cursor is an incr. io handle */
Pgno *aOverflow; /* Cache of overflow page locations */
#endif
};
/*
** Potential values for BtCursor.eState.
**
** CURSOR_VALID:
** Cursor points to a valid entry. getPayload() etc. may be called.
**
** CURSOR_INVALID:
** Cursor does not point to a valid entry. This can happen (for example)
** because the table is empty or because BtreeCursorFirst() has not been
** called.
**
** CURSOR_REQUIRESEEK:
** The table that this cursor was opened on still exists, but has been
** modified since the cursor was last used. The cursor position is saved
** in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in
** this state, restoreOrClearCursorPosition() can be called to attempt to
** seek the cursor to the saved position.
**
** CURSOR_FAULT:
** A unrecoverable error (an I/O error or a malloc failure) has occurred
** on a different connection that shares the BtShared cache with this
** cursor. The error has left the cache in an inconsistent state.
** Do nothing else with this cursor. Any attempt to use the cursor
** should return the error code stored in BtCursor.skip
*/
#define CURSOR_INVALID 0
#define CURSOR_VALID 1
#define CURSOR_REQUIRESEEK 2
#define CURSOR_FAULT 3
/*
** The TRACE macro will print high-level status information about the
** btree operation when the global variable sqlite3BtreeTrace is
** enabled.
*/
#if SQLITE_TEST
# define TRACE(X) if( sqlite3BtreeTrace ){ printf X; fflush(stdout); }
#else
# define TRACE(X)
#endif
/* The database page the PENDING_BYTE occupies. This page is never used.
** TODO: This macro is very similary to PAGER_MJ_PGNO() in pager.c. They
** should possibly be consolidated (presumably in pager.h).
**
** If disk I/O is omitted (meaning that the database is stored purely
** in memory) then there is no pending byte.
*/
#ifdef SQLITE_OMIT_DISKIO
# define PENDING_BYTE_PAGE(pBt) 0x7fffffff
#else
# define PENDING_BYTE_PAGE(pBt) ((PENDING_BYTE/(pBt)->pageSize)+1)
#endif
/*
** A linked list of the following structures is stored at BtShared.pLock.
** Locks are added (or upgraded from READ_LOCK to WRITE_LOCK) when a cursor
** is opened on the table with root page BtShared.iTable. Locks are removed
** from this list when a transaction is committed or rolled back, or when
** a btree handle is closed.
*/
struct BtLock
{
Btree *pBtree; /* Btree handle holding this lock */
Pgno iTable; /* Root page of table */
u8 eLock; /* READ_LOCK or WRITE_LOCK */
BtLock *pNext; /* Next in BtShared.pLock list */
};
/* Candidate values for BtLock.eLock */
#define READ_LOCK 1
#define WRITE_LOCK 2
/*
** These macros define the location of the pointer-map entry for a
** database page. The first argument to each is the number of usable
** bytes on each page of the database (often 1024). The second is the
** page number to look up in the pointer map.
**
** PTRMAP_PAGENO returns the database page number of the pointer-map
** page that stores the required pointer. PTRMAP_PTROFFSET returns
** the offset of the requested map entry.
**
** If the pgno argument passed to PTRMAP_PAGENO is a pointer-map page,
** then pgno is returned. So (pgno==PTRMAP_PAGENO(pgsz, pgno)) can be
** used to test if pgno is a pointer-map page. PTRMAP_ISPAGE implements
** this test.
*/
#define PTRMAP_PAGENO(pBt, pgno) ptrmapPageno(pBt, pgno)
#define PTRMAP_PTROFFSET(pBt, pgno) (5*(pgno-ptrmapPageno(pBt, pgno)-1))
#define PTRMAP_ISPAGE(pBt, pgno) (PTRMAP_PAGENO((pBt),(pgno))==(pgno))
/*
** The pointer map is a lookup table that identifies the parent page for
** each child page in the database file. The parent page is the page that
** contains a pointer to the child. Every page in the database contains
** 0 or 1 parent pages. (In this context 'database page' refers
** to any page that is not part of the pointer map itself.) Each pointer map
** entry consists of a single byte 'type' and a 4 byte parent page number.
** The PTRMAP_XXX identifiers below are the valid types.
**
** The purpose of the pointer map is to facility moving pages from one
** position in the file to another as part of autovacuum. When a page
** is moved, the pointer in its parent must be updated to point to the
** new location. The pointer map is used to locate the parent page quickly.
**
** PTRMAP_ROOTPAGE: The database page is a root-page. The page-number is not
** used in this case.
**
** PTRMAP_FREEPAGE: The database page is an unused (free) page. The page-number
** is not used in this case.
**
** PTRMAP_OVERFLOW1: The database page is the first page in a list of
** overflow pages. The page number identifies the page that
** contains the cell with a pointer to this overflow page.
**
** PTRMAP_OVERFLOW2: The database page is the second or later page in a list of
** overflow pages. The page-number identifies the previous
** page in the overflow page list.
**
** PTRMAP_BTREE: The database page is a non-root btree page. The page number
** identifies the parent page in the btree.
*/
#define PTRMAP_ROOTPAGE 1
#define PTRMAP_FREEPAGE 2
#define PTRMAP_OVERFLOW1 3
#define PTRMAP_OVERFLOW2 4
#define PTRMAP_BTREE 5
/* A bunch of assert() statements to check the transaction state variables
** of handle p (type Btree*) are internally consistent.
*/
#define btreeIntegrity(p) \
assert( p->pBt->inTransaction!=TRANS_NONE || p->pBt->nTransaction==0 ); \
assert( p->pBt->inTransaction>=p->inTrans );
/*
** The ISAUTOVACUUM macro is used within balance_nonroot() to determine
** if the database supports auto-vacuum or not. Because it is used
** within an expression that is an argument to another macro
** (sqliteMallocRaw), it is not possible to use conditional compilation.
** So, this macro is defined instead.
*/
#ifndef SQLITE_OMIT_AUTOVACUUM
#define ISAUTOVACUUM (pBt->autoVacuum)
#else
#define ISAUTOVACUUM 0
#endif
/*
** This structure is passed around through all the sanity checking routines
** in order to keep track of some global state information.
*/
typedef struct IntegrityCk IntegrityCk;
struct IntegrityCk
{
BtShared *pBt; /* The tree being checked out */
Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */
int nPage; /* Number of pages in the database */
int *anRef; /* Number of times each page is referenced */
int mxErr; /* Stop accumulating errors when this reaches zero */
char *zErrMsg; /* An error message. NULL if no errors seen. */
int nErr; /* Number of messages written to zErrMsg so far */
};
/*
** Read or write a two- and four-byte big-endian integer values.
*/
#define get2byte(x) ((x)[0]<<8 | (x)[1])
#define put2byte(p,v) ((p)[0] = (v)>>8, (p)[1] = (v))
#define get4byte sqlite3Get4byte
#define put4byte sqlite3Put4byte
/*
** Internal routines that should be accessed by the btree layer only.
*/
SQLITE_PRIVATE int sqlite3BtreeGetPage(BtShared *, Pgno, MemPage **, int);
SQLITE_PRIVATE int sqlite3BtreeInitPage(MemPage * pPage, MemPage * pParent);
SQLITE_PRIVATE void sqlite3BtreeParseCellPtr(MemPage *, u8 *, CellInfo *);
SQLITE_PRIVATE void sqlite3BtreeParseCell(MemPage *, int, CellInfo *);
#ifdef SQLITE_TEST
SQLITE_PRIVATE u8 *sqlite3BtreeFindCell(MemPage * pPage, int iCell);
#endif
SQLITE_PRIVATE int sqlite3BtreeRestoreOrClearCursorPosition(BtCursor * pCur);
SQLITE_PRIVATE void sqlite3BtreeGetTempCursor(BtCursor * pCur, BtCursor * pTempCur);
SQLITE_PRIVATE void sqlite3BtreeReleaseTempCursor(BtCursor * pCur);
SQLITE_PRIVATE int sqlite3BtreeIsRootPage(MemPage * pPage);
SQLITE_PRIVATE void sqlite3BtreeMoveToParent(BtCursor * pCur);
/************** End of btreeInt.h ********************************************/
/************** Continuing where we left off in btmutex.c ********************/
#if SQLITE_THREADSAFE && !defined(SQLITE_OMIT_SHARED_CACHE)
/*
** Enter a mutex on the given BTree object.
**
** If the object is not sharable, then no mutex is ever required
** and this routine is a no-op. The underlying mutex is non-recursive.
** But we keep a reference count in Btree.wantToLock so the behavior
** of this interface is recursive.
**
** To avoid deadlocks, multiple Btrees are locked in the same order
** by all database connections. The p->pNext is a list of other
** Btrees belonging to the same database connection as the p Btree
** which need to be locked after p. If we cannot get a lock on
** p, then first unlock all of the others on p->pNext, then wait
** for the lock to become available on p, then relock all of the
** subsequent Btrees that desire a lock.
*/
SQLITE_PRIVATE void
sqlite3BtreeEnter(Btree * p)
{
Btree *pLater;
/* Some basic sanity checking on the Btree. The list of Btrees
** connected by pNext and pPrev should be in sorted order by
** Btree.pBt value. All elements of the list should belong to
** the same connection. Only shared Btrees are on the list. */
assert(p->pNext == 0 || p->pNext->pBt > p->pBt);
assert(p->pPrev == 0 || p->pPrev->pBt < p->pBt);
assert(p->pNext == 0 || p->pNext->db == p->db);
assert(p->pPrev == 0 || p->pPrev->db == p->db);
assert(p->sharable || (p->pNext == 0 && p->pPrev == 0));
/* Check for locking consistency */
assert(!p->locked || p->wantToLock > 0);
assert(p->sharable || p->wantToLock == 0);
/* We should already hold a lock on the database connection */
assert(sqlite3_mutex_held(p->db->mutex));
if(!p->sharable)
return;
p->wantToLock++;
if(p->locked)
return;
#ifndef SQLITE_MUTEX_NOOP
/* In most cases, we should be able to acquire the lock we
** want without having to go throught the ascending lock
** procedure that follows. Just be sure not to block.
*/
if(sqlite3_mutex_try(p->pBt->mutex) == SQLITE_OK)
{
p->locked = 1;
return;
}
/* To avoid deadlock, first release all locks with a larger
** BtShared address. Then acquire our lock. Then reacquire
** the other BtShared locks that we used to hold in ascending
** order.
*/
for (pLater = p->pNext; pLater; pLater = pLater->pNext)
{
assert(pLater->sharable);
assert(pLater->pNext == 0 || pLater->pNext->pBt > pLater->pBt);
assert(!pLater->locked || pLater->wantToLock > 0);
if(pLater->locked)
{
sqlite3_mutex_leave(pLater->pBt->mutex);
pLater->locked = 0;
}
}
sqlite3_mutex_enter(p->pBt->mutex);
p->locked = 1;
for (pLater = p->pNext; pLater; pLater = pLater->pNext)
{
if(pLater->wantToLock)
{
sqlite3_mutex_enter(pLater->pBt->mutex);
pLater->locked = 1;
}
}
#endif /* SQLITE_MUTEX_NOOP */
}
/*
** Exit the recursive mutex on a Btree.
*/
SQLITE_PRIVATE void
sqlite3BtreeLeave(Btree * p)
{
if(p->sharable)
{
assert(p->wantToLock > 0);
p->wantToLock--;
if(p->wantToLock == 0)
{
assert(p->locked);
sqlite3_mutex_leave(p->pBt->mutex);
p->locked = 0;
}
}
}
#ifndef NDEBUG
/*
** Return true if the BtShared mutex is held on the btree.
**
** This routine makes no determination one why or another if the
** database connection mutex is held.
**
** This routine is used only from within assert() statements.
*/
SQLITE_PRIVATE int
sqlite3BtreeHoldsMutex(Btree * p)
{
return (p->sharable == 0 ||
(p->locked && p->wantToLock && sqlite3_mutex_held(p->pBt->mutex)));
}
#endif
#ifndef SQLITE_OMIT_INCRBLOB
/*
** Enter and leave a mutex on a Btree given a cursor owned by that
** Btree. These entry points are used by incremental I/O and can be
** omitted if that module is not used.
*/
SQLITE_PRIVATE void
sqlite3BtreeEnterCursor(BtCursor * pCur)
{
sqlite3BtreeEnter(pCur->pBtree);
}
SQLITE_PRIVATE void
sqlite3BtreeLeaveCursor(BtCursor * pCur)
{
sqlite3BtreeLeave(pCur->pBtree);
}
#endif /* SQLITE_OMIT_INCRBLOB */
/*
** Enter the mutex on every Btree associated with a database
** connection. This is needed (for example) prior to parsing
** a statement since we will be comparing table and column names
** against all schemas and we do not want those schemas being
** reset out from under us.
**
** There is a corresponding leave-all procedures.
**
** Enter the mutexes in accending order by BtShared pointer address
** to avoid the possibility of deadlock when two threads with
** two or more btrees in common both try to lock all their btrees
** at the same instant.
*/
SQLITE_PRIVATE void
sqlite3BtreeEnterAll(sqlite3 * db)
{
int i;
Btree *p, *pLater;
assert(sqlite3_mutex_held(db->mutex));
for (i = 0; i < db->nDb; i++)
{
p = db->aDb[i].pBt;
if(p && p->sharable)
{
p->wantToLock++;
if(!p->locked)
{
assert(p->wantToLock == 1);
while (p->pPrev)
p = p->pPrev;
while (p->locked && p->pNext)
p = p->pNext;
for (pLater = p->pNext; pLater; pLater = pLater->pNext)
{
if(pLater->locked)
{
sqlite3_mutex_leave(pLater->pBt->mutex);
pLater->locked = 0;
}
}
while (p)
{
sqlite3_mutex_enter(p->pBt->mutex);
p->locked++;
p = p->pNext;
}
}
}
}
}
SQLITE_PRIVATE void
sqlite3BtreeLeaveAll(sqlite3 * db)
{
int i;
Btree *p;
assert(sqlite3_mutex_held(db->mutex));
for (i = 0; i < db->nDb; i++)
{
p = db->aDb[i].pBt;
if(p && p->sharable)
{
assert(p->wantToLock > 0);
p->wantToLock--;
if(p->wantToLock == 0)
{
assert(p->locked);
sqlite3_mutex_leave(p->pBt->mutex);
p->locked = 0;
}
}
}
}
#ifndef NDEBUG
/*
** Return true if the current thread holds the database connection
** mutex and all required BtShared mutexes.
**
** This routine is used inside assert() statements only.
*/
SQLITE_PRIVATE int
sqlite3BtreeHoldsAllMutexes(sqlite3 * db)
{
int i;
if(!sqlite3_mutex_held(db->mutex))
{
return 0;
}
for (i = 0; i < db->nDb; i++)
{
Btree *p;
p = db->aDb[i].pBt;
if(p && p->sharable && (p->wantToLock == 0 || !sqlite3_mutex_held(p->pBt->mutex)))
{
return 0;
}
}
return 1;
}
#endif /* NDEBUG */
/*
** Potentially dd a new Btree pointer to a BtreeMutexArray.
** Really only add the Btree if it can possibly be shared with
** another database connection.
**
** The Btrees are kept in sorted order by pBtree->pBt. That
** way when we go to enter all the mutexes, we can enter them
** in order without every having to backup and retry and without
** worrying about deadlock.
**
** The number of shared btrees will always be small (usually 0 or 1)
** so an insertion sort is an adequate algorithm here.
*/
SQLITE_PRIVATE void
sqlite3BtreeMutexArrayInsert(BtreeMutexArray * pArray, Btree * pBtree)
{
int i, j;
BtShared *pBt;
if(pBtree == 0 || pBtree->sharable == 0)
return;
#ifndef NDEBUG
{
for (i = 0; i < pArray->nMutex; i++)
{
assert(pArray->aBtree[i] != pBtree);
}
}
#endif
assert(pArray->nMutex >= 0);
assert(pArray->nMutex < sizeof(pArray->aBtree) / sizeof(pArray->aBtree[0]) - 1);
pBt = pBtree->pBt;
for (i = 0; i < pArray->nMutex; i++)
{
assert(pArray->aBtree[i] != pBtree);
if(pArray->aBtree[i]->pBt > pBt)
{
for (j = pArray->nMutex; j > i; j--)
{
pArray->aBtree[j] = pArray->aBtree[j - 1];
}
pArray->aBtree[i] = pBtree;
pArray->nMutex++;
return;
}
}
pArray->aBtree[pArray->nMutex++] = pBtree;
}
/*
** Enter the mutex of every btree in the array. This routine is
** called at the beginning of sqlite3VdbeExec(). The mutexes are
** exited at the end of the same function.
*/
SQLITE_PRIVATE void
sqlite3BtreeMutexArrayEnter(BtreeMutexArray * pArray)
{
int i;
for (i = 0; i < pArray->nMutex; i++)
{
Btree *p = pArray->aBtree[i];
/* Some basic sanity checking */
assert(i == 0 || pArray->aBtree[i - 1]->pBt < p->pBt);
assert(!p->locked || p->wantToLock > 0);
/* We should already hold a lock on the database connection */
assert(sqlite3_mutex_held(p->db->mutex));
p->wantToLock++;
if(!p->locked && p->sharable)
{
sqlite3_mutex_enter(p->pBt->mutex);
p->locked = 1;
}
}
}
/*
** Leave the mutex of every btree in the group.
*/
SQLITE_PRIVATE void
sqlite3BtreeMutexArrayLeave(BtreeMutexArray * pArray)
{
int i;
for (i = 0; i < pArray->nMutex; i++)
{
Btree *p = pArray->aBtree[i];
/* Some basic sanity checking */
assert(i == 0 || pArray->aBtree[i - 1]->pBt < p->pBt);
assert(p->locked || !p->sharable);
assert(p->wantToLock > 0);
/* We should already hold a lock on the database connection */
assert(sqlite3_mutex_held(p->db->mutex));
p->wantToLock--;
if(p->wantToLock == 0 && p->locked)
{
sqlite3_mutex_leave(p->pBt->mutex);
p->locked = 0;
}
}
}
#endif /* SQLITE_THREADSAFE && !SQLITE_OMIT_SHARED_CACHE */
/************** End of btmutex.c *********************************************/
/************** Begin file btree.c *******************************************/
/*
** 2004 April 6
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file implements a external (disk-based) database using BTrees.
** See the header comment on "btreeInt.h" for additional information.
** Including a description of file format and an overview of operation.
*/
/*
** The header string that appears at the beginning of every
** SQLite database.
*/
static const char zMagicHeader[] = SQLITE_FILE_HEADER;
/*
** Set this global variable to 1 to enable tracing using the TRACE
** macro.
*/
#if SQLITE_TEST
int sqlite3BtreeTrace = 0; /* True to enable tracing */
#endif
#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** A flag to indicate whether or not shared cache is enabled. Also,
** a list of BtShared objects that are eligible for participation
** in shared cache. The variables have file scope during normal builds,
** but the test harness needs to access these variables so we make them
** global for test builds.
*/
#ifdef SQLITE_TEST
SQLITE_PRIVATE BtShared *sqlite3SharedCacheList = 0;
SQLITE_PRIVATE int sqlite3SharedCacheEnabled = 0;
#else
static BtShared *sqlite3SharedCacheList = 0;
static int sqlite3SharedCacheEnabled = 0;
#endif
#endif /* SQLITE_OMIT_SHARED_CACHE */
#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** Enable or disable the shared pager and schema features.
**
** This routine has no effect on existing database connections.
** The shared cache setting effects only future calls to
** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
*/
SQLITE_API int
sqlite3_enable_shared_cache(int enable)
{
sqlite3SharedCacheEnabled = enable;
return SQLITE_OK;
}
#endif
/*
** Forward declaration
*/
static int checkReadLocks(Btree *, Pgno, BtCursor *);
#ifdef SQLITE_OMIT_SHARED_CACHE
/*
** The functions queryTableLock(), lockTable() and unlockAllTables()
** manipulate entries in the BtShared.pLock linked list used to store
** shared-cache table level locks. If the library is compiled with the
** shared-cache feature disabled, then there is only ever one user
** of each BtShared structure and so this locking is not necessary.
** So define the lock related functions as no-ops.
*/
#define queryTableLock(a,b,c) SQLITE_OK
#define lockTable(a,b,c) SQLITE_OK
#define unlockAllTables(a)
#endif
#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** Query to see if btree handle p may obtain a lock of type eLock
** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
** SQLITE_OK if the lock may be obtained (by calling lockTable()), or
** SQLITE_LOCKED if not.
*/
static int
queryTableLock(Btree * p, Pgno iTab, u8 eLock)
{
BtShared *pBt = p->pBt;
BtLock *pIter;
assert(sqlite3BtreeHoldsMutex(p));
/* This is a no-op if the shared-cache is not enabled */
if(!p->sharable)
{
return SQLITE_OK;
}
/* If some other connection is holding an exclusive lock, the
** requested lock may not be obtained.
*/
if(pBt->pExclusive && pBt->pExclusive != p)
{
return SQLITE_LOCKED;
}
/* This (along with lockTable()) is where the ReadUncommitted flag is
** dealt with. If the caller is querying for a read-lock and the flag is
** set, it is unconditionally granted - even if there are write-locks
** on the table. If a write-lock is requested, the ReadUncommitted flag
** is not considered.
**
** In function lockTable(), if a read-lock is demanded and the
** ReadUncommitted flag is set, no entry is added to the locks list
** (BtShared.pLock).
**
** To summarize: If the ReadUncommitted flag is set, then read cursors do
** not create or respect table locks. The locking procedure for a
** write-cursor does not change.
*/
if(!p->db ||
0 == (p->db->flags & SQLITE_ReadUncommitted) ||
eLock == WRITE_LOCK || iTab == MASTER_ROOT)
{
for (pIter = pBt->pLock; pIter; pIter = pIter->pNext)
{
if(pIter->pBtree != p && pIter->iTable == iTab &&
(pIter->eLock != eLock || eLock != READ_LOCK))
{
return SQLITE_LOCKED;
}
}
}
return SQLITE_OK;
}
#endif /* !SQLITE_OMIT_SHARED_CACHE */
#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** Add a lock on the table with root-page iTable to the shared-btree used
** by Btree handle p. Parameter eLock must be either READ_LOCK or
** WRITE_LOCK.
**
** SQLITE_OK is returned if the lock is added successfully. SQLITE_BUSY and
** SQLITE_NOMEM may also be returned.
*/
static int
lockTable(Btree * p, Pgno iTable, u8 eLock)
{
BtShared *pBt = p->pBt;
BtLock *pLock = 0;
BtLock *pIter;
assert(sqlite3BtreeHoldsMutex(p));
/* This is a no-op if the shared-cache is not enabled */
if(!p->sharable)
{
return SQLITE_OK;
}
assert(SQLITE_OK == queryTableLock(p, iTable, eLock));
/* If the read-uncommitted flag is set and a read-lock is requested,
** return early without adding an entry to the BtShared.pLock list. See
** comment in function queryTableLock() for more info on handling
** the ReadUncommitted flag.
*/
if((p->db) &&
(p->db->flags & SQLITE_ReadUncommitted) && (eLock == READ_LOCK) && iTable != MASTER_ROOT)
{
return SQLITE_OK;
}
/* First search the list for an existing lock on this table. */
for (pIter = pBt->pLock; pIter; pIter = pIter->pNext)
{
if(pIter->iTable == iTable && pIter->pBtree == p)
{
pLock = pIter;
break;
}
}
/* If the above search did not find a BtLock struct associating Btree p
** with table iTable, allocate one and link it into the list.
*/
if(!pLock)
{
pLock = (BtLock *) sqlite3MallocZero(sizeof(BtLock));
if(!pLock)
{
return SQLITE_NOMEM;
}
pLock->iTable = iTable;
pLock->pBtree = p;
pLock->pNext = pBt->pLock;
pBt->pLock = pLock;
}
/* Set the BtLock.eLock variable to the maximum of the current lock
** and the requested lock. This means if a write-lock was already held
** and a read-lock requested, we don't incorrectly downgrade the lock.
*/
assert(WRITE_LOCK > READ_LOCK);
if(eLock > pLock->eLock)
{
pLock->eLock = eLock;
}
return SQLITE_OK;
}
#endif /* !SQLITE_OMIT_SHARED_CACHE */
#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** Release all the table locks (locks obtained via calls to the lockTable()
** procedure) held by Btree handle p.
*/
static void
unlockAllTables(Btree * p)
{
BtShared *pBt = p->pBt;
BtLock **ppIter = &pBt->pLock;
assert(sqlite3BtreeHoldsMutex(p));
assert(p->sharable || 0 == *ppIter);
while (*ppIter)
{
BtLock *pLock = *ppIter;
assert(pBt->pExclusive == 0 || pBt->pExclusive == pLock->pBtree);
if(pLock->pBtree == p)
{
*ppIter = pLock->pNext;
sqlite3_free(pLock);
}
else
{
ppIter = &pLock->pNext;
}
}
if(pBt->pExclusive == p)
{
pBt->pExclusive = 0;
}
}
#endif /* SQLITE_OMIT_SHARED_CACHE */
static void releasePage(MemPage * pPage); /* Forward reference */
/*
** Verify that the cursor holds a mutex on the BtShared
*/
#ifndef NDEBUG
static int
cursorHoldsMutex(BtCursor * p)
{
return sqlite3_mutex_held(p->pBt->mutex);
}
#endif
#ifndef SQLITE_OMIT_INCRBLOB
/*
** Invalidate the overflow page-list cache for cursor pCur, if any.
*/
static void
invalidateOverflowCache(BtCursor * pCur)
{
assert(cursorHoldsMutex(pCur));
sqlite3_free(pCur->aOverflow);
pCur->aOverflow = 0;
}
/*
** Invalidate the overflow page-list cache for all cursors opened
** on the shared btree structure pBt.
*/
static void
invalidateAllOverflowCache(BtShared * pBt)
{
BtCursor *p;
assert(sqlite3_mutex_held(pBt->mutex));
for (p = pBt->pCursor; p; p = p->pNext)
{
invalidateOverflowCache(p);
}
}
#else
#define invalidateOverflowCache(x)
#define invalidateAllOverflowCache(x)
#endif
/*
** Save the current cursor position in the variables BtCursor.nKey
** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
*/
static int
saveCursorPosition(BtCursor * pCur)
{
int rc;
assert(CURSOR_VALID == pCur->eState);
assert(0 == pCur->pKey);
assert(cursorHoldsMutex(pCur));
rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
/* If this is an intKey table, then the above call to BtreeKeySize()
** stores the integer key in pCur->nKey. In this case this value is
** all that is required. Otherwise, if pCur is not open on an intKey
** table, then malloc space for and store the pCur->nKey bytes of key
** data.
*/
if(rc == SQLITE_OK && 0 == pCur->pPage->intKey)
{
void *pKey = sqlite3_malloc(pCur->nKey);
if(pKey)
{
rc = sqlite3BtreeKey(pCur, 0, pCur->nKey, pKey);
if(rc == SQLITE_OK)
{
pCur->pKey = pKey;
}
else
{
sqlite3_free(pKey);
}
}
else
{
rc = SQLITE_NOMEM;
}
}
assert(!pCur->pPage->intKey || !pCur->pKey);
if(rc == SQLITE_OK)
{
releasePage(pCur->pPage);
pCur->pPage = 0;
pCur->eState = CURSOR_REQUIRESEEK;
}
invalidateOverflowCache(pCur);
return rc;
}
/*
** Save the positions of all cursors except pExcept open on the table
** with root-page iRoot. Usually, this is called just before cursor
** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
*/
static int
saveAllCursors(BtShared * pBt, Pgno iRoot, BtCursor * pExcept)
{
BtCursor *p;
assert(sqlite3_mutex_held(pBt->mutex));
assert(pExcept == 0 || pExcept->pBt == pBt);
for (p = pBt->pCursor; p; p = p->pNext)
{
if(p != pExcept && (0 == iRoot || p->pgnoRoot == iRoot) &&
p->eState == CURSOR_VALID)
{
int rc = saveCursorPosition(p);
if(SQLITE_OK != rc)
{
return rc;
}
}
}
return SQLITE_OK;
}
/*
** Clear the current cursor position.
*/
static void
clearCursorPosition(BtCursor * pCur)
{
assert(cursorHoldsMutex(pCur));
sqlite3_free(pCur->pKey);
pCur->pKey = 0;
pCur->eState = CURSOR_INVALID;
}
/*
** Restore the cursor to the position it was in (or as close to as possible)
** when saveCursorPosition() was called. Note that this call deletes the
** saved position info stored by saveCursorPosition(), so there can be
** at most one effective restoreOrClearCursorPosition() call after each
** saveCursorPosition().
**
** If the second argument argument - doSeek - is false, then instead of
** returning the cursor to its saved position, any saved position is deleted
** and the cursor state set to CURSOR_INVALID.
*/
SQLITE_PRIVATE int
sqlite3BtreeRestoreOrClearCursorPosition(BtCursor * pCur)
{
int rc;
assert(cursorHoldsMutex(pCur));
assert(pCur->eState >= CURSOR_REQUIRESEEK);
if(pCur->eState == CURSOR_FAULT)
{
return pCur->skip;
}
#ifndef SQLITE_OMIT_INCRBLOB
if(pCur->isIncrblobHandle)
{
return SQLITE_ABORT;
}
#endif
pCur->eState = CURSOR_INVALID;
rc = sqlite3BtreeMoveto(pCur, pCur->pKey, 0, pCur->nKey, 0, &pCur->skip);
if(rc == SQLITE_OK)
{
sqlite3_free(pCur->pKey);
pCur->pKey = 0;
assert(pCur->eState == CURSOR_VALID || pCur->eState == CURSOR_INVALID);
}
return rc;
}
#define restoreOrClearCursorPosition(p) \
(p->eState>=CURSOR_REQUIRESEEK ? \
sqlite3BtreeRestoreOrClearCursorPosition(p) : \
SQLITE_OK)
#ifndef SQLITE_OMIT_AUTOVACUUM
/*
** Given a page number of a regular database page, return the page
** number for the pointer-map page that contains the entry for the
** input page number.
*/
static Pgno
ptrmapPageno(BtShared * pBt, Pgno pgno)
{
int nPagesPerMapPage, iPtrMap, ret;
assert(sqlite3_mutex_held(pBt->mutex));
nPagesPerMapPage = (pBt->usableSize / 5) + 1;
iPtrMap = (pgno - 2) / nPagesPerMapPage;
ret = (iPtrMap * nPagesPerMapPage) + 2;
if(ret == PENDING_BYTE_PAGE(pBt))
{
ret++;
}
return ret;
}
/*
** Write an entry into the pointer map.
**
** This routine updates the pointer map entry for page number 'key'
** so that it maps to type 'eType' and parent page number 'pgno'.
** An error code is returned if something goes wrong, otherwise SQLITE_OK.
*/
static int
ptrmapPut(BtShared * pBt, Pgno key, u8 eType, Pgno parent)
{
DbPage *pDbPage; /* The pointer map page */
u8 *pPtrmap; /* The pointer map data */
Pgno iPtrmap; /* The pointer map page number */
int offset; /* Offset in pointer map page */
int rc;
assert(sqlite3_mutex_held(pBt->mutex));
/* The master-journal page number must never be used as a pointer map page */
assert(0 == PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)));
assert(pBt->autoVacuum);
if(key == 0)
{
return SQLITE_CORRUPT_BKPT;
}
iPtrmap = PTRMAP_PAGENO(pBt, key);
rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
if(rc != SQLITE_OK)
{
return rc;
}
offset = PTRMAP_PTROFFSET(pBt, key);
pPtrmap = (u8 *) sqlite3PagerGetData(pDbPage);
if(eType != pPtrmap[offset] || get4byte(&pPtrmap[offset + 1]) != parent)
{
TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
rc = sqlite3PagerWrite(pDbPage);
if(rc == SQLITE_OK)
{
pPtrmap[offset] = eType;
put4byte(&pPtrmap[offset + 1], parent);
}
}
sqlite3PagerUnref(pDbPage);
return rc;
}
/*
** Read an entry from the pointer map.
**
** This routine retrieves the pointer map entry for page 'key', writing
** the type and parent page number to *pEType and *pPgno respectively.
** An error code is returned if something goes wrong, otherwise SQLITE_OK.
*/
static int
ptrmapGet(BtShared * pBt, Pgno key, u8 * pEType, Pgno * pPgno)
{
DbPage *pDbPage; /* The pointer map page */
int iPtrmap; /* Pointer map page index */
u8 *pPtrmap; /* Pointer map page data */
int offset; /* Offset of entry in pointer map */
int rc;
assert(sqlite3_mutex_held(pBt->mutex));
iPtrmap = PTRMAP_PAGENO(pBt, key);
rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
if(rc != 0)
{
return rc;
}
pPtrmap = (u8 *) sqlite3PagerGetData(pDbPage);
offset = PTRMAP_PTROFFSET(pBt, key);
assert(pEType != 0);
*pEType = pPtrmap[offset];
if(pPgno)
*pPgno = get4byte(&pPtrmap[offset + 1]);
sqlite3PagerUnref(pDbPage);
if(*pEType < 1 || *pEType > 5)
return SQLITE_CORRUPT_BKPT;
return SQLITE_OK;
}
#endif /* SQLITE_OMIT_AUTOVACUUM */
/*
** Given a btree page and a cell index (0 means the first cell on
** the page, 1 means the second cell, and so forth) return a pointer
** to the cell content.
**
** This routine works only for pages that do not contain overflow cells.
*/
#define findCell(pPage, iCell) \
((pPage)->aData + get2byte(&(pPage)->aData[(pPage)->cellOffset+2*(iCell)]))
#ifdef SQLITE_TEST
SQLITE_PRIVATE u8 *
sqlite3BtreeFindCell(MemPage * pPage, int iCell)
{
assert(iCell >= 0);
assert(iCell < get2byte(&pPage->aData[pPage->hdrOffset + 3]));
return findCell(pPage, iCell);
}
#endif
/*
** This a more complex version of sqlite3BtreeFindCell() that works for
** pages that do contain overflow cells. See insert
*/
static u8 *
findOverflowCell(MemPage * pPage, int iCell)
{
int i;
assert(sqlite3_mutex_held(pPage->pBt->mutex));
for (i = pPage->nOverflow - 1; i >= 0; i--)
{
int k;
struct _OvflCell *pOvfl;
pOvfl = &pPage->aOvfl[i];
k = pOvfl->idx;
if(k <= iCell)
{
if(k == iCell)
{
return pOvfl->pCell;
}
iCell--;
}
}
return findCell(pPage, iCell);
}
/*
** Parse a cell content block and fill in the CellInfo structure. There
** are two versions of this function. sqlite3BtreeParseCell() takes a
** cell index as the second argument and sqlite3BtreeParseCellPtr()
** takes a pointer to the body of the cell as its second argument.
**
** Within this file, the parseCell() macro can be called instead of
** sqlite3BtreeParseCellPtr(). Using some compilers, this will be faster.
*/
SQLITE_PRIVATE void
sqlite3BtreeParseCellPtr(MemPage * pPage, /* Page containing the cell */
u8 * pCell, /* Pointer to the cell text. */
CellInfo * pInfo /* Fill in this structure */
)
{
int n; /* Number bytes in cell content header */
u32 nPayload; /* Number of bytes of cell payload */
assert(sqlite3_mutex_held(pPage->pBt->mutex));
pInfo->pCell = pCell;
assert(pPage->leaf == 0 || pPage->leaf == 1);
n = pPage->childPtrSize;
assert(n == 4 - 4 * pPage->leaf);
if(pPage->hasData)
{
n += getVarint32(&pCell[n], nPayload);
}
else
{
nPayload = 0;
}
pInfo->nData = nPayload;
if(pPage->intKey)
{
n += getVarint(&pCell[n], (u64 *) & pInfo->nKey);
}
else
{
u32 x;
n += getVarint32(&pCell[n], x);
pInfo->nKey = x;
nPayload += x;
}
pInfo->nPayload = nPayload;
pInfo->nHeader = n;
if(nPayload <= pPage->maxLocal)
{
/* This is the (easy) common case where the entire payload fits
** on the local page. No overflow is required.
*/
int nSize; /* Total size of cell content in bytes */
pInfo->nLocal = nPayload;
pInfo->iOverflow = 0;
nSize = nPayload + n;
if(nSize < 4)
{
nSize = 4; /* Minimum cell size is 4 */
}
pInfo->nSize = nSize;
}
else
{
/* If the payload will not fit completely on the local page, we have
** to decide how much to store locally and how much to spill onto
** overflow pages. The strategy is to minimize the amount of unused
** space on overflow pages while keeping the amount of local storage
** in between minLocal and maxLocal.
**
** Warning: changing the way overflow payload is distributed in any
** way will result in an incompatible file format.
*/
int minLocal; /* Minimum amount of payload held locally */
int maxLocal; /* Maximum amount of payload held locally */
int surplus; /* Overflow payload available for local storage */
minLocal = pPage->minLocal;
maxLocal = pPage->maxLocal;
surplus = minLocal + (nPayload - minLocal) % (pPage->pBt->usableSize - 4);
if(surplus <= maxLocal)
{
pInfo->nLocal = surplus;
}
else
{
pInfo->nLocal = minLocal;
}
pInfo->iOverflow = pInfo->nLocal + n;
pInfo->nSize = pInfo->iOverflow + 4;
}
}
#define parseCell(pPage, iCell, pInfo) \
sqlite3BtreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
SQLITE_PRIVATE void
sqlite3BtreeParseCell(MemPage * pPage, /* Page containing the cell */
int iCell, /* The cell index. First cell is 0 */
CellInfo * pInfo /* Fill in this structure */
)
{
parseCell(pPage, iCell, pInfo);
}
/*
** Compute the total number of bytes that a Cell needs in the cell
** data area of the btree-page. The return number includes the cell
** data header and the local payload, but not any overflow page or
** the space used by the cell pointer.
*/
#ifndef NDEBUG
static u16
cellSize(MemPage * pPage, int iCell)
{
CellInfo info;
sqlite3BtreeParseCell(pPage, iCell, &info);
return info.nSize;
}
#endif
static u16
cellSizePtr(MemPage * pPage, u8 * pCell)
{
CellInfo info;
sqlite3BtreeParseCellPtr(pPage, pCell, &info);
return info.nSize;
}
#ifndef SQLITE_OMIT_AUTOVACUUM
/*
** If the cell pCell, part of page pPage contains a pointer
** to an overflow page, insert an entry into the pointer-map
** for the overflow page.
*/
static int
ptrmapPutOvflPtr(MemPage * pPage, u8 * pCell)
{
if(pCell)
{
CellInfo info;
sqlite3BtreeParseCellPtr(pPage, pCell, &info);
assert((info.nData + (pPage->intKey ? 0 : info.nKey)) == info.nPayload);
if((info.nData + (pPage->intKey ? 0 : info.nKey)) > info.nLocal)
{
Pgno ovfl = get4byte(&pCell[info.iOverflow]);
return ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno);
}
}
return SQLITE_OK;
}
/*
** If the cell with index iCell on page pPage contains a pointer
** to an overflow page, insert an entry into the pointer-map
** for the overflow page.
*/
static int
ptrmapPutOvfl(MemPage * pPage, int iCell)
{
u8 *pCell;
assert(sqlite3_mutex_held(pPage->pBt->mutex));
pCell = findOverflowCell(pPage, iCell);
return ptrmapPutOvflPtr(pPage, pCell);
}
#endif
/*
** Defragment the page given. All Cells are moved to the
** end of the page and all free space is collected into one
** big FreeBlk that occurs in between the header and cell
** pointer array and the cell content area.
*/
static int
defragmentPage(MemPage * pPage)
{
int i; /* Loop counter */
int pc; /* Address of a i-th cell */
int addr; /* Offset of first byte after cell pointer array */
int hdr; /* Offset to the page header */
int size; /* Size of a cell */
int usableSize; /* Number of usable bytes on a page */
int cellOffset; /* Offset to the cell pointer array */
int brk; /* Offset to the cell content area */
int nCell; /* Number of cells on the page */
unsigned char *data; /* The page data */
unsigned char *temp; /* Temp area for cell content */
assert(sqlite3PagerIswriteable(pPage->pDbPage));
assert(pPage->pBt != 0);
assert(pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE);
assert(pPage->nOverflow == 0);
assert(sqlite3_mutex_held(pPage->pBt->mutex));
temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
data = pPage->aData;
hdr = pPage->hdrOffset;
cellOffset = pPage->cellOffset;
nCell = pPage->nCell;
assert(nCell == get2byte(&data[hdr + 3]));
usableSize = pPage->pBt->usableSize;
brk = get2byte(&data[hdr + 5]);
memcpy(&temp[brk], &data[brk], usableSize - brk);
brk = usableSize;
for (i = 0; i < nCell; i++)
{
u8 *pAddr; /* The i-th cell pointer */
pAddr = &data[cellOffset + i * 2];
pc = get2byte(pAddr);
assert(pc < pPage->pBt->usableSize);
size = cellSizePtr(pPage, &temp[pc]);
brk -= size;
memcpy(&data[brk], &temp[pc], size);
put2byte(pAddr, brk);
}
assert(brk >= cellOffset + 2 * nCell);
put2byte(&data[hdr + 5], brk);
data[hdr + 1] = 0;
data[hdr + 2] = 0;
data[hdr + 7] = 0;
addr = cellOffset + 2 * nCell;
memset(&data[addr], 0, brk - addr);
return SQLITE_OK;
}
/*
** Allocate nByte bytes of space on a page.
**
** Return the index into pPage->aData[] of the first byte of
** the new allocation. Or return 0 if there is not enough free
** space on the page to satisfy the allocation request.
**
** If the page contains nBytes of free space but does not contain
** nBytes of contiguous free space, then this routine automatically
** calls defragementPage() to consolidate all free space before
** allocating the new chunk.
*/
static int
allocateSpace(MemPage * pPage, int nByte)
{
int addr, pc, hdr;
int size;
int nFrag;
int top;
int nCell;
int cellOffset;
unsigned char *data;
data = pPage->aData;
assert(sqlite3PagerIswriteable(pPage->pDbPage));
assert(pPage->pBt);
assert(sqlite3_mutex_held(pPage->pBt->mutex));
if(nByte < 4)
nByte = 4;
if(pPage->nFree < nByte || pPage->nOverflow > 0)
return 0;
pPage->nFree -= nByte;
hdr = pPage->hdrOffset;
nFrag = data[hdr + 7];
if(nFrag < 60)
{
/* Search the freelist looking for a slot big enough to satisfy the
** space request. */
addr = hdr + 1;
while ((pc = get2byte(&data[addr])) > 0)
{
size = get2byte(&data[pc + 2]);
if(size >= nByte)
{
if(size < nByte + 4)
{
memcpy(&data[addr], &data[pc], 2);
data[hdr + 7] = nFrag + size - nByte;
return pc;
}
else
{
put2byte(&data[pc + 2], size - nByte);
return pc + size - nByte;
}
}
addr = pc;
}
}
/* Allocate memory from the gap in between the cell pointer array
** and the cell content area.
*/
top = get2byte(&data[hdr + 5]);
nCell = get2byte(&data[hdr + 3]);
cellOffset = pPage->cellOffset;
if(nFrag >= 60 || cellOffset + 2 * nCell > top - nByte)
{
if(defragmentPage(pPage))
return 0;
top = get2byte(&data[hdr + 5]);
}
top -= nByte;
assert(cellOffset + 2 * nCell <= top);
put2byte(&data[hdr + 5], top);
return top;
}
/*
** Return a section of the pPage->aData to the freelist.
** The first byte of the new free block is pPage->aDisk[start]
** and the size of the block is "size" bytes.
**
** Most of the effort here is involved in coalesing adjacent
** free blocks into a single big free block.
*/
static void
freeSpace(MemPage * pPage, int start, int size)
{
int addr, pbegin, hdr;
unsigned char *data = pPage->aData;
assert(pPage->pBt != 0);
assert(sqlite3PagerIswriteable(pPage->pDbPage));
assert(start >= pPage->hdrOffset + 6 + (pPage->leaf ? 0 : 4));
assert((start + size) <= pPage->pBt->usableSize);
assert(sqlite3_mutex_held(pPage->pBt->mutex));
if(size < 4)
size = 4;
#ifdef SQLITE_SECURE_DELETE
/* Overwrite deleted information with zeros when the SECURE_DELETE
** option is enabled at compile-time */
memset(&data[start], 0, size);
#endif
/* Add the space back into the linked list of freeblocks */
hdr = pPage->hdrOffset;
addr = hdr + 1;
while ((pbegin = get2byte(&data[addr])) < start && pbegin > 0)
{
assert(pbegin <= pPage->pBt->usableSize - 4);
assert(pbegin > addr);
addr = pbegin;
}
assert(pbegin <= pPage->pBt->usableSize - 4);
assert(pbegin > addr || pbegin == 0);
put2byte(&data[addr], start);
put2byte(&data[start], pbegin);
put2byte(&data[start + 2], size);
pPage->nFree += size;
/* Coalesce adjacent free blocks */
addr = pPage->hdrOffset + 1;
while ((pbegin = get2byte(&data[addr])) > 0)
{
int pnext, psize;
assert(pbegin > addr);
assert(pbegin <= pPage->pBt->usableSize - 4);
pnext = get2byte(&data[pbegin]);
psize = get2byte(&data[pbegin + 2]);
if(pbegin + psize + 3 >= pnext && pnext > 0)
{
int frag = pnext - (pbegin + psize);
assert(frag <= data[pPage->hdrOffset + 7]);
data[pPage->hdrOffset + 7] -= frag;
put2byte(&data[pbegin], get2byte(&data[pnext]));
put2byte(&data[pbegin + 2], pnext + get2byte(&data[pnext + 2]) - pbegin);
}
else
{
addr = pbegin;
}
}
/* If the cell content area begins with a freeblock, remove it. */
if(data[hdr + 1] == data[hdr + 5] && data[hdr + 2] == data[hdr + 6])
{
int top;
pbegin = get2byte(&data[hdr + 1]);
memcpy(&data[hdr + 1], &data[pbegin], 2);
top = get2byte(&data[hdr + 5]);
put2byte(&data[hdr + 5], top + get2byte(&data[pbegin + 2]));
}
}
/*
** Decode the flags byte (the first byte of the header) for a page
** and initialize fields of the MemPage structure accordingly.
*/
static void
decodeFlags(MemPage * pPage, int flagByte)
{
BtShared *pBt; /* A copy of pPage->pBt */
assert(pPage->hdrOffset == (pPage->pgno == 1 ? 100 : 0));
assert(sqlite3_mutex_held(pPage->pBt->mutex));
pPage->intKey = (flagByte & (PTF_INTKEY | PTF_LEAFDATA)) != 0;
pPage->zeroData = (flagByte & PTF_ZERODATA) != 0;
pPage->leaf = (flagByte & PTF_LEAF) != 0;
pPage->childPtrSize = 4 * (pPage->leaf == 0);
pBt = pPage->pBt;
if(flagByte & PTF_LEAFDATA)
{
pPage->leafData = 1;
pPage->maxLocal = pBt->maxLeaf;
pPage->minLocal = pBt->minLeaf;
}
else
{
pPage->leafData = 0;
pPage->maxLocal = pBt->maxLocal;
pPage->minLocal = pBt->minLocal;
}
pPage->hasData = !(pPage->zeroData || (!pPage->leaf && pPage->leafData));
}
/*
** Initialize the auxiliary information for a disk block.
**
** The pParent parameter must be a pointer to the MemPage which
** is the parent of the page being initialized. The root of a
** BTree has no parent and so for that page, pParent==NULL.
**
** Return SQLITE_OK on success. If we see that the page does
** not contain a well-formed database page, then return
** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
** guarantee that the page is well-formed. It only shows that
** we failed to detect any corruption.
*/
SQLITE_PRIVATE int
sqlite3BtreeInitPage(MemPage * pPage, /* The page to be initialized */
MemPage * pParent /* The parent. Might be NULL */
)
{
int pc; /* Address of a freeblock within pPage->aData[] */
int hdr; /* Offset to beginning of page header */
u8 *data; /* Equal to pPage->aData */
BtShared *pBt; /* The main btree structure */
int usableSize; /* Amount of usable space on each page */
int cellOffset; /* Offset from start of page to first cell pointer */
int nFree; /* Number of unused bytes on the page */
int top; /* First byte of the cell content area */
pBt = pPage->pBt;
assert(pBt != 0);
assert(pParent == 0 || pParent->pBt == pBt);
assert(sqlite3_mutex_held(pBt->mutex));
assert(pPage->pgno == sqlite3PagerPagenumber(pPage->pDbPage));
assert(pPage == sqlite3PagerGetExtra(pPage->pDbPage));
assert(pPage->aData == sqlite3PagerGetData(pPage->pDbPage));
if(pPage->pParent != pParent && (pPage->pParent != 0 || pPage->isInit))
{
/* The parent page should never change unless the file is corrupt */
return SQLITE_CORRUPT_BKPT;
}
if(pPage->isInit)
return SQLITE_OK;
if(pPage->pParent == 0 && pParent != 0)
{
pPage->pParent = pParent;
sqlite3PagerRef(pParent->pDbPage);
}
hdr = pPage->hdrOffset;
data = pPage->aData;
decodeFlags(pPage, data[hdr]);
pPage->nOverflow = 0;
pPage->idxShift = 0;
usableSize = pBt->usableSize;
pPage->cellOffset = cellOffset = hdr + 12 - 4 * pPage->leaf;
top = get2byte(&data[hdr + 5]);
pPage->nCell = get2byte(&data[hdr + 3]);
if(pPage->nCell > MX_CELL(pBt))
{
/* To many cells for a single page. The page must be corrupt */
return SQLITE_CORRUPT_BKPT;
}
if(pPage->nCell == 0 && pParent != 0 && pParent->pgno != 1)
{
/* All pages must have at least one cell, except for root pages */
return SQLITE_CORRUPT_BKPT;
}
/* Compute the total free space on the page */
pc = get2byte(&data[hdr + 1]);
nFree = data[hdr + 7] + top - (cellOffset + 2 * pPage->nCell);
while (pc > 0)
{
int next, size;
if(pc > usableSize - 4)
{
/* Free block is off the page */
return SQLITE_CORRUPT_BKPT;
}
next = get2byte(&data[pc]);
size = get2byte(&data[pc + 2]);
if(next > 0 && next <= pc + size + 3)
{
/* Free blocks must be in accending order */
return SQLITE_CORRUPT_BKPT;
}
nFree += size;
pc = next;
}
pPage->nFree = nFree;
if(nFree >= usableSize)
{
/* Free space cannot exceed total page size */
return SQLITE_CORRUPT_BKPT;
}
pPage->isInit = 1;
return SQLITE_OK;
}
/*
** Set up a raw page so that it looks like a database page holding
** no entries.
*/
static void
zeroPage(MemPage * pPage, int flags)
{
unsigned char *data = pPage->aData;
BtShared *pBt = pPage->pBt;
int hdr = pPage->hdrOffset;
int first;
assert(sqlite3PagerPagenumber(pPage->pDbPage) == pPage->pgno);
assert(sqlite3PagerGetExtra(pPage->pDbPage) == (void *) pPage);
assert(sqlite3PagerGetData(pPage->pDbPage) == data);
assert(sqlite3PagerIswriteable(pPage->pDbPage));
assert(sqlite3_mutex_held(pBt->mutex));
memset(&data[hdr], 0, pBt->usableSize - hdr);
data[hdr] = flags;
first = hdr + 8 + 4 * ((flags & PTF_LEAF) == 0);
memset(&data[hdr + 1], 0, 4);
data[hdr + 7] = 0;
put2byte(&data[hdr + 5], pBt->usableSize);
pPage->nFree = pBt->usableSize - first;
decodeFlags(pPage, flags);
pPage->hdrOffset = hdr;
pPage->cellOffset = first;
pPage->nOverflow = 0;
pPage->idxShift = 0;
pPage->nCell = 0;
pPage->isInit = 1;
}
/*
** Get a page from the pager. Initialize the MemPage.pBt and
** MemPage.aData elements if needed.
**
** If the noContent flag is set, it means that we do not care about
** the content of the page at this time. So do not go to the disk
** to fetch the content. Just fill in the content with zeros for now.
** If in the future we call sqlite3PagerWrite() on this page, that
** means we have started to be concerned about content and the disk
** read should occur at that point.
*/
SQLITE_PRIVATE int
sqlite3BtreeGetPage(BtShared * pBt, /* The btree */
Pgno pgno, /* Number of the page to fetch */
MemPage ** ppPage, /* Return the page in this parameter */
int noContent /* Do not load page content if true */
)
{
int rc;
MemPage *pPage;
DbPage *pDbPage;
assert(sqlite3_mutex_held(pBt->mutex));
rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage **) & pDbPage, noContent);
if(rc)
return rc;
pPage = (MemPage *) sqlite3PagerGetExtra(pDbPage);
pPage->aData = sqlite3PagerGetData(pDbPage);
pPage->pDbPage = pDbPage;
pPage->pBt = pBt;
pPage->pgno = pgno;
pPage->hdrOffset = pPage->pgno == 1 ? 100 : 0;
*ppPage = pPage;
return SQLITE_OK;
}
/*
** Get a page from the pager and initialize it. This routine
** is just a convenience wrapper around separate calls to
** sqlite3BtreeGetPage() and sqlite3BtreeInitPage().
*/
static int
getAndInitPage(BtShared * pBt, /* The database file */
Pgno pgno, /* Number of the page to get */
MemPage ** ppPage, /* Write the page pointer here */
MemPage * pParent /* Parent of the page */
)
{
int rc;
assert(sqlite3_mutex_held(pBt->mutex));
if(pgno == 0)
{
return SQLITE_CORRUPT_BKPT;
}
rc = sqlite3BtreeGetPage(pBt, pgno, ppPage, 0);
if(rc == SQLITE_OK && (*ppPage)->isInit == 0)
{
rc = sqlite3BtreeInitPage(*ppPage, pParent);
if(rc != SQLITE_OK)
{
releasePage(*ppPage);
*ppPage = 0;
}
}
return rc;
}
/*
** Release a MemPage. This should be called once for each prior
** call to sqlite3BtreeGetPage.
*/
static void
releasePage(MemPage * pPage)
{
if(pPage)
{
assert(pPage->aData);
assert(pPage->pBt);
assert(sqlite3PagerGetExtra(pPage->pDbPage) == (void *) pPage);
assert(sqlite3PagerGetData(pPage->pDbPage) == pPage->aData);
assert(sqlite3_mutex_held(pPage->pBt->mutex));
sqlite3PagerUnref(pPage->pDbPage);
}
}
/*
** This routine is called when the reference count for a page
** reaches zero. We need to unref the pParent pointer when that
** happens.
*/
static void
pageDestructor(DbPage * pData, int pageSize)
{
MemPage *pPage;
assert((pageSize & 7) == 0);
pPage = (MemPage *) sqlite3PagerGetExtra(pData);
assert(pPage->isInit == 0 || sqlite3_mutex_held(pPage->pBt->mutex));
if(pPage->pParent)
{
MemPage *pParent = pPage->pParent;
assert(pParent->pBt == pPage->pBt);
pPage->pParent = 0;
releasePage(pParent);
}
pPage->isInit = 0;
}
/*
** During a rollback, when the pager reloads information into the cache
** so that the cache is restored to its original state at the start of
** the transaction, for each page restored this routine is called.
**
** This routine needs to reset the extra data section at the end of the
** page to agree with the restored data.
*/
static void
pageReinit(DbPage * pData, int pageSize)
{
MemPage *pPage;
assert((pageSize & 7) == 0);
pPage = (MemPage *) sqlite3PagerGetExtra(pData);
if(pPage->isInit)
{
assert(sqlite3_mutex_held(pPage->pBt->mutex));
pPage->isInit = 0;
sqlite3BtreeInitPage(pPage, pPage->pParent);
}
}
/*
** Invoke the busy handler for a btree.
*/
static int
sqlite3BtreeInvokeBusyHandler(void *pArg, int n)
{
BtShared *pBt = (BtShared *) pArg;
assert(pBt->db);
assert(sqlite3_mutex_held(pBt->db->mutex));
return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
}
/*
** Open a database file.
**
** zFilename is the name of the database file. If zFilename is NULL
** a new database with a random name is created. This randomly named
** database file will be deleted when sqlite3BtreeClose() is called.
** If zFilename is ":memory:" then an in-memory database is created
** that is automatically destroyed when it is closed.
*/
SQLITE_PRIVATE int
sqlite3BtreeOpen(const char *zFilename, /* Name of the file containing the BTree database */
sqlite3 * db, /* Associated database handle */
Btree ** ppBtree, /* Pointer to new Btree object written here */
int flags, /* Options */
int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
)
{
sqlite3_vfs *pVfs; /* The VFS to use for this btree */
BtShared *pBt = 0; /* Shared part of btree structure */
Btree *p; /* Handle to return */
int rc = SQLITE_OK;
int nReserve;
unsigned char zDbHeader[100];
/* Set the variable isMemdb to true for an in-memory database, or
** false for a file-based database. This symbol is only required if
** either of the shared-data or autovacuum features are compiled
** into the library.
*/
#if !defined(SQLITE_OMIT_SHARED_CACHE) || !defined(SQLITE_OMIT_AUTOVACUUM)
#ifdef SQLITE_OMIT_MEMORYDB
const int isMemdb = 0;
#else
const int isMemdb = zFilename && !strcmp(zFilename, ":memory:");
#endif
#endif
assert(db != 0);
assert(sqlite3_mutex_held(db->mutex));
pVfs = db->pVfs;
p = sqlite3MallocZero(sizeof(Btree));
if(!p)
{
return SQLITE_NOMEM;
}
p->inTrans = TRANS_NONE;
p->db = db;
#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
/*
** If this Btree is a candidate for shared cache, try to find an
** existing BtShared object that we can share with
*/
if((flags & BTREE_PRIVATE) == 0
&& isMemdb == 0 && (db->flags & SQLITE_Vtab) == 0 && zFilename && zFilename[0])
{
if(sqlite3SharedCacheEnabled)
{
int nFullPathname = pVfs->mxPathname + 1;
char *zFullPathname = (char *) sqlite3_malloc(nFullPathname);
sqlite3_mutex *mutexShared;
p->sharable = 1;
if(db)
{
db->flags |= SQLITE_SharedCache;
}
if(!zFullPathname)
{
sqlite3_free(p);
return SQLITE_NOMEM;
}
sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname);
mutexShared = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
sqlite3_mutex_enter(mutexShared);
for (pBt = sqlite3SharedCacheList; pBt; pBt = pBt->pNext)
{
assert(pBt->nRef > 0);
if(0 == strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager))
&& sqlite3PagerVfs(pBt->pPager) == pVfs)
{
p->pBt = pBt;
pBt->nRef++;
break;
}
}
sqlite3_mutex_leave(mutexShared);
sqlite3_free(zFullPathname);
}
#ifdef SQLITE_DEBUG
else
{
/* In debug mode, we mark all persistent databases as sharable
** even when they are not. This exercises the locking code and
** gives more opportunity for asserts(sqlite3_mutex_held())
** statements to find locking problems.
*/
p->sharable = 1;
}
#endif
}
#endif
if(pBt == 0)
{
/*
** The following asserts make sure that structures used by the btree are
** the right size. This is to guard against size changes that result
** when compiling on a different architecture.
*/
assert(sizeof(i64) == 8 || sizeof(i64) == 4);
assert(sizeof(u64) == 8 || sizeof(u64) == 4);
assert(sizeof(u32) == 4);
assert(sizeof(u16) == 2);
assert(sizeof(Pgno) == 4);
pBt = sqlite3MallocZero(sizeof(*pBt));
if(pBt == 0)
{
rc = SQLITE_NOMEM;
goto btree_open_out;
}
pBt->busyHdr.xFunc = sqlite3BtreeInvokeBusyHandler;
pBt->busyHdr.pArg = pBt;
rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename, EXTRA_SIZE, flags, vfsFlags);
if(rc == SQLITE_OK)
{
rc = sqlite3PagerReadFileheader(pBt->pPager, sizeof(zDbHeader), zDbHeader);
}
if(rc != SQLITE_OK)
{
goto btree_open_out;
}
sqlite3PagerSetBusyhandler(pBt->pPager, &pBt->busyHdr);
p->pBt = pBt;
sqlite3PagerSetDestructor(pBt->pPager, pageDestructor);
sqlite3PagerSetReiniter(pBt->pPager, pageReinit);
pBt->pCursor = 0;
pBt->pPage1 = 0;
pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager);
pBt->pageSize = get2byte(&zDbHeader[16]);
if(pBt->pageSize < 512 || pBt->pageSize > SQLITE_MAX_PAGE_SIZE
|| ((pBt->pageSize - 1) & pBt->pageSize) != 0)
{
pBt->pageSize = 0;
sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
pBt->maxEmbedFrac = 64; /* 25% */
pBt->minEmbedFrac = 32; /* 12.5% */
pBt->minLeafFrac = 32; /* 12.5% */
#ifndef SQLITE_OMIT_AUTOVACUUM
/* If the magic name ":memory:" will create an in-memory database, then
** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
** regular file-name. In this case the auto-vacuum applies as per normal.
*/
if(zFilename && !isMemdb)
{
pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM == 2 ? 1 : 0);
}
#endif
nReserve = 0;
}
else
{
nReserve = zDbHeader[20];
pBt->maxEmbedFrac = zDbHeader[21];
pBt->minEmbedFrac = zDbHeader[22];
pBt->minLeafFrac = zDbHeader[23];
pBt->pageSizeFixed = 1;
#ifndef SQLITE_OMIT_AUTOVACUUM
pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4 * 4]) ? 1 : 0);
pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7 * 4]) ? 1 : 0);
#endif
}
pBt->usableSize = pBt->pageSize - nReserve;
assert((pBt->pageSize & 7) == 0); /* 8-byte alignment of pageSize */
sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
/* Add the new BtShared object to the linked list sharable BtShareds.
*/
if(p->sharable)
{
sqlite3_mutex *mutexShared;
pBt->nRef = 1;
mutexShared = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
if(SQLITE_THREADSAFE)
{
pBt->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
if(pBt->mutex == 0)
{
rc = SQLITE_NOMEM;
db->mallocFailed = 0;
goto btree_open_out;
}
}
sqlite3_mutex_enter(mutexShared);
pBt->pNext = sqlite3SharedCacheList;
sqlite3SharedCacheList = pBt;
sqlite3_mutex_leave(mutexShared);
}
#endif
}
#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
/* If the new Btree uses a sharable pBtShared, then link the new
** Btree into the list of all sharable Btrees for the same connection.
** The list is kept in ascending order by pBt address.
*/
if(p->sharable)
{
int i;
Btree *pSib;
for (i = 0; i < db->nDb; i++)
{
if((pSib = db->aDb[i].pBt) != 0 && pSib->sharable)
{
while (pSib->pPrev)
{
pSib = pSib->pPrev;
}
if(p->pBt < pSib->pBt)
{
p->pNext = pSib;
p->pPrev = 0;
pSib->pPrev = p;
}
else
{
while (pSib->pNext && pSib->pNext->pBt < p->pBt)
{
pSib = pSib->pNext;
}
p->pNext = pSib->pNext;
p->pPrev = pSib;
if(p->pNext)
{
p->pNext->pPrev = p;
}
pSib->pNext = p;
}
break;
}
}
}
#endif
*ppBtree = p;
btree_open_out:
if(rc != SQLITE_OK)
{
if(pBt && pBt->pPager)
{
sqlite3PagerClose(pBt->pPager);
}
sqlite3_free(pBt);
sqlite3_free(p);
*ppBtree = 0;
}
return rc;
}
/*
** Decrement the BtShared.nRef counter. When it reaches zero,
** remove the BtShared structure from the sharing list. Return
** true if the BtShared.nRef counter reaches zero and return
** false if it is still positive.
*/
static int
removeFromSharingList(BtShared * pBt)
{
#ifndef SQLITE_OMIT_SHARED_CACHE
sqlite3_mutex *pMaster;
BtShared *pList;
int removed = 0;
assert(sqlite3_mutex_notheld(pBt->mutex));
pMaster = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
sqlite3_mutex_enter(pMaster);
pBt->nRef--;
if(pBt->nRef <= 0)
{
if(sqlite3SharedCacheList == pBt)
{
sqlite3SharedCacheList = pBt->pNext;
}
else
{
pList = sqlite3SharedCacheList;
while (pList && pList->pNext != pBt)
{
pList = pList->pNext;
}
if(pList)
{
pList->pNext = pBt->pNext;
}
}
if(SQLITE_THREADSAFE)
{
sqlite3_mutex_free(pBt->mutex);
}
removed = 1;
}
sqlite3_mutex_leave(pMaster);
return removed;
#else
return 1;
#endif
}
/*
** Close an open database and invalidate all cursors.
*/
SQLITE_PRIVATE int
sqlite3BtreeClose(Btree * p)
{
BtShared *pBt = p->pBt;
BtCursor *pCur;
/* Close all cursors opened via this handle. */
assert(sqlite3_mutex_held(p->db->mutex));
sqlite3BtreeEnter(p);
pBt->db = p->db;
pCur = pBt->pCursor;
while (pCur)
{
BtCursor *pTmp = pCur;
pCur = pCur->pNext;
if(pTmp->pBtree == p)
{
sqlite3BtreeCloseCursor(pTmp);
}
}
/* Rollback any active transaction and free the handle structure.
** The call to sqlite3BtreeRollback() drops any table-locks held by
** this handle.
*/
sqlite3BtreeRollback(p);
sqlite3BtreeLeave(p);
/* If there are still other outstanding references to the shared-btree
** structure, return now. The remainder of this procedure cleans
** up the shared-btree.
*/
assert(p->wantToLock == 0 && p->locked == 0);
if(!p->sharable || removeFromSharingList(pBt))
{
/* The pBt is no longer on the sharing list, so we can access
** it without having to hold the mutex.
**
** Clean out and delete the BtShared object.
*/
assert(!pBt->pCursor);
sqlite3PagerClose(pBt->pPager);
if(pBt->xFreeSchema && pBt->pSchema)
{
pBt->xFreeSchema(pBt->pSchema);
}
sqlite3_free(pBt->pSchema);
sqlite3_free(pBt->pTmpSpace);
sqlite3_free(pBt);
}
#ifndef SQLITE_OMIT_SHARED_CACHE
assert(p->wantToLock == 0);
assert(p->locked == 0);
if(p->pPrev)
p->pPrev->pNext = p->pNext;
if(p->pNext)
p->pNext->pPrev = p->pPrev;
#endif
sqlite3_free(p);
return SQLITE_OK;
}
/*
** Change the limit on the number of pages allowed in the cache.
**
** The maximum number of cache pages is set to the absolute
** value of mxPage. If mxPage is negative, the pager will
** operate asynchronously - it will not stop to do fsync()s
** to insure data is written to the disk surface before
** continuing. Transactions still work if synchronous is off,
** and the database cannot be corrupted if this program
** crashes. But if the operating system crashes or there is
** an abrupt power failure when synchronous is off, the database
** could be left in an inconsistent and unrecoverable state.
** Synchronous is on by default so database corruption is not
** normally a worry.
*/
SQLITE_PRIVATE int
sqlite3BtreeSetCacheSize(Btree * p, int mxPage)
{
BtShared *pBt = p->pBt;
assert(sqlite3_mutex_held(p->db->mutex));
sqlite3BtreeEnter(p);
sqlite3PagerSetCachesize(pBt->pPager, mxPage);
sqlite3BtreeLeave(p);
return SQLITE_OK;
}
/*
** Change the way data is synced to disk in order to increase or decrease
** how well the database resists damage due to OS crashes and power
** failures. Level 1 is the same as asynchronous (no syncs() occur and
** there is a high probability of damage) Level 2 is the default. There
** is a very low but non-zero probability of damage. Level 3 reduces the
** probability of damage to near zero but with a write performance reduction.
*/
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
SQLITE_PRIVATE int
sqlite3BtreeSetSafetyLevel(Btree * p, int level, int fullSync)
{
BtShared *pBt = p->pBt;
assert(sqlite3_mutex_held(p->db->mutex));
sqlite3BtreeEnter(p);
sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync);
sqlite3BtreeLeave(p);
return SQLITE_OK;
}
#endif
/*
** Return TRUE if the given btree is set to safety level 1. In other
** words, return TRUE if no sync() occurs on the disk files.
*/
SQLITE_PRIVATE int
sqlite3BtreeSyncDisabled(Btree * p)
{
BtShared *pBt = p->pBt;
int rc;
assert(sqlite3_mutex_held(p->db->mutex));
sqlite3BtreeEnter(p);
assert(pBt && pBt->pPager);
rc = sqlite3PagerNosync(pBt->pPager);
sqlite3BtreeLeave(p);
return rc;
}
#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
/*
** Change the default pages size and the number of reserved bytes per page.
**
** The page size must be a power of 2 between 512 and 65536. If the page
** size supplied does not meet this constraint then the page size is not
** changed.
**
** Page sizes are constrained to be a power of two so that the region
** of the database file used for locking (beginning at PENDING_BYTE,
** the first byte past the 1GB boundary, 0x40000000) needs to occur
** at the beginning of a page.
**
** If parameter nReserve is less than zero, then the number of reserved
** bytes per page is left unchanged.
*/
SQLITE_PRIVATE int
sqlite3BtreeSetPageSize(Btree * p, int pageSize, int nReserve)
{
int rc = SQLITE_OK;
BtShared *pBt = p->pBt;
sqlite3BtreeEnter(p);
if(pBt->pageSizeFixed)
{
sqlite3BtreeLeave(p);
return SQLITE_READONLY;
}
if(nReserve < 0)
{
nReserve = pBt->pageSize - pBt->usableSize;
}
if(pageSize >= 512 && pageSize <= SQLITE_MAX_PAGE_SIZE && ((pageSize - 1) & pageSize) == 0)
{
assert((pageSize & 7) == 0);
assert(!pBt->pPage1 && !pBt->pCursor);
pBt->pageSize = pageSize;
sqlite3_free(pBt->pTmpSpace);
pBt->pTmpSpace = 0;
rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
}
pBt->usableSize = pBt->pageSize - nReserve;
sqlite3BtreeLeave(p);
return rc;
}
/*
** Return the currently defined page size
*/
SQLITE_PRIVATE int
sqlite3BtreeGetPageSize(Btree * p)
{
return p->pBt->pageSize;
}
SQLITE_PRIVATE int
sqlite3BtreeGetReserve(Btree * p)
{
int n;
sqlite3BtreeEnter(p);
n = p->pBt->pageSize - p->pBt->usableSize;
sqlite3BtreeLeave(p);
return n;
}
/*
** Set the maximum page count for a database if mxPage is positive.
** No changes are made if mxPage is 0 or negative.
** Regardless of the value of mxPage, return the maximum page count.
*/
SQLITE_PRIVATE int
sqlite3BtreeMaxPageCount(Btree * p, int mxPage)
{
int n;
sqlite3BtreeEnter(p);
n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
sqlite3BtreeLeave(p);
return n;
}
#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
/*
** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
** is disabled. The default value for the auto-vacuum property is
** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
*/
SQLITE_PRIVATE int
sqlite3BtreeSetAutoVacuum(Btree * p, int autoVacuum)
{
#ifdef SQLITE_OMIT_AUTOVACUUM
return SQLITE_READONLY;
#else
BtShared *pBt = p->pBt;
int rc = SQLITE_OK;
int av = (autoVacuum ? 1 : 0);
sqlite3BtreeEnter(p);
if(pBt->pageSizeFixed && av != pBt->autoVacuum)
{
rc = SQLITE_READONLY;
}
else
{
pBt->autoVacuum = av;
}
sqlite3BtreeLeave(p);
return rc;
#endif
}
/*
** Return the value of the 'auto-vacuum' property. If auto-vacuum is
** enabled 1 is returned. Otherwise 0.
*/
SQLITE_PRIVATE int
sqlite3BtreeGetAutoVacuum(Btree * p)
{
#ifdef SQLITE_OMIT_AUTOVACUUM
return BTREE_AUTOVACUUM_NONE;
#else
int rc;
sqlite3BtreeEnter(p);
rc = ((!p->pBt->autoVacuum) ? BTREE_AUTOVACUUM_NONE :
(!p->pBt->incrVacuum) ? BTREE_AUTOVACUUM_FULL : BTREE_AUTOVACUUM_INCR);
sqlite3BtreeLeave(p);
return rc;
#endif
}
/*
** Get a reference to pPage1 of the database file. This will
** also acquire a readlock on that file.
**
** SQLITE_OK is returned on success. If the file is not a
** well-formed database file, then SQLITE_CORRUPT is returned.
** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
** is returned if we run out of memory.
*/
static int
lockBtree(BtShared * pBt)
{
int rc;
MemPage *pPage1;
int nPage;
assert(sqlite3_mutex_held(pBt->mutex));
if(pBt->pPage1)
return SQLITE_OK;
rc = sqlite3BtreeGetPage(pBt, 1, &pPage1, 0);
if(rc != SQLITE_OK)
return rc;
/* Do some checking to help insure the file we opened really is
** a valid database file.
*/
rc = SQLITE_NOTADB;
nPage = sqlite3PagerPagecount(pBt->pPager);
if(nPage < 0)
{
rc = SQLITE_IOERR;
goto page1_init_failed;
}
else if(nPage > 0)
{
int pageSize;
int usableSize;
u8 *page1 = pPage1->aData;
if(memcmp(page1, zMagicHeader, 16) != 0)
{
goto page1_init_failed;
}
if(page1[18] > 1)
{
pBt->readOnly = 1;
}
if(page1[19] > 1)
{
goto page1_init_failed;
}
pageSize = get2byte(&page1[16]);
if(((pageSize - 1) & pageSize) != 0 || pageSize < 512 ||
(SQLITE_MAX_PAGE_SIZE < 32768 && pageSize > SQLITE_MAX_PAGE_SIZE))
{
goto page1_init_failed;
}
assert((pageSize & 7) == 0);
usableSize = pageSize - page1[20];
if(pageSize != pBt->pageSize)
{
/* After reading the first page of the database assuming a page size
** of BtShared.pageSize, we have discovered that the page-size is
** actually pageSize. Unlock the database, leave pBt->pPage1 at
** zero and return SQLITE_OK. The caller will call this function
** again with the correct page-size.
*/
releasePage(pPage1);
pBt->usableSize = usableSize;
pBt->pageSize = pageSize;
sqlite3_free(pBt->pTmpSpace);
pBt->pTmpSpace = 0;
sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
return SQLITE_OK;
}
if(usableSize < 500)
{
goto page1_init_failed;
}
pBt->pageSize = pageSize;
pBt->usableSize = usableSize;
pBt->maxEmbedFrac = page1[21];
pBt->minEmbedFrac = page1[22];
pBt->minLeafFrac = page1[23];
#ifndef SQLITE_OMIT_AUTOVACUUM
pBt->autoVacuum = (get4byte(&page1[36 + 4 * 4]) ? 1 : 0);
pBt->incrVacuum = (get4byte(&page1[36 + 7 * 4]) ? 1 : 0);
#endif
}
/* maxLocal is the maximum amount of payload to store locally for
** a cell. Make sure it is small enough so that at least minFanout
** cells can will fit on one page. We assume a 10-byte page header.
** Besides the payload, the cell must store:
** 2-byte pointer to the cell
** 4-byte child pointer
** 9-byte nKey value
** 4-byte nData value
** 4-byte overflow page pointer
** So a cell consists of a 2-byte poiner, a header which is as much as
** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
** page pointer.
*/
pBt->maxLocal = (pBt->usableSize - 12) * pBt->maxEmbedFrac / 255 - 23;
pBt->minLocal = (pBt->usableSize - 12) * pBt->minEmbedFrac / 255 - 23;
pBt->maxLeaf = pBt->usableSize - 35;
pBt->minLeaf = (pBt->usableSize - 12) * pBt->minLeafFrac / 255 - 23;
if(pBt->minLocal > pBt->maxLocal || pBt->maxLocal < 0)
{
goto page1_init_failed;
}
assert(pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt));
pBt->pPage1 = pPage1;
return SQLITE_OK;
page1_init_failed:
releasePage(pPage1);
pBt->pPage1 = 0;
return rc;
}
/*
** This routine works like lockBtree() except that it also invokes the
** busy callback if there is lock contention.
*/
static int
lockBtreeWithRetry(Btree * pRef)
{
int rc = SQLITE_OK;
assert(sqlite3BtreeHoldsMutex(pRef));
if(pRef->inTrans == TRANS_NONE)
{
u8 inTransaction = pRef->pBt->inTransaction;
btreeIntegrity(pRef);
rc = sqlite3BtreeBeginTrans(pRef, 0);
pRef->pBt->inTransaction = inTransaction;
pRef->inTrans = TRANS_NONE;
if(rc == SQLITE_OK)
{
pRef->pBt->nTransaction--;
}
btreeIntegrity(pRef);
}
return rc;
}
/*
** If there are no outstanding cursors and we are not in the middle
** of a transaction but there is a read lock on the database, then
** this routine unrefs the first page of the database file which
** has the effect of releasing the read lock.
**
** If there are any outstanding cursors, this routine is a no-op.
**
** If there is a transaction in progress, this routine is a no-op.
*/
static void
unlockBtreeIfUnused(BtShared * pBt)
{
assert(sqlite3_mutex_held(pBt->mutex));
if(pBt->inTransaction == TRANS_NONE && pBt->pCursor == 0 && pBt->pPage1 != 0)
{
if(sqlite3PagerRefcount(pBt->pPager) >= 1)
{
assert(pBt->pPage1->aData);
#if 0
if(pBt->pPage1->aData == 0)
{
MemPage *pPage = pBt->pPage1;
pPage->aData = sqlite3PagerGetData(pPage->pDbPage);
pPage->pBt = pBt;
pPage->pgno = 1;
}
#endif
releasePage(pBt->pPage1);
}
pBt->pPage1 = 0;
pBt->inStmt = 0;
}
}
/*
** Create a new database by initializing the first page of the
** file.
*/
static int
newDatabase(BtShared * pBt)
{
MemPage *pP1;
unsigned char *data;
int rc;
assert(sqlite3_mutex_held(pBt->mutex));
if(sqlite3PagerPagecount(pBt->pPager) > 0)
return SQLITE_OK;
pP1 = pBt->pPage1;
assert(pP1 != 0);
data = pP1->aData;
rc = sqlite3PagerWrite(pP1->pDbPage);
if(rc)
return rc;
memcpy(data, zMagicHeader, sizeof(zMagicHeader));
assert(sizeof(zMagicHeader) == 16);
put2byte(&data[16], pBt->pageSize);
data[18] = 1;
data[19] = 1;
data[20] = pBt->pageSize - pBt->usableSize;
data[21] = pBt->maxEmbedFrac;
data[22] = pBt->minEmbedFrac;
data[23] = pBt->minLeafFrac;
memset(&data[24], 0, 100 - 24);
zeroPage(pP1, PTF_INTKEY | PTF_LEAF | PTF_LEAFDATA);
pBt->pageSizeFixed = 1;
#ifndef SQLITE_OMIT_AUTOVACUUM
assert(pBt->autoVacuum == 1 || pBt->autoVacuum == 0);
assert(pBt->incrVacuum == 1 || pBt->incrVacuum == 0);
put4byte(&data[36 + 4 * 4], pBt->autoVacuum);
put4byte(&data[36 + 7 * 4], pBt->incrVacuum);
#endif
return SQLITE_OK;
}
/*
** Attempt to start a new transaction. A write-transaction
** is started if the second argument is nonzero, otherwise a read-
** transaction. If the second argument is 2 or more and exclusive
** transaction is started, meaning that no other process is allowed
** to access the database. A preexisting transaction may not be
** upgraded to exclusive by calling this routine a second time - the
** exclusivity flag only works for a new transaction.
**
** A write-transaction must be started before attempting any
** changes to the database. None of the following routines
** will work unless a transaction is started first:
**
** sqlite3BtreeCreateTable()
** sqlite3BtreeCreateIndex()
** sqlite3BtreeClearTable()
** sqlite3BtreeDropTable()
** sqlite3BtreeInsert()
** sqlite3BtreeDelete()
** sqlite3BtreeUpdateMeta()
**
** If an initial attempt to acquire the lock fails because of lock contention
** and the database was previously unlocked, then invoke the busy handler
** if there is one. But if there was previously a read-lock, do not
** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
** returned when there is already a read-lock in order to avoid a deadlock.
**
** Suppose there are two processes A and B. A has a read lock and B has
** a reserved lock. B tries to promote to exclusive but is blocked because
** of A's read lock. A tries to promote to reserved but is blocked by B.
** One or the other of the two processes must give way or there can be
** no progress. By returning SQLITE_BUSY and not invoking the busy callback
** when A already has a read lock, we encourage A to give up and let B
** proceed.
*/
SQLITE_PRIVATE int
sqlite3BtreeBeginTrans(Btree * p, int wrflag)
{
BtShared *pBt = p->pBt;
int rc = SQLITE_OK;
sqlite3BtreeEnter(p);
pBt->db = p->db;
btreeIntegrity(p);
/* If the btree is already in a write-transaction, or it
** is already in a read-transaction and a read-transaction
** is requested, this is a no-op.
*/
if(p->inTrans == TRANS_WRITE || (p->inTrans == TRANS_READ && !wrflag))
{
goto trans_begun;
}
/* Write transactions are not possible on a read-only database */
if(pBt->readOnly && wrflag)
{
rc = SQLITE_READONLY;
goto trans_begun;
}
/* If another database handle has already opened a write transaction
** on this shared-btree structure and a second write transaction is
** requested, return SQLITE_BUSY.
*/
if(pBt->inTransaction == TRANS_WRITE && wrflag)
{
rc = SQLITE_BUSY;
goto trans_begun;
}
#ifndef SQLITE_OMIT_SHARED_CACHE
if(wrflag > 1)
{
BtLock *pIter;
for (pIter = pBt->pLock; pIter; pIter = pIter->pNext)
{
if(pIter->pBtree != p)
{
rc = SQLITE_BUSY;
goto trans_begun;
}
}
}
#endif
do
{
if(pBt->pPage1 == 0)
{
do
{
rc = lockBtree(pBt);
}
while (pBt->pPage1 == 0 && rc == SQLITE_OK);
}
if(rc == SQLITE_OK && wrflag)
{
if(pBt->readOnly)
{
rc = SQLITE_READONLY;
}
else
{
rc = sqlite3PagerBegin(pBt->pPage1->pDbPage, wrflag > 1);
if(rc == SQLITE_OK)
{
rc = newDatabase(pBt);
}
}
}
if(rc == SQLITE_OK)
{
if(wrflag)
pBt->inStmt = 0;
}
else
{
unlockBtreeIfUnused(pBt);
}
}
while (rc == SQLITE_BUSY && pBt->inTransaction == TRANS_NONE &&
sqlite3BtreeInvokeBusyHandler(pBt, 0));
if(rc == SQLITE_OK)
{
if(p->inTrans == TRANS_NONE)
{
pBt->nTransaction++;
}
p->inTrans = (wrflag ? TRANS_WRITE : TRANS_READ);
if(p->inTrans > pBt->inTransaction)
{
pBt->inTransaction = p->inTrans;
}
#ifndef SQLITE_OMIT_SHARED_CACHE
if(wrflag > 1)
{
assert(!pBt->pExclusive);
pBt->pExclusive = p;
}
#endif
}
trans_begun:
btreeIntegrity(p);
sqlite3BtreeLeave(p);
return rc;
}
#ifndef SQLITE_OMIT_AUTOVACUUM
/*
** Set the pointer-map entries for all children of page pPage. Also, if
** pPage contains cells that point to overflow pages, set the pointer
** map entries for the overflow pages as well.
*/
static int
setChildPtrmaps(MemPage * pPage)
{
int i; /* Counter variable */
int nCell; /* Number of cells in page pPage */
int rc; /* Return code */
BtShared *pBt = pPage->pBt;
int isInitOrig = pPage->isInit;
Pgno pgno = pPage->pgno;
assert(sqlite3_mutex_held(pPage->pBt->mutex));
rc = sqlite3BtreeInitPage(pPage, pPage->pParent);
if(rc != SQLITE_OK)
{
goto set_child_ptrmaps_out;
}
nCell = pPage->nCell;
for (i = 0; i < nCell; i++)
{
u8 *pCell = findCell(pPage, i);
rc = ptrmapPutOvflPtr(pPage, pCell);
if(rc != SQLITE_OK)
{
goto set_child_ptrmaps_out;
}
if(!pPage->leaf)
{
Pgno childPgno = get4byte(pCell);
rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
if(rc != SQLITE_OK)
goto set_child_ptrmaps_out;
}
}
if(!pPage->leaf)
{
Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset + 8]);
rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
}
set_child_ptrmaps_out:
pPage->isInit = isInitOrig;
return rc;
}
/*
** Somewhere on pPage, which is guarenteed to be a btree page, not an overflow
** page, is a pointer to page iFrom. Modify this pointer so that it points to
** iTo. Parameter eType describes the type of pointer to be modified, as
** follows:
**
** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
** page of pPage.
**
** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
** page pointed to by one of the cells on pPage.
**
** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
** overflow page in the list.
*/
static int
modifyPagePointer(MemPage * pPage, Pgno iFrom, Pgno iTo, u8 eType)
{
assert(sqlite3_mutex_held(pPage->pBt->mutex));
if(eType == PTRMAP_OVERFLOW2)
{
/* The pointer is always the first 4 bytes of the page in this case. */
if(get4byte(pPage->aData) != iFrom)
{
return SQLITE_CORRUPT_BKPT;
}
put4byte(pPage->aData, iTo);
}
else
{
int isInitOrig = pPage->isInit;
int i;
int nCell;
sqlite3BtreeInitPage(pPage, 0);
nCell = pPage->nCell;
for (i = 0; i < nCell; i++)
{
u8 *pCell = findCell(pPage, i);
if(eType == PTRMAP_OVERFLOW1)
{
CellInfo info;
sqlite3BtreeParseCellPtr(pPage, pCell, &info);
if(info.iOverflow)
{
if(iFrom == get4byte(&pCell[info.iOverflow]))
{
put4byte(&pCell[info.iOverflow], iTo);
break;
}
}
}
else
{
if(get4byte(pCell) == iFrom)
{
put4byte(pCell, iTo);
break;
}
}
}
if(i == nCell)
{
if(eType != PTRMAP_BTREE ||
get4byte(&pPage->aData[pPage->hdrOffset + 8]) != iFrom)
{
return SQLITE_CORRUPT_BKPT;
}
put4byte(&pPage->aData[pPage->hdrOffset + 8], iTo);
}
pPage->isInit = isInitOrig;
}
return SQLITE_OK;
}
/*
** Move the open database page pDbPage to location iFreePage in the
** database. The pDbPage reference remains valid.
*/
static int
relocatePage(BtShared * pBt, /* Btree */
MemPage * pDbPage, /* Open page to move */
u8 eType, /* Pointer map 'type' entry for pDbPage */
Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
Pgno iFreePage /* The location to move pDbPage to */
)
{
MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
Pgno iDbPage = pDbPage->pgno;
Pager *pPager = pBt->pPager;
int rc;
assert(eType == PTRMAP_OVERFLOW2 || eType == PTRMAP_OVERFLOW1 ||
eType == PTRMAP_BTREE || eType == PTRMAP_ROOTPAGE);
assert(sqlite3_mutex_held(pBt->mutex));
assert(pDbPage->pBt == pBt);
/* Move page iDbPage from its current location to page number iFreePage */
TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
iDbPage, iFreePage, iPtrPage, eType));
rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage);
if(rc != SQLITE_OK)
{
return rc;
}
pDbPage->pgno = iFreePage;
/* If pDbPage was a btree-page, then it may have child pages and/or cells
** that point to overflow pages. The pointer map entries for all these
** pages need to be changed.
**
** If pDbPage is an overflow page, then the first 4 bytes may store a
** pointer to a subsequent overflow page. If this is the case, then
** the pointer map needs to be updated for the subsequent overflow page.
*/
if(eType == PTRMAP_BTREE || eType == PTRMAP_ROOTPAGE)
{
rc = setChildPtrmaps(pDbPage);
if(rc != SQLITE_OK)
{
return rc;
}
}
else
{
Pgno nextOvfl = get4byte(pDbPage->aData);
if(nextOvfl != 0)
{
rc = ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage);
if(rc != SQLITE_OK)
{
return rc;
}
}
}
/* Fix the database pointer on page iPtrPage that pointed at iDbPage so
** that it points at iFreePage. Also fix the pointer map entry for
** iPtrPage.
*/
if(eType != PTRMAP_ROOTPAGE)
{
rc = sqlite3BtreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
if(rc != SQLITE_OK)
{
return rc;
}
rc = sqlite3PagerWrite(pPtrPage->pDbPage);
if(rc != SQLITE_OK)
{
releasePage(pPtrPage);
return rc;
}
rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
releasePage(pPtrPage);
if(rc == SQLITE_OK)
{
rc = ptrmapPut(pBt, iFreePage, eType, iPtrPage);
}
}
return rc;
}
/* Forward declaration required by incrVacuumStep(). */
static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
/*
** Perform a single step of an incremental-vacuum. If successful,
** return SQLITE_OK. If there is no work to do (and therefore no
** point in calling this function again), return SQLITE_DONE.
**
** More specificly, this function attempts to re-organize the
** database so that the last page of the file currently in use
** is no longer in use.
**
** If the nFin parameter is non-zero, the implementation assumes
** that the caller will keep calling incrVacuumStep() until
** it returns SQLITE_DONE or an error, and that nFin is the
** number of pages the database file will contain after this
** process is complete.
*/
static int
incrVacuumStep(BtShared * pBt, Pgno nFin)
{
Pgno iLastPg; /* Last page in the database */
Pgno nFreeList; /* Number of pages still on the free-list */
assert(sqlite3_mutex_held(pBt->mutex));
iLastPg = pBt->nTrunc;
if(iLastPg == 0)
{
iLastPg = sqlite3PagerPagecount(pBt->pPager);
}
if(!PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg != PENDING_BYTE_PAGE(pBt))
{
int rc;
u8 eType;
Pgno iPtrPage;
nFreeList = get4byte(&pBt->pPage1->aData[36]);
if(nFreeList == 0 || nFin == iLastPg)
{
return SQLITE_DONE;
}
rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
if(rc != SQLITE_OK)
{
return rc;
}
if(eType == PTRMAP_ROOTPAGE)
{
return SQLITE_CORRUPT_BKPT;
}
if(eType == PTRMAP_FREEPAGE)
{
if(nFin == 0)
{
/* Remove the page from the files free-list. This is not required
** if nFin is non-zero. In that case, the free-list will be
** truncated to zero after this function returns, so it doesn't
** matter if it still contains some garbage entries.
*/
Pgno iFreePg;
MemPage *pFreePg;
rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1);
if(rc != SQLITE_OK)
{
return rc;
}
assert(iFreePg == iLastPg);
releasePage(pFreePg);
}
}
else
{
Pgno iFreePg; /* Index of free page to move pLastPg to */
MemPage *pLastPg;
rc = sqlite3BtreeGetPage(pBt, iLastPg, &pLastPg, 0);
if(rc != SQLITE_OK)
{
return rc;
}
/* If nFin is zero, this loop runs exactly once and page pLastPg
** is swapped with the first free page pulled off the free list.
**
** On the other hand, if nFin is greater than zero, then keep
** looping until a free-page located within the first nFin pages
** of the file is found.
*/
do
{
MemPage *pFreePg;
rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0);
if(rc != SQLITE_OK)
{
releasePage(pLastPg);
return rc;
}
releasePage(pFreePg);
}
while (nFin != 0 && iFreePg > nFin);
assert(iFreePg < iLastPg);
rc = sqlite3PagerWrite(pLastPg->pDbPage);
if(rc == SQLITE_OK)
{
rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg);
}
releasePage(pLastPg);
if(rc != SQLITE_OK)
{
return rc;
}
}
}
pBt->nTrunc = iLastPg - 1;
while (pBt->nTrunc == PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, pBt->nTrunc))
{
pBt->nTrunc--;
}
return SQLITE_OK;
}
/*
** A write-transaction must be opened before calling this function.
** It performs a single unit of work towards an incremental vacuum.
**
** If the incremental vacuum is finished after this function has run,
** SQLITE_DONE is returned. If it is not finished, but no error occured,
** SQLITE_OK is returned. Otherwise an SQLite error code.
*/
SQLITE_PRIVATE int
sqlite3BtreeIncrVacuum(Btree * p)
{
int rc;
BtShared *pBt = p->pBt;
sqlite3BtreeEnter(p);
pBt->db = p->db;
assert(pBt->inTransaction == TRANS_WRITE && p->inTrans == TRANS_WRITE);
if(!pBt->autoVacuum)
{
rc = SQLITE_DONE;
}
else
{
invalidateAllOverflowCache(pBt);
rc = incrVacuumStep(pBt, 0);
}
sqlite3BtreeLeave(p);
return rc;
}
/*
** This routine is called prior to sqlite3PagerCommit when a transaction
** is commited for an auto-vacuum database.
**
** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
** the database file should be truncated to during the commit process.
** i.e. the database has been reorganized so that only the first *pnTrunc
** pages are in use.
*/
static int
autoVacuumCommit(BtShared * pBt, Pgno * pnTrunc)
{
int rc = SQLITE_OK;
Pager *pPager = pBt->pPager;
#ifndef NDEBUG
int nRef = sqlite3PagerRefcount(pPager);
#endif
assert(sqlite3_mutex_held(pBt->mutex));
invalidateAllOverflowCache(pBt);
assert(pBt->autoVacuum);
if(!pBt->incrVacuum)
{
Pgno nFin = 0;
if(pBt->nTrunc == 0)
{
Pgno nFree;
Pgno nPtrmap;
const int pgsz = pBt->pageSize;
Pgno nOrig = sqlite3PagerPagecount(pBt->pPager);
if(PTRMAP_ISPAGE(pBt, nOrig))
{
return SQLITE_CORRUPT_BKPT;
}
if(nOrig == PENDING_BYTE_PAGE(pBt))
{
nOrig--;
}
nFree = get4byte(&pBt->pPage1->aData[36]);
nPtrmap =
(nFree - nOrig + PTRMAP_PAGENO(pBt, nOrig) + pgsz / 5) / (pgsz / 5);
nFin = nOrig - nFree - nPtrmap;
if(nOrig > PENDING_BYTE_PAGE(pBt) && nFin <= PENDING_BYTE_PAGE(pBt))
{
nFin--;
}
while (PTRMAP_ISPAGE(pBt, nFin) || nFin == PENDING_BYTE_PAGE(pBt))
{
nFin--;
}
}
while (rc == SQLITE_OK)
{
rc = incrVacuumStep(pBt, nFin);
}
if(rc == SQLITE_DONE)
{
assert(nFin == 0 || pBt->nTrunc == 0 || nFin <= pBt->nTrunc);
rc = SQLITE_OK;
if(pBt->nTrunc && nFin)
{
rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
put4byte(&pBt->pPage1->aData[32], 0);
put4byte(&pBt->pPage1->aData[36], 0);
pBt->nTrunc = nFin;
}
}
if(rc != SQLITE_OK)
{
sqlite3PagerRollback(pPager);
}
}
if(rc == SQLITE_OK)
{
*pnTrunc = pBt->nTrunc;
pBt->nTrunc = 0;
}
assert(nRef == sqlite3PagerRefcount(pPager));
return rc;
}
#endif
/*
** This routine does the first phase of a two-phase commit. This routine
** causes a rollback journal to be created (if it does not already exist)
** and populated with enough information so that if a power loss occurs
** the database can be restored to its original state by playing back
** the journal. Then the contents of the journal are flushed out to
** the disk. After the journal is safely on oxide, the changes to the
** database are written into the database file and flushed to oxide.
** At the end of this call, the rollback journal still exists on the
** disk and we are still holding all locks, so the transaction has not
** committed. See sqlite3BtreeCommit() for the second phase of the
** commit process.
**
** This call is a no-op if no write-transaction is currently active on pBt.
**
** Otherwise, sync the database file for the btree pBt. zMaster points to
** the name of a master journal file that should be written into the
** individual journal file, or is NULL, indicating no master journal file
** (single database transaction).
**
** When this is called, the master journal should already have been
** created, populated with this journal pointer and synced to disk.
**
** Once this is routine has returned, the only thing required to commit
** the write-transaction for this database file is to delete the journal.
*/
SQLITE_PRIVATE int
sqlite3BtreeCommitPhaseOne(Btree * p, const char *zMaster)
{
int rc = SQLITE_OK;
if(p->inTrans == TRANS_WRITE)
{
BtShared *pBt = p->pBt;
Pgno nTrunc = 0;
sqlite3BtreeEnter(p);
pBt->db = p->db;
#ifndef SQLITE_OMIT_AUTOVACUUM
if(pBt->autoVacuum)
{
rc = autoVacuumCommit(pBt, &nTrunc);
if(rc != SQLITE_OK)
{
sqlite3BtreeLeave(p);
return rc;
}
}
#endif
rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, nTrunc, 0);
sqlite3BtreeLeave(p);
}
return rc;
}
/*
** Commit the transaction currently in progress.
**
** This routine implements the second phase of a 2-phase commit. The
** sqlite3BtreeSync() routine does the first phase and should be invoked
** prior to calling this routine. The sqlite3BtreeSync() routine did
** all the work of writing information out to disk and flushing the
** contents so that they are written onto the disk platter. All this
** routine has to do is delete or truncate the rollback journal
** (which causes the transaction to commit) and drop locks.
**
** This will release the write lock on the database file. If there
** are no active cursors, it also releases the read lock.
*/
SQLITE_PRIVATE int
sqlite3BtreeCommitPhaseTwo(Btree * p)
{
BtShared *pBt = p->pBt;
sqlite3BtreeEnter(p);
pBt->db = p->db;
btreeIntegrity(p);
/* If the handle has a write-transaction open, commit the shared-btrees
** transaction and set the shared state to TRANS_READ.
*/
if(p->inTrans == TRANS_WRITE)
{
int rc;
assert(pBt->inTransaction == TRANS_WRITE);
assert(pBt->nTransaction > 0);
rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
if(rc != SQLITE_OK)
{
sqlite3BtreeLeave(p);
return rc;
}
pBt->inTransaction = TRANS_READ;
pBt->inStmt = 0;
}
unlockAllTables(p);
/* If the handle has any kind of transaction open, decrement the transaction
** count of the shared btree. If the transaction count reaches 0, set
** the shared state to TRANS_NONE. The unlockBtreeIfUnused() call below
** will unlock the pager.
*/
if(p->inTrans != TRANS_NONE)
{
pBt->nTransaction--;
if(0 == pBt->nTransaction)
{
pBt->inTransaction = TRANS_NONE;
}
}
/* Set the handles current transaction state to TRANS_NONE and unlock
** the pager if this call closed the only read or write transaction.
*/
p->inTrans = TRANS_NONE;
unlockBtreeIfUnused(pBt);
btreeIntegrity(p);
sqlite3BtreeLeave(p);
return SQLITE_OK;
}
/*
** Do both phases of a commit.
*/
SQLITE_PRIVATE int
sqlite3BtreeCommit(Btree * p)
{
int rc;
sqlite3BtreeEnter(p);
rc = sqlite3BtreeCommitPhaseOne(p, 0);
if(rc == SQLITE_OK)
{
rc = sqlite3BtreeCommitPhaseTwo(p);
}
sqlite3BtreeLeave(p);
return rc;
}
#ifndef NDEBUG
/*
** Return the number of write-cursors open on this handle. This is for use
** in assert() expressions, so it is only compiled if NDEBUG is not
** defined.
**
** For the purposes of this routine, a write-cursor is any cursor that
** is capable of writing to the databse. That means the cursor was
** originally opened for writing and the cursor has not be disabled
** by having its state changed to CURSOR_FAULT.
*/
static int
countWriteCursors(BtShared * pBt)
{
BtCursor *pCur;
int r = 0;
for (pCur = pBt->pCursor; pCur; pCur = pCur->pNext)
{
if(pCur->wrFlag && pCur->eState != CURSOR_FAULT)
r++;
}
return r;
}
#endif
/*
** This routine sets the state to CURSOR_FAULT and the error
** code to errCode for every cursor on BtShared that pBtree
** references.
**
** Every cursor is tripped, including cursors that belong
** to other database connections that happen to be sharing
** the cache with pBtree.
**
** This routine gets called when a rollback occurs.
** All cursors using the same cache must be tripped
** to prevent them from trying to use the btree after
** the rollback. The rollback may have deleted tables
** or moved root pages, so it is not sufficient to
** save the state of the cursor. The cursor must be
** invalidated.
*/
SQLITE_PRIVATE void
sqlite3BtreeTripAllCursors(Btree * pBtree, int errCode)
{
BtCursor *p;
sqlite3BtreeEnter(pBtree);
for (p = pBtree->pBt->pCursor; p; p = p->pNext)
{
clearCursorPosition(p);
p->eState = CURSOR_FAULT;
p->skip = errCode;
}
sqlite3BtreeLeave(pBtree);
}
/*
** Rollback the transaction in progress. All cursors will be
** invalided by this operation. Any attempt to use a cursor
** that was open at the beginning of this operation will result
** in an error.
**
** This will release the write lock on the database file. If there
** are no active cursors, it also releases the read lock.
*/
SQLITE_PRIVATE int
sqlite3BtreeRollback(Btree * p)
{
int rc;
BtShared *pBt = p->pBt;
MemPage *pPage1;
sqlite3BtreeEnter(p);
pBt->db = p->db;
rc = saveAllCursors(pBt, 0, 0);
#ifndef SQLITE_OMIT_SHARED_CACHE
if(rc != SQLITE_OK)
{
/* This is a horrible situation. An IO or malloc() error occured whilst
** trying to save cursor positions. If this is an automatic rollback (as
** the result of a constraint, malloc() failure or IO error) then
** the cache may be internally inconsistent (not contain valid trees) so
** we cannot simply return the error to the caller. Instead, abort
** all queries that may be using any of the cursors that failed to save.
*/
sqlite3BtreeTripAllCursors(p, rc);
}
#endif
btreeIntegrity(p);
unlockAllTables(p);
if(p->inTrans == TRANS_WRITE)
{
int rc2;
#ifndef SQLITE_OMIT_AUTOVACUUM
pBt->nTrunc = 0;
#endif
assert(TRANS_WRITE == pBt->inTransaction);
rc2 = sqlite3PagerRollback(pBt->pPager);
if(rc2 != SQLITE_OK)
{
rc = rc2;
}
/* The rollback may have destroyed the pPage1->aData value. So
** call sqlite3BtreeGetPage() on page 1 again to make
** sure pPage1->aData is set correctly. */
if(sqlite3BtreeGetPage(pBt, 1, &pPage1, 0) == SQLITE_OK)
{
releasePage(pPage1);
}
assert(countWriteCursors(pBt) == 0);
pBt->inTransaction = TRANS_READ;
}
if(p->inTrans != TRANS_NONE)
{
assert(pBt->nTransaction > 0);
pBt->nTransaction--;
if(0 == pBt->nTransaction)
{
pBt->inTransaction = TRANS_NONE;
}
}
p->inTrans = TRANS_NONE;
pBt->inStmt = 0;
unlockBtreeIfUnused(pBt);
btreeIntegrity(p);
sqlite3BtreeLeave(p);
return rc;
}
/*
** Start a statement subtransaction. The subtransaction can
** can be rolled back independently of the main transaction.
** You must start a transaction before starting a subtransaction.
** The subtransaction is ended automatically if the main transaction
** commits or rolls back.
**
** Only one subtransaction may be active at a time. It is an error to try
** to start a new subtransaction if another subtransaction is already active.
**
** Statement subtransactions are used around individual SQL statements
** that are contained within a BEGIN...COMMIT block. If a constraint
** error occurs within the statement, the effect of that one statement
** can be rolled back without having to rollback the entire transaction.
*/
SQLITE_PRIVATE int
sqlite3BtreeBeginStmt(Btree * p)
{
int rc;
BtShared *pBt = p->pBt;
sqlite3BtreeEnter(p);
pBt->db = p->db;
if((p->inTrans != TRANS_WRITE) || pBt->inStmt)
{
rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
}
else
{
assert(pBt->inTransaction == TRANS_WRITE);
rc = pBt->readOnly ? SQLITE_OK : sqlite3PagerStmtBegin(pBt->pPager);
pBt->inStmt = 1;
}
sqlite3BtreeLeave(p);
return rc;
}
/*
** Commit the statment subtransaction currently in progress. If no
** subtransaction is active, this is a no-op.
*/
SQLITE_PRIVATE int
sqlite3BtreeCommitStmt(Btree * p)
{
int rc;
BtShared *pBt = p->pBt;
sqlite3BtreeEnter(p);
pBt->db = p->db;
if(pBt->inStmt && !pBt->readOnly)
{
rc = sqlite3PagerStmtCommit(pBt->pPager);
}
else
{
rc = SQLITE_OK;
}
pBt->inStmt = 0;
sqlite3BtreeLeave(p);
return rc;
}
/*
** Rollback the active statement subtransaction. If no subtransaction
** is active this routine is a no-op.
**
** All cursors will be invalidated by this operation. Any attempt
** to use a cursor that was open at the beginning of this operation
** will result in an error.
*/
SQLITE_PRIVATE int
sqlite3BtreeRollbackStmt(Btree * p)
{
int rc = SQLITE_OK;
BtShared *pBt = p->pBt;
sqlite3BtreeEnter(p);
pBt->db = p->db;
if(pBt->inStmt && !pBt->readOnly)
{
rc = sqlite3PagerStmtRollback(pBt->pPager);
assert(countWriteCursors(pBt) == 0);
pBt->inStmt = 0;
}
sqlite3BtreeLeave(p);
return rc;
}
/*
** Create a new cursor for the BTree whose root is on the page
** iTable. The act of acquiring a cursor gets a read lock on
** the database file.
**
** If wrFlag==0, then the cursor can only be used for reading.
** If wrFlag==1, then the cursor can be used for reading or for
** writing if other conditions for writing are also met. These
** are the conditions that must be met in order for writing to
** be allowed:
**
** 1: The cursor must have been opened with wrFlag==1
**
** 2: Other database connections that share the same pager cache
** but which are not in the READ_UNCOMMITTED state may not have
** cursors open with wrFlag==0 on the same table. Otherwise
** the changes made by this write cursor would be visible to
** the read cursors in the other database connection.
**
** 3: The database must be writable (not on read-only media)
**
** 4: There must be an active transaction.
**
** No checking is done to make sure that page iTable really is the
** root page of a b-tree. If it is not, then the cursor acquired
** will not work correctly.
*/
static int
btreeCursor(Btree * p, /* The btree */
int iTable, /* Root page of table to open */
int wrFlag, /* 1 to write. 0 read-only */
struct KeyInfo *pKeyInfo, /* First arg to comparison function */
BtCursor * pCur /* Space for new cursor */
)
{
int rc;
BtShared *pBt = p->pBt;
assert(sqlite3BtreeHoldsMutex(p));
if(wrFlag)
{
if(pBt->readOnly)
{
return SQLITE_READONLY;
}
if(checkReadLocks(p, iTable, 0))
{
return SQLITE_LOCKED;
}
}
if(pBt->pPage1 == 0)
{
rc = lockBtreeWithRetry(p);
if(rc != SQLITE_OK)
{
return rc;
}
if(pBt->readOnly && wrFlag)
{
return SQLITE_READONLY;
}
}
pCur->pgnoRoot = (Pgno) iTable;
if(iTable == 1 && sqlite3PagerPagecount(pBt->pPager) == 0)
{
rc = SQLITE_EMPTY;
goto create_cursor_exception;
}
rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->pPage, 0);
if(rc != SQLITE_OK)
{
goto create_cursor_exception;
}
/* Now that no other errors can occur, finish filling in the BtCursor
** variables, link the cursor into the BtShared list and set *ppCur (the
** output argument to this function).
*/
pCur->pKeyInfo = pKeyInfo;
pCur->pBtree = p;
pCur->pBt = pBt;
pCur->wrFlag = wrFlag;
pCur->pNext = pBt->pCursor;
if(pCur->pNext)
{
pCur->pNext->pPrev = pCur;
}
pBt->pCursor = pCur;
pCur->eState = CURSOR_INVALID;
return SQLITE_OK;
create_cursor_exception:
if(pCur)
{
releasePage(pCur->pPage);
}
unlockBtreeIfUnused(pBt);
return rc;
}
SQLITE_PRIVATE int
sqlite3BtreeCursor(Btree * p, /* The btree */
int iTable, /* Root page of table to open */
int wrFlag, /* 1 to write. 0 read-only */
struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
BtCursor * pCur /* Write new cursor here */
)
{
int rc;
sqlite3BtreeEnter(p);
p->pBt->db = p->db;
rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
sqlite3BtreeLeave(p);
return rc;
}
SQLITE_PRIVATE int
sqlite3BtreeCursorSize()
{
return sizeof(BtCursor);
}
/*
** Close a cursor. The read lock on the database file is released
** when the last cursor is closed.
*/
SQLITE_PRIVATE int
sqlite3BtreeCloseCursor(BtCursor * pCur)
{
Btree *pBtree = pCur->pBtree;
if(pBtree)
{
BtShared *pBt = pCur->pBt;
sqlite3BtreeEnter(pBtree);
pBt->db = pBtree->db;
clearCursorPosition(pCur);
if(pCur->pPrev)
{
pCur->pPrev->pNext = pCur->pNext;
}
else
{
pBt->pCursor = pCur->pNext;
}
if(pCur->pNext)
{
pCur->pNext->pPrev = pCur->pPrev;
}
releasePage(pCur->pPage);
unlockBtreeIfUnused(pBt);
invalidateOverflowCache(pCur);
/* sqlite3_free(pCur); */
sqlite3BtreeLeave(pBtree);
}
return SQLITE_OK;
}
/*
** Make a temporary cursor by filling in the fields of pTempCur.
** The temporary cursor is not on the cursor list for the Btree.
*/
SQLITE_PRIVATE void
sqlite3BtreeGetTempCursor(BtCursor * pCur, BtCursor * pTempCur)
{
assert(cursorHoldsMutex(pCur));
memcpy(pTempCur, pCur, sizeof(*pCur));
pTempCur->pNext = 0;
pTempCur->pPrev = 0;
if(pTempCur->pPage)
{
sqlite3PagerRef(pTempCur->pPage->pDbPage);
}
}
/*
** Delete a temporary cursor such as was made by the CreateTemporaryCursor()
** function above.
*/
SQLITE_PRIVATE void
sqlite3BtreeReleaseTempCursor(BtCursor * pCur)
{
assert(cursorHoldsMutex(pCur));
if(pCur->pPage)
{
sqlite3PagerUnref(pCur->pPage->pDbPage);
}
}
/*
** Make sure the BtCursor* given in the argument has a valid
** BtCursor.info structure. If it is not already valid, call
** sqlite3BtreeParseCell() to fill it in.
**
** BtCursor.info is a cache of the information in the current cell.
** Using this cache reduces the number of calls to sqlite3BtreeParseCell().
**
** 2007-06-25: There is a bug in some versions of MSVC that cause the
** compiler to crash when getCellInfo() is implemented as a macro.
** But there is a measureable speed advantage to using the macro on gcc
** (when less compiler optimizations like -Os or -O0 are used and the
** compiler is not doing agressive inlining.) So we use a real function
** for MSVC and a macro for everything else. Ticket #2457.
*/
#ifndef NDEBUG
static void
assertCellInfo(BtCursor * pCur)
{
CellInfo info;
memset(&info, 0, sizeof(info));
sqlite3BtreeParseCell(pCur->pPage, pCur->idx, &info);
assert(memcmp(&info, &pCur->info, sizeof(info)) == 0);
}
#else
#define assertCellInfo(x)
#endif
#ifdef _MSC_VER
/* Use a real function in MSVC to work around bugs in that compiler. */
static void
getCellInfo(BtCursor * pCur)
{
if(pCur->info.nSize == 0)
{
sqlite3BtreeParseCell(pCur->pPage, pCur->idx, &pCur->info);
pCur->validNKey = 1;
}
else
{
assertCellInfo(pCur);
}
}
#else /* if not _MSC_VER */
/* Use a macro in all other compilers so that the function is inlined */
#define getCellInfo(pCur) \
if( pCur->info.nSize==0 ){ \
sqlite3BtreeParseCell(pCur->pPage, pCur->idx, &pCur->info); \
pCur->validNKey = 1; \
}else{ \
assertCellInfo(pCur); \
}
#endif /* _MSC_VER */
/*
** Set *pSize to the size of the buffer needed to hold the value of
** the key for the current entry. If the cursor is not pointing
** to a valid entry, *pSize is set to 0.
**
** For a table with the INTKEY flag set, this routine returns the key
** itself, not the number of bytes in the key.
*/
SQLITE_PRIVATE int
sqlite3BtreeKeySize(BtCursor * pCur, i64 * pSize)
{
int rc;
assert(cursorHoldsMutex(pCur));
rc = restoreOrClearCursorPosition(pCur);
if(rc == SQLITE_OK)
{
assert(pCur->eState == CURSOR_INVALID || pCur->eState == CURSOR_VALID);
if(pCur->eState == CURSOR_INVALID)
{
*pSize = 0;
}
else
{
getCellInfo(pCur);
*pSize = pCur->info.nKey;
}
}
return rc;
}
/*
** Set *pSize to the number of bytes of data in the entry the
** cursor currently points to. Always return SQLITE_OK.
** Failure is not possible. If the cursor is not currently
** pointing to an entry (which can happen, for example, if
** the database is empty) then *pSize is set to 0.
*/
SQLITE_PRIVATE int
sqlite3BtreeDataSize(BtCursor * pCur, u32 * pSize)
{
int rc;
assert(cursorHoldsMutex(pCur));
rc = restoreOrClearCursorPosition(pCur);
if(rc == SQLITE_OK)
{
assert(pCur->eState == CURSOR_INVALID || pCur->eState == CURSOR_VALID);
if(pCur->eState == CURSOR_INVALID)
{
/* Not pointing at a valid entry - set *pSize to 0. */
*pSize = 0;
}
else
{
getCellInfo(pCur);
*pSize = pCur->info.nData;
}
}
return rc;
}
/*
** Given the page number of an overflow page in the database (parameter
** ovfl), this function finds the page number of the next page in the
** linked list of overflow pages. If possible, it uses the auto-vacuum
** pointer-map data instead of reading the content of page ovfl to do so.
**
** If an error occurs an SQLite error code is returned. Otherwise:
**
** Unless pPgnoNext is NULL, the page number of the next overflow
** page in the linked list is written to *pPgnoNext. If page ovfl
** is the last page in its linked list, *pPgnoNext is set to zero.
**
** If ppPage is not NULL, *ppPage is set to the MemPage* handle
** for page ovfl. The underlying pager page may have been requested
** with the noContent flag set, so the page data accessable via
** this handle may not be trusted.
*/
static int
getOverflowPage(BtShared * pBt, Pgno ovfl, /* Overflow page */
MemPage ** ppPage, /* OUT: MemPage handle */
Pgno * pPgnoNext /* OUT: Next overflow page number */
)
{
Pgno next = 0;
int rc;
assert(sqlite3_mutex_held(pBt->mutex));
/* One of these must not be NULL. Otherwise, why call this function? */
assert(ppPage || pPgnoNext);
/* If pPgnoNext is NULL, then this function is being called to obtain
** a MemPage* reference only. No page-data is required in this case.
*/
if(!pPgnoNext)
{
return sqlite3BtreeGetPage(pBt, ovfl, ppPage, 1);
}
#ifndef SQLITE_OMIT_AUTOVACUUM
/* Try to find the next page in the overflow list using the
** autovacuum pointer-map pages. Guess that the next page in
** the overflow list is page number (ovfl+1). If that guess turns
** out to be wrong, fall back to loading the data of page
** number ovfl to determine the next page number.
*/
if(pBt->autoVacuum)
{
Pgno pgno;
Pgno iGuess = ovfl + 1;
u8 eType;
while (PTRMAP_ISPAGE(pBt, iGuess) || iGuess == PENDING_BYTE_PAGE(pBt))
{
iGuess++;
}
if(iGuess <= sqlite3PagerPagecount(pBt->pPager))
{
rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
if(rc != SQLITE_OK)
{
return rc;
}
if(eType == PTRMAP_OVERFLOW2 && pgno == ovfl)
{
next = iGuess;
}
}
}
#endif
if(next == 0 || ppPage)
{
MemPage *pPage = 0;
rc = sqlite3BtreeGetPage(pBt, ovfl, &pPage, next != 0);
assert(rc == SQLITE_OK || pPage == 0);
if(next == 0 && rc == SQLITE_OK)
{
next = get4byte(pPage->aData);
}
if(ppPage)
{
*ppPage = pPage;
}
else
{
releasePage(pPage);
}
}
*pPgnoNext = next;
return rc;
}
/*
** Copy data from a buffer to a page, or from a page to a buffer.
**
** pPayload is a pointer to data stored on database page pDbPage.
** If argument eOp is false, then nByte bytes of data are copied
** from pPayload to the buffer pointed at by pBuf. If eOp is true,
** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
** of data are copied from the buffer pBuf to pPayload.
**
** SQLITE_OK is returned on success, otherwise an error code.
*/
static int
copyPayload(void *pPayload, /* Pointer to page data */
void *pBuf, /* Pointer to buffer */
int nByte, /* Number of bytes to copy */
int eOp, /* 0 -> copy from page, 1 -> copy to page */
DbPage * pDbPage /* Page containing pPayload */
)
{
if(eOp)
{
/* Copy data from buffer to page (a write operation) */
int rc = sqlite3PagerWrite(pDbPage);
if(rc != SQLITE_OK)
{
return rc;
}
memcpy(pPayload, pBuf, nByte);
}
else
{
/* Copy data from page to buffer (a read operation) */
memcpy(pBuf, pPayload, nByte);
}
return SQLITE_OK;
}
/*
** This function is used to read or overwrite payload information
** for the entry that the pCur cursor is pointing to. If the eOp
** parameter is 0, this is a read operation (data copied into
** buffer pBuf). If it is non-zero, a write (data copied from
** buffer pBuf).
**
** A total of "amt" bytes are read or written beginning at "offset".
** Data is read to or from the buffer pBuf.
**
** This routine does not make a distinction between key and data.
** It just reads or writes bytes from the payload area. Data might
** appear on the main page or be scattered out on multiple overflow
** pages.
**
** If the BtCursor.isIncrblobHandle flag is set, and the current
** cursor entry uses one or more overflow pages, this function
** allocates space for and lazily popluates the overflow page-list
** cache array (BtCursor.aOverflow). Subsequent calls use this
** cache to make seeking to the supplied offset more efficient.
**
** Once an overflow page-list cache has been allocated, it may be
** invalidated if some other cursor writes to the same table, or if
** the cursor is moved to a different row. Additionally, in auto-vacuum
** mode, the following events may invalidate an overflow page-list cache.
**
** * An incremental vacuum,
** * A commit in auto_vacuum="full" mode,
** * Creating a table (may require moving an overflow page).
*/
static int
accessPayload(BtCursor * pCur, /* Cursor pointing to entry to read from */
int offset, /* Begin reading this far into payload */
int amt, /* Read this many bytes */
unsigned char *pBuf, /* Write the bytes into this buffer */
int skipKey, /* offset begins at data if this is true */
int eOp /* zero to read. non-zero to write. */
)
{
unsigned char *aPayload;
int rc = SQLITE_OK;
u32 nKey;
int iIdx = 0;
MemPage *pPage = pCur->pPage; /* Btree page of current cursor entry */
BtShared *pBt; /* Btree this cursor belongs to */
assert(pPage);
assert(pCur->eState == CURSOR_VALID);
assert(pCur->idx >= 0 && pCur->idx < pPage->nCell);
assert(offset >= 0);
assert(cursorHoldsMutex(pCur));
getCellInfo(pCur);
aPayload = pCur->info.pCell + pCur->info.nHeader;
nKey = (pPage->intKey ? 0 : pCur->info.nKey);
if(skipKey)
{
offset += nKey;
}
if(offset + amt > nKey + pCur->info.nData)
{
/* Trying to read or write past the end of the data is an error */
return SQLITE_ERROR;
}
/* Check if data must be read/written to/from the btree page itself. */
if(offset < pCur->info.nLocal)
{
int a = amt;
if(a + offset > pCur->info.nLocal)
{
a = pCur->info.nLocal - offset;
}
rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
offset = 0;
pBuf += a;
amt -= a;
}
else
{
offset -= pCur->info.nLocal;
}
pBt = pCur->pBt;
if(rc == SQLITE_OK && amt > 0)
{
const int ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
Pgno nextPage;
nextPage = get4byte(&aPayload[pCur->info.nLocal]);
#ifndef SQLITE_OMIT_INCRBLOB
/* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
** has not been allocated, allocate it now. The array is sized at
** one entry for each overflow page in the overflow chain. The
** page number of the first overflow page is stored in aOverflow[0],
** etc. A value of 0 in the aOverflow[] array means "not yet known"
** (the cache is lazily populated).
*/
if(pCur->isIncrblobHandle && !pCur->aOverflow)
{
int nOvfl =
(pCur->info.nPayload - pCur->info.nLocal + ovflSize - 1) / ovflSize;
pCur->aOverflow = (Pgno *) sqlite3MallocZero(sizeof(Pgno) * nOvfl);
if(nOvfl && !pCur->aOverflow)
{
rc = SQLITE_NOMEM;
}
}
/* If the overflow page-list cache has been allocated and the
** entry for the first required overflow page is valid, skip
** directly to it.
*/
if(pCur->aOverflow && pCur->aOverflow[offset / ovflSize])
{
iIdx = (offset / ovflSize);
nextPage = pCur->aOverflow[iIdx];
offset = (offset % ovflSize);
}
#endif
for (; rc == SQLITE_OK && amt > 0 && nextPage; iIdx++)
{
#ifndef SQLITE_OMIT_INCRBLOB
/* If required, populate the overflow page-list cache. */
if(pCur->aOverflow)
{
assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx] == nextPage);
pCur->aOverflow[iIdx] = nextPage;
}
#endif
if(offset >= ovflSize)
{
/* The only reason to read this page is to obtain the page
** number for the next page in the overflow chain. The page
** data is not required. So first try to lookup the overflow
** page-list cache, if any, then fall back to the getOverflowPage()
** function.
*/
#ifndef SQLITE_OMIT_INCRBLOB
if(pCur->aOverflow && pCur->aOverflow[iIdx + 1])
{
nextPage = pCur->aOverflow[iIdx + 1];
}
else
#endif
rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
offset -= ovflSize;
}
else
{
/* Need to read this page properly. It contains some of the
** range of data that is being read (eOp==0) or written (eOp!=0).
*/
DbPage *pDbPage;
int a = amt;
rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
if(rc == SQLITE_OK)
{
aPayload = sqlite3PagerGetData(pDbPage);
nextPage = get4byte(aPayload);
if(a + offset > ovflSize)
{
a = ovflSize - offset;
}
rc = copyPayload(&aPayload[offset + 4], pBuf, a, eOp,
pDbPage);
sqlite3PagerUnref(pDbPage);
offset = 0;
amt -= a;
pBuf += a;
}
}
}
}
if(rc == SQLITE_OK && amt > 0)
{
return SQLITE_CORRUPT_BKPT;
}
return rc;
}
/*
** Read part of the key associated with cursor pCur. Exactly
** "amt" bytes will be transfered into pBuf[]. The transfer
** begins at "offset".
**
** Return SQLITE_OK on success or an error code if anything goes
** wrong. An error is returned if "offset+amt" is larger than
** the available payload.
*/
SQLITE_PRIVATE int
sqlite3BtreeKey(BtCursor * pCur, u32 offset, u32 amt, void *pBuf)
{
int rc;
assert(cursorHoldsMutex(pCur));
rc = restoreOrClearCursorPosition(pCur);
if(rc == SQLITE_OK)
{
assert(pCur->eState == CURSOR_VALID);
assert(pCur->pPage != 0);
if(pCur->pPage->intKey)
{
return SQLITE_CORRUPT_BKPT;
}
assert(pCur->pPage->intKey == 0);
assert(pCur->idx >= 0 && pCur->idx < pCur->pPage->nCell);
rc = accessPayload(pCur, offset, amt, (unsigned char *) pBuf, 0, 0);
}
return rc;
}
/*
** Read part of the data associated with cursor pCur. Exactly
** "amt" bytes will be transfered into pBuf[]. The transfer
** begins at "offset".
**
** Return SQLITE_OK on success or an error code if anything goes
** wrong. An error is returned if "offset+amt" is larger than
** the available payload.
*/
SQLITE_PRIVATE int
sqlite3BtreeData(BtCursor * pCur, u32 offset, u32 amt, void *pBuf)
{
int rc;
assert(cursorHoldsMutex(pCur));
rc = restoreOrClearCursorPosition(pCur);
if(rc == SQLITE_OK)
{
assert(pCur->eState == CURSOR_VALID);
assert(pCur->pPage != 0);
assert(pCur->idx >= 0 && pCur->idx < pCur->pPage->nCell);
rc = accessPayload(pCur, offset, amt, pBuf, 1, 0);
}
return rc;
}
/*
** Return a pointer to payload information from the entry that the
** pCur cursor is pointing to. The pointer is to the beginning of
** the key if skipKey==0 and it points to the beginning of data if
** skipKey==1. The number of bytes of available key/data is written
** into *pAmt. If *pAmt==0, then the value returned will not be
** a valid pointer.
**
** This routine is an optimization. It is common for the entire key
** and data to fit on the local page and for there to be no overflow
** pages. When that is so, this routine can be used to access the
** key and data without making a copy. If the key and/or data spills
** onto overflow pages, then accessPayload() must be used to reassembly
** the key/data and copy it into a preallocated buffer.
**
** The pointer returned by this routine looks directly into the cached
** page of the database. The data might change or move the next time
** any btree routine is called.
*/
static const unsigned char *
fetchPayload(BtCursor * pCur, /* Cursor pointing to entry to read from */
int *pAmt, /* Write the number of available bytes here */
int skipKey /* read beginning at data if this is true */
)
{
unsigned char *aPayload;
MemPage *pPage;
u32 nKey;
int nLocal;
assert(pCur != 0 && pCur->pPage != 0);
assert(pCur->eState == CURSOR_VALID);
assert(cursorHoldsMutex(pCur));
pPage = pCur->pPage;
assert(pCur->idx >= 0 && pCur->idx < pPage->nCell);
getCellInfo(pCur);
aPayload = pCur->info.pCell;
aPayload += pCur->info.nHeader;
if(pPage->intKey)
{
nKey = 0;
}
else
{
nKey = pCur->info.nKey;
}
if(skipKey)
{
aPayload += nKey;
nLocal = pCur->info.nLocal - nKey;
}
else
{
nLocal = pCur->info.nLocal;
if(nLocal > nKey)
{
nLocal = nKey;
}
}
*pAmt = nLocal;
return aPayload;
}
/*
** For the entry that cursor pCur is point to, return as
** many bytes of the key or data as are available on the local
** b-tree page. Write the number of available bytes into *pAmt.
**
** The pointer returned is ephemeral. The key/data may move
** or be destroyed on the next call to any Btree routine,
** including calls from other threads against the same cache.
** Hence, a mutex on the BtShared should be held prior to calling
** this routine.
**
** These routines is used to get quick access to key and data
** in the common case where no overflow pages are used.
*/
SQLITE_PRIVATE const void *
sqlite3BtreeKeyFetch(BtCursor * pCur, int *pAmt)
{
assert(cursorHoldsMutex(pCur));
if(pCur->eState == CURSOR_VALID)
{
return (const void *) fetchPayload(pCur, pAmt, 0);
}
return 0;
}
SQLITE_PRIVATE const void *
sqlite3BtreeDataFetch(BtCursor * pCur, int *pAmt)
{
assert(cursorHoldsMutex(pCur));
if(pCur->eState == CURSOR_VALID)
{
return (const void *) fetchPayload(pCur, pAmt, 1);
}
return 0;
}
/*
** Move the cursor down to a new child page. The newPgno argument is the
** page number of the child page to move to.
*/
static int
moveToChild(BtCursor * pCur, u32 newPgno)
{
int rc;
MemPage *pNewPage;
MemPage *pOldPage;
BtShared *pBt = pCur->pBt;
assert(cursorHoldsMutex(pCur));
assert(pCur->eState == CURSOR_VALID);
rc = getAndInitPage(pBt, newPgno, &pNewPage, pCur->pPage);
if(rc)
return rc;
pNewPage->idxParent = pCur->idx;
pOldPage = pCur->pPage;
pOldPage->idxShift = 0;
releasePage(pOldPage);
pCur->pPage = pNewPage;
pCur->idx = 0;
pCur->info.nSize = 0;
pCur->validNKey = 0;
if(pNewPage->nCell < 1)
{
return SQLITE_CORRUPT_BKPT;
}
return SQLITE_OK;
}
/*
** Return true if the page is the virtual root of its table.
**
** The virtual root page is the root page for most tables. But
** for the table rooted on page 1, sometime the real root page
** is empty except for the right-pointer. In such cases the
** virtual root page is the page that the right-pointer of page
** 1 is pointing to.
*/
SQLITE_PRIVATE int
sqlite3BtreeIsRootPage(MemPage * pPage)
{
MemPage *pParent;
assert(sqlite3_mutex_held(pPage->pBt->mutex));
pParent = pPage->pParent;
if(pParent == 0)
return 1;
if(pParent->pgno > 1)
return 0;
if(get2byte(&pParent->aData[pParent->hdrOffset + 3]) == 0)
return 1;
return 0;
}
/*
** Move the cursor up to the parent page.
**
** pCur->idx is set to the cell index that contains the pointer
** to the page we are coming from. If we are coming from the
** right-most child page then pCur->idx is set to one more than
** the largest cell index.
*/
SQLITE_PRIVATE void
sqlite3BtreeMoveToParent(BtCursor * pCur)
{
MemPage *pParent;
MemPage *pPage;
int idxParent;
assert(cursorHoldsMutex(pCur));
assert(pCur->eState == CURSOR_VALID);
pPage = pCur->pPage;
assert(pPage != 0);
assert(!sqlite3BtreeIsRootPage(pPage));
pParent = pPage->pParent;
assert(pParent != 0);
idxParent = pPage->idxParent;
sqlite3PagerRef(pParent->pDbPage);
releasePage(pPage);
pCur->pPage = pParent;
pCur->info.nSize = 0;
pCur->validNKey = 0;
assert(pParent->idxShift == 0);
pCur->idx = idxParent;
}
/*
** Move the cursor to the root page
*/
static int
moveToRoot(BtCursor * pCur)
{
MemPage *pRoot;
int rc = SQLITE_OK;
Btree *p = pCur->pBtree;
BtShared *pBt = p->pBt;
assert(cursorHoldsMutex(pCur));
assert(CURSOR_INVALID < CURSOR_REQUIRESEEK);
assert(CURSOR_VALID < CURSOR_REQUIRESEEK);
assert(CURSOR_FAULT > CURSOR_REQUIRESEEK);
if(pCur->eState >= CURSOR_REQUIRESEEK)
{
if(pCur->eState == CURSOR_FAULT)
{
return pCur->skip;
}
clearCursorPosition(pCur);
}
pRoot = pCur->pPage;
if(pRoot && pRoot->pgno == pCur->pgnoRoot)
{
assert(pRoot->isInit);
}
else
{
if(SQLITE_OK != (rc = getAndInitPage(pBt, pCur->pgnoRoot, &pRoot, 0)))
{
pCur->eState = CURSOR_INVALID;
return rc;
}
releasePage(pCur->pPage);
pCur->pPage = pRoot;
}
pCur->idx = 0;
pCur->info.nSize = 0;
pCur->atLast = 0;
pCur->validNKey = 0;
if(pRoot->nCell == 0 && !pRoot->leaf)
{
Pgno subpage;
assert(pRoot->pgno == 1);
subpage = get4byte(&pRoot->aData[pRoot->hdrOffset + 8]);
assert(subpage > 0);
pCur->eState = CURSOR_VALID;
rc = moveToChild(pCur, subpage);
}
pCur->eState = ((pCur->pPage->nCell > 0) ? CURSOR_VALID : CURSOR_INVALID);
return rc;
}
/*
** Move the cursor down to the left-most leaf entry beneath the
** entry to which it is currently pointing.
**
** The left-most leaf is the one with the smallest key - the first
** in ascending order.
*/
static int
moveToLeftmost(BtCursor * pCur)
{
Pgno pgno;
int rc = SQLITE_OK;
MemPage *pPage;
assert(cursorHoldsMutex(pCur));
assert(pCur->eState == CURSOR_VALID);
while (rc == SQLITE_OK && !(pPage = pCur->pPage)->leaf)
{
assert(pCur->idx >= 0 && pCur->idx < pPage->nCell);
pgno = get4byte(findCell(pPage, pCur->idx));
rc = moveToChild(pCur, pgno);
}
return rc;
}
/*
** Move the cursor down to the right-most leaf entry beneath the
** page to which it is currently pointing. Notice the difference
** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
** finds the left-most entry beneath the *entry* whereas moveToRightmost()
** finds the right-most entry beneath the *page*.
**
** The right-most entry is the one with the largest key - the last
** key in ascending order.
*/
static int
moveToRightmost(BtCursor * pCur)
{
Pgno pgno;
int rc = SQLITE_OK;
MemPage *pPage;
assert(cursorHoldsMutex(pCur));
assert(pCur->eState == CURSOR_VALID);
while (rc == SQLITE_OK && !(pPage = pCur->pPage)->leaf)
{
pgno = get4byte(&pPage->aData[pPage->hdrOffset + 8]);
pCur->idx = pPage->nCell;
rc = moveToChild(pCur, pgno);
}
if(rc == SQLITE_OK)
{
pCur->idx = pPage->nCell - 1;
pCur->info.nSize = 0;
pCur->validNKey = 0;
}
return SQLITE_OK;
}
/* Move the cursor to the first entry in the table. Return SQLITE_OK
** on success. Set *pRes to 0 if the cursor actually points to something
** or set *pRes to 1 if the table is empty.
*/
SQLITE_PRIVATE int
sqlite3BtreeFirst(BtCursor * pCur, int *pRes)
{
int rc;
assert(cursorHoldsMutex(pCur));
assert(sqlite3_mutex_held(pCur->pBtree->db->mutex));
rc = moveToRoot(pCur);
if(rc == SQLITE_OK)
{
if(pCur->eState == CURSOR_INVALID)
{
assert(pCur->pPage->nCell == 0);
*pRes = 1;
rc = SQLITE_OK;
}
else
{
assert(pCur->pPage->nCell > 0);
*pRes = 0;
rc = moveToLeftmost(pCur);
}
}
return rc;
}
/* Move the cursor to the last entry in the table. Return SQLITE_OK
** on success. Set *pRes to 0 if the cursor actually points to something
** or set *pRes to 1 if the table is empty.
*/
SQLITE_PRIVATE int
sqlite3BtreeLast(BtCursor * pCur, int *pRes)
{
int rc;
assert(cursorHoldsMutex(pCur));
assert(sqlite3_mutex_held(pCur->pBtree->db->mutex));
rc = moveToRoot(pCur);
if(rc == SQLITE_OK)
{
if(CURSOR_INVALID == pCur->eState)
{
assert(pCur->pPage->nCell == 0);
*pRes = 1;
}
else
{
assert(pCur->eState == CURSOR_VALID);
*pRes = 0;
rc = moveToRightmost(pCur);
getCellInfo(pCur);
pCur->atLast = rc == SQLITE_OK;
}
}
return rc;
}
/* Move the cursor so that it points to an entry near the key
** specified by pKey/nKey/pUnKey. Return a success code.
**
** For INTKEY tables, only the nKey parameter is used. pKey
** and pUnKey must be NULL. For index tables, either pUnKey
** must point to a key that has already been unpacked, or else
** pKey/nKey describes a blob containing the key.
**
** If an exact match is not found, then the cursor is always
** left pointing at a leaf page which would hold the entry if it
** were present. The cursor might point to an entry that comes
** before or after the key.
**
** The result of comparing the key with the entry to which the
** cursor is written to *pRes if pRes!=NULL. The meaning of
** this value is as follows:
**
** *pRes<0 The cursor is left pointing at an entry that
** is smaller than pKey or if the table is empty
** and the cursor is therefore left point to nothing.
**
** *pRes==0 The cursor is left pointing at an entry that
** exactly matches pKey.
**
** *pRes>0 The cursor is left pointing at an entry that
** is larger than pKey.
**
*/
SQLITE_PRIVATE int
sqlite3BtreeMoveto(BtCursor * pCur, /* The cursor to be moved */
const void *pKey, /* The key content for indices. Not used by tables */
UnpackedRecord * pUnKey, /* Unpacked version of pKey */
i64 nKey, /* Size of pKey. Or the key for tables */
int biasRight, /* If true, bias the search to the high end */
int *pRes /* Search result flag */
)
{
int rc;
char aSpace[200];
assert(cursorHoldsMutex(pCur));
assert(sqlite3_mutex_held(pCur->pBtree->db->mutex));
/* If the cursor is already positioned at the point we are trying
** to move to, then just return without doing any work */
if(pCur->eState == CURSOR_VALID && pCur->validNKey && pCur->pPage->intKey)
{
if(pCur->info.nKey == nKey)
{
*pRes = 0;
return SQLITE_OK;
}
if(pCur->atLast && pCur->info.nKey < nKey)
{
*pRes = -1;
return SQLITE_OK;
}
}
rc = moveToRoot(pCur);
if(rc)
{
return rc;
}
assert(pCur->pPage);
assert(pCur->pPage->isInit);
if(pCur->eState == CURSOR_INVALID)
{
*pRes = -1;
assert(pCur->pPage->nCell == 0);
return SQLITE_OK;
}
if(pCur->pPage->intKey)
{
/* We are given an SQL table to search. The key is the integer
** rowid contained in nKey. pKey and pUnKey should both be NULL */
assert(pUnKey == 0);
assert(pKey == 0);
}
else if(pUnKey == 0)
{
/* We are to search an SQL index using a key encoded as a blob.
** The blob is found at pKey and is nKey bytes in length. Unpack
** this key so that we can use it. */
assert(pKey != 0);
pUnKey = sqlite3VdbeRecordUnpack(pCur->pKeyInfo, nKey, pKey,
aSpace, sizeof(aSpace));
if(pUnKey == 0)
return SQLITE_NOMEM;
}
else
{
/* We are to search an SQL index using a key that is already unpacked
** and handed to us in pUnKey. */
assert(pKey == 0);
}
for (;;)
{
int lwr, upr;
Pgno chldPg;
MemPage *pPage = pCur->pPage;
int c = -1; /* pRes return if table is empty must be -1 */
lwr = 0;
upr = pPage->nCell - 1;
if(!pPage->intKey && pUnKey == 0)
{
rc = SQLITE_CORRUPT_BKPT;
goto moveto_finish;
}
if(biasRight)
{
pCur->idx = upr;
}
else
{
pCur->idx = (upr + lwr) / 2;
}
if(lwr <= upr)
for (;;)
{
void *pCellKey;
i64 nCellKey;
pCur->info.nSize = 0;
pCur->validNKey = 1;
if(pPage->intKey)
{
u8 *pCell;
pCell = findCell(pPage, pCur->idx) + pPage->childPtrSize;
if(pPage->hasData)
{
u32 dummy;
pCell += getVarint32(pCell, dummy);
}
getVarint(pCell, (u64 *) & nCellKey);
if(nCellKey == nKey)
{
c = 0;
}
else if(nCellKey < nKey)
{
c = -1;
}
else
{
assert(nCellKey > nKey);
c = +1;
}
}
else
{
int available;
pCellKey = (void *) fetchPayload(pCur, &available, 0);
nCellKey = pCur->info.nKey;
if(available >= nCellKey)
{
c = sqlite3VdbeRecordCompare(nCellKey, pCellKey,
pUnKey);
}
else
{
pCellKey = sqlite3_malloc(nCellKey);
if(pCellKey == 0)
{
rc = SQLITE_NOMEM;
goto moveto_finish;
}
rc = sqlite3BtreeKey(pCur, 0, nCellKey,
(void *) pCellKey);
c = sqlite3VdbeRecordCompare(nCellKey, pCellKey,
pUnKey);
sqlite3_free(pCellKey);
if(rc)
goto moveto_finish;
}
}
if(c == 0)
{
pCur->info.nKey = nCellKey;
if(pPage->leafData && !pPage->leaf)
{
lwr = pCur->idx;
upr = lwr - 1;
break;
}
else
{
if(pRes)
*pRes = 0;
rc = SQLITE_OK;
goto moveto_finish;
}
}
if(c < 0)
{
lwr = pCur->idx + 1;
}
else
{
upr = pCur->idx - 1;
}
if(lwr > upr)
{
pCur->info.nKey = nCellKey;
break;
}
pCur->idx = (lwr + upr) / 2;
}
assert(lwr == upr + 1);
assert(pPage->isInit);
if(pPage->leaf)
{
chldPg = 0;
}
else if(lwr >= pPage->nCell)
{
chldPg = get4byte(&pPage->aData[pPage->hdrOffset + 8]);
}
else
{
chldPg = get4byte(findCell(pPage, lwr));
}
if(chldPg == 0)
{
assert(pCur->idx >= 0 && pCur->idx < pCur->pPage->nCell);
if(pRes)
*pRes = c;
rc = SQLITE_OK;
goto moveto_finish;
}
pCur->idx = lwr;
pCur->info.nSize = 0;
pCur->validNKey = 0;
rc = moveToChild(pCur, chldPg);
if(rc)
goto moveto_finish;
}
moveto_finish:
if(pKey)
{
/* If we created our own unpacked key at the top of this
** procedure, then destroy that key before returning. */
sqlite3VdbeDeleteUnpackedRecord(pUnKey);
}
return rc;
}
/*
** Return TRUE if the cursor is not pointing at an entry of the table.
**
** TRUE will be returned after a call to sqlite3BtreeNext() moves
** past the last entry in the table or sqlite3BtreePrev() moves past
** the first entry. TRUE is also returned if the table is empty.
*/
SQLITE_PRIVATE int
sqlite3BtreeEof(BtCursor * pCur)
{
/* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
** have been deleted? This API will need to change to return an error code
** as well as the boolean result value.
*/
return (CURSOR_VALID != pCur->eState);
}
/*
** Return the database connection handle for a cursor.
*/
SQLITE_PRIVATE sqlite3 *
sqlite3BtreeCursorDb(const BtCursor * pCur)
{
assert(sqlite3_mutex_held(pCur->pBtree->db->mutex));
return pCur->pBtree->db;
}
/*
** Advance the cursor to the next entry in the database. If
** successful then set *pRes=0. If the cursor
** was already pointing to the last entry in the database before
** this routine was called, then set *pRes=1.
*/
SQLITE_PRIVATE int
sqlite3BtreeNext(BtCursor * pCur, int *pRes)
{
int rc;
MemPage *pPage;
assert(cursorHoldsMutex(pCur));
rc = restoreOrClearCursorPosition(pCur);
if(rc != SQLITE_OK)
{
return rc;
}
assert(pRes != 0);
pPage = pCur->pPage;
if(CURSOR_INVALID == pCur->eState)
{
*pRes = 1;
return SQLITE_OK;
}
if(pCur->skip > 0)
{
pCur->skip = 0;
*pRes = 0;
return SQLITE_OK;
}
pCur->skip = 0;
assert(pPage->isInit);
assert(pCur->idx < pPage->nCell);
pCur->idx++;
pCur->info.nSize = 0;
pCur->validNKey = 0;
if(pCur->idx >= pPage->nCell)
{
if(!pPage->leaf)
{
rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset + 8]));
if(rc)
return rc;
rc = moveToLeftmost(pCur);
*pRes = 0;
return rc;
}
do
{
if(sqlite3BtreeIsRootPage(pPage))
{
*pRes = 1;
pCur->eState = CURSOR_INVALID;
return SQLITE_OK;
}
sqlite3BtreeMoveToParent(pCur);
pPage = pCur->pPage;
}
while (pCur->idx >= pPage->nCell);
*pRes = 0;
if(pPage->leafData)
{
rc = sqlite3BtreeNext(pCur, pRes);
}
else
{
rc = SQLITE_OK;
}
return rc;
}
*pRes = 0;
if(pPage->leaf)
{
return SQLITE_OK;
}
rc = moveToLeftmost(pCur);
return rc;
}
/*
** Step the cursor to the back to the previous entry in the database. If
** successful then set *pRes=0. If the cursor
** was already pointing to the first entry in the database before
** this routine was called, then set *pRes=1.
*/
SQLITE_PRIVATE int
sqlite3BtreePrevious(BtCursor * pCur, int *pRes)
{
int rc;
Pgno pgno;
MemPage *pPage;
assert(cursorHoldsMutex(pCur));
rc = restoreOrClearCursorPosition(pCur);
if(rc != SQLITE_OK)
{
return rc;
}
pCur->atLast = 0;
if(CURSOR_INVALID == pCur->eState)
{
*pRes = 1;
return SQLITE_OK;
}
if(pCur->skip < 0)
{
pCur->skip = 0;
*pRes = 0;
return SQLITE_OK;
}
pCur->skip = 0;
pPage = pCur->pPage;
assert(pPage->isInit);
assert(pCur->idx >= 0);
if(!pPage->leaf)
{
pgno = get4byte(findCell(pPage, pCur->idx));
rc = moveToChild(pCur, pgno);
if(rc)
{
return rc;
}
rc = moveToRightmost(pCur);
}
else
{
while (pCur->idx == 0)
{
if(sqlite3BtreeIsRootPage(pPage))
{
pCur->eState = CURSOR_INVALID;
*pRes = 1;
return SQLITE_OK;
}
sqlite3BtreeMoveToParent(pCur);
pPage = pCur->pPage;
}
pCur->idx--;
pCur->info.nSize = 0;
pCur->validNKey = 0;
if(pPage->leafData && !pPage->leaf)
{
rc = sqlite3BtreePrevious(pCur, pRes);
}
else
{
rc = SQLITE_OK;
}
}
*pRes = 0;
return rc;
}
/*
** Allocate a new page from the database file.
**
** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
** has already been called on the new page.) The new page has also
** been referenced and the calling routine is responsible for calling
** sqlite3PagerUnref() on the new page when it is done.
**
** SQLITE_OK is returned on success. Any other return value indicates
** an error. *ppPage and *pPgno are undefined in the event of an error.
** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
**
** If the "nearby" parameter is not 0, then a (feeble) effort is made to
** locate a page close to the page number "nearby". This can be used in an
** attempt to keep related pages close to each other in the database file,
** which in turn can make database access faster.
**
** If the "exact" parameter is not 0, and the page-number nearby exists
** anywhere on the free-list, then it is guarenteed to be returned. This
** is only used by auto-vacuum databases when allocating a new table.
*/
static int
allocateBtreePage(BtShared * pBt, MemPage ** ppPage, Pgno * pPgno, Pgno nearby, u8 exact)
{
MemPage *pPage1;
int rc;
int n; /* Number of pages on the freelist */
int k; /* Number of leaves on the trunk of the freelist */
MemPage *pTrunk = 0;
MemPage *pPrevTrunk = 0;
assert(sqlite3_mutex_held(pBt->mutex));
pPage1 = pBt->pPage1;
n = get4byte(&pPage1->aData[36]);
if(n > 0)
{
/* There are pages on the freelist. Reuse one of those pages. */
Pgno iTrunk;
u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
/* If the 'exact' parameter was true and a query of the pointer-map
** shows that the page 'nearby' is somewhere on the free-list, then
** the entire-list will be searched for that page.
*/
#ifndef SQLITE_OMIT_AUTOVACUUM
if(exact && nearby <= sqlite3PagerPagecount(pBt->pPager))
{
u8 eType;
assert(nearby > 0);
assert(pBt->autoVacuum);
rc = ptrmapGet(pBt, nearby, &eType, 0);
if(rc)
return rc;
if(eType == PTRMAP_FREEPAGE)
{
searchList = 1;
}
*pPgno = nearby;
}
#endif
/* Decrement the free-list count by 1. Set iTrunk to the index of the
** first free-list trunk page. iPrevTrunk is initially 1.
*/
rc = sqlite3PagerWrite(pPage1->pDbPage);
if(rc)
return rc;
put4byte(&pPage1->aData[36], n - 1);
/* The code within this loop is run only once if the 'searchList' variable
** is not true. Otherwise, it runs once for each trunk-page on the
** free-list until the page 'nearby' is located.
*/
do
{
pPrevTrunk = pTrunk;
if(pPrevTrunk)
{
iTrunk = get4byte(&pPrevTrunk->aData[0]);
}
else
{
iTrunk = get4byte(&pPage1->aData[32]);
}
rc = sqlite3BtreeGetPage(pBt, iTrunk, &pTrunk, 0);
if(rc)
{
pTrunk = 0;
goto end_allocate_page;
}
k = get4byte(&pTrunk->aData[4]);
if(k == 0 && !searchList)
{
/* The trunk has no leaves and the list is not being searched.
** So extract the trunk page itself and use it as the newly
** allocated page */
assert(pPrevTrunk == 0);
rc = sqlite3PagerWrite(pTrunk->pDbPage);
if(rc)
{
goto end_allocate_page;
}
*pPgno = iTrunk;
memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
*ppPage = pTrunk;
pTrunk = 0;
TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n - 1));
}
else if(k > pBt->usableSize / 4 - 8)
{
/* Value of k is out of range. Database corruption */
rc = SQLITE_CORRUPT_BKPT;
goto end_allocate_page;
#ifndef SQLITE_OMIT_AUTOVACUUM
}
else if(searchList && nearby == iTrunk)
{
/* The list is being searched and this trunk page is the page
** to allocate, regardless of whether it has leaves.
*/
assert(*pPgno == iTrunk);
*ppPage = pTrunk;
searchList = 0;
rc = sqlite3PagerWrite(pTrunk->pDbPage);
if(rc)
{
goto end_allocate_page;
}
if(k == 0)
{
if(!pPrevTrunk)
{
memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
}
else
{
memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
}
}
else
{
/* The trunk page is required by the caller but it contains
** pointers to free-list leaves. The first leaf becomes a trunk
** page in this case.
*/
MemPage *pNewTrunk;
Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
rc = sqlite3BtreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
if(rc != SQLITE_OK)
{
goto end_allocate_page;
}
rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
if(rc != SQLITE_OK)
{
releasePage(pNewTrunk);
goto end_allocate_page;
}
memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
put4byte(&pNewTrunk->aData[4], k - 1);
memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12],
(k - 1) * 4);
releasePage(pNewTrunk);
if(!pPrevTrunk)
{
put4byte(&pPage1->aData[32], iNewTrunk);
}
else
{
rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
if(rc)
{
goto end_allocate_page;
}
put4byte(&pPrevTrunk->aData[0], iNewTrunk);
}
}
pTrunk = 0;
TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n - 1));
#endif
}
else
{
/* Extract a leaf from the trunk */
int closest;
Pgno iPage;
unsigned char *aData = pTrunk->aData;
rc = sqlite3PagerWrite(pTrunk->pDbPage);
if(rc)
{
goto end_allocate_page;
}
if(nearby > 0)
{
int i, dist;
closest = 0;
dist = get4byte(&aData[8]) - nearby;
if(dist < 0)
dist = -dist;
for (i = 1; i < k; i++)
{
int d2 = get4byte(&aData[8 + i * 4]) - nearby;
if(d2 < 0)
d2 = -d2;
if(d2 < dist)
{
closest = i;
dist = d2;
}
}
}
else
{
closest = 0;
}
iPage = get4byte(&aData[8 + closest * 4]);
if(!searchList || iPage == nearby)
{
*pPgno = iPage;
if(*pPgno > sqlite3PagerPagecount(pBt->pPager))
{
/* Free page off the end of the file */
rc = SQLITE_CORRUPT_BKPT;
goto end_allocate_page;
}
TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
": %d more free pages\n",
*pPgno, closest + 1, k, pTrunk->pgno, n - 1));
if(closest < k - 1)
{
memcpy(&aData[8 + closest * 4], &aData[4 + k * 4],
4);
}
put4byte(&aData[4], k - 1);
rc = sqlite3BtreeGetPage(pBt, *pPgno, ppPage, 1);
if(rc == SQLITE_OK)
{
sqlite3PagerDontRollback((*ppPage)->pDbPage);
rc = sqlite3PagerWrite((*ppPage)->pDbPage);
if(rc != SQLITE_OK)
{
releasePage(*ppPage);
}
}
searchList = 0;
}
}
releasePage(pPrevTrunk);
pPrevTrunk = 0;
}
while (searchList);
}
else
{
/* There are no pages on the freelist, so create a new page at the
** end of the file */
*pPgno = sqlite3PagerPagecount(pBt->pPager) + 1;
#ifndef SQLITE_OMIT_AUTOVACUUM
if(pBt->nTrunc)
{
/* An incr-vacuum has already run within this transaction. So the
** page to allocate is not from the physical end of the file, but
** at pBt->nTrunc.
*/
*pPgno = pBt->nTrunc + 1;
if(*pPgno == PENDING_BYTE_PAGE(pBt))
{
(*pPgno)++;
}
}
if(pBt->autoVacuum && PTRMAP_ISPAGE(pBt, *pPgno))
{
/* If *pPgno refers to a pointer-map page, allocate two new pages
** at the end of the file instead of one. The first allocated page
** becomes a new pointer-map page, the second is used by the caller.
*/
TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", *pPgno));
assert(*pPgno != PENDING_BYTE_PAGE(pBt));
(*pPgno)++;
if(*pPgno == PENDING_BYTE_PAGE(pBt))
{
(*pPgno)++;
}
}
if(pBt->nTrunc)
{
pBt->nTrunc = *pPgno;
}
#endif
assert(*pPgno != PENDING_BYTE_PAGE(pBt));
rc = sqlite3BtreeGetPage(pBt, *pPgno, ppPage, 0);
if(rc)
return rc;
rc = sqlite3PagerWrite((*ppPage)->pDbPage);
if(rc != SQLITE_OK)
{
releasePage(*ppPage);
}
TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
}
assert(*pPgno != PENDING_BYTE_PAGE(pBt));
end_allocate_page:
releasePage(pTrunk);
releasePage(pPrevTrunk);
return rc;
}
/*
** Add a page of the database file to the freelist.
**
** sqlite3PagerUnref() is NOT called for pPage.
*/
static int
freePage(MemPage * pPage)
{
BtShared *pBt = pPage->pBt;
MemPage *pPage1 = pBt->pPage1;
int rc, n, k;
/* Prepare the page for freeing */
assert(sqlite3_mutex_held(pPage->pBt->mutex));
assert(pPage->pgno > 1);
pPage->isInit = 0;
releasePage(pPage->pParent);
pPage->pParent = 0;
/* Increment the free page count on pPage1 */
rc = sqlite3PagerWrite(pPage1->pDbPage);
if(rc)
return rc;
n = get4byte(&pPage1->aData[36]);
put4byte(&pPage1->aData[36], n + 1);
#ifdef SQLITE_SECURE_DELETE
/* If the SQLITE_SECURE_DELETE compile-time option is enabled, then
** always fully overwrite deleted information with zeros.
*/
rc = sqlite3PagerWrite(pPage->pDbPage);
if(rc)
return rc;
memset(pPage->aData, 0, pPage->pBt->pageSize);
#endif
#ifndef SQLITE_OMIT_AUTOVACUUM
/* If the database supports auto-vacuum, write an entry in the pointer-map
** to indicate that the page is free.
*/
if(pBt->autoVacuum)
{
rc = ptrmapPut(pBt, pPage->pgno, PTRMAP_FREEPAGE, 0);
if(rc)
return rc;
}
#endif
if(n == 0)
{
/* This is the first free page */
rc = sqlite3PagerWrite(pPage->pDbPage);
if(rc)
return rc;
memset(pPage->aData, 0, 8);
put4byte(&pPage1->aData[32], pPage->pgno);
TRACE(("FREE-PAGE: %d first\n", pPage->pgno));
}
else
{
/* Other free pages already exist. Retrive the first trunk page
** of the freelist and find out how many leaves it has. */
MemPage *pTrunk;
rc = sqlite3BtreeGetPage(pBt, get4byte(&pPage1->aData[32]), &pTrunk, 0);
if(rc)
return rc;
k = get4byte(&pTrunk->aData[4]);
if(k >= pBt->usableSize / 4 - 8)
{
/* The trunk is full. Turn the page being freed into a new
** trunk page with no leaves. */
rc = sqlite3PagerWrite(pPage->pDbPage);
if(rc == SQLITE_OK)
{
put4byte(pPage->aData, pTrunk->pgno);
put4byte(&pPage->aData[4], 0);
put4byte(&pPage1->aData[32], pPage->pgno);
TRACE(("FREE-PAGE: %d new trunk page replacing %d\n",
pPage->pgno, pTrunk->pgno));
}
}
else if(k < 0)
{
rc = SQLITE_CORRUPT;
}
else
{
/* Add the newly freed page as a leaf on the current trunk */
rc = sqlite3PagerWrite(pTrunk->pDbPage);
if(rc == SQLITE_OK)
{
put4byte(&pTrunk->aData[4], k + 1);
put4byte(&pTrunk->aData[8 + k * 4], pPage->pgno);
#ifndef SQLITE_SECURE_DELETE
sqlite3PagerDontWrite(pPage->pDbPage);
#endif
}
TRACE(("FREE-PAGE: %d leaf on trunk page %d\n", pPage->pgno, pTrunk->pgno));
}
releasePage(pTrunk);
}
return rc;
}
/*
** Free any overflow pages associated with the given Cell.
*/
static int
clearCell(MemPage * pPage, unsigned char *pCell)
{
BtShared *pBt = pPage->pBt;
CellInfo info;
Pgno ovflPgno;
int rc;
int nOvfl;
int ovflPageSize;
assert(sqlite3_mutex_held(pPage->pBt->mutex));
sqlite3BtreeParseCellPtr(pPage, pCell, &info);
if(info.iOverflow == 0)
{
return SQLITE_OK; /* No overflow pages. Return without doing anything */
}
ovflPgno = get4byte(&pCell[info.iOverflow]);
ovflPageSize = pBt->usableSize - 4;
nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1) / ovflPageSize;
assert(ovflPgno == 0 || nOvfl > 0);
while (nOvfl--)
{
MemPage *pOvfl;
if(ovflPgno == 0 || ovflPgno > sqlite3PagerPagecount(pBt->pPager))
{
return SQLITE_CORRUPT_BKPT;
}
rc = getOverflowPage(pBt, ovflPgno, &pOvfl, (nOvfl == 0) ? 0 : &ovflPgno);
if(rc)
return rc;
rc = freePage(pOvfl);
sqlite3PagerUnref(pOvfl->pDbPage);
if(rc)
return rc;
}
return SQLITE_OK;
}
/*
** Create the byte sequence used to represent a cell on page pPage
** and write that byte sequence into pCell[]. Overflow pages are
** allocated and filled in as necessary. The calling procedure
** is responsible for making sure sufficient space has been allocated
** for pCell[].
**
** Note that pCell does not necessary need to point to the pPage->aData
** area. pCell might point to some temporary storage. The cell will
** be constructed in this temporary area then copied into pPage->aData
** later.
*/
static int
fillInCell(MemPage * pPage, /* The page that contains the cell */
unsigned char *pCell, /* Complete text of the cell */
const void *pKey, i64 nKey, /* The key */
const void *pData, int nData, /* The data */
int nZero, /* Extra zero bytes to append to pData */
int *pnSize /* Write cell size here */
)
{
int nPayload;
const u8 *pSrc;
int nSrc, n, rc;
int spaceLeft;
MemPage *pOvfl = 0;
MemPage *pToRelease = 0;
unsigned char *pPrior;
unsigned char *pPayload;
BtShared *pBt = pPage->pBt;
Pgno pgnoOvfl = 0;
int nHeader;
CellInfo info;
assert(sqlite3_mutex_held(pPage->pBt->mutex));
/* Fill in the header. */
nHeader = 0;
if(!pPage->leaf)
{
nHeader += 4;
}
if(pPage->hasData)
{
nHeader += putVarint(&pCell[nHeader], nData + nZero);
}
else
{
nData = nZero = 0;
}
nHeader += putVarint(&pCell[nHeader], *(u64 *) & nKey);
sqlite3BtreeParseCellPtr(pPage, pCell, &info);
assert(info.nHeader == nHeader);
assert(info.nKey == nKey);
assert(info.nData == nData + nZero);
/* Fill in the payload */
nPayload = nData + nZero;
if(pPage->intKey)
{
pSrc = pData;
nSrc = nData;
nData = 0;
}
else
{
nPayload += nKey;
pSrc = pKey;
nSrc = nKey;
}
*pnSize = info.nSize;
spaceLeft = info.nLocal;
pPayload = &pCell[nHeader];
pPrior = &pCell[info.iOverflow];
while (nPayload > 0)
{
if(spaceLeft == 0)
{
int isExact = 0;
#ifndef SQLITE_OMIT_AUTOVACUUM
Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
if(pBt->autoVacuum)
{
do
{
pgnoOvfl++;
}
while (PTRMAP_ISPAGE(pBt, pgnoOvfl)
|| pgnoOvfl == PENDING_BYTE_PAGE(pBt));
if(pgnoOvfl > 1)
{
/* isExact = 1; */
}
}
#endif
rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, isExact);
#ifndef SQLITE_OMIT_AUTOVACUUM
/* If the database supports auto-vacuum, and the second or subsequent
** overflow page is being allocated, add an entry to the pointer-map
** for that page now.
**
** If this is the first overflow page, then write a partial entry
** to the pointer-map. If we write nothing to this pointer-map slot,
** then the optimistic overflow chain processing in clearCell()
** may misinterpret the uninitialised values and delete the
** wrong pages from the database.
*/
if(pBt->autoVacuum && rc == SQLITE_OK)
{
u8 eType = (pgnoPtrmap ? PTRMAP_OVERFLOW2 : PTRMAP_OVERFLOW1);
rc = ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap);
if(rc)
{
releasePage(pOvfl);
}
}
#endif
if(rc)
{
releasePage(pToRelease);
return rc;
}
put4byte(pPrior, pgnoOvfl);
releasePage(pToRelease);
pToRelease = pOvfl;
pPrior = pOvfl->aData;
put4byte(pPrior, 0);
pPayload = &pOvfl->aData[4];
spaceLeft = pBt->usableSize - 4;
}
n = nPayload;
if(n > spaceLeft)
n = spaceLeft;
if(nSrc > 0)
{
if(n > nSrc)
n = nSrc;
assert(pSrc);
memcpy(pPayload, pSrc, n);
}
else
{
memset(pPayload, 0, n);
}
nPayload -= n;
pPayload += n;
pSrc += n;
nSrc -= n;
spaceLeft -= n;
if(nSrc == 0)
{
nSrc = nData;
pSrc = pData;
}
}
releasePage(pToRelease);
return SQLITE_OK;
}
/*
** Change the MemPage.pParent pointer on the page whose number is
** given in the second argument so that MemPage.pParent holds the
** pointer in the third argument.
*/
static int
reparentPage(BtShared * pBt, Pgno pgno, MemPage * pNewParent, int idx)
{
MemPage *pThis;
DbPage *pDbPage;
assert(sqlite3_mutex_held(pBt->mutex));
assert(pNewParent != 0);
if(pgno == 0)
return SQLITE_OK;
assert(pBt->pPager != 0);
pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
if(pDbPage)
{
pThis = (MemPage *) sqlite3PagerGetExtra(pDbPage);
if(pThis->isInit)
{
assert(pThis->aData == sqlite3PagerGetData(pDbPage));
if(pThis->pParent != pNewParent)
{
if(pThis->pParent)
sqlite3PagerUnref(pThis->pParent->pDbPage);
pThis->pParent = pNewParent;
sqlite3PagerRef(pNewParent->pDbPage);
}
pThis->idxParent = idx;
}
sqlite3PagerUnref(pDbPage);
}
#ifndef SQLITE_OMIT_AUTOVACUUM
if(pBt->autoVacuum)
{
return ptrmapPut(pBt, pgno, PTRMAP_BTREE, pNewParent->pgno);
}
#endif
return SQLITE_OK;
}
/*
** Change the pParent pointer of all children of pPage to point back
** to pPage.
**
** In other words, for every child of pPage, invoke reparentPage()
** to make sure that each child knows that pPage is its parent.
**
** This routine gets called after you memcpy() one page into
** another.
*/
static int
reparentChildPages(MemPage * pPage)
{
int i;
BtShared *pBt = pPage->pBt;
int rc = SQLITE_OK;
assert(sqlite3_mutex_held(pPage->pBt->mutex));
if(pPage->leaf)
return SQLITE_OK;
for (i = 0; i < pPage->nCell; i++)
{
u8 *pCell = findCell(pPage, i);
rc = reparentPage(pBt, get4byte(pCell), pPage, i);
if(rc != SQLITE_OK)
return rc;
}
rc = reparentPage(pBt, get4byte(&pPage->aData[pPage->hdrOffset + 8]), pPage, i);
pPage->idxShift = 0;
return rc;
}
/*
** Remove the i-th cell from pPage. This routine effects pPage only.
** The cell content is not freed or deallocated. It is assumed that
** the cell content has been copied someplace else. This routine just
** removes the reference to the cell from pPage.
**
** "sz" must be the number of bytes in the cell.
*/
static void
dropCell(MemPage * pPage, int idx, int sz)
{
int i; /* Loop counter */
int pc; /* Offset to cell content of cell being deleted */
u8 *data; /* pPage->aData */
u8 *ptr; /* Used to move bytes around within data[] */
assert(idx >= 0 && idx < pPage->nCell);
assert(sz == cellSize(pPage, idx));
assert(sqlite3PagerIswriteable(pPage->pDbPage));
assert(sqlite3_mutex_held(pPage->pBt->mutex));
data = pPage->aData;
ptr = &data[pPage->cellOffset + 2 * idx];
pc = get2byte(ptr);
assert(pc > 10 && pc + sz <= pPage->pBt->usableSize);
freeSpace(pPage, pc, sz);
for (i = idx + 1; i < pPage->nCell; i++, ptr += 2)
{
ptr[0] = ptr[2];
ptr[1] = ptr[3];
}
pPage->nCell--;
put2byte(&data[pPage->hdrOffset + 3], pPage->nCell);
pPage->nFree += 2;
pPage->idxShift = 1;
}
/*
** Insert a new cell on pPage at cell index "i". pCell points to the
** content of the cell.
**
** If the cell content will fit on the page, then put it there. If it
** will not fit, then make a copy of the cell content into pTemp if
** pTemp is not null. Regardless of pTemp, allocate a new entry
** in pPage->aOvfl[] and make it point to the cell content (either
** in pTemp or the original pCell) and also record its index.
** Allocating a new entry in pPage->aCell[] implies that
** pPage->nOverflow is incremented.
**
** If nSkip is non-zero, then do not copy the first nSkip bytes of the
** cell. The caller will overwrite them after this function returns. If
** nSkip is non-zero, then pCell may not point to an invalid memory location
** (but pCell+nSkip is always valid).
*/
static int
insertCell(MemPage * pPage, /* Page into which we are copying */
int i, /* New cell becomes the i-th cell of the page */
u8 * pCell, /* Content of the new cell */
int sz, /* Bytes of content in pCell */
u8 * pTemp, /* Temp storage space for pCell, if needed */
u8 nSkip /* Do not write the first nSkip bytes of the cell */
)
{
int idx; /* Where to write new cell content in data[] */
int j; /* Loop counter */
int top; /* First byte of content for any cell in data[] */
int end; /* First byte past the last cell pointer in data[] */
int ins; /* Index in data[] where new cell pointer is inserted */
int hdr; /* Offset into data[] of the page header */
int cellOffset; /* Address of first cell pointer in data[] */
u8 *data; /* The content of the whole page */
u8 *ptr; /* Used for moving information around in data[] */
assert(i >= 0 && i <= pPage->nCell + pPage->nOverflow);
assert(sz == cellSizePtr(pPage, pCell));
assert(sqlite3_mutex_held(pPage->pBt->mutex));
if(pPage->nOverflow || sz + 2 > pPage->nFree)
{
if(pTemp)
{
memcpy(pTemp + nSkip, pCell + nSkip, sz - nSkip);
pCell = pTemp;
}
j = pPage->nOverflow++;
assert(j < sizeof(pPage->aOvfl) / sizeof(pPage->aOvfl[0]));
pPage->aOvfl[j].pCell = pCell;
pPage->aOvfl[j].idx = i;
pPage->nFree = 0;
}
else
{
int rc = sqlite3PagerWrite(pPage->pDbPage);
if(rc != SQLITE_OK)
{
return rc;
}
assert(sqlite3PagerIswriteable(pPage->pDbPage));
data = pPage->aData;
hdr = pPage->hdrOffset;
top = get2byte(&data[hdr + 5]);
cellOffset = pPage->cellOffset;
end = cellOffset + 2 * pPage->nCell + 2;
ins = cellOffset + 2 * i;
if(end > top - sz)
{
rc = defragmentPage(pPage);
if(rc != SQLITE_OK)
return rc;
top = get2byte(&data[hdr + 5]);
assert(end + sz <= top);
}
idx = allocateSpace(pPage, sz);
assert(idx > 0);
assert(end <= get2byte(&data[hdr + 5]));
pPage->nCell++;
pPage->nFree -= 2;
memcpy(&data[idx + nSkip], pCell + nSkip, sz - nSkip);
for (j = end - 2, ptr = &data[j]; j > ins; j -= 2, ptr -= 2)
{
ptr[0] = ptr[-2];
ptr[1] = ptr[-1];
}
put2byte(&data[ins], idx);
put2byte(&data[hdr + 3], pPage->nCell);
pPage->idxShift = 1;
#ifndef SQLITE_OMIT_AUTOVACUUM
if(pPage->pBt->autoVacuum)
{
/* The cell may contain a pointer to an overflow page. If so, write
** the entry for the overflow page into the pointer map.
*/
CellInfo info;
sqlite3BtreeParseCellPtr(pPage, pCell, &info);
assert((info.nData + (pPage->intKey ? 0 : info.nKey)) == info.nPayload);
if((info.nData + (pPage->intKey ? 0 : info.nKey)) > info.nLocal)
{
Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
rc = ptrmapPut(pPage->pBt, pgnoOvfl, PTRMAP_OVERFLOW1, pPage->pgno);
if(rc != SQLITE_OK)
return rc;
}
}
#endif
}
return SQLITE_OK;
}
/*
** Add a list of cells to a page. The page should be initially empty.
** The cells are guaranteed to fit on the page.
*/
static void
assemblePage(MemPage * pPage, /* The page to be assemblied */
int nCell, /* The number of cells to add to this page */
u8 ** apCell, /* Pointers to cell bodies */
u16 * aSize /* Sizes of the cells */
)
{
int i; /* Loop counter */
int totalSize; /* Total size of all cells */
int hdr; /* Index of page header */
int cellptr; /* Address of next cell pointer */
int cellbody; /* Address of next cell body */
u8 *data; /* Data for the page */
assert(pPage->nOverflow == 0);
assert(sqlite3_mutex_held(pPage->pBt->mutex));
totalSize = 0;
for (i = 0; i < nCell; i++)
{
totalSize += aSize[i];
}
assert(totalSize + 2 * nCell <= pPage->nFree);
assert(pPage->nCell == 0);
cellptr = pPage->cellOffset;
data = pPage->aData;
hdr = pPage->hdrOffset;
put2byte(&data[hdr + 3], nCell);
if(nCell)
{
cellbody = allocateSpace(pPage, totalSize);
assert(cellbody > 0);
assert(pPage->nFree >= 2 * nCell);
pPage->nFree -= 2 * nCell;
for (i = 0; i < nCell; i++)
{
put2byte(&data[cellptr], cellbody);
memcpy(&data[cellbody], apCell[i], aSize[i]);
cellptr += 2;
cellbody += aSize[i];
}
assert(cellbody == pPage->pBt->usableSize);
}
pPage->nCell = nCell;
}
/*
** The following parameters determine how many adjacent pages get involved
** in a balancing operation. NN is the number of neighbors on either side
** of the page that participate in the balancing operation. NB is the
** total number of pages that participate, including the target page and
** NN neighbors on either side.
**
** The minimum value of NN is 1 (of course). Increasing NN above 1
** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
** in exchange for a larger degradation in INSERT and UPDATE performance.
** The value of NN appears to give the best results overall.
*/
#define NN 1 /* Number of neighbors on either side of pPage */
#define NB (NN*2+1) /* Total pages involved in the balance */
/* Forward reference */
static int balance(MemPage *, int);
#ifndef SQLITE_OMIT_QUICKBALANCE
/*
** This version of balance() handles the common special case where
** a new entry is being inserted on the extreme right-end of the
** tree, in other words, when the new entry will become the largest
** entry in the tree.
**
** Instead of trying balance the 3 right-most leaf pages, just add
** a new page to the right-hand side and put the one new entry in
** that page. This leaves the right side of the tree somewhat
** unbalanced. But odds are that we will be inserting new entries
** at the end soon afterwards so the nearly empty page will quickly
** fill up. On average.
**
** pPage is the leaf page which is the right-most page in the tree.
** pParent is its parent. pPage must have a single overflow entry
** which is also the right-most entry on the page.
*/
static int
balance_quick(MemPage * pPage, MemPage * pParent)
{
int rc;
MemPage *pNew;
Pgno pgnoNew;
u8 *pCell;
u16 szCell;
CellInfo info;
BtShared *pBt = pPage->pBt;
int parentIdx = pParent->nCell; /* pParent new divider cell index */
int parentSize; /* Size of new divider cell */
u8 parentCell[64]; /* Space for the new divider cell */
assert(sqlite3_mutex_held(pPage->pBt->mutex));
/* Allocate a new page. Insert the overflow cell from pPage
** into it. Then remove the overflow cell from pPage.
*/
rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
if(rc != SQLITE_OK)
{
return rc;
}
pCell = pPage->aOvfl[0].pCell;
szCell = cellSizePtr(pPage, pCell);
zeroPage(pNew, pPage->aData[0]);
assemblePage(pNew, 1, &pCell, &szCell);
pPage->nOverflow = 0;
/* Set the parent of the newly allocated page to pParent. */
pNew->pParent = pParent;
sqlite3PagerRef(pParent->pDbPage);
/* pPage is currently the right-child of pParent. Change this
** so that the right-child is the new page allocated above and
** pPage is the next-to-right child.
*/
assert(pPage->nCell > 0);
pCell = findCell(pPage, pPage->nCell - 1);
sqlite3BtreeParseCellPtr(pPage, pCell, &info);
rc = fillInCell(pParent, parentCell, 0, info.nKey, 0, 0, 0, &parentSize);
if(rc != SQLITE_OK)
{
return rc;
}
assert(parentSize < 64);
rc = insertCell(pParent, parentIdx, parentCell, parentSize, 0, 4);
if(rc != SQLITE_OK)
{
return rc;
}
put4byte(findOverflowCell(pParent, parentIdx), pPage->pgno);
put4byte(&pParent->aData[pParent->hdrOffset + 8], pgnoNew);
#ifndef SQLITE_OMIT_AUTOVACUUM
/* If this is an auto-vacuum database, update the pointer map
** with entries for the new page, and any pointer from the
** cell on the page to an overflow page.
*/
if(pBt->autoVacuum)
{
rc = ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno);
if(rc == SQLITE_OK)
{
rc = ptrmapPutOvfl(pNew, 0);
}
if(rc != SQLITE_OK)
{
releasePage(pNew);
return rc;
}
}
#endif
/* Release the reference to the new page and balance the parent page,
** in case the divider cell inserted caused it to become overfull.
*/
releasePage(pNew);
return balance(pParent, 0);
}
#endif /* SQLITE_OMIT_QUICKBALANCE */
/*
** This routine redistributes Cells on pPage and up to NN*2 siblings
** of pPage so that all pages have about the same amount of free space.
** Usually NN siblings on either side of pPage is used in the balancing,
** though more siblings might come from one side if pPage is the first
** or last child of its parent. If pPage has fewer than 2*NN siblings
** (something which can only happen if pPage is the root page or a
** child of root) then all available siblings participate in the balancing.
**
** The number of siblings of pPage might be increased or decreased by one or
** two in an effort to keep pages nearly full but not over full. The root page
** is special and is allowed to be nearly empty. If pPage is
** the root page, then the depth of the tree might be increased
** or decreased by one, as necessary, to keep the root page from being
** overfull or completely empty.
**
** Note that when this routine is called, some of the Cells on pPage
** might not actually be stored in pPage->aData[]. This can happen
** if the page is overfull. Part of the job of this routine is to
** make sure all Cells for pPage once again fit in pPage->aData[].
**
** In the course of balancing the siblings of pPage, the parent of pPage
** might become overfull or underfull. If that happens, then this routine
** is called recursively on the parent.
**
** If this routine fails for any reason, it might leave the database
** in a corrupted state. So if this routine fails, the database should
** be rolled back.
*/
static int
balance_nonroot(MemPage * pPage)
{
MemPage *pParent; /* The parent of pPage */
BtShared *pBt; /* The whole database */
int nCell = 0; /* Number of cells in apCell[] */
int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
int nOld; /* Number of pages in apOld[] */
int nNew; /* Number of pages in apNew[] */
int nDiv; /* Number of cells in apDiv[] */
int i, j, k; /* Loop counters */
int idx; /* Index of pPage in pParent->aCell[] */
int nxDiv; /* Next divider slot in pParent->aCell[] */
int rc; /* The return code */
int leafCorrection; /* 4 if pPage is a leaf. 0 if not */
int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
int usableSpace; /* Bytes in pPage beyond the header */
int pageFlags; /* Value of pPage->aData[0] */
int subtotal; /* Subtotal of bytes in cells on one page */
int iSpace = 0; /* First unused byte of aSpace[] */
MemPage *apOld[NB]; /* pPage and up to two siblings */
Pgno pgnoOld[NB]; /* Page numbers for each page in apOld[] */
MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
MemPage *apNew[NB + 2]; /* pPage and up to NB siblings after balancing */
Pgno pgnoNew[NB + 2]; /* Page numbers for each page in apNew[] */
u8 *apDiv[NB]; /* Divider cells in pParent */
int cntNew[NB + 2]; /* Index in aCell[] of cell after i-th page */
int szNew[NB + 2]; /* Combined size of cells place on i-th page */
u8 **apCell = 0; /* All cells begin balanced */
u16 *szCell; /* Local size of all cells in apCell[] */
u8 *aCopy[NB]; /* Space for holding data of apCopy[] */
u8 *aSpace; /* Space to hold copies of dividers cells */
#ifndef SQLITE_OMIT_AUTOVACUUM
u8 *aFrom = 0;
#endif
assert(sqlite3_mutex_held(pPage->pBt->mutex));
/*
** Find the parent page.
*/
assert(pPage->isInit);
assert(sqlite3PagerIswriteable(pPage->pDbPage) || pPage->nOverflow == 1);
pBt = pPage->pBt;
pParent = pPage->pParent;
assert(pParent);
if(SQLITE_OK != (rc = sqlite3PagerWrite(pParent->pDbPage)))
{
return rc;
}
TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
#ifndef SQLITE_OMIT_QUICKBALANCE
/*
** A special case: If a new entry has just been inserted into a
** table (that is, a btree with integer keys and all data at the leaves)
** and the new entry is the right-most entry in the tree (it has the
** largest key) then use the special balance_quick() routine for
** balancing. balance_quick() is much faster and results in a tighter
** packing of data in the common case.
*/
if(pPage->leaf &&
pPage->intKey &&
pPage->leafData &&
pPage->nOverflow == 1 &&
pPage->aOvfl[0].idx == pPage->nCell &&
pPage->pParent->pgno != 1 &&
get4byte(&pParent->aData[pParent->hdrOffset + 8]) == pPage->pgno)
{
/*
** TODO: Check the siblings to the left of pPage. It may be that
** they are not full and no new page is required.
*/
return balance_quick(pPage, pParent);
}
#endif
if(SQLITE_OK != (rc = sqlite3PagerWrite(pPage->pDbPage)))
{
return rc;
}
/*
** Find the cell in the parent page whose left child points back
** to pPage. The "idx" variable is the index of that cell. If pPage
** is the rightmost child of pParent then set idx to pParent->nCell
*/
if(pParent->idxShift)
{
Pgno pgno;
pgno = pPage->pgno;
assert(pgno == sqlite3PagerPagenumber(pPage->pDbPage));
for (idx = 0; idx < pParent->nCell; idx++)
{
if(get4byte(findCell(pParent, idx)) == pgno)
{
break;
}
}
assert(idx < pParent->nCell
|| get4byte(&pParent->aData[pParent->hdrOffset + 8]) == pgno);
}
else
{
idx = pPage->idxParent;
}
/*
** Initialize variables so that it will be safe to jump
** directly to balance_cleanup at any moment.
*/
nOld = nNew = 0;
sqlite3PagerRef(pParent->pDbPage);
/*
** Find sibling pages to pPage and the cells in pParent that divide
** the siblings. An attempt is made to find NN siblings on either
** side of pPage. More siblings are taken from one side, however, if
** pPage there are fewer than NN siblings on the other side. If pParent
** has NB or fewer children then all children of pParent are taken.
*/
nxDiv = idx - NN;
if(nxDiv + NB > pParent->nCell)
{
nxDiv = pParent->nCell - NB + 1;
}
if(nxDiv < 0)
{
nxDiv = 0;
}
nDiv = 0;
for (i = 0, k = nxDiv; i < NB; i++, k++)
{
if(k < pParent->nCell)
{
apDiv[i] = findCell(pParent, k);
nDiv++;
assert(!pParent->leaf);
pgnoOld[i] = get4byte(apDiv[i]);
}
else if(k == pParent->nCell)
{
pgnoOld[i] = get4byte(&pParent->aData[pParent->hdrOffset + 8]);
}
else
{
break;
}
rc = getAndInitPage(pBt, pgnoOld[i], &apOld[i], pParent);
if(rc)
goto balance_cleanup;
apOld[i]->idxParent = k;
apCopy[i] = 0;
assert(i == nOld);
nOld++;
nMaxCells += 1 + apOld[i]->nCell + apOld[i]->nOverflow;
}
/* Make nMaxCells a multiple of 4 in order to preserve 8-byte
** alignment */
nMaxCells = (nMaxCells + 3) & ~3;
/*
** Allocate space for memory structures
*/
apCell = sqlite3_malloc(nMaxCells * sizeof(u8 *) /* apCell */
+ nMaxCells * sizeof(u16) /* szCell */
+ (ROUND8(sizeof(MemPage)) + pBt->pageSize) * NB /* aCopy */
+ pBt->pageSize * 5 /* aSpace */
+ (ISAUTOVACUUM ? nMaxCells : 0) /* aFrom */
);
if(apCell == 0)
{
rc = SQLITE_NOMEM;
goto balance_cleanup;
}
szCell = (u16 *) & apCell[nMaxCells];
aCopy[0] = (u8 *) & szCell[nMaxCells];
assert(((aCopy[0] - (u8 *) apCell) & 7) == 0); /* 8-byte alignment required */
for (i = 1; i < NB; i++)
{
aCopy[i] = &aCopy[i - 1][pBt->pageSize + ROUND8(sizeof(MemPage))];
assert(((aCopy[i] - (u8 *) apCell) & 7) == 0); /* 8-byte alignment required */
}
aSpace = &aCopy[NB - 1][pBt->pageSize + ROUND8(sizeof(MemPage))];
assert(((aSpace - (u8 *) apCell) & 7) == 0); /* 8-byte alignment required */
#ifndef SQLITE_OMIT_AUTOVACUUM
if(pBt->autoVacuum)
{
aFrom = &aSpace[5 * pBt->pageSize];
}
#endif
/*
** Make copies of the content of pPage and its siblings into aOld[].
** The rest of this function will use data from the copies rather
** that the original pages since the original pages will be in the
** process of being overwritten.
*/
for (i = 0; i < nOld; i++)
{
MemPage *p = apCopy[i] = (MemPage *) aCopy[i];
memcpy(p, apOld[i], sizeof(MemPage));
p->aData = (void *) &p[1];
memcpy(p->aData, apOld[i]->aData, pBt->pageSize);
}
/*
** Load pointers to all cells on sibling pages and the divider cells
** into the local apCell[] array. Make copies of the divider cells
** into space obtained form aSpace[] and remove the the divider Cells
** from pParent.
**
** If the siblings are on leaf pages, then the child pointers of the
** divider cells are stripped from the cells before they are copied
** into aSpace[]. In this way, all cells in apCell[] are without
** child pointers. If siblings are not leaves, then all cell in
** apCell[] include child pointers. Either way, all cells in apCell[]
** are alike.
**
** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
** leafData: 1 if pPage holds key+data and pParent holds only keys.
*/
nCell = 0;
leafCorrection = pPage->leaf * 4;
leafData = pPage->leafData && pPage->leaf;
for (i = 0; i < nOld; i++)
{
MemPage *pOld = apCopy[i];
int limit = pOld->nCell + pOld->nOverflow;
for (j = 0; j < limit; j++)
{
assert(nCell < nMaxCells);
apCell[nCell] = findOverflowCell(pOld, j);
szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
#ifndef SQLITE_OMIT_AUTOVACUUM
if(pBt->autoVacuum)
{
int a;
aFrom[nCell] = i;
for (a = 0; a < pOld->nOverflow; a++)
{
if(pOld->aOvfl[a].pCell == apCell[nCell])
{
aFrom[nCell] = 0xFF;
break;
}
}
}
#endif
nCell++;
}
if(i < nOld - 1)
{
u16 sz = cellSizePtr(pParent, apDiv[i]);
if(leafData)
{
/* With the LEAFDATA flag, pParent cells hold only INTKEYs that
** are duplicates of keys on the child pages. We need to remove
** the divider cells from pParent, but the dividers cells are not
** added to apCell[] because they are duplicates of child cells.
*/
dropCell(pParent, nxDiv, sz);
}
else
{
u8 *pTemp;
assert(nCell < nMaxCells);
szCell[nCell] = sz;
pTemp = &aSpace[iSpace];
iSpace += sz;
assert(iSpace <= pBt->pageSize * 5);
memcpy(pTemp, apDiv[i], sz);
apCell[nCell] = pTemp + leafCorrection;
#ifndef SQLITE_OMIT_AUTOVACUUM
if(pBt->autoVacuum)
{
aFrom[nCell] = 0xFF;
}
#endif
dropCell(pParent, nxDiv, sz);
szCell[nCell] -= leafCorrection;
assert(get4byte(pTemp) == pgnoOld[i]);
if(!pOld->leaf)
{
assert(leafCorrection == 0);
/* The right pointer of the child page pOld becomes the left
** pointer of the divider cell */
memcpy(apCell[nCell], &pOld->aData[pOld->hdrOffset + 8], 4);
}
else
{
assert(leafCorrection == 4);
if(szCell[nCell] < 4)
{
/* Do not allow any cells smaller than 4 bytes. */
szCell[nCell] = 4;
}
}
nCell++;
}
}
}
/*
** Figure out the number of pages needed to hold all nCell cells.
** Store this number in "k". Also compute szNew[] which is the total
** size of all cells on the i-th page and cntNew[] which is the index
** in apCell[] of the cell that divides page i from page i+1.
** cntNew[k] should equal nCell.
**
** Values computed by this block:
**
** k: The total number of sibling pages
** szNew[i]: Spaced used on the i-th sibling page.
** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
** the right of the i-th sibling page.
** usableSpace: Number of bytes of space available on each sibling.
**
*/
usableSpace = pBt->usableSize - 12 + leafCorrection;
for (subtotal = k = i = 0; i < nCell; i++)
{
assert(i < nMaxCells);
subtotal += szCell[i] + 2;
if(subtotal > usableSpace)
{
szNew[k] = subtotal - szCell[i];
cntNew[k] = i;
if(leafData)
{
i--;
}
subtotal = 0;
k++;
}
}
szNew[k] = subtotal;
cntNew[k] = nCell;
k++;
/*
** The packing computed by the previous block is biased toward the siblings
** on the left side. The left siblings are always nearly full, while the
** right-most sibling might be nearly empty. This block of code attempts
** to adjust the packing of siblings to get a better balance.
**
** This adjustment is more than an optimization. The packing above might
** be so out of balance as to be illegal. For example, the right-most
** sibling might be completely empty. This adjustment is not optional.
*/
for (i = k - 1; i > 0; i--)
{
int szRight = szNew[i]; /* Size of sibling on the right */
int szLeft = szNew[i - 1]; /* Size of sibling on the left */
int r; /* Index of right-most cell in left sibling */
int d; /* Index of first cell to the left of right sibling */
r = cntNew[i - 1] - 1;
d = r + 1 - leafData;
assert(d < nMaxCells);
assert(r < nMaxCells);
while (szRight == 0 || szRight + szCell[d] + 2 <= szLeft - (szCell[r] + 2))
{
szRight += szCell[d] + 2;
szLeft -= szCell[r] + 2;
cntNew[i - 1]--;
r = cntNew[i - 1] - 1;
d = r + 1 - leafData;
}
szNew[i] = szRight;
szNew[i - 1] = szLeft;
}
/* Either we found one or more cells (cntnew[0])>0) or we are the
** a virtual root page. A virtual root page is when the real root
** page is page 1 and we are the only child of that page.
*/
assert(cntNew[0] > 0 || (pParent->pgno == 1 && pParent->nCell == 0));
/*
** Allocate k new pages. Reuse old pages where possible.
*/
assert(pPage->pgno > 1);
pageFlags = pPage->aData[0];
for (i = 0; i < k; i++)
{
MemPage *pNew;
if(i < nOld)
{
pNew = apNew[i] = apOld[i];
pgnoNew[i] = pgnoOld[i];
apOld[i] = 0;
rc = sqlite3PagerWrite(pNew->pDbPage);
nNew++;
if(rc)
goto balance_cleanup;
}
else
{
assert(i > 0);
rc = allocateBtreePage(pBt, &pNew, &pgnoNew[i], pgnoNew[i - 1], 0);
if(rc)
goto balance_cleanup;
apNew[i] = pNew;
nNew++;
}
zeroPage(pNew, pageFlags);
}
/* Free any old pages that were not reused as new pages.
*/
while (i < nOld)
{
rc = freePage(apOld[i]);
if(rc)
goto balance_cleanup;
releasePage(apOld[i]);
apOld[i] = 0;
i++;
}
/*
** Put the new pages in accending order. This helps to
** keep entries in the disk file in order so that a scan
** of the table is a linear scan through the file. That
** in turn helps the operating system to deliver pages
** from the disk more rapidly.
**
** An O(n^2) insertion sort algorithm is used, but since
** n is never more than NB (a small constant), that should
** not be a problem.
**
** When NB==3, this one optimization makes the database
** about 25% faster for large insertions and deletions.
*/
for (i = 0; i < k - 1; i++)
{
int minV = pgnoNew[i];
int minI = i;
for (j = i + 1; j < k; j++)
{
if(pgnoNew[j] < (unsigned) minV)
{
minI = j;
minV = pgnoNew[j];
}
}
if(minI > i)
{
int t;
MemPage *pT;
t = pgnoNew[i];
pT = apNew[i];
pgnoNew[i] = pgnoNew[minI];
apNew[i] = apNew[minI];
pgnoNew[minI] = t;
apNew[minI] = pT;
}
}
TRACE(("BALANCE: old: %d %d %d new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
pgnoOld[0],
nOld >= 2 ? pgnoOld[1] : 0,
nOld >= 3 ? pgnoOld[2] : 0,
pgnoNew[0], szNew[0],
nNew >= 2 ? pgnoNew[1] : 0, nNew >= 2 ? szNew[1] : 0,
nNew >= 3 ? pgnoNew[2] : 0, nNew >= 3 ? szNew[2] : 0,
nNew >= 4 ? pgnoNew[3] : 0, nNew >= 4 ? szNew[3] : 0,
nNew >= 5 ? pgnoNew[4] : 0, nNew >= 5 ? szNew[4] : 0));
/*
** Evenly distribute the data in apCell[] across the new pages.
** Insert divider cells into pParent as necessary.
*/
j = 0;
for (i = 0; i < nNew; i++)
{
/* Assemble the new sibling page. */
MemPage *pNew = apNew[i];
assert(j < nMaxCells);
assert(pNew->pgno == pgnoNew[i]);
assemblePage(pNew, cntNew[i] - j, &apCell[j], &szCell[j]);
assert(pNew->nCell > 0 || (nNew == 1 && cntNew[0] == 0));
assert(pNew->nOverflow == 0);
#ifndef SQLITE_OMIT_AUTOVACUUM
/* If this is an auto-vacuum database, update the pointer map entries
** that point to the siblings that were rearranged. These can be: left
** children of cells, the right-child of the page, or overflow pages
** pointed to by cells.
*/
if(pBt->autoVacuum)
{
for (k = j; k < cntNew[i]; k++)
{
assert(k < nMaxCells);
if(aFrom[k] == 0xFF || apCopy[aFrom[k]]->pgno != pNew->pgno)
{
rc = ptrmapPutOvfl(pNew, k - j);
if(rc != SQLITE_OK)
{
goto balance_cleanup;
}
}
}
}
#endif
j = cntNew[i];
/* If the sibling page assembled above was not the right-most sibling,
** insert a divider cell into the parent page.
*/
if(i < nNew - 1 && j < nCell)
{
u8 *pCell;
u8 *pTemp;
int sz;
assert(j < nMaxCells);
pCell = apCell[j];
sz = szCell[j] + leafCorrection;
if(!pNew->leaf)
{
memcpy(&pNew->aData[8], pCell, 4);
pTemp = 0;
}
else if(leafData)
{
/* If the tree is a leaf-data tree, and the siblings are leaves,
** then there is no divider cell in apCell[]. Instead, the divider
** cell consists of the integer key for the right-most cell of
** the sibling-page assembled above only.
*/
CellInfo info;
j--;
sqlite3BtreeParseCellPtr(pNew, apCell[j], &info);
pCell = &aSpace[iSpace];
fillInCell(pParent, pCell, 0, info.nKey, 0, 0, 0, &sz);
iSpace += sz;
assert(iSpace <= pBt->pageSize * 5);
pTemp = 0;
}
else
{
pCell -= 4;
pTemp = &aSpace[iSpace];
iSpace += sz;
assert(iSpace <= pBt->pageSize * 5);
/* Obscure case for non-leaf-data trees: If the cell at pCell was
** previously stored on a leaf node, and its reported size was 4
** bytes, then it may actually be smaller than this
** (see sqlite3BtreeParseCellPtr(), 4 bytes is the minimum size of
** any cell). But it is important to pass the correct size to
** insertCell(), so reparse the cell now.
**
** Note that this can never happen in an SQLite data file, as all
** cells are at least 4 bytes. It only happens in b-trees used
** to evaluate "IN (SELECT ...)" and similar clauses.
*/
if(szCell[j] == 4)
{
assert(leafCorrection == 4);
sz = cellSizePtr(pParent, pCell);
}
}
rc = insertCell(pParent, nxDiv, pCell, sz, pTemp, 4);
if(rc != SQLITE_OK)
goto balance_cleanup;
put4byte(findOverflowCell(pParent, nxDiv), pNew->pgno);
#ifndef SQLITE_OMIT_AUTOVACUUM
/* If this is an auto-vacuum database, and not a leaf-data tree,
** then update the pointer map with an entry for the overflow page
** that the cell just inserted points to (if any).
*/
if(pBt->autoVacuum && !leafData)
{
rc = ptrmapPutOvfl(pParent, nxDiv);
if(rc != SQLITE_OK)
{
goto balance_cleanup;
}
}
#endif
j++;
nxDiv++;
}
}
assert(j == nCell);
assert(nOld > 0);
assert(nNew > 0);
if((pageFlags & PTF_LEAF) == 0)
{
memcpy(&apNew[nNew - 1]->aData[8], &apCopy[nOld - 1]->aData[8], 4);
}
if(nxDiv == pParent->nCell + pParent->nOverflow)
{
/* Right-most sibling is the right-most child of pParent */
put4byte(&pParent->aData[pParent->hdrOffset + 8], pgnoNew[nNew - 1]);
}
else
{
/* Right-most sibling is the left child of the first entry in pParent
** past the right-most divider entry */
put4byte(findOverflowCell(pParent, nxDiv), pgnoNew[nNew - 1]);
}
/*
** Reparent children of all cells.
*/
for (i = 0; i < nNew; i++)
{
rc = reparentChildPages(apNew[i]);
if(rc != SQLITE_OK)
goto balance_cleanup;
}
rc = reparentChildPages(pParent);
if(rc != SQLITE_OK)
goto balance_cleanup;
/*
** Balance the parent page. Note that the current page (pPage) might
** have been added to the freelist so it might no longer be initialized.
** But the parent page will always be initialized.
*/
assert(pParent->isInit);
rc = balance(pParent, 0);
/*
** Cleanup before returning.
*/
balance_cleanup:
sqlite3_free(apCell);
for (i = 0; i < nOld; i++)
{
releasePage(apOld[i]);
}
for (i = 0; i < nNew; i++)
{
releasePage(apNew[i]);
}
releasePage(pParent);
TRACE(("BALANCE: finished with %d: old=%d new=%d cells=%d\n",
pPage->pgno, nOld, nNew, nCell));
return rc;
}
/*
** This routine is called for the root page of a btree when the root
** page contains no cells. This is an opportunity to make the tree
** shallower by one level.
*/
static int
balance_shallower(MemPage * pPage)
{
MemPage *pChild; /* The only child page of pPage */
Pgno pgnoChild; /* Page number for pChild */
int rc = SQLITE_OK; /* Return code from subprocedures */
BtShared *pBt; /* The main BTree structure */
int mxCellPerPage; /* Maximum number of cells per page */
u8 **apCell; /* All cells from pages being balanced */
u16 *szCell; /* Local size of all cells */
assert(pPage->pParent == 0);
assert(pPage->nCell == 0);
assert(sqlite3_mutex_held(pPage->pBt->mutex));
pBt = pPage->pBt;
mxCellPerPage = MX_CELL(pBt);
apCell = sqlite3_malloc(mxCellPerPage * (sizeof(u8 *) + sizeof(u16)));
if(apCell == 0)
return SQLITE_NOMEM;
szCell = (u16 *) & apCell[mxCellPerPage];
if(pPage->leaf)
{
/* The table is completely empty */
TRACE(("BALANCE: empty table %d\n", pPage->pgno));
}
else
{
/* The root page is empty but has one child. Transfer the
** information from that one child into the root page if it
** will fit. This reduces the depth of the tree by one.
**
** If the root page is page 1, it has less space available than
** its child (due to the 100 byte header that occurs at the beginning
** of the database fle), so it might not be able to hold all of the
** information currently contained in the child. If this is the
** case, then do not do the transfer. Leave page 1 empty except
** for the right-pointer to the child page. The child page becomes
** the virtual root of the tree.
*/
pgnoChild = get4byte(&pPage->aData[pPage->hdrOffset + 8]);
assert(pgnoChild > 0);
assert(pgnoChild <= sqlite3PagerPagecount(pPage->pBt->pPager));
rc = sqlite3BtreeGetPage(pPage->pBt, pgnoChild, &pChild, 0);
if(rc)
goto end_shallow_balance;
if(pPage->pgno == 1)
{
rc = sqlite3BtreeInitPage(pChild, pPage);
if(rc)
goto end_shallow_balance;
assert(pChild->nOverflow == 0);
if(pChild->nFree >= 100)
{
/* The child information will fit on the root page, so do the
** copy */
int i;
zeroPage(pPage, pChild->aData[0]);
for (i = 0; i < pChild->nCell; i++)
{
apCell[i] = findCell(pChild, i);
szCell[i] = cellSizePtr(pChild, apCell[i]);
}
assemblePage(pPage, pChild->nCell, apCell, szCell);
/* Copy the right-pointer of the child to the parent. */
put4byte(&pPage->aData[pPage->hdrOffset + 8],
get4byte(&pChild->aData[pChild->hdrOffset + 8]));
freePage(pChild);
TRACE(("BALANCE: child %d transfer to page 1\n", pChild->pgno));
}
else
{
/* The child has more information that will fit on the root.
** The tree is already balanced. Do nothing. */
TRACE(("BALANCE: child %d will not fit on page 1\n", pChild->pgno));
}
}
else
{
memcpy(pPage->aData, pChild->aData, pPage->pBt->usableSize);
pPage->isInit = 0;
pPage->pParent = 0;
rc = sqlite3BtreeInitPage(pPage, 0);
assert(rc == SQLITE_OK);
freePage(pChild);
TRACE(("BALANCE: transfer child %d into root %d\n",
pChild->pgno, pPage->pgno));
}
rc = reparentChildPages(pPage);
assert(pPage->nOverflow == 0);
#ifndef SQLITE_OMIT_AUTOVACUUM
if(pBt->autoVacuum)
{
int i;
for (i = 0; i < pPage->nCell; i++)
{
rc = ptrmapPutOvfl(pPage, i);
if(rc != SQLITE_OK)
{
goto end_shallow_balance;
}
}
}
#endif
releasePage(pChild);
}
end_shallow_balance:
sqlite3_free(apCell);
return rc;
}
/*
** The root page is overfull
**
** When this happens, Create a new child page and copy the
** contents of the root into the child. Then make the root
** page an empty page with rightChild pointing to the new
** child. Finally, call balance_internal() on the new child
** to cause it to split.
*/
static int
balance_deeper(MemPage * pPage)
{
int rc; /* Return value from subprocedures */
MemPage *pChild; /* Pointer to a new child page */
Pgno pgnoChild; /* Page number of the new child page */
BtShared *pBt; /* The BTree */
int usableSize; /* Total usable size of a page */
u8 *data; /* Content of the parent page */
u8 *cdata; /* Content of the child page */
int hdr; /* Offset to page header in parent */
int brk; /* Offset to content of first cell in parent */
assert(pPage->pParent == 0);
assert(pPage->nOverflow > 0);
pBt = pPage->pBt;
assert(sqlite3_mutex_held(pBt->mutex));
rc = allocateBtreePage(pBt, &pChild, &pgnoChild, pPage->pgno, 0);
if(rc)
return rc;
assert(sqlite3PagerIswriteable(pChild->pDbPage));
usableSize = pBt->usableSize;
data = pPage->aData;
hdr = pPage->hdrOffset;
brk = get2byte(&data[hdr + 5]);
cdata = pChild->aData;
memcpy(cdata, &data[hdr], pPage->cellOffset + 2 * pPage->nCell - hdr);
memcpy(&cdata[brk], &data[brk], usableSize - brk);
assert(pChild->isInit == 0);
rc = sqlite3BtreeInitPage(pChild, pPage);
if(rc)
goto balancedeeper_out;
memcpy(pChild->aOvfl, pPage->aOvfl, pPage->nOverflow * sizeof(pPage->aOvfl[0]));
pChild->nOverflow = pPage->nOverflow;
if(pChild->nOverflow)
{
pChild->nFree = 0;
}
assert(pChild->nCell == pPage->nCell);
zeroPage(pPage, pChild->aData[0] & ~PTF_LEAF);
put4byte(&pPage->aData[pPage->hdrOffset + 8], pgnoChild);
TRACE(("BALANCE: copy root %d into %d\n", pPage->pgno, pChild->pgno));
#ifndef SQLITE_OMIT_AUTOVACUUM
if(pBt->autoVacuum)
{
int i;
rc = ptrmapPut(pBt, pChild->pgno, PTRMAP_BTREE, pPage->pgno);
if(rc)
goto balancedeeper_out;
for (i = 0; i < pChild->nCell; i++)
{
rc = ptrmapPutOvfl(pChild, i);
if(rc != SQLITE_OK)
{
return rc;
}
}
}
#endif
rc = balance_nonroot(pChild);
balancedeeper_out:
releasePage(pChild);
return rc;
}
/*
** Decide if the page pPage needs to be balanced. If balancing is
** required, call the appropriate balancing routine.
*/
static int
balance(MemPage * pPage, int insert)
{
int rc = SQLITE_OK;
assert(sqlite3_mutex_held(pPage->pBt->mutex));
if(pPage->pParent == 0)
{
rc = sqlite3PagerWrite(pPage->pDbPage);
if(rc == SQLITE_OK && pPage->nOverflow > 0)
{
rc = balance_deeper(pPage);
}
if(rc == SQLITE_OK && pPage->nCell == 0)
{
rc = balance_shallower(pPage);
}
}
else
{
if(pPage->nOverflow > 0 ||
(!insert && pPage->nFree > pPage->pBt->usableSize * 2 / 3))
{
rc = balance_nonroot(pPage);
}
}
return rc;
}
/*
** This routine checks all cursors that point to table pgnoRoot.
** If any of those cursors were opened with wrFlag==0 in a different
** database connection (a database connection that shares the pager
** cache with the current connection) and that other connection
** is not in the ReadUncommmitted state, then this routine returns
** SQLITE_LOCKED.
**
** In addition to checking for read-locks (where a read-lock
** means a cursor opened with wrFlag==0) this routine also moves
** all write cursors so that they are pointing to the
** first Cell on the root page. This is necessary because an insert
** or delete might change the number of cells on a page or delete
** a page entirely and we do not want to leave any cursors
** pointing to non-existant pages or cells.
*/
static int
checkReadLocks(Btree * pBtree, Pgno pgnoRoot, BtCursor * pExclude)
{
BtCursor *p;
BtShared *pBt = pBtree->pBt;
sqlite3 *db = pBtree->db;
assert(sqlite3BtreeHoldsMutex(pBtree));
for (p = pBt->pCursor; p; p = p->pNext)
{
if(p == pExclude)
continue;
if(p->eState != CURSOR_VALID)
continue;
if(p->pgnoRoot != pgnoRoot)
continue;
if(p->wrFlag == 0)
{
sqlite3 *dbOther = p->pBtree->db;
if(dbOther == 0 ||
(dbOther != db && (dbOther->flags & SQLITE_ReadUncommitted) == 0))
{
return SQLITE_LOCKED;
}
}
else if(p->pPage->pgno != p->pgnoRoot)
{
moveToRoot(p);
}
}
return SQLITE_OK;
}
/*
** Make sure pBt->pTmpSpace points to an allocation of
** MX_CELL_SIZE(pBt) bytes.
*/
static void
allocateTempSpace(BtShared * pBt)
{
if(!pBt->pTmpSpace)
{
pBt->pTmpSpace = sqlite3_malloc(MX_CELL_SIZE(pBt));
}
}
/*
** Insert a new record into the BTree. The key is given by (pKey,nKey)
** and the data is given by (pData,nData). The cursor is used only to
** define what table the record should be inserted into. The cursor
** is left pointing at a random location.
**
** For an INTKEY table, only the nKey value of the key is used. pKey is
** ignored. For a ZERODATA table, the pData and nData are both ignored.
*/
SQLITE_PRIVATE int
sqlite3BtreeInsert(BtCursor * pCur, /* Insert data into the table of this cursor */
const void *pKey, i64 nKey, /* The key of the new record */
const void *pData, int nData, /* The data of the new record */
int nZero, /* Number of extra 0 bytes to append to data */
int appendBias /* True if this is likely an append */
)
{
int rc;
int loc;
int szNew;
MemPage *pPage;
Btree *p = pCur->pBtree;
BtShared *pBt = p->pBt;
unsigned char *oldCell;
unsigned char *newCell = 0;
assert(cursorHoldsMutex(pCur));
if(pBt->inTransaction != TRANS_WRITE)
{
/* Must start a transaction before doing an insert */
rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
return rc;
}
assert(!pBt->readOnly);
if(!pCur->wrFlag)
{
return SQLITE_PERM; /* Cursor not open for writing */
}
if(checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur))
{
return SQLITE_LOCKED; /* The table pCur points to has a read lock */
}
if(pCur->eState == CURSOR_FAULT)
{
return pCur->skip;
}
/* Save the positions of any other cursors open on this table */
clearCursorPosition(pCur);
if(SQLITE_OK != (rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur)) ||
SQLITE_OK != (rc = sqlite3BtreeMoveto(pCur, pKey, 0, nKey, appendBias, &loc)))
{
return rc;
}
pPage = pCur->pPage;
assert(pPage->intKey || nKey >= 0);
assert(pPage->leaf || !pPage->leafData);
TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
pCur->pgnoRoot, nKey, nData, pPage->pgno, loc == 0 ? "overwrite" : "new entry"));
assert(pPage->isInit);
allocateTempSpace(pBt);
newCell = pBt->pTmpSpace;
if(newCell == 0)
return SQLITE_NOMEM;
rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
if(rc)
goto end_insert;
assert(szNew == cellSizePtr(pPage, newCell));
assert(szNew <= MX_CELL_SIZE(pBt));
if(loc == 0 && CURSOR_VALID == pCur->eState)
{
u16 szOld;
assert(pCur->idx >= 0 && pCur->idx < pPage->nCell);
rc = sqlite3PagerWrite(pPage->pDbPage);
if(rc)
{
goto end_insert;
}
oldCell = findCell(pPage, pCur->idx);
if(!pPage->leaf)
{
memcpy(newCell, oldCell, 4);
}
szOld = cellSizePtr(pPage, oldCell);
rc = clearCell(pPage, oldCell);
if(rc)
goto end_insert;
dropCell(pPage, pCur->idx, szOld);
}
else if(loc < 0 && pPage->nCell > 0)
{
assert(pPage->leaf);
pCur->idx++;
pCur->info.nSize = 0;
pCur->validNKey = 0;
}
else
{
assert(pPage->leaf);
}
rc = insertCell(pPage, pCur->idx, newCell, szNew, 0, 0);
if(rc != SQLITE_OK)
goto end_insert;
rc = balance(pPage, 1);
/* sqlite3BtreePageDump(pCur->pBt, pCur->pgnoRoot, 1); */
/* fflush(stdout); */
if(rc == SQLITE_OK)
{
moveToRoot(pCur);
}
end_insert:
return rc;
}
/*
** Delete the entry that the cursor is pointing to. The cursor
** is left pointing at a random location.
*/
SQLITE_PRIVATE int
sqlite3BtreeDelete(BtCursor * pCur)
{
MemPage *pPage = pCur->pPage;
unsigned char *pCell;
int rc;
Pgno pgnoChild = 0;
Btree *p = pCur->pBtree;
BtShared *pBt = p->pBt;
assert(cursorHoldsMutex(pCur));
assert(pPage->isInit);
if(pBt->inTransaction != TRANS_WRITE)
{
/* Must start a transaction before doing a delete */
rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
return rc;
}
assert(!pBt->readOnly);
if(pCur->eState == CURSOR_FAULT)
{
return pCur->skip;
}
if(pCur->idx >= pPage->nCell)
{
return SQLITE_ERROR; /* The cursor is not pointing to anything */
}
if(!pCur->wrFlag)
{
return SQLITE_PERM; /* Did not open this cursor for writing */
}
if(checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur))
{
return SQLITE_LOCKED; /* The table pCur points to has a read lock */
}
/* Restore the current cursor position (a no-op if the cursor is not in
** CURSOR_REQUIRESEEK state) and save the positions of any other cursors
** open on the same table. Then call sqlite3PagerWrite() on the page
** that the entry will be deleted from.
*/
if((rc = restoreOrClearCursorPosition(pCur)) != 0 ||
(rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur)) != 0 ||
(rc = sqlite3PagerWrite(pPage->pDbPage)) != 0)
{
return rc;
}
/* Locate the cell within its page and leave pCell pointing to the
** data. The clearCell() call frees any overflow pages associated with the
** cell. The cell itself is still intact.
*/
pCell = findCell(pPage, pCur->idx);
if(!pPage->leaf)
{
pgnoChild = get4byte(pCell);
}
rc = clearCell(pPage, pCell);
if(rc)
{
return rc;
}
if(!pPage->leaf)
{
/*
** The entry we are about to delete is not a leaf so if we do not
** do something we will leave a hole on an internal page.
** We have to fill the hole by moving in a cell from a leaf. The
** next Cell after the one to be deleted is guaranteed to exist and
** to be a leaf so we can use it.
*/
BtCursor leafCur;
unsigned char *pNext;
int notUsed;
unsigned char *tempCell = 0;
assert(!pPage->leafData);
sqlite3BtreeGetTempCursor(pCur, &leafCur);
rc = sqlite3BtreeNext(&leafCur, &notUsed);
if(rc == SQLITE_OK)
{
rc = sqlite3PagerWrite(leafCur.pPage->pDbPage);
}
if(rc == SQLITE_OK)
{
u16 szNext;
TRACE(("DELETE: table=%d delete internal from %d replace from leaf %d\n",
pCur->pgnoRoot, pPage->pgno, leafCur.pPage->pgno));
dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell));
pNext = findCell(leafCur.pPage, leafCur.idx);
szNext = cellSizePtr(leafCur.pPage, pNext);
assert(MX_CELL_SIZE(pBt) >= szNext + 4);
allocateTempSpace(pBt);
tempCell = pBt->pTmpSpace;
if(tempCell == 0)
{
rc = SQLITE_NOMEM;
}
if(rc == SQLITE_OK)
{
rc = insertCell(pPage, pCur->idx, pNext - 4, szNext + 4, tempCell,
0);
}
if(rc == SQLITE_OK)
{
put4byte(findOverflowCell(pPage, pCur->idx), pgnoChild);
rc = balance(pPage, 0);
}
if(rc == SQLITE_OK)
{
dropCell(leafCur.pPage, leafCur.idx, szNext);
rc = balance(leafCur.pPage, 0);
}
}
sqlite3BtreeReleaseTempCursor(&leafCur);
}
else
{
TRACE(("DELETE: table=%d delete from leaf %d\n", pCur->pgnoRoot, pPage->pgno));
dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell));
rc = balance(pPage, 0);
}
if(rc == SQLITE_OK)
{
moveToRoot(pCur);
}
return rc;
}
/*
** Create a new BTree table. Write into *piTable the page
** number for the root page of the new table.
**
** The type of type is determined by the flags parameter. Only the
** following values of flags are currently in use. Other values for
** flags might not work:
**
** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
** BTREE_ZERODATA Used for SQL indices
*/
static int
btreeCreateTable(Btree * p, int *piTable, int flags)
{
BtShared *pBt = p->pBt;
MemPage *pRoot;
Pgno pgnoRoot;
int rc;
assert(sqlite3BtreeHoldsMutex(p));
if(pBt->inTransaction != TRANS_WRITE)
{
/* Must start a transaction first */
rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
return rc;
}
assert(!pBt->readOnly);
#ifdef SQLITE_OMIT_AUTOVACUUM
rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
if(rc)
{
return rc;
}
#else
if(pBt->autoVacuum)
{
Pgno pgnoMove; /* Move a page here to make room for the root-page */
MemPage *pPageMove; /* The page to move to. */
/* Creating a new table may probably require moving an existing database
** to make room for the new tables root page. In case this page turns
** out to be an overflow page, delete all overflow page-map caches
** held by open cursors.
*/
invalidateAllOverflowCache(pBt);
/* Read the value of meta[3] from the database to determine where the
** root page of the new table should go. meta[3] is the largest root-page
** created so far, so the new root-page is (meta[3]+1).
*/
rc = sqlite3BtreeGetMeta(p, 4, &pgnoRoot);
if(rc != SQLITE_OK)
{
return rc;
}
pgnoRoot++;
/* The new root-page may not be allocated on a pointer-map page, or the
** PENDING_BYTE page.
*/
while (pgnoRoot == PTRMAP_PAGENO(pBt, pgnoRoot) ||
pgnoRoot == PENDING_BYTE_PAGE(pBt))
{
pgnoRoot++;
}
assert(pgnoRoot >= 3);
/* Allocate a page. The page that currently resides at pgnoRoot will
** be moved to the allocated page (unless the allocated page happens
** to reside at pgnoRoot).
*/
rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
if(rc != SQLITE_OK)
{
return rc;
}
if(pgnoMove != pgnoRoot)
{
/* pgnoRoot is the page that will be used for the root-page of
** the new table (assuming an error did not occur). But we were
** allocated pgnoMove. If required (i.e. if it was not allocated
** by extending the file), the current page at position pgnoMove
** is already journaled.
*/
u8 eType;
Pgno iPtrPage;
releasePage(pPageMove);
/* Move the page currently at pgnoRoot to pgnoMove. */
rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0);
if(rc != SQLITE_OK)
{
return rc;
}
rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
if(rc != SQLITE_OK || eType == PTRMAP_ROOTPAGE || eType == PTRMAP_FREEPAGE)
{
releasePage(pRoot);
return rc;
}
assert(eType != PTRMAP_ROOTPAGE);
assert(eType != PTRMAP_FREEPAGE);
rc = sqlite3PagerWrite(pRoot->pDbPage);
if(rc != SQLITE_OK)
{
releasePage(pRoot);
return rc;
}
rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove);
releasePage(pRoot);
/* Obtain the page at pgnoRoot */
if(rc != SQLITE_OK)
{
return rc;
}
rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0);
if(rc != SQLITE_OK)
{
return rc;
}
rc = sqlite3PagerWrite(pRoot->pDbPage);
if(rc != SQLITE_OK)
{
releasePage(pRoot);
return rc;
}
}
else
{
pRoot = pPageMove;
}
/* Update the pointer-map and meta-data with the new root-page number. */
rc = ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0);
if(rc)
{
releasePage(pRoot);
return rc;
}
rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
if(rc)
{
releasePage(pRoot);
return rc;
}
}
else
{
rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
if(rc)
return rc;
}
#endif
assert(sqlite3PagerIswriteable(pRoot->pDbPage));
zeroPage(pRoot, flags | PTF_LEAF);
sqlite3PagerUnref(pRoot->pDbPage);
*piTable = (int) pgnoRoot;
return SQLITE_OK;
}
SQLITE_PRIVATE int
sqlite3BtreeCreateTable(Btree * p, int *piTable, int flags)
{
int rc;
sqlite3BtreeEnter(p);
p->pBt->db = p->db;
rc = btreeCreateTable(p, piTable, flags);
sqlite3BtreeLeave(p);
return rc;
}
/*
** Erase the given database page and all its children. Return
** the page to the freelist.
*/
static int
clearDatabasePage(BtShared * pBt, /* The BTree that contains the table */
Pgno pgno, /* Page number to clear */
MemPage * pParent, /* Parent page. NULL for the root */
int freePageFlag /* Deallocate page if true */
)
{
MemPage *pPage = 0;
int rc;
unsigned char *pCell;
int i;
assert(sqlite3_mutex_held(pBt->mutex));
if(pgno > sqlite3PagerPagecount(pBt->pPager))
{
return SQLITE_CORRUPT_BKPT;
}
rc = getAndInitPage(pBt, pgno, &pPage, pParent);
if(rc)
goto cleardatabasepage_out;
for (i = 0; i < pPage->nCell; i++)
{
pCell = findCell(pPage, i);
if(!pPage->leaf)
{
rc = clearDatabasePage(pBt, get4byte(pCell), pPage->pParent, 1);
if(rc)
goto cleardatabasepage_out;
}
rc = clearCell(pPage, pCell);
if(rc)
goto cleardatabasepage_out;
}
if(!pPage->leaf)
{
rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), pPage->pParent, 1);
if(rc)
goto cleardatabasepage_out;
}
if(freePageFlag)
{
rc = freePage(pPage);
}
else if((rc = sqlite3PagerWrite(pPage->pDbPage)) == 0)
{
zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
}
cleardatabasepage_out:
releasePage(pPage);
return rc;
}
/*
** Delete all information from a single table in the database. iTable is
** the page number of the root of the table. After this routine returns,
** the root page is empty, but still exists.
**
** This routine will fail with SQLITE_LOCKED if there are any open
** read cursors on the table. Open write cursors are moved to the
** root of the table.
*/
SQLITE_PRIVATE int
sqlite3BtreeClearTable(Btree * p, int iTable)
{
int rc;
BtShared *pBt = p->pBt;
sqlite3BtreeEnter(p);
pBt->db = p->db;
if(p->inTrans != TRANS_WRITE)
{
rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
}
else if((rc = checkReadLocks(p, iTable, 0)) != SQLITE_OK)
{
/* nothing to do */
}
else if(SQLITE_OK != (rc = saveAllCursors(pBt, iTable, 0)))
{
/* nothing to do */
}
else
{
rc = clearDatabasePage(pBt, (Pgno) iTable, 0, 0);
}
sqlite3BtreeLeave(p);
return rc;
}
/*
** Erase all information in a table and add the root of the table to
** the freelist. Except, the root of the principle table (the one on
** page 1) is never added to the freelist.
**
** This routine will fail with SQLITE_LOCKED if there are any open
** cursors on the table.
**
** If AUTOVACUUM is enabled and the page at iTable is not the last
** root page in the database file, then the last root page
** in the database file is moved into the slot formerly occupied by
** iTable and that last slot formerly occupied by the last root page
** is added to the freelist instead of iTable. In this say, all
** root pages are kept at the beginning of the database file, which
** is necessary for AUTOVACUUM to work right. *piMoved is set to the
** page number that used to be the last root page in the file before
** the move. If no page gets moved, *piMoved is set to 0.
** The last root page is recorded in meta[3] and the value of
** meta[3] is updated by this procedure.
*/
static int
btreeDropTable(Btree * p, int iTable, int *piMoved)
{
int rc;
MemPage *pPage = 0;
BtShared *pBt = p->pBt;
assert(sqlite3BtreeHoldsMutex(p));
if(p->inTrans != TRANS_WRITE)
{
return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
}
/* It is illegal to drop a table if any cursors are open on the
** database. This is because in auto-vacuum mode the backend may
** need to move another root-page to fill a gap left by the deleted
** root page. If an open cursor was using this page a problem would
** occur.
*/
if(pBt->pCursor)
{
return SQLITE_LOCKED;
}
rc = sqlite3BtreeGetPage(pBt, (Pgno) iTable, &pPage, 0);
if(rc)
return rc;
rc = sqlite3BtreeClearTable(p, iTable);
if(rc)
{
releasePage(pPage);
return rc;
}
*piMoved = 0;
if(iTable > 1)
{
#ifdef SQLITE_OMIT_AUTOVACUUM
rc = freePage(pPage);
releasePage(pPage);
#else
if(pBt->autoVacuum)
{
Pgno maxRootPgno;
rc = sqlite3BtreeGetMeta(p, 4, &maxRootPgno);
if(rc != SQLITE_OK)
{
releasePage(pPage);
return rc;
}
if(iTable == maxRootPgno)
{
/* If the table being dropped is the table with the largest root-page
** number in the database, put the root page on the free list.
*/
rc = freePage(pPage);
releasePage(pPage);
if(rc != SQLITE_OK)
{
return rc;
}
}
else
{
/* The table being dropped does not have the largest root-page
** number in the database. So move the page that does into the
** gap left by the deleted root-page.
*/
MemPage *pMove;
releasePage(pPage);
rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0);
if(rc != SQLITE_OK)
{
return rc;
}
rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable);
releasePage(pMove);
if(rc != SQLITE_OK)
{
return rc;
}
rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0);
if(rc != SQLITE_OK)
{
return rc;
}
rc = freePage(pMove);
releasePage(pMove);
if(rc != SQLITE_OK)
{
return rc;
}
*piMoved = maxRootPgno;
}
/* Set the new 'max-root-page' value in the database header. This
** is the old value less one, less one more if that happens to
** be a root-page number, less one again if that is the
** PENDING_BYTE_PAGE.
*/
maxRootPgno--;
if(maxRootPgno == PENDING_BYTE_PAGE(pBt))
{
maxRootPgno--;
}
if(maxRootPgno == PTRMAP_PAGENO(pBt, maxRootPgno))
{
maxRootPgno--;
}
assert(maxRootPgno != PENDING_BYTE_PAGE(pBt));
rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
}
else
{
rc = freePage(pPage);
releasePage(pPage);
}
#endif
}
else
{
/* If sqlite3BtreeDropTable was called on page 1. */
zeroPage(pPage, PTF_INTKEY | PTF_LEAF);
releasePage(pPage);
}
return rc;
}
SQLITE_PRIVATE int
sqlite3BtreeDropTable(Btree * p, int iTable, int *piMoved)
{
int rc;
sqlite3BtreeEnter(p);
p->pBt->db = p->db;
rc = btreeDropTable(p, iTable, piMoved);
sqlite3BtreeLeave(p);
return rc;
}
/*
** Read the meta-information out of a database file. Meta[0]
** is the number of free pages currently in the database. Meta[1]
** through meta[15] are available for use by higher layers. Meta[0]
** is read-only, the others are read/write.
**
** The schema layer numbers meta values differently. At the schema
** layer (and the SetCookie and ReadCookie opcodes) the number of
** free pages is not visible. So Cookie[0] is the same as Meta[1].
*/
SQLITE_PRIVATE int
sqlite3BtreeGetMeta(Btree * p, int idx, u32 * pMeta)
{
DbPage *pDbPage;
int rc;
unsigned char *pP1;
BtShared *pBt = p->pBt;
sqlite3BtreeEnter(p);
pBt->db = p->db;
/* Reading a meta-data value requires a read-lock on page 1 (and hence
** the sqlite_master table. We grab this lock regardless of whether or
** not the SQLITE_ReadUncommitted flag is set (the table rooted at page
** 1 is treated as a special case by queryTableLock() and lockTable()).
*/
rc = queryTableLock(p, 1, READ_LOCK);
if(rc != SQLITE_OK)
{
sqlite3BtreeLeave(p);
return rc;
}
assert(idx >= 0 && idx <= 15);
rc = sqlite3PagerGet(pBt->pPager, 1, &pDbPage);
if(rc)
{
sqlite3BtreeLeave(p);
return rc;
}
pP1 = (unsigned char *) sqlite3PagerGetData(pDbPage);
*pMeta = get4byte(&pP1[36 + idx * 4]);
sqlite3PagerUnref(pDbPage);
/* If autovacuumed is disabled in this build but we are trying to
** access an autovacuumed database, then make the database readonly.
*/
#ifdef SQLITE_OMIT_AUTOVACUUM
if(idx == 4 && *pMeta > 0)
pBt->readOnly = 1;
#endif
/* Grab the read-lock on page 1. */
rc = lockTable(p, 1, READ_LOCK);
sqlite3BtreeLeave(p);
return rc;
}
/*
** Write meta-information back into the database. Meta[0] is
** read-only and may not be written.
*/
SQLITE_PRIVATE int
sqlite3BtreeUpdateMeta(Btree * p, int idx, u32 iMeta)
{
BtShared *pBt = p->pBt;
unsigned char *pP1;
int rc;
assert(idx >= 1 && idx <= 15);
sqlite3BtreeEnter(p);
pBt->db = p->db;
if(p->inTrans != TRANS_WRITE)
{
rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
}
else
{
assert(pBt->pPage1 != 0);
pP1 = pBt->pPage1->aData;
rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
if(rc == SQLITE_OK)
{
put4byte(&pP1[36 + idx * 4], iMeta);
#ifndef SQLITE_OMIT_AUTOVACUUM
if(idx == 7)
{
assert(pBt->autoVacuum || iMeta == 0);
assert(iMeta == 0 || iMeta == 1);
pBt->incrVacuum = iMeta;
}
#endif
}
}
sqlite3BtreeLeave(p);
return rc;
}
/*
** Return the flag byte at the beginning of the page that the cursor
** is currently pointing to.
*/
SQLITE_PRIVATE int
sqlite3BtreeFlags(BtCursor * pCur)
{
/* TODO: What about CURSOR_REQUIRESEEK state? Probably need to call
** restoreOrClearCursorPosition() here.
*/
MemPage *pPage;
restoreOrClearCursorPosition(pCur);
pPage = pCur->pPage;
assert(cursorHoldsMutex(pCur));
assert(pPage->pBt == pCur->pBt);
return pPage ? pPage->aData[pPage->hdrOffset] : 0;
}
/*
** Return the pager associated with a BTree. This routine is used for
** testing and debugging only.
*/
SQLITE_PRIVATE Pager *
sqlite3BtreePager(Btree * p)
{
return p->pBt->pPager;
}
#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/*
** Append a message to the error message string.
*/
static void
checkAppendMsg(IntegrityCk * pCheck, char *zMsg1, const char *zFormat, ...)
{
va_list ap;
char *zMsg2;
if(!pCheck->mxErr)
return;
pCheck->mxErr--;
pCheck->nErr++;
va_start(ap, zFormat);
zMsg2 = sqlite3VMPrintf(0, zFormat, ap);
va_end(ap);
if(zMsg1 == 0)
zMsg1 = "";
if(pCheck->zErrMsg)
{
char *zOld = pCheck->zErrMsg;
pCheck->zErrMsg = 0;
sqlite3SetString(&pCheck->zErrMsg, zOld, "\n", zMsg1, zMsg2, (char *) 0);
sqlite3_free(zOld);
}
else
{
sqlite3SetString(&pCheck->zErrMsg, zMsg1, zMsg2, (char *) 0);
}
sqlite3_free(zMsg2);
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/*
** Add 1 to the reference count for page iPage. If this is the second
** reference to the page, add an error message to pCheck->zErrMsg.
** Return 1 if there are 2 ore more references to the page and 0 if
** if this is the first reference to the page.
**
** Also check that the page number is in bounds.
*/
static int
checkRef(IntegrityCk * pCheck, int iPage, char *zContext)
{
if(iPage == 0)
return 1;
if(iPage > pCheck->nPage || iPage < 0)
{
checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
return 1;
}
if(pCheck->anRef[iPage] == 1)
{
checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
return 1;
}
return (pCheck->anRef[iPage]++) > 1;
}
#ifndef SQLITE_OMIT_AUTOVACUUM
/*
** Check that the entry in the pointer-map for page iChild maps to
** page iParent, pointer type ptrType. If not, append an error message
** to pCheck.
*/
static void
checkPtrmap(IntegrityCk * pCheck, /* Integrity check context */
Pgno iChild, /* Child page number */
u8 eType, /* Expected pointer map type */
Pgno iParent, /* Expected pointer map parent page number */
char *zContext /* Context description (used for error msg) */
)
{
int rc;
u8 ePtrmapType;
Pgno iPtrmapParent;
rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
if(rc != SQLITE_OK)
{
checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
return;
}
if(ePtrmapType != eType || iPtrmapParent != iParent)
{
checkAppendMsg(pCheck, zContext,
"Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
iChild, eType, iParent, ePtrmapType, iPtrmapParent);
}
}
#endif
/*
** Check the integrity of the freelist or of an overflow page list.
** Verify that the number of pages on the list is N.
*/
static void
checkList(IntegrityCk * pCheck, /* Integrity checking context */
int isFreeList, /* True for a freelist. False for overflow page list */
int iPage, /* Page number for first page in the list */
int N, /* Expected number of pages in the list */
char *zContext /* Context for error messages */
)
{
int i;
int expected = N;
int iFirst = iPage;
while (N-- > 0 && pCheck->mxErr)
{
DbPage *pOvflPage;
unsigned char *pOvflData;
if(iPage < 1)
{
checkAppendMsg(pCheck, zContext,
"%d of %d pages missing from overflow list starting at %d",
N + 1, expected, iFirst);
break;
}
if(checkRef(pCheck, iPage, zContext))
break;
if(sqlite3PagerGet(pCheck->pPager, (Pgno) iPage, &pOvflPage))
{
checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
break;
}
pOvflData = (unsigned char *) sqlite3PagerGetData(pOvflPage);
if(isFreeList)
{
int n = get4byte(&pOvflData[4]);
#ifndef SQLITE_OMIT_AUTOVACUUM
if(pCheck->pBt->autoVacuum)
{
checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
}
#endif
if(n > pCheck->pBt->usableSize / 4 - 8)
{
checkAppendMsg(pCheck, zContext,
"freelist leaf count too big on page %d", iPage);
N--;
}
else
{
for (i = 0; i < n; i++)
{
Pgno iFreePage = get4byte(&pOvflData[8 + i * 4]);
#ifndef SQLITE_OMIT_AUTOVACUUM
if(pCheck->pBt->autoVacuum)
{
checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0,
zContext);
}
#endif
checkRef(pCheck, iFreePage, zContext);
}
N -= n;
}
}
#ifndef SQLITE_OMIT_AUTOVACUUM
else
{
/* If this database supports auto-vacuum and iPage is not the last
** page in this overflow list, check that the pointer-map entry for
** the following page matches iPage.
*/
if(pCheck->pBt->autoVacuum && N > 0)
{
i = get4byte(pOvflData);
checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
}
}
#endif
iPage = get4byte(pOvflData);
sqlite3PagerUnref(pOvflPage);
}
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/*
** Do various sanity checks on a single page of a tree. Return
** the tree depth. Root pages return 0. Parents of root pages
** return 1, and so forth.
**
** These checks are done:
**
** 1. Make sure that cells and freeblocks do not overlap
** but combine to completely cover the page.
** NO 2. Make sure cell keys are in order.
** NO 3. Make sure no key is less than or equal to zLowerBound.
** NO 4. Make sure no key is greater than or equal to zUpperBound.
** 5. Check the integrity of overflow pages.
** 6. Recursively call checkTreePage on all children.
** 7. Verify that the depth of all children is the same.
** 8. Make sure this page is at least 33% full or else it is
** the root of the tree.
*/
static int
checkTreePage(IntegrityCk * pCheck, /* Context for the sanity check */
int iPage, /* Page number of the page to check */
MemPage * pParent, /* Parent page */
char *zParentContext /* Parent context */
)
{
MemPage *pPage;
int i, rc, depth, d2, pgno, cnt;
int hdr, cellStart;
int nCell;
u8 *data;
BtShared *pBt;
int usableSize;
char zContext[100];
char *hit;
sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
/* Check that the page exists
*/
pBt = pCheck->pBt;
usableSize = pBt->usableSize;
if(iPage == 0)
return 0;
if(checkRef(pCheck, iPage, zParentContext))
return 0;
if((rc = sqlite3BtreeGetPage(pBt, (Pgno) iPage, &pPage, 0)) != 0)
{
checkAppendMsg(pCheck, zContext, "unable to get the page. error code=%d", rc);
return 0;
}
if((rc = sqlite3BtreeInitPage(pPage, pParent)) != 0)
{
checkAppendMsg(pCheck, zContext,
"sqlite3BtreeInitPage() returns error code %d", rc);
releasePage(pPage);
return 0;
}
/* Check out all the cells.
*/
depth = 0;
for (i = 0; i < pPage->nCell && pCheck->mxErr; i++)
{
u8 *pCell;
int sz;
CellInfo info;
/* Check payload overflow pages
*/
sqlite3_snprintf(sizeof(zContext), zContext, "On tree page %d cell %d: ", iPage, i);
pCell = findCell(pPage, i);
sqlite3BtreeParseCellPtr(pPage, pCell, &info);
sz = info.nData;
if(!pPage->intKey)
sz += info.nKey;
assert(sz == info.nPayload);
if(sz > info.nLocal)
{
int nPage = (sz - info.nLocal + usableSize - 5) / (usableSize - 4);
Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
#ifndef SQLITE_OMIT_AUTOVACUUM
if(pBt->autoVacuum)
{
checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
}
#endif
checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
}
/* Check sanity of left child page.
*/
if(!pPage->leaf)
{
pgno = get4byte(pCell);
#ifndef SQLITE_OMIT_AUTOVACUUM
if(pBt->autoVacuum)
{
checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
}
#endif
d2 = checkTreePage(pCheck, pgno, pPage, zContext);
if(i > 0 && d2 != depth)
{
checkAppendMsg(pCheck, zContext, "Child page depth differs");
}
depth = d2;
}
}
if(!pPage->leaf)
{
pgno = get4byte(&pPage->aData[pPage->hdrOffset + 8]);
sqlite3_snprintf(sizeof(zContext), zContext, "On page %d at right child: ", iPage);
#ifndef SQLITE_OMIT_AUTOVACUUM
if(pBt->autoVacuum)
{
checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, 0);
}
#endif
checkTreePage(pCheck, pgno, pPage, zContext);
}
/* Check for complete coverage of the page
*/
data = pPage->aData;
hdr = pPage->hdrOffset;
hit = sqlite3MallocZero(usableSize);
if(hit)
{
memset(hit, 1, get2byte(&data[hdr + 5]));
nCell = get2byte(&data[hdr + 3]);
cellStart = hdr + 12 - 4 * pPage->leaf;
for (i = 0; i < nCell; i++)
{
int pc = get2byte(&data[cellStart + i * 2]);
u16 size = cellSizePtr(pPage, &data[pc]);
int j;
if((pc + size - 1) >= usableSize || pc < 0)
{
checkAppendMsg(pCheck, 0,
"Corruption detected in cell %d on page %d", i,
iPage, 0);
}
else
{
for (j = pc + size - 1; j >= pc; j--)
hit[j]++;
}
}
for (cnt = 0, i = get2byte(&data[hdr + 1]); i > 0 && i < usableSize && cnt < 10000;
cnt++)
{
int size = get2byte(&data[i + 2]);
int j;
if((i + size - 1) >= usableSize || i < 0)
{
checkAppendMsg(pCheck, 0,
"Corruption detected in cell %d on page %d", i,
iPage, 0);
}
else
{
for (j = i + size - 1; j >= i; j--)
hit[j]++;
}
i = get2byte(&data[i]);
}
for (i = cnt = 0; i < usableSize; i++)
{
if(hit[i] == 0)
{
cnt++;
}
else if(hit[i] > 1)
{
checkAppendMsg(pCheck, 0,
"Multiple uses for byte %d of page %d", i, iPage);
break;
}
}
if(cnt != data[hdr + 7])
{
checkAppendMsg(pCheck, 0,
"Fragmented space is %d byte reported as %d on page %d",
cnt, data[hdr + 7], iPage);
}
}
sqlite3_free(hit);
releasePage(pPage);
return depth + 1;
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/*
** This routine does a complete check of the given BTree file. aRoot[] is
** an array of pages numbers were each page number is the root page of
** a table. nRoot is the number of entries in aRoot.
**
** If everything checks out, this routine returns NULL. If something is
** amiss, an error message is written into memory obtained from malloc()
** and a pointer to that error message is returned. The calling function
** is responsible for freeing the error message when it is done.
*/
SQLITE_PRIVATE char *
sqlite3BtreeIntegrityCheck(Btree * p, /* The btree to be checked */
int *aRoot, /* An array of root pages numbers for individual trees */
int nRoot, /* Number of entries in aRoot[] */
int mxErr, /* Stop reporting errors after this many */
int *pnErr /* Write number of errors seen to this variable */
)
{
int i;
int nRef;
IntegrityCk sCheck;
BtShared *pBt = p->pBt;
sqlite3BtreeEnter(p);
pBt->db = p->db;
nRef = sqlite3PagerRefcount(pBt->pPager);
if(lockBtreeWithRetry(p) != SQLITE_OK)
{
sqlite3BtreeLeave(p);
return sqlite3StrDup("Unable to acquire a read lock on the database");
}
sCheck.pBt = pBt;
sCheck.pPager = pBt->pPager;
sCheck.nPage = sqlite3PagerPagecount(sCheck.pPager);
sCheck.mxErr = mxErr;
sCheck.nErr = 0;
*pnErr = 0;
#ifndef SQLITE_OMIT_AUTOVACUUM
if(pBt->nTrunc != 0)
{
sCheck.nPage = pBt->nTrunc;
}
#endif
if(sCheck.nPage == 0)
{
unlockBtreeIfUnused(pBt);
sqlite3BtreeLeave(p);
return 0;
}
sCheck.anRef = sqlite3_malloc((sCheck.nPage + 1) * sizeof(sCheck.anRef[0]));
if(!sCheck.anRef)
{
unlockBtreeIfUnused(pBt);
*pnErr = 1;
sqlite3BtreeLeave(p);
return sqlite3MPrintf(p->db, "Unable to malloc %d bytes",
(sCheck.nPage + 1) * sizeof(sCheck.anRef[0]));
}
for (i = 0; i <= sCheck.nPage; i++)
{
sCheck.anRef[i] = 0;
}
i = PENDING_BYTE_PAGE(pBt);
if(i <= sCheck.nPage)
{
sCheck.anRef[i] = 1;
}
sCheck.zErrMsg = 0;
/* Check the integrity of the freelist
*/
checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
/* Check all the tables.
*/
for (i = 0; i < nRoot && sCheck.mxErr; i++)
{
if(aRoot[i] == 0)
continue;
#ifndef SQLITE_OMIT_AUTOVACUUM
if(pBt->autoVacuum && aRoot[i] > 1)
{
checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
}
#endif
checkTreePage(&sCheck, aRoot[i], 0, "List of tree roots: ");
}
/* Make sure every page in the file is referenced
*/
for (i = 1; i <= sCheck.nPage && sCheck.mxErr; i++)
{
#ifdef SQLITE_OMIT_AUTOVACUUM
if(sCheck.anRef[i] == 0)
{
checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
}
#else
/* If the database supports auto-vacuum, make sure no tables contain
** references to pointer-map pages.
*/
if(sCheck.anRef[i] == 0 && (PTRMAP_PAGENO(pBt, i) != i || !pBt->autoVacuum))
{
checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
}
if(sCheck.anRef[i] != 0 && (PTRMAP_PAGENO(pBt, i) == i && pBt->autoVacuum))
{
checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
}
#endif
}
/* Make sure this analysis did not leave any unref() pages
*/
unlockBtreeIfUnused(pBt);
if(nRef != sqlite3PagerRefcount(pBt->pPager))
{
checkAppendMsg(&sCheck, 0,
"Outstanding page count goes from %d to %d during this analysis",
nRef, sqlite3PagerRefcount(pBt->pPager));
}
/* Clean up and report errors.
*/
sqlite3BtreeLeave(p);
sqlite3_free(sCheck.anRef);
*pnErr = sCheck.nErr;
return sCheck.zErrMsg;
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
/*
** Return the full pathname of the underlying database file.
**
** The pager filename is invariant as long as the pager is
** open so it is safe to access without the BtShared mutex.
*/
SQLITE_PRIVATE const char *
sqlite3BtreeGetFilename(Btree * p)
{
assert(p->pBt->pPager != 0);
return sqlite3PagerFilename(p->pBt->pPager);
}
/*
** Return the pathname of the directory that contains the database file.
**
** The pager directory name is invariant as long as the pager is
** open so it is safe to access without the BtShared mutex.
*/
SQLITE_PRIVATE const char *
sqlite3BtreeGetDirname(Btree * p)
{
assert(p->pBt->pPager != 0);
return sqlite3PagerDirname(p->pBt->pPager);
}
/*
** Return the pathname of the journal file for this database. The return
** value of this routine is the same regardless of whether the journal file
** has been created or not.
**
** The pager journal filename is invariant as long as the pager is
** open so it is safe to access without the BtShared mutex.
*/
SQLITE_PRIVATE const char *
sqlite3BtreeGetJournalname(Btree * p)
{
assert(p->pBt->pPager != 0);
return sqlite3PagerJournalname(p->pBt->pPager);
}
#ifndef SQLITE_OMIT_VACUUM
/*
** Copy the complete content of pBtFrom into pBtTo. A transaction
** must be active for both files.
**
** The size of file pTo may be reduced by this operation.
** If anything goes wrong, the transaction on pTo is rolled back.
**
** If successful, CommitPhaseOne() may be called on pTo before returning.
** The caller should finish committing the transaction on pTo by calling
** sqlite3BtreeCommit().
*/
static int
btreeCopyFile(Btree * pTo, Btree * pFrom)
{
int rc = SQLITE_OK;
Pgno i;
Pgno nFromPage; /* Number of pages in pFrom */
Pgno nToPage; /* Number of pages in pTo */
Pgno nNewPage; /* Number of pages in pTo after the copy */
Pgno iSkip; /* Pending byte page in pTo */
int nToPageSize; /* Page size of pTo in bytes */
int nFromPageSize; /* Page size of pFrom in bytes */
BtShared *pBtTo = pTo->pBt;
BtShared *pBtFrom = pFrom->pBt;
pBtTo->db = pTo->db;
pBtFrom->db = pFrom->db;
nToPageSize = pBtTo->pageSize;
nFromPageSize = pBtFrom->pageSize;
if(pTo->inTrans != TRANS_WRITE || pFrom->inTrans != TRANS_WRITE)
{
return SQLITE_ERROR;
}
if(pBtTo->pCursor)
{
return SQLITE_BUSY;
}
nToPage = sqlite3PagerPagecount(pBtTo->pPager);
nFromPage = sqlite3PagerPagecount(pBtFrom->pPager);
iSkip = PENDING_BYTE_PAGE(pBtTo);
/* Variable nNewPage is the number of pages required to store the
** contents of pFrom using the current page-size of pTo.
*/
nNewPage = ((i64) nFromPage * (i64) nFromPageSize + (i64) nToPageSize - 1) /
(i64) nToPageSize;
for (i = 1; rc == SQLITE_OK && (i <= nToPage || i <= nNewPage); i++)
{
/* Journal the original page.
**
** iSkip is the page number of the locking page (PENDING_BYTE_PAGE)
** in database *pTo (before the copy). This page is never written
** into the journal file. Unless i==iSkip or the page was not
** present in pTo before the copy operation, journal page i from pTo.
*/
if(i != iSkip && i <= nToPage)
{
DbPage *pDbPage = 0;
rc = sqlite3PagerGet(pBtTo->pPager, i, &pDbPage);
if(rc == SQLITE_OK)
{
rc = sqlite3PagerWrite(pDbPage);
if(rc == SQLITE_OK && i > nFromPage)
{
/* Yeah. It seems wierd to call DontWrite() right after Write(). But
** that is because the names of those procedures do not exactly
** represent what they do. Write() really means "put this page in the
** rollback journal and mark it as dirty so that it will be written
** to the database file later." DontWrite() undoes the second part of
** that and prevents the page from being written to the database. The
** page is still on the rollback journal, though. And that is the
** whole point of this block: to put pages on the rollback journal.
*/
sqlite3PagerDontWrite(pDbPage);
}
sqlite3PagerUnref(pDbPage);
}
}
/* Overwrite the data in page i of the target database */
if(rc == SQLITE_OK && i != iSkip && i <= nNewPage)
{
DbPage *pToPage = 0;
sqlite3_int64 iOff;
rc = sqlite3PagerGet(pBtTo->pPager, i, &pToPage);
if(rc == SQLITE_OK)
{
rc = sqlite3PagerWrite(pToPage);
}
for (iOff = (i - 1) * nToPageSize;
rc == SQLITE_OK && iOff < i * nToPageSize; iOff += nFromPageSize)
{
DbPage *pFromPage = 0;
Pgno iFrom = (iOff / nFromPageSize) + 1;
if(iFrom == PENDING_BYTE_PAGE(pBtFrom))
{
continue;
}
rc = sqlite3PagerGet(pBtFrom->pPager, iFrom, &pFromPage);
if(rc == SQLITE_OK)
{
char *zTo = sqlite3PagerGetData(pToPage);
char *zFrom = sqlite3PagerGetData(pFromPage);
int nCopy;
if(nFromPageSize >= nToPageSize)
{
zFrom += ((i - 1) * nToPageSize -
((iFrom - 1) * nFromPageSize));
nCopy = nToPageSize;
}
else
{
zTo += (((iFrom - 1) * nFromPageSize) -
(i - 1) * nToPageSize);
nCopy = nFromPageSize;
}
memcpy(zTo, zFrom, nCopy);
sqlite3PagerUnref(pFromPage);
}
}
if(pToPage)
sqlite3PagerUnref(pToPage);
}
}
/* If things have worked so far, the database file may need to be
** truncated. The complex part is that it may need to be truncated to
** a size that is not an integer multiple of nToPageSize - the current
** page size used by the pager associated with B-Tree pTo.
**
** For example, say the page-size of pTo is 2048 bytes and the original
** number of pages is 5 (10 KB file). If pFrom has a page size of 1024
** bytes and 9 pages, then the file needs to be truncated to 9KB.
*/
if(rc == SQLITE_OK)
{
if(nFromPageSize != nToPageSize)
{
sqlite3_file *pFile = sqlite3PagerFile(pBtTo->pPager);
i64 iSize = (i64) nFromPageSize * (i64) nFromPage;
i64 iNow =
(i64) ((nToPage >
nNewPage) ? nToPage : nNewPage) * (i64) nToPageSize;
i64 iPending = ((i64) PENDING_BYTE_PAGE(pBtTo) - 1) * (i64) nToPageSize;
assert(iSize <= iNow);
/* Commit phase one syncs the journal file associated with pTo
** containing the original data. It does not sync the database file
** itself. After doing this it is safe to use OsTruncate() and other
** file APIs on the database file directly.
*/
pBtTo->db = pTo->db;
rc = sqlite3PagerCommitPhaseOne(pBtTo->pPager, 0, 0, 1);
if(iSize < iNow && rc == SQLITE_OK)
{
rc = sqlite3OsTruncate(pFile, iSize);
}
/* The loop that copied data from database pFrom to pTo did not
** populate the locking page of database pTo. If the page-size of
** pFrom is smaller than that of pTo, this means some data will
** not have been copied.
**
** This block copies the missing data from database pFrom to pTo
** using file APIs. This is safe because at this point we know that
** all of the original data from pTo has been synced into the
** journal file. At this point it would be safe to do anything at
** all to the database file except truncate it to zero bytes.
*/
if(rc == SQLITE_OK && nFromPageSize < nToPageSize && iSize > iPending)
{
i64 iOff;
for (iOff = iPending;
rc == SQLITE_OK && iOff < (iPending + nToPageSize);
iOff += nFromPageSize)
{
DbPage *pFromPage = 0;
Pgno iFrom = (iOff / nFromPageSize) + 1;
if(iFrom == PENDING_BYTE_PAGE(pBtFrom) || iFrom > nFromPage)
{
continue;
}
rc = sqlite3PagerGet(pBtFrom->pPager, iFrom, &pFromPage);
if(rc == SQLITE_OK)
{
char *zFrom = sqlite3PagerGetData(pFromPage);
rc = sqlite3OsWrite(pFile, zFrom, nFromPageSize,
iOff);
sqlite3PagerUnref(pFromPage);
}
}
}
/* Sync the database file */
if(rc == SQLITE_OK)
{
rc = sqlite3PagerSync(pBtTo->pPager);
}
}
else
{
rc = sqlite3PagerTruncate(pBtTo->pPager, nNewPage);
}
if(rc == SQLITE_OK)
{
pBtTo->pageSizeFixed = 0;
}
}
if(rc)
{
sqlite3BtreeRollback(pTo);
}
return rc;
}
SQLITE_PRIVATE int
sqlite3BtreeCopyFile(Btree * pTo, Btree * pFrom)
{
int rc;
sqlite3BtreeEnter(pTo);
sqlite3BtreeEnter(pFrom);
rc = btreeCopyFile(pTo, pFrom);
sqlite3BtreeLeave(pFrom);
sqlite3BtreeLeave(pTo);
return rc;
}
#endif /* SQLITE_OMIT_VACUUM */
/*
** Return non-zero if a transaction is active.
*/
SQLITE_PRIVATE int
sqlite3BtreeIsInTrans(Btree * p)
{
assert(p == 0 || sqlite3_mutex_held(p->db->mutex));
return (p && (p->inTrans == TRANS_WRITE));
}
/*
** Return non-zero if a statement transaction is active.
*/
SQLITE_PRIVATE int
sqlite3BtreeIsInStmt(Btree * p)
{
assert(sqlite3BtreeHoldsMutex(p));
return (p->pBt && p->pBt->inStmt);
}
/*
** Return non-zero if a read (or write) transaction is active.
*/
SQLITE_PRIVATE int
sqlite3BtreeIsInReadTrans(Btree * p)
{
assert(sqlite3_mutex_held(p->db->mutex));
return (p && (p->inTrans != TRANS_NONE));
}
/*
** This function returns a pointer to a blob of memory associated with
** a single shared-btree. The memory is used by client code for its own
** purposes (for example, to store a high-level schema associated with
** the shared-btree). The btree layer manages reference counting issues.
**
** The first time this is called on a shared-btree, nBytes bytes of memory
** are allocated, zeroed, and returned to the caller. For each subsequent
** call the nBytes parameter is ignored and a pointer to the same blob
** of memory returned.
**
** Just before the shared-btree is closed, the function passed as the
** xFree argument when the memory allocation was made is invoked on the
** blob of allocated memory. This function should not call sqlite3_free()
** on the memory, the btree layer does that.
*/
SQLITE_PRIVATE void *
sqlite3BtreeSchema(Btree * p, int nBytes, void (*xFree) (void *))
{
BtShared *pBt = p->pBt;
sqlite3BtreeEnter(p);
if(!pBt->pSchema)
{
pBt->pSchema = sqlite3MallocZero(nBytes);
pBt->xFreeSchema = xFree;
}
sqlite3BtreeLeave(p);
return pBt->pSchema;
}
/*
** Return true if another user of the same shared btree as the argument
** handle holds an exclusive lock on the sqlite_master table.
*/
SQLITE_PRIVATE int
sqlite3BtreeSchemaLocked(Btree * p)
{
int rc;
assert(sqlite3_mutex_held(p->db->mutex));
sqlite3BtreeEnter(p);
rc = (queryTableLock(p, MASTER_ROOT, READ_LOCK) != SQLITE_OK);
sqlite3BtreeLeave(p);
return rc;
}
#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** Obtain a lock on the table whose root page is iTab. The
** lock is a write lock if isWritelock is true or a read lock
** if it is false.
*/
SQLITE_PRIVATE int
sqlite3BtreeLockTable(Btree * p, int iTab, u8 isWriteLock)
{
int rc = SQLITE_OK;
if(p->sharable)
{
u8 lockType = READ_LOCK + isWriteLock;
assert(READ_LOCK + 1 == WRITE_LOCK);
assert(isWriteLock == 0 || isWriteLock == 1);
sqlite3BtreeEnter(p);
rc = queryTableLock(p, iTab, lockType);
if(rc == SQLITE_OK)
{
rc = lockTable(p, iTab, lockType);
}
sqlite3BtreeLeave(p);
}
return rc;
}
#endif
#ifndef SQLITE_OMIT_INCRBLOB
/*
** Argument pCsr must be a cursor opened for writing on an
** INTKEY table currently pointing at a valid table entry.
** This function modifies the data stored as part of that entry.
** Only the data content may only be modified, it is not possible
** to change the length of the data stored.
*/
SQLITE_PRIVATE int
sqlite3BtreePutData(BtCursor * pCsr, u32 offset, u32 amt, void *z)
{
assert(cursorHoldsMutex(pCsr));
assert(sqlite3_mutex_held(pCsr->pBtree->db->mutex));
assert(pCsr->isIncrblobHandle);
if(pCsr->eState >= CURSOR_REQUIRESEEK)
{
if(pCsr->eState == CURSOR_FAULT)
{
return pCsr->skip;
}
else
{
return SQLITE_ABORT;
}
}
/* Check some preconditions:
** (a) the cursor is open for writing,
** (b) there is no read-lock on the table being modified and
** (c) the cursor points at a valid row of an intKey table.
*/
if(!pCsr->wrFlag)
{
return SQLITE_READONLY;
}
assert(!pCsr->pBt->readOnly && pCsr->pBt->inTransaction == TRANS_WRITE);
if(checkReadLocks(pCsr->pBtree, pCsr->pgnoRoot, pCsr))
{
return SQLITE_LOCKED; /* The table pCur points to has a read lock */
}
if(pCsr->eState == CURSOR_INVALID || !pCsr->pPage->intKey)
{
return SQLITE_ERROR;
}
return accessPayload(pCsr, offset, amt, (unsigned char *) z, 0, 1);
}
/*
** Set a flag on this cursor to cache the locations of pages from the
** overflow list for the current row. This is used by cursors opened
** for incremental blob IO only.
**
** This function sets a flag only. The actual page location cache
** (stored in BtCursor.aOverflow[]) is allocated and used by function
** accessPayload() (the worker function for sqlite3BtreeData() and
** sqlite3BtreePutData()).
*/
SQLITE_PRIVATE void
sqlite3BtreeCacheOverflow(BtCursor * pCur)
{
assert(cursorHoldsMutex(pCur));
assert(sqlite3_mutex_held(pCur->pBtree->db->mutex));
assert(!pCur->isIncrblobHandle);
assert(!pCur->aOverflow);
pCur->isIncrblobHandle = 1;
}
#endif
/************** End of btree.c ***********************************************/
/************** Begin file vdbefifo.c ****************************************/
/*
** 2005 June 16
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file implements a FIFO queue of rowids used for processing
** UPDATE and DELETE statements.
*/
/*
** Constants FIFOSIZE_FIRST and FIFOSIZE_MAX are the initial
** number of entries in a fifo page and the maximum number of
** entries in a fifo page.
*/
#define FIFOSIZE_FIRST (((128-sizeof(FifoPage))/8)+1)
#ifdef SQLITE_MALLOC_SOFT_LIMIT
# define FIFOSIZE_MAX (((SQLITE_MALLOC_SOFT_LIMIT-sizeof(FifoPage))/8)+1)
#else
# define FIFOSIZE_MAX (((262144-sizeof(FifoPage))/8)+1)
#endif
/*
** Allocate a new FifoPage and return a pointer to it. Return NULL if
** we run out of memory. Leave space on the page for nEntry entries.
*/
static FifoPage *
allocateFifoPage(int nEntry)
{
FifoPage *pPage;
if(nEntry > FIFOSIZE_MAX)
{
nEntry = FIFOSIZE_MAX;
}
pPage = sqlite3_malloc(sizeof(FifoPage) + sizeof(i64) * (nEntry - 1));
if(pPage)
{
pPage->nSlot = nEntry;
pPage->iWrite = 0;
pPage->iRead = 0;
pPage->pNext = 0;
}
return pPage;
}
/*
** Initialize a Fifo structure.
*/
SQLITE_PRIVATE void
sqlite3VdbeFifoInit(Fifo * pFifo)
{
memset(pFifo, 0, sizeof(*pFifo));
}
/*
** Push a single 64-bit integer value into the Fifo. Return SQLITE_OK
** normally. SQLITE_NOMEM is returned if we are unable to allocate
** memory.
*/
SQLITE_PRIVATE int
sqlite3VdbeFifoPush(Fifo * pFifo, i64 val)
{
FifoPage *pPage;
pPage = pFifo->pLast;
if(pPage == 0)
{
pPage = pFifo->pLast = pFifo->pFirst = allocateFifoPage(FIFOSIZE_FIRST);
if(pPage == 0)
{
return SQLITE_NOMEM;
}
}
else if(pPage->iWrite >= pPage->nSlot)
{
pPage->pNext = allocateFifoPage(pFifo->nEntry);
if(pPage->pNext == 0)
{
return SQLITE_NOMEM;
}
pPage = pFifo->pLast = pPage->pNext;
}
pPage->aSlot[pPage->iWrite++] = val;
pFifo->nEntry++;
return SQLITE_OK;
}
/*
** Extract a single 64-bit integer value from the Fifo. The integer
** extracted is the one least recently inserted. If the Fifo is empty
** return SQLITE_DONE.
*/
SQLITE_PRIVATE int
sqlite3VdbeFifoPop(Fifo * pFifo, i64 * pVal)
{
FifoPage *pPage;
if(pFifo->nEntry == 0)
{
return SQLITE_DONE;
}
assert(pFifo->nEntry > 0);
pPage = pFifo->pFirst;
assert(pPage != 0);
assert(pPage->iWrite > pPage->iRead);
assert(pPage->iWrite <= pPage->nSlot);
assert(pPage->iRead < pPage->nSlot);
assert(pPage->iRead >= 0);
*pVal = pPage->aSlot[pPage->iRead++];
pFifo->nEntry--;
if(pPage->iRead >= pPage->iWrite)
{
pFifo->pFirst = pPage->pNext;
sqlite3_free(pPage);
if(pFifo->nEntry == 0)
{
assert(pFifo->pLast == pPage);
pFifo->pLast = 0;
}
else
{
assert(pFifo->pFirst != 0);
}
}
else
{
assert(pFifo->nEntry > 0);
}
return SQLITE_OK;
}
/*
** Delete all information from a Fifo object. Free all memory held
** by the Fifo.
*/
SQLITE_PRIVATE void
sqlite3VdbeFifoClear(Fifo * pFifo)
{
FifoPage *pPage, *pNextPage;
for (pPage = pFifo->pFirst; pPage; pPage = pNextPage)
{
pNextPage = pPage->pNext;
sqlite3_free(pPage);
}
sqlite3VdbeFifoInit(pFifo);
}
/************** End of vdbefifo.c ********************************************/
/************** Begin file vdbemem.c *****************************************/
/*
** 2004 May 26
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains code use to manipulate "Mem" structure. A "Mem"
** stores a single value in the VDBE. Mem is an opaque structure visible
** only within the VDBE. Interface routines refer to a Mem using the
** name sqlite_value
*/
/*
** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
** P if required.
*/
#define expandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
/*
** If pMem is an object with a valid string representation, this routine
** ensures the internal encoding for the string representation is
** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
**
** If pMem is not a string object, or the encoding of the string
** representation is already stored using the requested encoding, then this
** routine is a no-op.
**
** SQLITE_OK is returned if the conversion is successful (or not required).
** SQLITE_NOMEM may be returned if a malloc() fails during conversion
** between formats.
*/
SQLITE_PRIVATE int
sqlite3VdbeChangeEncoding(Mem * pMem, int desiredEnc)
{
int rc;
if(!(pMem->flags & MEM_Str) || pMem->enc == desiredEnc)
{
return SQLITE_OK;
}
assert(pMem->db == 0 || sqlite3_mutex_held(pMem->db->mutex));
#ifdef SQLITE_OMIT_UTF16
return SQLITE_ERROR;
#else
/* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
** then the encoding of the value may not have changed.
*/
rc = sqlite3VdbeMemTranslate(pMem, desiredEnc);
assert(rc == SQLITE_OK || rc == SQLITE_NOMEM);
assert(rc == SQLITE_OK || pMem->enc != desiredEnc);
assert(rc == SQLITE_NOMEM || pMem->enc == desiredEnc);
return rc;
#endif
}
/*
** Make sure pMem->z points to a writable allocation of at least
** n bytes.
**
** If the memory cell currently contains string or blob data
** and the third argument passed to this function is true, the
** current content of the cell is preserved. Otherwise, it may
** be discarded.
**
** This function sets the MEM_Dyn flag and clears any xDel callback.
** It also clears MEM_Ephem and MEM_Static. If the preserve flag is
** not set, Mem.n is zeroed.
*/
SQLITE_PRIVATE int
sqlite3VdbeMemGrow(Mem * pMem, int n, int preserve)
{
assert(1 >=
((pMem->zMalloc && pMem->zMalloc == pMem->z) ? 1 : 0) +
(((pMem->flags & MEM_Dyn) && pMem->xDel) ? 1 : 0) +
((pMem->flags & MEM_Ephem) ? 1 : 0) + ((pMem->flags & MEM_Static) ? 1 : 0));
if(!pMem->zMalloc || sqlite3MallocSize(pMem->zMalloc) < n)
{
n = (n > 32 ? n : 32);
if(preserve && pMem->z == pMem->zMalloc)
{
pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
if(!pMem->z)
{
pMem->flags = MEM_Null;
}
preserve = 0;
}
else
{
sqlite3_free(pMem->zMalloc);
pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
}
}
if(preserve && pMem->z && pMem->zMalloc && pMem->z != pMem->zMalloc)
{
memcpy(pMem->zMalloc, pMem->z, pMem->n);
}
if(pMem->flags & MEM_Dyn && pMem->xDel)
{
pMem->xDel((void *) (pMem->z));
}
pMem->z = pMem->zMalloc;
pMem->flags &= ~(MEM_Ephem | MEM_Static);
pMem->xDel = 0;
return (pMem->z ? SQLITE_OK : SQLITE_NOMEM);
}
/*
** Make the given Mem object MEM_Dyn.
**
** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
*/
SQLITE_PRIVATE int
sqlite3VdbeMemDynamicify(Mem * pMem)
{
int f;
assert(pMem->db == 0 || sqlite3_mutex_held(pMem->db->mutex));
expandBlob(pMem);
f = pMem->flags;
if((f & (MEM_Str | MEM_Blob)) && pMem->z != pMem->zMalloc)
{
if(sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1))
{
return SQLITE_NOMEM;
}
pMem->z[pMem->n] = 0;
pMem->z[pMem->n + 1] = 0;
pMem->flags |= MEM_Term;
}
return SQLITE_OK;
}
/*
** If the given Mem* has a zero-filled tail, turn it into an ordinary
** blob stored in dynamically allocated space.
*/
#ifndef SQLITE_OMIT_INCRBLOB
SQLITE_PRIVATE int
sqlite3VdbeMemExpandBlob(Mem * pMem)
{
if(pMem->flags & MEM_Zero)
{
int nByte;
assert(pMem->flags & MEM_Blob);
assert(pMem->db == 0 || sqlite3_mutex_held(pMem->db->mutex));
/* Set nByte to the number of bytes required to store the expanded blob. */
nByte = pMem->n + pMem->u.i;
if(nByte <= 0)
{
nByte = 1;
}
if(sqlite3VdbeMemGrow(pMem, nByte, 1))
{
return SQLITE_NOMEM;
}
memset(&pMem->z[pMem->n], 0, pMem->u.i);
pMem->n += pMem->u.i;
pMem->flags &= ~(MEM_Zero | MEM_Term);
}
return SQLITE_OK;
}
#endif
/*
** Make the given Mem object either MEM_Short or MEM_Dyn so that bytes
** of the Mem.z[] array can be modified.
**
** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
*/
SQLITE_PRIVATE int
sqlite3VdbeMemMakeWriteable(Mem * pMem)
{
return sqlite3VdbeMemDynamicify(pMem);
}
/*
** Make sure the given Mem is \u0000 terminated.
*/
SQLITE_PRIVATE int
sqlite3VdbeMemNulTerminate(Mem * pMem)
{
assert(pMem->db == 0 || sqlite3_mutex_held(pMem->db->mutex));
if((pMem->flags & MEM_Term) != 0 || (pMem->flags & MEM_Str) == 0)
{
return SQLITE_OK; /* Nothing to do */
}
if(sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1))
{
return SQLITE_NOMEM;
}
pMem->z[pMem->n] = 0;
pMem->z[pMem->n + 1] = 0;
pMem->flags |= MEM_Term;
return SQLITE_OK;
}
/*
** Add MEM_Str to the set of representations for the given Mem. Numbers
** are converted using sqlite3_snprintf(). Converting a BLOB to a string
** is a no-op.
**
** Existing representations MEM_Int and MEM_Real are *not* invalidated.
**
** A MEM_Null value will never be passed to this function. This function is
** used for converting values to text for returning to the user (i.e. via
** sqlite3_value_text()), or for ensuring that values to be used as btree
** keys are strings. In the former case a NULL pointer is returned the
** user and the later is an internal programming error.
*/
SQLITE_PRIVATE int
sqlite3VdbeMemStringify(Mem * pMem, int enc)
{
int rc = SQLITE_OK;
int fg = pMem->flags;
const int nByte = 32;
assert(pMem->db == 0 || sqlite3_mutex_held(pMem->db->mutex));
assert(!(fg & MEM_Zero));
assert(!(fg & (MEM_Str | MEM_Blob)));
assert(fg & (MEM_Int | MEM_Real));
if(sqlite3VdbeMemGrow(pMem, nByte, 0))
{
return SQLITE_NOMEM;
}
/* For a Real or Integer, use sqlite3_mprintf() to produce the UTF-8
** string representation of the value. Then, if the required encoding
** is UTF-16le or UTF-16be do a translation.
**
** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
*/
if(fg & MEM_Int)
{
sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i);
}
else
{
assert(fg & MEM_Real);
sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->r);
}
pMem->n = strlen(pMem->z);
pMem->enc = SQLITE_UTF8;
pMem->flags |= MEM_Str | MEM_Term;
sqlite3VdbeChangeEncoding(pMem, enc);
return rc;
}
/*
** Memory cell pMem contains the context of an aggregate function.
** This routine calls the finalize method for that function. The
** result of the aggregate is stored back into pMem.
**
** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
** otherwise.
*/
SQLITE_PRIVATE int
sqlite3VdbeMemFinalize(Mem * pMem, FuncDef * pFunc)
{
int rc = SQLITE_OK;
if(pFunc && pFunc->xFinalize)
{
sqlite3_context ctx;
assert((pMem->flags & MEM_Null) != 0 || pFunc == pMem->u.pDef);
assert(pMem->db == 0 || sqlite3_mutex_held(pMem->db->mutex));
ctx.s.flags = MEM_Null;
ctx.s.db = pMem->db;
ctx.s.zMalloc = 0;
ctx.pMem = pMem;
ctx.pFunc = pFunc;
ctx.isError = 0;
pFunc->xFinalize(&ctx);
assert(0 == (pMem->flags & MEM_Dyn) && !pMem->xDel);
sqlite3_free(pMem->zMalloc);
*pMem = ctx.s;
rc = (ctx.isError ? SQLITE_ERROR : SQLITE_OK);
}
return rc;
}
/*
** If the memory cell contains a string value that must be freed by
** invoking an external callback, free it now. Calling this function
** does not free any Mem.zMalloc buffer.
*/
SQLITE_PRIVATE void
sqlite3VdbeMemReleaseExternal(Mem * p)
{
assert(p->db == 0 || sqlite3_mutex_held(p->db->mutex));
if(p->flags & MEM_Agg)
{
sqlite3VdbeMemFinalize(p, p->u.pDef);
assert((p->flags & MEM_Agg) == 0);
sqlite3VdbeMemRelease(p);
}
else if(p->flags & MEM_Dyn && p->xDel)
{
p->xDel((void *) p->z);
p->xDel = 0;
}
}
/*
** Release any memory held by the Mem. This may leave the Mem in an
** inconsistent state, for example with (Mem.z==0) and
** (Mem.type==SQLITE_TEXT).
*/
SQLITE_PRIVATE void
sqlite3VdbeMemRelease(Mem * p)
{
sqlite3VdbeMemReleaseExternal(p);
sqlite3_free(p->zMalloc);
p->z = 0;
p->zMalloc = 0;
p->xDel = 0;
}
/*
** Convert a 64-bit IEEE double into a 64-bit signed integer.
** If the double is too large, return 0x8000000000000000.
**
** Most systems appear to do this simply by assigning
** variables and without the extra range tests. But
** there are reports that windows throws an expection
** if the floating point value is out of range. (See ticket #2880.)
** Because we do not completely understand the problem, we will
** take the conservative approach and always do range tests
** before attempting the conversion.
*/
static i64
doubleToInt64(double r)
{
/*
** Many compilers we encounter do not define constants for the
** minimum and maximum 64-bit integers, or they define them
** inconsistently. And many do not understand the "LL" notation.
** So we define our own static constants here using nothing
** larger than a 32-bit integer constant.
*/
static const i64 maxInt = LARGEST_INT64;
static const i64 minInt = SMALLEST_INT64;
if(r < (double) minInt)
{
return minInt;
}
else if(r > (double) maxInt)
{
return minInt;
}
else
{
return (i64) r;
}
}
/*
** Return some kind of integer value which is the best we can do
** at representing the value that *pMem describes as an integer.
** If pMem is an integer, then the value is exact. If pMem is
** a floating-point then the value returned is the integer part.
** If pMem is a string or blob, then we make an attempt to convert
** it into a integer and return that. If pMem is NULL, return 0.
**
** If pMem is a string, its encoding might be changed.
*/
SQLITE_PRIVATE i64
sqlite3VdbeIntValue(Mem * pMem)
{
int flags;
assert(pMem->db == 0 || sqlite3_mutex_held(pMem->db->mutex));
flags = pMem->flags;
if(flags & MEM_Int)
{
return pMem->u.i;
}
else if(flags & MEM_Real)
{
return doubleToInt64(pMem->r);
}
else if(flags & (MEM_Str | MEM_Blob))
{
i64 value;
pMem->flags |= MEM_Str;
if(sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8) || sqlite3VdbeMemNulTerminate(pMem))
{
return 0;
}
assert(pMem->z);
sqlite3Atoi64(pMem->z, &value);
return value;
}
else
{
return 0;
}
}
/*
** Return the best representation of pMem that we can get into a
** double. If pMem is already a double or an integer, return its
** value. If it is a string or blob, try to convert it to a double.
** If it is a NULL, return 0.0.
*/
SQLITE_PRIVATE double
sqlite3VdbeRealValue(Mem * pMem)
{
assert(pMem->db == 0 || sqlite3_mutex_held(pMem->db->mutex));
if(pMem->flags & MEM_Real)
{
return pMem->r;
}
else if(pMem->flags & MEM_Int)
{
return (double) pMem->u.i;
}
else if(pMem->flags & (MEM_Str | MEM_Blob))
{
double val = 0.0;
pMem->flags |= MEM_Str;
if(sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8) || sqlite3VdbeMemNulTerminate(pMem))
{
return 0.0;
}
assert(pMem->z);
sqlite3AtoF(pMem->z, &val);
return val;
}
else
{
return 0.0;
}
}
/*
** The MEM structure is already a MEM_Real. Try to also make it a
** MEM_Int if we can.
*/
SQLITE_PRIVATE void
sqlite3VdbeIntegerAffinity(Mem * pMem)
{
assert(pMem->flags & MEM_Real);
assert(pMem->db == 0 || sqlite3_mutex_held(pMem->db->mutex));
pMem->u.i = doubleToInt64(pMem->r);
if(pMem->r == (double) pMem->u.i)
{
pMem->flags |= MEM_Int;
}
}
static void
setTypeFlag(Mem * pMem, int f)
{
MemSetTypeFlag(pMem, f);
}
/*
** Convert pMem to type integer. Invalidate any prior representations.
*/
SQLITE_PRIVATE int
sqlite3VdbeMemIntegerify(Mem * pMem)
{
assert(pMem->db == 0 || sqlite3_mutex_held(pMem->db->mutex));
pMem->u.i = sqlite3VdbeIntValue(pMem);
setTypeFlag(pMem, MEM_Int);
return SQLITE_OK;
}
/*
** Convert pMem so that it is of type MEM_Real.
** Invalidate any prior representations.
*/
SQLITE_PRIVATE int
sqlite3VdbeMemRealify(Mem * pMem)
{
assert(pMem->db == 0 || sqlite3_mutex_held(pMem->db->mutex));
pMem->r = sqlite3VdbeRealValue(pMem);
setTypeFlag(pMem, MEM_Real);
return SQLITE_OK;
}
/*
** Convert pMem so that it has types MEM_Real or MEM_Int or both.
** Invalidate any prior representations.
*/
SQLITE_PRIVATE int
sqlite3VdbeMemNumerify(Mem * pMem)
{
double r1, r2;
i64 i;
assert((pMem->flags & (MEM_Int | MEM_Real | MEM_Null)) == 0);
assert((pMem->flags & (MEM_Blob | MEM_Str)) != 0);
assert(pMem->db == 0 || sqlite3_mutex_held(pMem->db->mutex));
r1 = sqlite3VdbeRealValue(pMem);
i = doubleToInt64(r1);
r2 = (double) i;
if(r1 == r2)
{
sqlite3VdbeMemIntegerify(pMem);
}
else
{
pMem->r = r1;
setTypeFlag(pMem, MEM_Real);
}
return SQLITE_OK;
}
/*
** Delete any previous value and set the value stored in *pMem to NULL.
*/
SQLITE_PRIVATE void
sqlite3VdbeMemSetNull(Mem * pMem)
{
setTypeFlag(pMem, MEM_Null);
pMem->type = SQLITE_NULL;
}
/*
** Delete any previous value and set the value to be a BLOB of length
** n containing all zeros.
*/
SQLITE_PRIVATE void
sqlite3VdbeMemSetZeroBlob(Mem * pMem, int n)
{
sqlite3VdbeMemRelease(pMem);
setTypeFlag(pMem, MEM_Blob);
pMem->flags = MEM_Blob | MEM_Zero;
pMem->type = SQLITE_BLOB;
pMem->n = 0;
if(n < 0)
n = 0;
pMem->u.i = n;
pMem->enc = SQLITE_UTF8;
}
/*
** Delete any previous value and set the value stored in *pMem to val,
** manifest type INTEGER.
*/
SQLITE_PRIVATE void
sqlite3VdbeMemSetInt64(Mem * pMem, i64 val)
{
sqlite3VdbeMemRelease(pMem);
pMem->u.i = val;
pMem->flags = MEM_Int;
pMem->type = SQLITE_INTEGER;
}
/*
** Delete any previous value and set the value stored in *pMem to val,
** manifest type REAL.
*/
SQLITE_PRIVATE void
sqlite3VdbeMemSetDouble(Mem * pMem, double val)
{
if(sqlite3IsNaN(val))
{
sqlite3VdbeMemSetNull(pMem);
}
else
{
sqlite3VdbeMemRelease(pMem);
pMem->r = val;
pMem->flags = MEM_Real;
pMem->type = SQLITE_FLOAT;
}
}
/*
** Return true if the Mem object contains a TEXT or BLOB that is
** too large - whose size exceeds SQLITE_MAX_LENGTH.
*/
SQLITE_PRIVATE int
sqlite3VdbeMemTooBig(Mem * p)
{
assert(p->db != 0);
if(p->flags & (MEM_Str | MEM_Blob))
{
int n = p->n;
if(p->flags & MEM_Zero)
{
n += p->u.i;
}
return n > p->db->aLimit[SQLITE_LIMIT_LENGTH];
}
return 0;
}
/*
** Size of struct Mem not including the Mem.zMalloc member.
*/
#define MEMCELLSIZE (size_t)(&(((Mem *)0)->zMalloc))
/*
** Make an shallow copy of pFrom into pTo. Prior contents of
** pTo are freed. The pFrom->z field is not duplicated. If
** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
** and flags gets srcType (either MEM_Ephem or MEM_Static).
*/
SQLITE_PRIVATE void
sqlite3VdbeMemShallowCopy(Mem * pTo, const Mem * pFrom, int srcType)
{
sqlite3VdbeMemReleaseExternal(pTo);
memcpy(pTo, pFrom, MEMCELLSIZE);
pTo->xDel = 0;
if((pFrom->flags & MEM_Dyn) != 0 || pFrom->z == pFrom->zMalloc)
{
pTo->flags &= ~(MEM_Dyn | MEM_Static | MEM_Ephem);
assert(srcType == MEM_Ephem || srcType == MEM_Static);
pTo->flags |= srcType;
}
}
/*
** Make a full copy of pFrom into pTo. Prior contents of pTo are
** freed before the copy is made.
*/
SQLITE_PRIVATE int
sqlite3VdbeMemCopy(Mem * pTo, const Mem * pFrom)
{
int rc = SQLITE_OK;
sqlite3VdbeMemReleaseExternal(pTo);
memcpy(pTo, pFrom, MEMCELLSIZE);
pTo->flags &= ~MEM_Dyn;
if(pTo->flags & (MEM_Str | MEM_Blob))
{
if(0 == (pFrom->flags & MEM_Static))
{
pTo->flags |= MEM_Ephem;
rc = sqlite3VdbeMemMakeWriteable(pTo);
}
}
return rc;
}
/*
** Transfer the contents of pFrom to pTo. Any existing value in pTo is
** freed. If pFrom contains ephemeral data, a copy is made.
**
** pFrom contains an SQL NULL when this routine returns.
*/
SQLITE_PRIVATE void
sqlite3VdbeMemMove(Mem * pTo, Mem * pFrom)
{
assert(pFrom->db == 0 || sqlite3_mutex_held(pFrom->db->mutex));
assert(pTo->db == 0 || sqlite3_mutex_held(pTo->db->mutex));
assert(pFrom->db == 0 || pTo->db == 0 || pFrom->db == pTo->db);
sqlite3VdbeMemRelease(pTo);
memcpy(pTo, pFrom, sizeof(Mem));
pFrom->flags = MEM_Null;
pFrom->xDel = 0;
pFrom->zMalloc = 0;
}
/*
** Change the value of a Mem to be a string or a BLOB.
**
** The memory management strategy depends on the value of the xDel
** parameter. If the value passed is SQLITE_TRANSIENT, then the
** string is copied into a (possibly existing) buffer managed by the
** Mem structure. Otherwise, any existing buffer is freed and the
** pointer copied.
*/
SQLITE_PRIVATE int
sqlite3VdbeMemSetStr(Mem * pMem, /* Memory cell to set to string value */
const char *z, /* String pointer */
int n, /* Bytes in string, or negative */
u8 enc, /* Encoding of z. 0 for BLOBs */
void (*xDel) (void *) /* Destructor function */
)
{
int nByte = n; /* New value for pMem->n */
int flags = 0; /* New value for pMem->flags */
assert(pMem->db == 0 || sqlite3_mutex_held(pMem->db->mutex));
/* If z is a NULL pointer, set pMem to contain an SQL NULL. */
if(!z)
{
sqlite3VdbeMemSetNull(pMem);
return SQLITE_OK;
}
flags = (enc == 0 ? MEM_Blob : MEM_Str);
if(nByte < 0)
{
assert(enc != 0);
if(enc == SQLITE_UTF8)
{
for (nByte = 0; z[nByte]; nByte++)
{
}
}
else
{
for (nByte = 0; z[nByte] | z[nByte + 1]; nByte += 2)
{
}
}
flags |= MEM_Term;
}
/* The following block sets the new values of Mem.z and Mem.xDel. It
** also sets a flag in local variable "flags" to indicate the memory
** management (one of MEM_Dyn or MEM_Static).
*/
if(xDel == SQLITE_TRANSIENT)
{
int nAlloc = nByte;
if(flags & MEM_Term)
{
nAlloc += (enc == SQLITE_UTF8 ? 1 : 2);
}
if(sqlite3VdbeMemGrow(pMem, nAlloc, 0))
{
return SQLITE_NOMEM;
}
memcpy(pMem->z, z, nAlloc);
}
else
{
sqlite3VdbeMemRelease(pMem);
pMem->z = (char *) z;
pMem->xDel = xDel;
flags |= ((xDel == SQLITE_STATIC) ? MEM_Static : MEM_Dyn);
}
pMem->n = nByte;
pMem->flags = flags;
pMem->enc = (enc == 0 ? SQLITE_UTF8 : enc);
pMem->type = (enc == 0 ? SQLITE_BLOB : SQLITE_TEXT);
#ifndef SQLITE_OMIT_UTF16
if(pMem->enc != SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem))
{
return SQLITE_NOMEM;
}
#endif
return SQLITE_OK;
}
/*
** Compare the values contained by the two memory cells, returning
** negative, zero or positive if pMem1 is less than, equal to, or greater
** than pMem2. Sorting order is NULL's first, followed by numbers (integers
** and reals) sorted numerically, followed by text ordered by the collating
** sequence pColl and finally blob's ordered by memcmp().
**
** Two NULL values are considered equal by this function.
*/
SQLITE_PRIVATE int
sqlite3MemCompare(const Mem * pMem1, const Mem * pMem2, const CollSeq * pColl)
{
int rc;
int f1, f2;
int combined_flags;
/* Interchange pMem1 and pMem2 if the collating sequence specifies
** DESC order.
*/
f1 = pMem1->flags;
f2 = pMem2->flags;
combined_flags = f1 | f2;
/* If one value is NULL, it is less than the other. If both values
** are NULL, return 0.
*/
if(combined_flags & MEM_Null)
{
return (f2 & MEM_Null) - (f1 & MEM_Null);
}
/* If one value is a number and the other is not, the number is less.
** If both are numbers, compare as reals if one is a real, or as integers
** if both values are integers.
*/
if(combined_flags & (MEM_Int | MEM_Real))
{
if(!(f1 & (MEM_Int | MEM_Real)))
{
return 1;
}
if(!(f2 & (MEM_Int | MEM_Real)))
{
return -1;
}
if((f1 & f2 & MEM_Int) == 0)
{
double r1, r2;
if((f1 & MEM_Real) == 0)
{
r1 = pMem1->u.i;
}
else
{
r1 = pMem1->r;
}
if((f2 & MEM_Real) == 0)
{
r2 = pMem2->u.i;
}
else
{
r2 = pMem2->r;
}
if(r1 < r2)
return -1;
if(r1 > r2)
return 1;
return 0;
}
else
{
assert(f1 & MEM_Int);
assert(f2 & MEM_Int);
if(pMem1->u.i < pMem2->u.i)
return -1;
if(pMem1->u.i > pMem2->u.i)
return 1;
return 0;
}
}
/* If one value is a string and the other is a blob, the string is less.
** If both are strings, compare using the collating functions.
*/
if(combined_flags & MEM_Str)
{
if((f1 & MEM_Str) == 0)
{
return 1;
}
if((f2 & MEM_Str) == 0)
{
return -1;
}
assert(pMem1->enc == pMem2->enc);
assert(pMem1->enc == SQLITE_UTF8 ||
pMem1->enc == SQLITE_UTF16LE || pMem1->enc == SQLITE_UTF16BE);
/* The collation sequence must be defined at this point, even if
** the user deletes the collation sequence after the vdbe program is
** compiled (this was not always the case).
*/
assert(!pColl || pColl->xCmp);
if(pColl)
{
if(pMem1->enc == pColl->enc)
{
/* The strings are already in the correct encoding. Call the
** comparison function directly */
return pColl->xCmp(pColl->pUser, pMem1->n, pMem1->z, pMem2->n,
pMem2->z);
}
else
{
u8 origEnc = pMem1->enc;
const void *v1, *v2;
int n1, n2;
/* Convert the strings into the encoding that the comparison
** function expects */
v1 = sqlite3ValueText((sqlite3_value *) pMem1, pColl->enc);
n1 = v1 == 0 ? 0 : pMem1->n;
assert(n1 ==
sqlite3ValueBytes((sqlite3_value *) pMem1, pColl->enc));
v2 = sqlite3ValueText((sqlite3_value *) pMem2, pColl->enc);
n2 = v2 == 0 ? 0 : pMem2->n;
assert(n2 ==
sqlite3ValueBytes((sqlite3_value *) pMem2, pColl->enc));
/* Do the comparison */
rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
/* Convert the strings back into the database encoding */
sqlite3ValueText((sqlite3_value *) pMem1, origEnc);
sqlite3ValueText((sqlite3_value *) pMem2, origEnc);
return rc;
}
}
/* If a NULL pointer was passed as the collate function, fall through
** to the blob case and use memcmp(). */
}
/* Both values must be blobs. Compare using memcmp(). */
rc = memcmp(pMem1->z, pMem2->z, (pMem1->n > pMem2->n) ? pMem2->n : pMem1->n);
if(rc == 0)
{
rc = pMem1->n - pMem2->n;
}
return rc;
}
/*
** Move data out of a btree key or data field and into a Mem structure.
** The data or key is taken from the entry that pCur is currently pointing
** to. offset and amt determine what portion of the data or key to retrieve.
** key is true to get the key or false to get data. The result is written
** into the pMem element.
**
** The pMem structure is assumed to be uninitialized. Any prior content
** is overwritten without being freed.
**
** If this routine fails for any reason (malloc returns NULL or unable
** to read from the disk) then the pMem is left in an inconsistent state.
*/
SQLITE_PRIVATE int
sqlite3VdbeMemFromBtree(BtCursor * pCur, /* Cursor pointing at record to retrieve. */
int offset, /* Offset from the start of data to return bytes from. */
int amt, /* Number of bytes to return. */
int key, /* If true, retrieve from the btree key, not data. */
Mem * pMem /* OUT: Return data in this Mem structure. */
)
{
char *zData; /* Data from the btree layer */
int available = 0; /* Number of bytes available on the local btree page */
sqlite3 *db; /* Database connection */
int rc = SQLITE_OK;
db = sqlite3BtreeCursorDb(pCur);
assert(sqlite3_mutex_held(db->mutex));
if(key)
{
zData = (char *) sqlite3BtreeKeyFetch(pCur, &available);
}
else
{
zData = (char *) sqlite3BtreeDataFetch(pCur, &available);
}
assert(zData != 0);
if(offset + amt <= available && ((pMem->flags & MEM_Dyn) == 0 || pMem->xDel))
{
sqlite3VdbeMemRelease(pMem);
pMem->z = &zData[offset];
pMem->flags = MEM_Blob | MEM_Ephem;
}
else if(SQLITE_OK == (rc = sqlite3VdbeMemGrow(pMem, amt + 2, 0)))
{
pMem->flags = MEM_Blob | MEM_Dyn | MEM_Term;
pMem->enc = 0;
pMem->type = SQLITE_BLOB;
if(key)
{
rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z);
}
else
{
rc = sqlite3BtreeData(pCur, offset, amt, pMem->z);
}
pMem->z[amt] = 0;
pMem->z[amt + 1] = 0;
if(rc != SQLITE_OK)
{
sqlite3VdbeMemRelease(pMem);
}
}
pMem->n = amt;
return rc;
}
#if 0
/*
** Perform various checks on the memory cell pMem. An assert() will
** fail if pMem is internally inconsistent.
*/
SQLITE_PRIVATE void
sqlite3VdbeMemSanity(Mem * pMem)
{
int flags = pMem->flags;
assert(flags != 0); /* Must define some type */
if(flags & (MEM_Str | MEM_Blob))
{
int x = flags & (MEM_Static | MEM_Dyn | MEM_Ephem | MEM_Short);
assert(x != 0); /* Strings must define a string subtype */
assert((x & (x - 1)) == 0); /* Only one string subtype can be defined */
assert(pMem->z != 0); /* Strings must have a value */
/* Mem.z points to Mem.zShort iff the subtype is MEM_Short */
assert((x & MEM_Short) == 0 || pMem->z == pMem->zShort);
assert((x & MEM_Short) != 0 || pMem->z != pMem->zShort);
/* No destructor unless there is MEM_Dyn */
assert(pMem->xDel == 0 || (pMem->flags & MEM_Dyn) != 0);
if((flags & MEM_Str))
{
assert(pMem->enc == SQLITE_UTF8 ||
pMem->enc == SQLITE_UTF16BE || pMem->enc == SQLITE_UTF16LE);
/* If the string is UTF-8 encoded and nul terminated, then pMem->n
** must be the length of the string. (Later:) If the database file
** has been corrupted, '\000' characters might have been inserted
** into the middle of the string. In that case, the strlen() might
** be less.
*/
if(pMem->enc == SQLITE_UTF8 && (flags & MEM_Term))
{
assert(strlen(pMem->z) <= pMem->n);
assert(pMem->z[pMem->n] == 0);
}
}
}
else
{
/* Cannot define a string subtype for non-string objects */
assert((pMem->flags & (MEM_Static | MEM_Dyn | MEM_Ephem | MEM_Short)) == 0);
assert(pMem->xDel == 0);
}
/* MEM_Null excludes all other types */
assert((pMem->flags & (MEM_Str | MEM_Int | MEM_Real | MEM_Blob)) == 0
|| (pMem->flags & MEM_Null) == 0);
/* If the MEM is both real and integer, the values are equal */
assert((pMem->flags & (MEM_Int | MEM_Real)) != (MEM_Int | MEM_Real)
|| pMem->r == pMem->u.i);
}
#endif
/* This function is only available internally, it is not part of the
** external API. It works in a similar way to sqlite3_value_text(),
** except the data returned is in the encoding specified by the second
** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
** SQLITE_UTF8.
**
** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
** If that is the case, then the result must be aligned on an even byte
** boundary.
*/
SQLITE_PRIVATE const void *
sqlite3ValueText(sqlite3_value * pVal, u8 enc)
{
if(!pVal)
return 0;
assert(pVal->db == 0 || sqlite3_mutex_held(pVal->db->mutex));
assert((enc & 3) == (enc & ~SQLITE_UTF16_ALIGNED));
if(pVal->flags & MEM_Null)
{
return 0;
}
assert((MEM_Blob >> 3) == MEM_Str);
pVal->flags |= (pVal->flags & MEM_Blob) >> 3;
expandBlob(pVal);
if(pVal->flags & MEM_Str)
{
sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
if((enc & SQLITE_UTF16_ALIGNED) != 0 && 1 == (1 & (long) pVal->z))
{
assert((pVal->flags & (MEM_Ephem | MEM_Static)) != 0);
if(sqlite3VdbeMemMakeWriteable(pVal) != SQLITE_OK)
{
return 0;
}
}
sqlite3VdbeMemNulTerminate(pVal);
}
else
{
assert((pVal->flags & MEM_Blob) == 0);
sqlite3VdbeMemStringify(pVal, enc);
assert(0 == (1 & (int) pVal->z));
}
assert(pVal->enc == (enc & ~SQLITE_UTF16_ALIGNED) || pVal->db == 0
|| pVal->db->mallocFailed);
if(pVal->enc == (enc & ~SQLITE_UTF16_ALIGNED))
{
return pVal->z;
}
else
{
return 0;
}
}
/*
** Create a new sqlite3_value object.
*/
SQLITE_PRIVATE sqlite3_value *
sqlite3ValueNew(sqlite3 * db)
{
Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
if(p)
{
p->flags = MEM_Null;
p->type = SQLITE_NULL;
p->db = db;
}
return p;
}
/*
** Create a new sqlite3_value object, containing the value of pExpr.
**
** This only works for very simple expressions that consist of one constant
** token (i.e. "5", "5.1", "'a string'"). If the expression can
** be converted directly into a value, then the value is allocated and
** a pointer written to *ppVal. The caller is responsible for deallocating
** the value by passing it to sqlite3ValueFree() later on. If the expression
** cannot be converted to a value, then *ppVal is set to NULL.
*/
SQLITE_PRIVATE int
sqlite3ValueFromExpr(sqlite3 * db, /* The database connection */
Expr * pExpr, /* The expression to evaluate */
u8 enc, /* Encoding to use */
u8 affinity, /* Affinity to use */
sqlite3_value ** ppVal /* Write the new value here */
)
{
int op;
char *zVal = 0;
sqlite3_value *pVal = 0;
if(!pExpr)
{
*ppVal = 0;
return SQLITE_OK;
}
op = pExpr->op;
if(op == TK_STRING || op == TK_FLOAT || op == TK_INTEGER)
{
zVal = sqlite3StrNDup((char *) pExpr->token.z, pExpr->token.n);
pVal = sqlite3ValueNew(db);
if(!zVal || !pVal)
goto no_mem;
sqlite3Dequote(zVal);
sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, sqlite3_free);
if((op == TK_INTEGER || op == TK_FLOAT) && affinity == SQLITE_AFF_NONE)
{
sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, enc);
}
else
{
sqlite3ValueApplyAffinity(pVal, affinity, enc);
}
}
else if(op == TK_UMINUS)
{
if(SQLITE_OK == sqlite3ValueFromExpr(db, pExpr->pLeft, enc, affinity, &pVal))
{
pVal->u.i = -1 * pVal->u.i;
pVal->r = -1.0 * pVal->r;
}
}
#ifndef SQLITE_OMIT_BLOB_LITERAL
else if(op == TK_BLOB)
{
int nVal;
assert(pExpr->token.n >= 3);
assert(pExpr->token.z[0] == 'x' || pExpr->token.z[0] == 'X');
assert(pExpr->token.z[1] == '\'');
assert(pExpr->token.z[pExpr->token.n - 1] == '\'');
pVal = sqlite3ValueNew(db);
nVal = pExpr->token.n - 3;
zVal = (char *) pExpr->token.z + 2;
sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal / 2,
0, sqlite3_free);
}
#endif
*ppVal = pVal;
return SQLITE_OK;
no_mem:
db->mallocFailed = 1;
sqlite3_free(zVal);
sqlite3ValueFree(pVal);
*ppVal = 0;
return SQLITE_NOMEM;
}
/*
** Change the string value of an sqlite3_value object
*/
SQLITE_PRIVATE void
sqlite3ValueSetStr(sqlite3_value * v, /* Value to be set */
int n, /* Length of string z */
const void *z, /* Text of the new string */
u8 enc, /* Encoding to use */
void (*xDel) (void *) /* Destructor for the string */
)
{
if(v)
sqlite3VdbeMemSetStr((Mem *) v, z, n, enc, xDel);
}
/*
** Free an sqlite3_value object
*/
SQLITE_PRIVATE void
sqlite3ValueFree(sqlite3_value * v)
{
if(!v)
return;
sqlite3VdbeMemRelease((Mem *) v);
sqlite3_free(v);
}
/*
** Return the number of bytes in the sqlite3_value object assuming
** that it uses the encoding "enc"
*/
SQLITE_PRIVATE int
sqlite3ValueBytes(sqlite3_value * pVal, u8 enc)
{
Mem *p = (Mem *) pVal;
if((p->flags & MEM_Blob) != 0 || sqlite3ValueText(pVal, enc))
{
if(p->flags & MEM_Zero)
{
return p->n + p->u.i;
}
else
{
return p->n;
}
}
return 0;
}
/************** End of vdbemem.c *********************************************/
/************** Begin file vdbeaux.c *****************************************/
/*
** 2003 September 6
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code used for creating, destroying, and populating
** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) Prior
** to version 2.8.7, all this code was combined into the vdbe.c source file.
** But that file was getting too big so this subroutines were split out.
**
*/
/*
** When debugging the code generator in a symbolic debugger, one can
** set the sqlite3VdbeAddopTrace to 1 and all opcodes will be printed
** as they are added to the instruction stream.
*/
#ifdef SQLITE_DEBUG
SQLITE_PRIVATE int sqlite3VdbeAddopTrace = 0;
#endif
/*
** Create a new virtual database engine.
*/
SQLITE_PRIVATE Vdbe *
sqlite3VdbeCreate(sqlite3 * db)
{
Vdbe *p;
p = sqlite3DbMallocZero(db, sizeof(Vdbe));
if(p == 0)
return 0;
p->db = db;
if(db->pVdbe)
{
db->pVdbe->pPrev = p;
}
p->pNext = db->pVdbe;
p->pPrev = 0;
db->pVdbe = p;
p->magic = VDBE_MAGIC_INIT;
return p;
}
/*
** Remember the SQL string for a prepared statement.
*/
SQLITE_PRIVATE void
sqlite3VdbeSetSql(Vdbe * p, const char *z, int n)
{
if(p == 0)
return;
assert(p->zSql == 0);
p->zSql = sqlite3DbStrNDup(p->db, z, n);
}
/*
** Return the SQL associated with a prepared statement
*/
SQLITE_API const char *
sqlite3_sql(sqlite3_stmt * pStmt)
{
return ((Vdbe *) pStmt)->zSql;
}
/*
** Swap all content between two VDBE structures.
*/
SQLITE_PRIVATE void
sqlite3VdbeSwap(Vdbe * pA, Vdbe * pB)
{
Vdbe tmp, *pTmp;
char *zTmp;
int nTmp;
tmp = *pA;
*pA = *pB;
*pB = tmp;
pTmp = pA->pNext;
pA->pNext = pB->pNext;
pB->pNext = pTmp;
pTmp = pA->pPrev;
pA->pPrev = pB->pPrev;
pB->pPrev = pTmp;
zTmp = pA->zSql;
pA->zSql = pB->zSql;
pB->zSql = zTmp;
nTmp = pA->nSql;
pA->nSql = pB->nSql;
pB->nSql = nTmp;
}
#ifdef SQLITE_DEBUG
/*
** Turn tracing on or off
*/
SQLITE_PRIVATE void
sqlite3VdbeTrace(Vdbe * p, FILE * trace)
{
p->trace = trace;
}
#endif
/*
** Resize the Vdbe.aOp array so that it contains at least N
** elements.
**
** If an out-of-memory error occurs while resizing the array,
** Vdbe.aOp and Vdbe.nOpAlloc remain unchanged (this is so that
** any opcodes already allocated can be correctly deallocated
** along with the rest of the Vdbe).
*/
static void
resizeOpArray(Vdbe * p, int N)
{
VdbeOp *pNew;
pNew = sqlite3DbRealloc(p->db, p->aOp, N * sizeof(Op));
if(pNew)
{
p->nOpAlloc = N;
p->aOp = pNew;
}
}
/*
** Add a new instruction to the list of instructions current in the
** VDBE. Return the address of the new instruction.
**
** Parameters:
**
** p Pointer to the VDBE
**
** op The opcode for this instruction
**
** p1, p2, p3 Operands
**
** Use the sqlite3VdbeResolveLabel() function to fix an address and
** the sqlite3VdbeChangeP4() function to change the value of the P4
** operand.
*/
SQLITE_PRIVATE int
sqlite3VdbeAddOp3(Vdbe * p, int op, int p1, int p2, int p3)
{
int i;
VdbeOp *pOp;
i = p->nOp;
assert(p->magic == VDBE_MAGIC_INIT);
if(p->nOpAlloc <= i)
{
resizeOpArray(p, p->nOpAlloc ? p->nOpAlloc * 2 : 1024 / sizeof(Op));
if(p->db->mallocFailed)
{
return 0;
}
}
p->nOp++;
pOp = &p->aOp[i];
pOp->opcode = op;
pOp->p5 = 0;
pOp->p1 = p1;
pOp->p2 = p2;
pOp->p3 = p3;
pOp->p4.p = 0;
pOp->p4type = P4_NOTUSED;
p->expired = 0;
#ifdef SQLITE_DEBUG
pOp->zComment = 0;
if(sqlite3VdbeAddopTrace)
sqlite3VdbePrintOp(0, i, &p->aOp[i]);
#endif
#ifdef VDBE_PROFILE
pOp->cycles = 0;
pOp->cnt = 0;
#endif
return i;
}
SQLITE_PRIVATE int
sqlite3VdbeAddOp0(Vdbe * p, int op)
{
return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
}
SQLITE_PRIVATE int
sqlite3VdbeAddOp1(Vdbe * p, int op, int p1)
{
return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
}
SQLITE_PRIVATE int
sqlite3VdbeAddOp2(Vdbe * p, int op, int p1, int p2)
{
return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
}
/*
** Add an opcode that includes the p4 value as a pointer.
*/
SQLITE_PRIVATE int
sqlite3VdbeAddOp4(Vdbe * p, /* Add the opcode to this VM */
int op, /* The new opcode */
int p1, /* The P1 operand */
int p2, /* The P2 operand */
int p3, /* The P3 operand */
const char *zP4, /* The P4 operand */
int p4type /* P4 operand type */
)
{
int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
sqlite3VdbeChangeP4(p, addr, zP4, p4type);
return addr;
}
/*
** Create a new symbolic label for an instruction that has yet to be
** coded. The symbolic label is really just a negative number. The
** label can be used as the P2 value of an operation. Later, when
** the label is resolved to a specific address, the VDBE will scan
** through its operation list and change all values of P2 which match
** the label into the resolved address.
**
** The VDBE knows that a P2 value is a label because labels are
** always negative and P2 values are suppose to be non-negative.
** Hence, a negative P2 value is a label that has yet to be resolved.
**
** Zero is returned if a malloc() fails.
*/
SQLITE_PRIVATE int
sqlite3VdbeMakeLabel(Vdbe * p)
{
int i;
i = p->nLabel++;
assert(p->magic == VDBE_MAGIC_INIT);
if(i >= p->nLabelAlloc)
{
p->nLabelAlloc = p->nLabelAlloc * 2 + 10;
p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
p->nLabelAlloc * sizeof(p->aLabel[0]));
}
if(p->aLabel)
{
p->aLabel[i] = -1;
}
return -1 - i;
}
/*
** Resolve label "x" to be the address of the next instruction to
** be inserted. The parameter "x" must have been obtained from
** a prior call to sqlite3VdbeMakeLabel().
*/
SQLITE_PRIVATE void
sqlite3VdbeResolveLabel(Vdbe * p, int x)
{
int j = -1 - x;
assert(p->magic == VDBE_MAGIC_INIT);
assert(j >= 0 && j < p->nLabel);
if(p->aLabel)
{
p->aLabel[j] = p->nOp;
}
}
/*
** Loop through the program looking for P2 values that are negative
** on jump instructions. Each such value is a label. Resolve the
** label by setting the P2 value to its correct non-zero value.
**
** This routine is called once after all opcodes have been inserted.
**
** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument
** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by
** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
**
** This routine also does the following optimization: It scans for
** instructions that might cause a statement rollback. Such instructions
** are:
**
** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
** * OP_Destroy
** * OP_VUpdate
** * OP_VRename
**
** If no such instruction is found, then every Statement instruction
** is changed to a Noop. In this way, we avoid creating the statement
** journal file unnecessarily.
*/
static void
resolveP2Values(Vdbe * p, int *pMaxFuncArgs)
{
int i;
int nMaxArgs = 0;
Op *pOp;
int *aLabel = p->aLabel;
int doesStatementRollback = 0;
int hasStatementBegin = 0;
for (pOp = p->aOp, i = p->nOp - 1; i >= 0; i--, pOp++)
{
u8 opcode = pOp->opcode;
if(opcode == OP_Function)
{
if(pOp->p5 > nMaxArgs)
nMaxArgs = pOp->p5;
}
else if(opcode == OP_AggStep
#ifndef SQLITE_OMIT_VIRTUALTABLE
|| opcode == OP_VUpdate
#endif
)
{
if(pOp->p2 > nMaxArgs)
nMaxArgs = pOp->p2;
}
if(opcode == OP_Halt)
{
if(pOp->p1 == SQLITE_CONSTRAINT && pOp->p2 == OE_Abort)
{
doesStatementRollback = 1;
}
}
else if(opcode == OP_Statement)
{
hasStatementBegin = 1;
}
else if(opcode == OP_Destroy)
{
doesStatementRollback = 1;
#ifndef SQLITE_OMIT_VIRTUALTABLE
}
else if(opcode == OP_VUpdate || opcode == OP_VRename)
{
doesStatementRollback = 1;
}
else if(opcode == OP_VFilter)
{
int n;
assert(p->nOp - i >= 3);
assert(pOp[-1].opcode == OP_Integer);
n = pOp[-1].p1;
if(n > nMaxArgs)
nMaxArgs = n;
#endif
}
if(sqlite3VdbeOpcodeHasProperty(opcode, OPFLG_JUMP) && pOp->p2 < 0)
{
assert(-1 - pOp->p2 < p->nLabel);
pOp->p2 = aLabel[-1 - pOp->p2];
}
}
sqlite3_free(p->aLabel);
p->aLabel = 0;
*pMaxFuncArgs = nMaxArgs;
/* If we never rollback a statement transaction, then statement
** transactions are not needed. So change every OP_Statement
** opcode into an OP_Noop. This avoid a call to sqlite3OsOpenExclusive()
** which can be expensive on some platforms.
*/
if(hasStatementBegin && !doesStatementRollback)
{
for (pOp = p->aOp, i = p->nOp - 1; i >= 0; i--, pOp++)
{
if(pOp->opcode == OP_Statement)
{
pOp->opcode = OP_Noop;
}
}
}
}
/*
** Return the address of the next instruction to be inserted.
*/
SQLITE_PRIVATE int
sqlite3VdbeCurrentAddr(Vdbe * p)
{
assert(p->magic == VDBE_MAGIC_INIT);
return p->nOp;
}
/*
** Add a whole list of operations to the operation stack. Return the
** address of the first operation added.
*/
SQLITE_PRIVATE int
sqlite3VdbeAddOpList(Vdbe * p, int nOp, VdbeOpList const *aOp)
{
int addr;
assert(p->magic == VDBE_MAGIC_INIT);
if(p->nOp + nOp > p->nOpAlloc)
{
resizeOpArray(p, p->nOpAlloc ? p->nOpAlloc * 2 : 1024 / sizeof(Op));
assert(p->nOp + nOp <= p->nOpAlloc || p->db->mallocFailed);
}
if(p->db->mallocFailed)
{
return 0;
}
addr = p->nOp;
if(nOp > 0)
{
int i;
VdbeOpList const *pIn = aOp;
for (i = 0; i < nOp; i++, pIn++)
{
int p2 = pIn->p2;
VdbeOp *pOut = &p->aOp[i + addr];
pOut->opcode = pIn->opcode;
pOut->p1 = pIn->p1;
if(p2 < 0 && sqlite3VdbeOpcodeHasProperty(pOut->opcode, OPFLG_JUMP))
{
pOut->p2 = addr + ADDR(p2);
}
else
{
pOut->p2 = p2;
}
pOut->p3 = pIn->p3;
pOut->p4type = P4_NOTUSED;
pOut->p4.p = 0;
pOut->p5 = 0;
#ifdef SQLITE_DEBUG
pOut->zComment = 0;
if(sqlite3VdbeAddopTrace)
{
sqlite3VdbePrintOp(0, i + addr, &p->aOp[i + addr]);
}
#endif
}
p->nOp += nOp;
}
return addr;
}
/*
** Change the value of the P1 operand for a specific instruction.
** This routine is useful when a large program is loaded from a
** static array using sqlite3VdbeAddOpList but we want to make a
** few minor changes to the program.
*/
SQLITE_PRIVATE void
sqlite3VdbeChangeP1(Vdbe * p, int addr, int val)
{
assert(p == 0 || p->magic == VDBE_MAGIC_INIT);
if(p && addr >= 0 && p->nOp > addr && p->aOp)
{
p->aOp[addr].p1 = val;
}
}
/*
** Change the value of the P2 operand for a specific instruction.
** This routine is useful for setting a jump destination.
*/
SQLITE_PRIVATE void
sqlite3VdbeChangeP2(Vdbe * p, int addr, int val)
{
assert(p == 0 || p->magic == VDBE_MAGIC_INIT);
if(p && addr >= 0 && p->nOp > addr && p->aOp)
{
p->aOp[addr].p2 = val;
}
}
/*
** Change the value of the P3 operand for a specific instruction.
*/
SQLITE_PRIVATE void
sqlite3VdbeChangeP3(Vdbe * p, int addr, int val)
{
assert(p == 0 || p->magic == VDBE_MAGIC_INIT);
if(p && addr >= 0 && p->nOp > addr && p->aOp)
{
p->aOp[addr].p3 = val;
}
}
/*
** Change the value of the P5 operand for the most recently
** added operation.
*/
SQLITE_PRIVATE void
sqlite3VdbeChangeP5(Vdbe * p, u8 val)
{
assert(p == 0 || p->magic == VDBE_MAGIC_INIT);
if(p && p->aOp)
{
assert(p->nOp > 0);
p->aOp[p->nOp - 1].p5 = val;
}
}
/*
** Change the P2 operand of instruction addr so that it points to
** the address of the next instruction to be coded.
*/
SQLITE_PRIVATE void
sqlite3VdbeJumpHere(Vdbe * p, int addr)
{
sqlite3VdbeChangeP2(p, addr, p->nOp);
}
/*
** If the input FuncDef structure is ephemeral, then free it. If
** the FuncDef is not ephermal, then do nothing.
*/
static void
freeEphemeralFunction(FuncDef * pDef)
{
if(pDef && (pDef->flags & SQLITE_FUNC_EPHEM) != 0)
{
sqlite3_free(pDef);
}
}
/*
** Delete a P4 value if necessary.
*/
static void
freeP4(int p4type, void *p3)
{
if(p3)
{
switch (p4type)
{
case P4_REAL:
case P4_INT64:
case P4_MPRINTF:
case P4_DYNAMIC:
case P4_KEYINFO:
case P4_KEYINFO_HANDOFF:
{
sqlite3_free(p3);
break;
}
case P4_VDBEFUNC:
{
VdbeFunc *pVdbeFunc = (VdbeFunc *) p3;
freeEphemeralFunction(pVdbeFunc->pFunc);
sqlite3VdbeDeleteAuxData(pVdbeFunc, 0);
sqlite3_free(pVdbeFunc);
break;
}
case P4_FUNCDEF:
{
freeEphemeralFunction((FuncDef *) p3);
break;
}
case P4_MEM:
{
sqlite3ValueFree((sqlite3_value *) p3);
break;
}
}
}
}
/*
** Change N opcodes starting at addr to No-ops.
*/
SQLITE_PRIVATE void
sqlite3VdbeChangeToNoop(Vdbe * p, int addr, int N)
{
if(p && p->aOp)
{
VdbeOp *pOp = &p->aOp[addr];
while (N--)
{
freeP4(pOp->p4type, pOp->p4.p);
memset(pOp, 0, sizeof(pOp[0]));
pOp->opcode = OP_Noop;
pOp++;
}
}
}
/*
** Change the value of the P4 operand for a specific instruction.
** This routine is useful when a large program is loaded from a
** static array using sqlite3VdbeAddOpList but we want to make a
** few minor changes to the program.
**
** If n>=0 then the P4 operand is dynamic, meaning that a copy of
** the string is made into memory obtained from sqlite3_malloc().
** A value of n==0 means copy bytes of zP4 up to and including the
** first null byte. If n>0 then copy n+1 bytes of zP4.
**
** If n==P4_KEYINFO it means that zP4 is a pointer to a KeyInfo structure.
** A copy is made of the KeyInfo structure into memory obtained from
** sqlite3_malloc, to be freed when the Vdbe is finalized.
** n==P4_KEYINFO_HANDOFF indicates that zP4 points to a KeyInfo structure
** stored in memory that the caller has obtained from sqlite3_malloc. The
** caller should not free the allocation, it will be freed when the Vdbe is
** finalized.
**
** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
** to a string or structure that is guaranteed to exist for the lifetime of
** the Vdbe. In these cases we can just copy the pointer.
**
** If addr<0 then change P4 on the most recently inserted instruction.
*/
SQLITE_PRIVATE void
sqlite3VdbeChangeP4(Vdbe * p, int addr, const char *zP4, int n)
{
Op *pOp;
assert(p != 0);
assert(p->magic == VDBE_MAGIC_INIT);
if(p->aOp == 0 || p->db->mallocFailed)
{
if(n != P4_KEYINFO)
{
freeP4(n, (void *) *(char **) &zP4);
}
return;
}
assert(addr < p->nOp);
if(addr < 0)
{
addr = p->nOp - 1;
if(addr < 0)
return;
}
pOp = &p->aOp[addr];
freeP4(pOp->p4type, pOp->p4.p);
pOp->p4.p = 0;
if(n == P4_INT32)
{
/* Note: this cast is safe, because the origin data point was an int
** that was cast to a (const char *). */
pOp->p4.i = (long int) zP4;
pOp->p4type = n;
}
else if(zP4 == 0)
{
pOp->p4.p = 0;
pOp->p4type = P4_NOTUSED;
}
else if(n == P4_KEYINFO)
{
KeyInfo *pKeyInfo;
int nField, nByte;
nField = ((KeyInfo *) zP4)->nField;
nByte = sizeof(*pKeyInfo) + (nField - 1) * sizeof(pKeyInfo->aColl[0]) + nField;
pKeyInfo = sqlite3_malloc(nByte);
pOp->p4.pKeyInfo = pKeyInfo;
if(pKeyInfo)
{
memcpy(pKeyInfo, zP4, nByte);
/* In the current implementation, P4_KEYINFO is only ever used on
** KeyInfo structures that have no aSortOrder component. Elements
** with an aSortOrder always use P4_KEYINFO_HANDOFF. So we do not
** need to bother with duplicating the aSortOrder. */
assert(pKeyInfo->aSortOrder == 0);
#if 0
aSortOrder = pKeyInfo->aSortOrder;
if(aSortOrder)
{
pKeyInfo->aSortOrder = (unsigned char *) &pKeyInfo->aColl[nField];
memcpy(pKeyInfo->aSortOrder, aSortOrder, nField);
}
#endif
pOp->p4type = P4_KEYINFO;
}
else
{
p->db->mallocFailed = 1;
pOp->p4type = P4_NOTUSED;
}
}
else if(n == P4_KEYINFO_HANDOFF)
{
pOp->p4.p = (void *) zP4;
pOp->p4type = P4_KEYINFO;
}
else if(n < 0)
{
pOp->p4.p = (void *) zP4;
pOp->p4type = n;
}
else
{
if(n == 0)
n = strlen(zP4);
pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
pOp->p4type = P4_DYNAMIC;
}
}
#ifndef NDEBUG
/*
** Change the comment on the the most recently coded instruction.
*/
SQLITE_PRIVATE void
sqlite3VdbeComment(Vdbe * p, const char *zFormat, ...)
{
va_list ap;
assert(p->nOp > 0 || p->aOp == 0);
assert(p->aOp == 0 || p->aOp[p->nOp - 1].zComment == 0 || p->db->mallocFailed);
if(p->nOp)
{
char **pz = &p->aOp[p->nOp - 1].zComment;
va_start(ap, zFormat);
sqlite3_free(*pz);
*pz = sqlite3VMPrintf(p->db, zFormat, ap);
va_end(ap);
}
}
#endif
/*
** Return the opcode for a given address.
*/
SQLITE_PRIVATE VdbeOp *
sqlite3VdbeGetOp(Vdbe * p, int addr)
{
assert(p->magic == VDBE_MAGIC_INIT);
assert((addr >= 0 && addr < p->nOp) || p->db->mallocFailed);
return ((addr >= 0 && addr < p->nOp) ? (&p->aOp[addr]) : 0);
}
#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
|| defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
/*
** Compute a string that describes the P4 parameter for an opcode.
** Use zTemp for any required temporary buffer space.
*/
static char *
displayP4(Op * pOp, char *zTemp, int nTemp)
{
char *zP4 = zTemp;
assert(nTemp >= 20);
switch (pOp->p4type)
{
case P4_KEYINFO:
{
int i, j;
KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField);
i = strlen(zTemp);
for (j = 0; j < pKeyInfo->nField; j++)
{
CollSeq *pColl = pKeyInfo->aColl[j];
if(pColl)
{
int n = strlen(pColl->zName);
if(i + n > nTemp - 6)
{
memcpy(&zTemp[i], ",...", 4);
break;
}
zTemp[i++] = ',';
if(pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j])
{
zTemp[i++] = '-';
}
memcpy(&zTemp[i], pColl->zName, n + 1);
i += n;
}
else if(i + 4 < nTemp - 6)
{
memcpy(&zTemp[i], ",nil", 4);
i += 4;
}
}
zTemp[i++] = ')';
zTemp[i] = 0;
assert(i < nTemp);
break;
}
case P4_COLLSEQ:
{
CollSeq *pColl = pOp->p4.pColl;
sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName);
break;
}
case P4_FUNCDEF:
{
FuncDef *pDef = pOp->p4.pFunc;
sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
break;
}
case P4_INT64:
{
sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64);
break;
}
case P4_INT32:
{
sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i);
break;
}
case P4_REAL:
{
sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal);
break;
}
case P4_MEM:
{
Mem *pMem = pOp->p4.pMem;
assert((pMem->flags & MEM_Null) == 0);
if(pMem->flags & MEM_Str)
{
zP4 = pMem->z;
}
else if(pMem->flags & MEM_Int)
{
sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
}
else if(pMem->flags & MEM_Real)
{
sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r);
}
break;
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
case P4_VTAB:
{
sqlite3_vtab *pVtab = pOp->p4.pVtab;
sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule);
break;
}
#endif
default:
{
zP4 = pOp->p4.z;
if(zP4 == 0)
{
zP4 = zTemp;
zTemp[0] = 0;
}
}
}
assert(zP4 != 0);
return zP4;
}
#endif
/*
** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
**
*/
SQLITE_PRIVATE void
sqlite3VdbeUsesBtree(Vdbe * p, int i)
{
int mask;
assert(i >= 0 && i < p->db->nDb);
assert(i < sizeof(p->btreeMask) * 8);
mask = 1 << i;
if((p->btreeMask & mask) == 0)
{
p->btreeMask |= mask;
sqlite3BtreeMutexArrayInsert(&p->aMutex, p->db->aDb[i].pBt);
}
}
#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
/*
** Print a single opcode. This routine is used for debugging only.
*/
SQLITE_PRIVATE void
sqlite3VdbePrintOp(FILE * pOut, int pc, Op * pOp)
{
char *zP4;
char zPtr[50];
static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-4s %.2X %s\n";
if(pOut == 0)
pOut = stdout;
zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
fprintf(pOut, zFormat1, pc,
sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
#ifdef SQLITE_DEBUG
pOp->zComment ? pOp->zComment : ""
#else
""
#endif
);
fflush(pOut);
}
#endif
/*
** Release an array of N Mem elements
*/
static void
releaseMemArray(Mem * p, int N, int freebuffers)
{
if(p && N)
{
sqlite3 *db = p->db;
int malloc_failed = db->mallocFailed;
while (N-- > 0)
{
assert(N < 2 || p[0].db == p[1].db);
if(freebuffers)
{
sqlite3VdbeMemRelease(p);
}
else
{
sqlite3VdbeMemReleaseExternal(p);
}
p->flags = MEM_Null;
p++;
}
db->mallocFailed = malloc_failed;
}
}
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
SQLITE_PRIVATE int
sqlite3VdbeReleaseBuffers(Vdbe * p)
{
int ii;
int nFree = 0;
assert(sqlite3_mutex_held(p->db->mutex));
for (ii = 1; ii <= p->nMem; ii++)
{
Mem *pMem = &p->aMem[ii];
if(pMem->z && pMem->flags & MEM_Dyn)
{
assert(!pMem->xDel);
nFree += sqlite3MallocSize(pMem->z);
sqlite3VdbeMemRelease(pMem);
}
}
return nFree;
}
#endif
#ifndef SQLITE_OMIT_EXPLAIN
/*
** Give a listing of the program in the virtual machine.
**
** The interface is the same as sqlite3VdbeExec(). But instead of
** running the code, it invokes the callback once for each instruction.
** This feature is used to implement "EXPLAIN".
**
** When p->explain==1, each instruction is listed. When
** p->explain==2, only OP_Explain instructions are listed and these
** are shown in a different format. p->explain==2 is used to implement
** EXPLAIN QUERY PLAN.
*/
SQLITE_PRIVATE int
sqlite3VdbeList(Vdbe * p /* The VDBE */
)
{
sqlite3 *db = p->db;
int i;
int rc = SQLITE_OK;
Mem *pMem = p->pResultSet = &p->aMem[1];
assert(p->explain);
if(p->magic != VDBE_MAGIC_RUN)
return SQLITE_MISUSE;
assert(db->magic == SQLITE_MAGIC_BUSY);
assert(p->rc == SQLITE_OK || p->rc == SQLITE_BUSY);
/* Even though this opcode does not use dynamic strings for
** the result, result columns may become dynamic if the user calls
** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
*/
releaseMemArray(pMem, p->nMem, 1);
do
{
i = p->pc++;
}
while (i < p->nOp && p->explain == 2 && p->aOp[i].opcode != OP_Explain);
if(i >= p->nOp)
{
p->rc = SQLITE_OK;
rc = SQLITE_DONE;
}
else if(db->u1.isInterrupted)
{
p->rc = SQLITE_INTERRUPT;
rc = SQLITE_ERROR;
sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(p->rc), (char *) 0);
}
else
{
char *z;
Op *pOp = &p->aOp[i];
if(p->explain == 1)
{
pMem->flags = MEM_Int;
pMem->type = SQLITE_INTEGER;
pMem->u.i = i; /* Program counter */
pMem++;
pMem->flags = MEM_Static | MEM_Str | MEM_Term;
pMem->z = (char *) sqlite3OpcodeName(pOp->opcode); /* Opcode */
assert(pMem->z != 0);
pMem->n = strlen(pMem->z);
pMem->type = SQLITE_TEXT;
pMem->enc = SQLITE_UTF8;
pMem++;
}
pMem->flags = MEM_Int;
pMem->u.i = pOp->p1; /* P1 */
pMem->type = SQLITE_INTEGER;
pMem++;
pMem->flags = MEM_Int;
pMem->u.i = pOp->p2; /* P2 */
pMem->type = SQLITE_INTEGER;
pMem++;
if(p->explain == 1)
{
pMem->flags = MEM_Int;
pMem->u.i = pOp->p3; /* P3 */
pMem->type = SQLITE_INTEGER;
pMem++;
}
if(sqlite3VdbeMemGrow(pMem, 32, 0))
{ /* P4 */
p->db->mallocFailed = 1;
return SQLITE_NOMEM;
}
pMem->flags = MEM_Dyn | MEM_Str | MEM_Term;
z = displayP4(pOp, pMem->z, 32);
if(z != pMem->z)
{
sqlite3VdbeMemSetStr(pMem, z, -1, SQLITE_UTF8, 0);
}
else
{
assert(pMem->z != 0);
pMem->n = strlen(pMem->z);
pMem->enc = SQLITE_UTF8;
}
pMem->type = SQLITE_TEXT;
pMem++;
if(p->explain == 1)
{
if(sqlite3VdbeMemGrow(pMem, 4, 0))
{
p->db->mallocFailed = 1;
return SQLITE_NOMEM;
}
pMem->flags = MEM_Dyn | MEM_Str | MEM_Term;
pMem->n = 2;
sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */
pMem->type = SQLITE_TEXT;
pMem->enc = SQLITE_UTF8;
pMem++;
#ifdef SQLITE_DEBUG
if(pOp->zComment)
{
pMem->flags = MEM_Str | MEM_Term;
pMem->z = pOp->zComment;
pMem->n = strlen(pMem->z);
pMem->enc = SQLITE_UTF8;
}
else
#endif
{
pMem->flags = MEM_Null; /* Comment */
pMem->type = SQLITE_NULL;
}
}
p->nResColumn = 8 - 5 * (p->explain - 1);
p->rc = SQLITE_OK;
rc = SQLITE_ROW;
}
return rc;
}
#endif /* SQLITE_OMIT_EXPLAIN */
#ifdef SQLITE_DEBUG
/*
** Print the SQL that was used to generate a VDBE program.
*/
SQLITE_PRIVATE void
sqlite3VdbePrintSql(Vdbe * p)
{
int nOp = p->nOp;
VdbeOp *pOp;
if(nOp < 1)
return;
pOp = &p->aOp[0];
if(pOp->opcode == OP_Trace && pOp->p4.z != 0)
{
const char *z = pOp->p4.z;
while (isspace(*(u8 *) z))
z++;
printf("SQL: [%s]\n", z);
}
}
#endif
#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
/*
** Print an IOTRACE message showing SQL content.
*/
SQLITE_PRIVATE void
sqlite3VdbeIOTraceSql(Vdbe * p)
{
int nOp = p->nOp;
VdbeOp *pOp;
if(sqlite3IoTrace == 0)
return;
if(nOp < 1)
return;
pOp = &p->aOp[0];
if(pOp->opcode == OP_Trace && pOp->p4.z != 0)
{
int i, j;
char z[1000];
sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
for (i = 0; isspace((unsigned char) z[i]); i++)
{
}
for (j = 0; z[i]; i++)
{
if(isspace((unsigned char) z[i]))
{
if(z[i - 1] != ' ')
{
z[j++] = ' ';
}
}
else
{
z[j++] = z[i];
}
}
z[j] = 0;
sqlite3IoTrace("SQL %s\n", z);
}
}
#endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
/*
** Prepare a virtual machine for execution. This involves things such
** as allocating stack space and initializing the program counter.
** After the VDBE has be prepped, it can be executed by one or more
** calls to sqlite3VdbeExec().
**
** This is the only way to move a VDBE from VDBE_MAGIC_INIT to
** VDBE_MAGIC_RUN.
*/
SQLITE_PRIVATE void
sqlite3VdbeMakeReady(Vdbe * p, /* The VDBE */
int nVar, /* Number of '?' see in the SQL statement */
int nMem, /* Number of memory cells to allocate */
int nCursor, /* Number of cursors to allocate */
int isExplain /* True if the EXPLAIN keywords is present */
)
{
int n;
sqlite3 *db = p->db;
assert(p != 0);
assert(p->magic == VDBE_MAGIC_INIT);
/* There should be at least one opcode.
*/
assert(p->nOp > 0);
/* Set the magic to VDBE_MAGIC_RUN sooner rather than later. This
* is because the call to resizeOpArray() below may shrink the
* p->aOp[] array to save memory if called when in VDBE_MAGIC_RUN
* state.
*/
p->magic = VDBE_MAGIC_RUN;
/* For each cursor required, also allocate a memory cell. Memory
** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
** the vdbe program. Instead they are used to allocate space for
** Cursor/BtCursor structures. The blob of memory associated with
** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
** stores the blob of memory associated with cursor 1, etc.
**
** See also: allocateCursor().
*/
nMem += nCursor;
/*
** Allocation space for registers.
*/
if(p->aMem == 0)
{
int nArg; /* Maximum number of args passed to a user function. */
resolveP2Values(p, &nArg);
/*resizeOpArray(p, p->nOp); */
assert(nVar >= 0);
if(isExplain && nMem < 10)
{
p->nMem = nMem = 10;
}
p->aMem = sqlite3DbMallocZero(db, nMem * sizeof(Mem) /* aMem */
+ nVar * sizeof(Mem) /* aVar */
+ nArg * sizeof(Mem *) /* apArg */
+ nVar * sizeof(char *) /* azVar */
+ nCursor * sizeof(Cursor *) + 1 /* apCsr */
);
if(!db->mallocFailed)
{
p->aMem--; /* aMem[] goes from 1..nMem */
p->nMem = nMem; /* not from 0..nMem-1 */
p->aVar = &p->aMem[nMem + 1];
p->nVar = nVar;
p->okVar = 0;
p->apArg = (Mem **) & p->aVar[nVar];
p->azVar = (char **) &p->apArg[nArg];
p->apCsr = (Cursor **) & p->azVar[nVar];
p->nCursor = nCursor;
for (n = 0; n < nVar; n++)
{
p->aVar[n].flags = MEM_Null;
p->aVar[n].db = db;
}
for (n = 1; n <= nMem; n++)
{
p->aMem[n].flags = MEM_Null;
p->aMem[n].db = db;
}
}
}
#ifdef SQLITE_DEBUG
for (n = 1; n < p->nMem; n++)
{
assert(p->aMem[n].db == db);
}
#endif
p->pc = -1;
p->rc = SQLITE_OK;
p->uniqueCnt = 0;
p->returnDepth = 0;
p->errorAction = OE_Abort;
p->explain |= isExplain;
p->magic = VDBE_MAGIC_RUN;
p->nChange = 0;
p->cacheCtr = 1;
p->minWriteFileFormat = 255;
p->openedStatement = 0;
#ifdef VDBE_PROFILE
{
int i;
for (i = 0; i < p->nOp; i++)
{
p->aOp[i].cnt = 0;
p->aOp[i].cycles = 0;
}
}
#endif
}
/*
** Close a VDBE cursor and release all the resources that cursor
** happens to hold.
*/
SQLITE_PRIVATE void
sqlite3VdbeFreeCursor(Vdbe * p, Cursor * pCx)
{
if(pCx == 0)
{
return;
}
if(pCx->pCursor)
{
sqlite3BtreeCloseCursor(pCx->pCursor);
}
if(pCx->pBt)
{
sqlite3BtreeClose(pCx->pBt);
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
if(pCx->pVtabCursor)
{
sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
const sqlite3_module *pModule = pCx->pModule;
p->inVtabMethod = 1;
(void) sqlite3SafetyOff(p->db);
pModule->xClose(pVtabCursor);
(void) sqlite3SafetyOn(p->db);
p->inVtabMethod = 0;
}
#endif
if(!pCx->ephemPseudoTable)
{
sqlite3_free(pCx->pData);
}
/* memset(pCx, 0, sizeof(Cursor)); */
/* sqlite3_free(pCx->aType); */
/* sqlite3_free(pCx); */
}
/*
** Close all cursors except for VTab cursors that are currently
** in use.
*/
static void
closeAllCursorsExceptActiveVtabs(Vdbe * p)
{
int i;
if(p->apCsr == 0)
return;
for (i = 0; i < p->nCursor; i++)
{
Cursor *pC = p->apCsr[i];
if(pC && (!p->inVtabMethod || !pC->pVtabCursor))
{
sqlite3VdbeFreeCursor(p, pC);
p->apCsr[i] = 0;
}
}
}
/*
** Clean up the VM after execution.
**
** This routine will automatically close any cursors, lists, and/or
** sorters that were left open. It also deletes the values of
** variables in the aVar[] array.
*/
static void
Cleanup(Vdbe * p, int freebuffers)
{
int i;
closeAllCursorsExceptActiveVtabs(p);
for (i = 1; i <= p->nMem; i++)
{
MemSetTypeFlag(&p->aMem[i], MEM_Null);
}
releaseMemArray(&p->aMem[1], p->nMem, freebuffers);
sqlite3VdbeFifoClear(&p->sFifo);
if(p->contextStack)
{
for (i = 0; i < p->contextStackTop; i++)
{
sqlite3VdbeFifoClear(&p->contextStack[i].sFifo);
}
sqlite3_free(p->contextStack);
}
p->contextStack = 0;
p->contextStackDepth = 0;
p->contextStackTop = 0;
sqlite3_free(p->zErrMsg);
p->zErrMsg = 0;
p->pResultSet = 0;
}
/*
** Set the number of result columns that will be returned by this SQL
** statement. This is now set at compile time, rather than during
** execution of the vdbe program so that sqlite3_column_count() can
** be called on an SQL statement before sqlite3_step().
*/
SQLITE_PRIVATE void
sqlite3VdbeSetNumCols(Vdbe * p, int nResColumn)
{
Mem *pColName;
int n;
releaseMemArray(p->aColName, p->nResColumn * COLNAME_N, 1);
sqlite3_free(p->aColName);
n = nResColumn * COLNAME_N;
p->nResColumn = nResColumn;
p->aColName = pColName = (Mem *) sqlite3DbMallocZero(p->db, sizeof(Mem) * n);
if(p->aColName == 0)
return;
while (n-- > 0)
{
pColName->flags = MEM_Null;
pColName->db = p->db;
pColName++;
}
}
/*
** Set the name of the idx'th column to be returned by the SQL statement.
** zName must be a pointer to a nul terminated string.
**
** This call must be made after a call to sqlite3VdbeSetNumCols().
**
** If N==P4_STATIC it means that zName is a pointer to a constant static
** string and we can just copy the pointer. If it is P4_DYNAMIC, then
** the string is freed using sqlite3_free() when the vdbe is finished with
** it. Otherwise, N bytes of zName are copied.
*/
SQLITE_PRIVATE int
sqlite3VdbeSetColName(Vdbe * p, int idx, int var, const char *zName, int N)
{
int rc;
Mem *pColName;
assert(idx < p->nResColumn);
assert(var < COLNAME_N);
if(p->db->mallocFailed)
return SQLITE_NOMEM;
assert(p->aColName != 0);
pColName = &(p->aColName[idx + var * p->nResColumn]);
if(N == P4_DYNAMIC || N == P4_STATIC)
{
rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, SQLITE_STATIC);
}
else
{
rc = sqlite3VdbeMemSetStr(pColName, zName, N, SQLITE_UTF8, SQLITE_TRANSIENT);
}
if(rc == SQLITE_OK && N == P4_DYNAMIC)
{
pColName->flags &= (~MEM_Static);
pColName->zMalloc = pColName->z;
}
return rc;
}
/*
** A read or write transaction may or may not be active on database handle
** db. If a transaction is active, commit it. If there is a
** write-transaction spanning more than one database file, this routine
** takes care of the master journal trickery.
*/
static int
vdbeCommit(sqlite3 * db)
{
int i;
int nTrans = 0; /* Number of databases with an active write-transaction */
int rc = SQLITE_OK;
int needXcommit = 0;
/* Before doing anything else, call the xSync() callback for any
** virtual module tables written in this transaction. This has to
** be done before determining whether a master journal file is
** required, as an xSync() callback may add an attached database
** to the transaction.
*/
rc = sqlite3VtabSync(db, rc);
if(rc != SQLITE_OK)
{
return rc;
}
/* This loop determines (a) if the commit hook should be invoked and
** (b) how many database files have open write transactions, not
** including the temp database. (b) is important because if more than
** one database file has an open write transaction, a master journal
** file is required for an atomic commit.
*/
for (i = 0; i < db->nDb; i++)
{
Btree *pBt = db->aDb[i].pBt;
if(sqlite3BtreeIsInTrans(pBt))
{
needXcommit = 1;
if(i != 1)
nTrans++;
}
}
/* If there are any write-transactions at all, invoke the commit hook */
if(needXcommit && db->xCommitCallback)
{
(void) sqlite3SafetyOff(db);
rc = db->xCommitCallback(db->pCommitArg);
(void) sqlite3SafetyOn(db);
if(rc)
{
return SQLITE_CONSTRAINT;
}
}
/* The simple case - no more than one database file (not counting the
** TEMP database) has a transaction active. There is no need for the
** master-journal.
**
** If the return value of sqlite3BtreeGetFilename() is a zero length
** string, it means the main database is :memory:. In that case we do
** not support atomic multi-file commits, so use the simple case then
** too.
*/
if(0 == strlen(sqlite3BtreeGetFilename(db->aDb[0].pBt)) || nTrans <= 1)
{
for (i = 0; rc == SQLITE_OK && i < db->nDb; i++)
{
Btree *pBt = db->aDb[i].pBt;
if(pBt)
{
rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
}
}
/* Do the commit only if all databases successfully complete phase 1.
** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
** IO error while deleting or truncating a journal file. It is unlikely,
** but could happen. In this case abandon processing and return the error.
*/
for (i = 0; rc == SQLITE_OK && i < db->nDb; i++)
{
Btree *pBt = db->aDb[i].pBt;
if(pBt)
{
rc = sqlite3BtreeCommitPhaseTwo(pBt);
}
}
if(rc == SQLITE_OK)
{
sqlite3VtabCommit(db);
}
}
/* The complex case - There is a multi-file write-transaction active.
** This requires a master journal file to ensure the transaction is
** committed atomicly.
*/
#ifndef SQLITE_OMIT_DISKIO
else
{
sqlite3_vfs *pVfs = db->pVfs;
int needSync = 0;
char *zMaster = 0; /* File-name for the master journal */
char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
sqlite3_file *pMaster = 0;
i64 offset = 0;
/* Select a master journal file name */
do
{
u32 random;
sqlite3_free(zMaster);
sqlite3_randomness(sizeof(random), &random);
zMaster = sqlite3MPrintf(db, "%s-mj%08X", zMainFile, random & 0x7fffffff);
if(!zMaster)
{
return SQLITE_NOMEM;
}
rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS);
}
while (rc == 1);
if(rc != 0)
{
rc = SQLITE_IOERR_NOMEM;
}
else
{
/* Open the master journal. */
rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE |
SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_MASTER_JOURNAL,
0);
}
if(rc != SQLITE_OK)
{
sqlite3_free(zMaster);
return rc;
}
/* Write the name of each database file in the transaction into the new
** master journal file. If an error occurs at this point close
** and delete the master journal file. All the individual journal files
** still have 'null' as the master journal pointer, so they will roll
** back independently if a failure occurs.
*/
for (i = 0; i < db->nDb; i++)
{
Btree *pBt = db->aDb[i].pBt;
if(i == 1)
continue; /* Ignore the TEMP database */
if(sqlite3BtreeIsInTrans(pBt))
{
char const *zFile = sqlite3BtreeGetJournalname(pBt);
if(zFile[0] == 0)
continue; /* Ignore :memory: databases */
if(!needSync && !sqlite3BtreeSyncDisabled(pBt))
{
needSync = 1;
}
rc = sqlite3OsWrite(pMaster, zFile, strlen(zFile) + 1, offset);
offset += strlen(zFile) + 1;
if(rc != SQLITE_OK)
{
sqlite3OsCloseFree(pMaster);
sqlite3OsDelete(pVfs, zMaster, 0);
sqlite3_free(zMaster);
return rc;
}
}
}
/* Sync the master journal file. If the IOCAP_SEQUENTIAL device
** flag is set this is not required.
*/
zMainFile = sqlite3BtreeGetDirname(db->aDb[0].pBt);
if((needSync
&& (0 == (sqlite3OsDeviceCharacteristics(pMaster) & SQLITE_IOCAP_SEQUENTIAL))
&& (rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL)) != SQLITE_OK))
{
sqlite3OsCloseFree(pMaster);
sqlite3OsDelete(pVfs, zMaster, 0);
sqlite3_free(zMaster);
return rc;
}
/* Sync all the db files involved in the transaction. The same call
** sets the master journal pointer in each individual journal. If
** an error occurs here, do not delete the master journal file.
**
** If the error occurs during the first call to
** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
** master journal file will be orphaned. But we cannot delete it,
** in case the master journal file name was written into the journal
** file before the failure occured.
*/
for (i = 0; rc == SQLITE_OK && i < db->nDb; i++)
{
Btree *pBt = db->aDb[i].pBt;
if(pBt)
{
rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
}
}
sqlite3OsCloseFree(pMaster);
if(rc != SQLITE_OK)
{
sqlite3_free(zMaster);
return rc;
}
/* Delete the master journal file. This commits the transaction. After
** doing this the directory is synced again before any individual
** transaction files are deleted.
*/
rc = sqlite3OsDelete(pVfs, zMaster, 1);
sqlite3_free(zMaster);
zMaster = 0;
if(rc)
{
return rc;
}
/* All files and directories have already been synced, so the following
** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
** deleting or truncating journals. If something goes wrong while
** this is happening we don't really care. The integrity of the
** transaction is already guaranteed, but some stray 'cold' journals
** may be lying around. Returning an error code won't help matters.
*/
disable_simulated_io_errors();
sqlite3FaultBeginBenign(SQLITE_FAULTINJECTOR_MALLOC);
for (i = 0; i < db->nDb; i++)
{
Btree *pBt = db->aDb[i].pBt;
if(pBt)
{
sqlite3BtreeCommitPhaseTwo(pBt);
}
}
sqlite3FaultEndBenign(SQLITE_FAULTINJECTOR_MALLOC);
enable_simulated_io_errors();
sqlite3VtabCommit(db);
}
#endif
return rc;
}
/*
** This routine checks that the sqlite3.activeVdbeCnt count variable
** matches the number of vdbe's in the list sqlite3.pVdbe that are
** currently active. An assertion fails if the two counts do not match.
** This is an internal self-check only - it is not an essential processing
** step.
**
** This is a no-op if NDEBUG is defined.
*/
#ifndef NDEBUG
static void
checkActiveVdbeCnt(sqlite3 * db)
{
Vdbe *p;
int cnt = 0;
p = db->pVdbe;
while (p)
{
if(p->magic == VDBE_MAGIC_RUN && p->pc >= 0)
{
cnt++;
}
p = p->pNext;
}
assert(cnt == db->activeVdbeCnt);
}
#else
#define checkActiveVdbeCnt(x)
#endif
/*
** For every Btree that in database connection db which
** has been modified, "trip" or invalidate each cursor in
** that Btree might have been modified so that the cursor
** can never be used again. This happens when a rollback
*** occurs. We have to trip all the other cursors, even
** cursor from other VMs in different database connections,
** so that none of them try to use the data at which they
** were pointing and which now may have been changed due
** to the rollback.
**
** Remember that a rollback can delete tables complete and
** reorder rootpages. So it is not sufficient just to save
** the state of the cursor. We have to invalidate the cursor
** so that it is never used again.
*/
static void
invalidateCursorsOnModifiedBtrees(sqlite3 * db)
{
int i;
for (i = 0; i < db->nDb; i++)
{
Btree *p = db->aDb[i].pBt;
if(p && sqlite3BtreeIsInTrans(p))
{
sqlite3BtreeTripAllCursors(p, SQLITE_ABORT);
}
}
}
/*
** This routine is called the when a VDBE tries to halt. If the VDBE
** has made changes and is in autocommit mode, then commit those
** changes. If a rollback is needed, then do the rollback.
**
** This routine is the only way to move the state of a VM from
** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to
** call this on a VM that is in the SQLITE_MAGIC_HALT state.
**
** Return an error code. If the commit could not complete because of
** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
** means the close did not happen and needs to be repeated.
*/
SQLITE_PRIVATE int
sqlite3VdbeHalt(Vdbe * p)
{
sqlite3 *db = p->db;
int i;
int (*xFunc) (Btree * pBt) = 0; /* Function to call on each btree backend */
int isSpecialError; /* Set to true if SQLITE_NOMEM or IOERR */
/* This function contains the logic that determines if a statement or
** transaction will be committed or rolled back as a result of the
** execution of this virtual machine.
**
** If any of the following errors occur:
**
** SQLITE_NOMEM
** SQLITE_IOERR
** SQLITE_FULL
** SQLITE_INTERRUPT
**
** Then the internal cache might have been left in an inconsistent
** state. We need to rollback the statement transaction, if there is
** one, or the complete transaction if there is no statement transaction.
*/
if(p->db->mallocFailed)
{
p->rc = SQLITE_NOMEM;
}
closeAllCursorsExceptActiveVtabs(p);
if(p->magic != VDBE_MAGIC_RUN)
{
return SQLITE_OK;
}
checkActiveVdbeCnt(db);
/* No commit or rollback needed if the program never started */
if(p->pc >= 0)
{
int mrc; /* Primary error code from p->rc */
/* Lock all btrees used by the statement */
sqlite3BtreeMutexArrayEnter(&p->aMutex);
/* Check for one of the special errors */
mrc = p->rc & 0xff;
isSpecialError = mrc == SQLITE_NOMEM || mrc == SQLITE_IOERR
|| mrc == SQLITE_INTERRUPT || mrc == SQLITE_FULL;
if(isSpecialError)
{
/* This loop does static analysis of the query to see which of the
** following three categories it falls into:
**
** Read-only
** Query with statement journal
** Query without statement journal
**
** We could do something more elegant than this static analysis (i.e.
** store the type of query as part of the compliation phase), but
** handling malloc() or IO failure is a fairly obscure edge case so
** this is probably easier. Todo: Might be an opportunity to reduce
** code size a very small amount though...
*/
int notReadOnly = 0;
int isStatement = 0;
assert(p->aOp || p->nOp == 0);
for (i = 0; i < p->nOp; i++)
{
switch (p->aOp[i].opcode)
{
case OP_Transaction:
notReadOnly |= p->aOp[i].p2;
break;
case OP_Statement:
isStatement = 1;
break;
}
}
/* If the query was read-only, we need do no rollback at all. Otherwise,
** proceed with the special handling.
*/
if(notReadOnly || mrc != SQLITE_INTERRUPT)
{
if(p->rc == SQLITE_IOERR_BLOCKED && isStatement)
{
xFunc = sqlite3BtreeRollbackStmt;
p->rc = SQLITE_BUSY;
}
else if((mrc == SQLITE_NOMEM || mrc == SQLITE_FULL) && isStatement)
{
xFunc = sqlite3BtreeRollbackStmt;
}
else
{
/* We are forced to roll back the active transaction. Before doing
** so, abort any other statements this handle currently has active.
*/
invalidateCursorsOnModifiedBtrees(db);
sqlite3RollbackAll(db);
db->autoCommit = 1;
}
}
}
/* If the auto-commit flag is set and this is the only active vdbe, then
** we do either a commit or rollback of the current transaction.
**
** Note: This block also runs if one of the special errors handled
** above has occured.
*/
if(db->autoCommit && db->activeVdbeCnt == 1)
{
if(p->rc == SQLITE_OK || (p->errorAction == OE_Fail && !isSpecialError))
{
/* The auto-commit flag is true, and the vdbe program was
** successful or hit an 'OR FAIL' constraint. This means a commit
** is required.
*/
int rc = vdbeCommit(db);
if(rc == SQLITE_BUSY)
{
sqlite3BtreeMutexArrayLeave(&p->aMutex);
return SQLITE_BUSY;
}
else if(rc != SQLITE_OK)
{
p->rc = rc;
sqlite3RollbackAll(db);
}
else
{
sqlite3CommitInternalChanges(db);
}
}
else
{
sqlite3RollbackAll(db);
}
}
else if(!xFunc)
{
if(p->rc == SQLITE_OK || p->errorAction == OE_Fail)
{
if(p->openedStatement)
{
xFunc = sqlite3BtreeCommitStmt;
}
}
else if(p->errorAction == OE_Abort)
{
xFunc = sqlite3BtreeRollbackStmt;
}
else
{
invalidateCursorsOnModifiedBtrees(db);
sqlite3RollbackAll(db);
db->autoCommit = 1;
}
}
/* If xFunc is not NULL, then it is one of sqlite3BtreeRollbackStmt or
** sqlite3BtreeCommitStmt. Call it once on each backend. If an error occurs
** and the return code is still SQLITE_OK, set the return code to the new
** error value.
*/
assert(!xFunc ||
xFunc == sqlite3BtreeCommitStmt || xFunc == sqlite3BtreeRollbackStmt);
for (i = 0; xFunc && i < db->nDb; i++)
{
int rc;
Btree *pBt = db->aDb[i].pBt;
if(pBt)
{
rc = xFunc(pBt);
if(rc && (p->rc == SQLITE_OK || p->rc == SQLITE_CONSTRAINT))
{
p->rc = rc;
sqlite3SetString(&p->zErrMsg, 0);
}
}
}
/* If this was an INSERT, UPDATE or DELETE and the statement was committed,
** set the change counter.
*/
if(p->changeCntOn && p->pc >= 0)
{
if(!xFunc || xFunc == sqlite3BtreeCommitStmt)
{
sqlite3VdbeSetChanges(db, p->nChange);
}
else
{
sqlite3VdbeSetChanges(db, 0);
}
p->nChange = 0;
}
/* Rollback or commit any schema changes that occurred. */
if(p->rc != SQLITE_OK && db->flags & SQLITE_InternChanges)
{
sqlite3ResetInternalSchema(db, 0);
db->flags = (db->flags | SQLITE_InternChanges);
}
/* Release the locks */
sqlite3BtreeMutexArrayLeave(&p->aMutex);
}
/* We have successfully halted and closed the VM. Record this fact. */
if(p->pc >= 0)
{
db->activeVdbeCnt--;
}
p->magic = VDBE_MAGIC_HALT;
checkActiveVdbeCnt(db);
if(p->db->mallocFailed)
{
p->rc = SQLITE_NOMEM;
}
return SQLITE_OK;
}
/*
** Each VDBE holds the result of the most recent sqlite3_step() call
** in p->rc. This routine sets that result back to SQLITE_OK.
*/
SQLITE_PRIVATE void
sqlite3VdbeResetStepResult(Vdbe * p)
{
p->rc = SQLITE_OK;
}
/*
** Clean up a VDBE after execution but do not delete the VDBE just yet.
** Write any error messages into *pzErrMsg. Return the result code.
**
** After this routine is run, the VDBE should be ready to be executed
** again.
**
** To look at it another way, this routine resets the state of the
** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
** VDBE_MAGIC_INIT.
*/
SQLITE_PRIVATE int
sqlite3VdbeReset(Vdbe * p, int freebuffers)
{
sqlite3 *db;
db = p->db;
/* If the VM did not run to completion or if it encountered an
** error, then it might not have been halted properly. So halt
** it now.
*/
(void) sqlite3SafetyOn(db);
sqlite3VdbeHalt(p);
(void) sqlite3SafetyOff(db);
/* If the VDBE has be run even partially, then transfer the error code
** and error message from the VDBE into the main database structure. But
** if the VDBE has just been set to run but has not actually executed any
** instructions yet, leave the main database error information unchanged.
*/
if(p->pc >= 0)
{
if(p->zErrMsg)
{
sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, sqlite3_free);
db->errCode = p->rc;
p->zErrMsg = 0;
}
else if(p->rc)
{
sqlite3Error(db, p->rc, 0);
}
else
{
sqlite3Error(db, SQLITE_OK, 0);
}
}
else if(p->rc && p->expired)
{
/* The expired flag was set on the VDBE before the first call
** to sqlite3_step(). For consistency (since sqlite3_step() was
** called), set the database error in this case as well.
*/
sqlite3Error(db, p->rc, 0);
sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, sqlite3_free);
p->zErrMsg = 0;
}
/* Reclaim all memory used by the VDBE
*/
Cleanup(p, freebuffers);
/* Save profiling information from this VDBE run.
*/
#ifdef VDBE_PROFILE
{
FILE *out = fopen("vdbe_profile.out", "a");
if(out)
{
int i;
fprintf(out, "---- ");
for (i = 0; i < p->nOp; i++)
{
fprintf(out, "%02x", p->aOp[i].opcode);
}
fprintf(out, "\n");
for (i = 0; i < p->nOp; i++)
{
fprintf(out, "%6d %10lld %8lld ",
p->aOp[i].cnt,
p->aOp[i].cycles,
p->aOp[i].cnt > 0 ? p->aOp[i].cycles / p->aOp[i].cnt : 0);
sqlite3VdbePrintOp(out, i, &p->aOp[i]);
}
fclose(out);
}
}
#endif
p->magic = VDBE_MAGIC_INIT;
p->aborted = 0;
return p->rc & db->errMask;
}
/*
** Clean up and delete a VDBE after execution. Return an integer which is
** the result code. Write any error message text into *pzErrMsg.
*/
SQLITE_PRIVATE int
sqlite3VdbeFinalize(Vdbe * p)
{
int rc = SQLITE_OK;
if(p->magic == VDBE_MAGIC_RUN || p->magic == VDBE_MAGIC_HALT)
{
rc = sqlite3VdbeReset(p, 1);
assert((rc & p->db->errMask) == rc);
}
else if(p->magic != VDBE_MAGIC_INIT)
{
return SQLITE_MISUSE;
}
releaseMemArray(&p->aMem[1], p->nMem, 1);
sqlite3VdbeDelete(p);
return rc;
}
/*
** Call the destructor for each auxdata entry in pVdbeFunc for which
** the corresponding bit in mask is clear. Auxdata entries beyond 31
** are always destroyed. To destroy all auxdata entries, call this
** routine with mask==0.
*/
SQLITE_PRIVATE void
sqlite3VdbeDeleteAuxData(VdbeFunc * pVdbeFunc, int mask)
{
int i;
for (i = 0; i < pVdbeFunc->nAux; i++)
{
struct AuxData *pAux = &pVdbeFunc->apAux[i];
if((i > 31 || !(mask & (1 << i))) && pAux->pAux)
{
if(pAux->xDelete)
{
pAux->xDelete(pAux->pAux);
}
pAux->pAux = 0;
}
}
}
/*
** Delete an entire VDBE.
*/
SQLITE_PRIVATE void
sqlite3VdbeDelete(Vdbe * p)
{
int i;
if(p == 0)
return;
Cleanup(p, 1);
if(p->pPrev)
{
p->pPrev->pNext = p->pNext;
}
else
{
assert(p->db->pVdbe == p);
p->db->pVdbe = p->pNext;
}
if(p->pNext)
{
p->pNext->pPrev = p->pPrev;
}
if(p->aOp)
{
Op *pOp = p->aOp;
for (i = 0; i < p->nOp; i++, pOp++)
{
freeP4(pOp->p4type, pOp->p4.p);
#ifdef SQLITE_DEBUG
sqlite3_free(pOp->zComment);
#endif
}
sqlite3_free(p->aOp);
}
releaseMemArray(p->aVar, p->nVar, 1);
sqlite3_free(p->aLabel);
if(p->aMem)
{
sqlite3_free(&p->aMem[1]);
}
releaseMemArray(p->aColName, p->nResColumn * COLNAME_N, 1);
sqlite3_free(p->aColName);
sqlite3_free(p->zSql);
p->magic = VDBE_MAGIC_DEAD;
sqlite3_free(p);
}
/*
** If a MoveTo operation is pending on the given cursor, then do that
** MoveTo now. Return an error code. If no MoveTo is pending, this
** routine does nothing and returns SQLITE_OK.
*/
SQLITE_PRIVATE int
sqlite3VdbeCursorMoveto(Cursor * p)
{
if(p->deferredMoveto)
{
int res, rc;
#ifdef SQLITE_TEST
extern int sqlite3_search_count;
#endif
assert(p->isTable);
rc = sqlite3BtreeMoveto(p->pCursor, 0, 0, p->movetoTarget, 0, &res);
if(rc)
return rc;
*p->pIncrKey = 0;
p->lastRowid = keyToInt(p->movetoTarget);
p->rowidIsValid = res == 0;
if(res < 0)
{
rc = sqlite3BtreeNext(p->pCursor, &res);
if(rc)
return rc;
}
#ifdef SQLITE_TEST
sqlite3_search_count++;
#endif
p->deferredMoveto = 0;
p->cacheStatus = CACHE_STALE;
}
return SQLITE_OK;
}
/*
** The following functions:
**
** sqlite3VdbeSerialType()
** sqlite3VdbeSerialTypeLen()
** sqlite3VdbeSerialRead()
** sqlite3VdbeSerialLen()
** sqlite3VdbeSerialWrite()
**
** encapsulate the code that serializes values for storage in SQLite
** data and index records. Each serialized value consists of a
** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
** integer, stored as a varint.
**
** In an SQLite index record, the serial type is stored directly before
** the blob of data that it corresponds to. In a table record, all serial
** types are stored at the start of the record, and the blobs of data at
** the end. Hence these functions allow the caller to handle the
** serial-type and data blob seperately.
**
** The following table describes the various storage classes for data:
**
** serial type bytes of data type
** -------------- --------------- ---------------
** 0 0 NULL
** 1 1 signed integer
** 2 2 signed integer
** 3 3 signed integer
** 4 4 signed integer
** 5 6 signed integer
** 6 8 signed integer
** 7 8 IEEE float
** 8 0 Integer constant 0
** 9 0 Integer constant 1
** 10,11 reserved for expansion
** N>=12 and even (N-12)/2 BLOB
** N>=13 and odd (N-13)/2 text
**
** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
** of SQLite will not understand those serial types.
*/
/*
** Return the serial-type for the value stored in pMem.
*/
SQLITE_PRIVATE u32
sqlite3VdbeSerialType(Mem * pMem, int file_format)
{
int flags = pMem->flags;
int n;
if(flags & MEM_Null)
{
return 0;
}
if(flags & MEM_Int)
{
/* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
# define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
i64 i = pMem->u.i;
u64 u;
if(file_format >= 4 && (i & 1) == i)
{
return 8 + i;
}
u = i < 0 ? -i : i;
if(u <= 127)
return 1;
if(u <= 32767)
return 2;
if(u <= 8388607)
return 3;
if(u <= 2147483647)
return 4;
if(u <= MAX_6BYTE)
return 5;
return 6;
}
if(flags & MEM_Real)
{
return 7;
}
assert(flags & (MEM_Str | MEM_Blob));
n = pMem->n;
if(flags & MEM_Zero)
{
n += pMem->u.i;
}
assert(n >= 0);
return ((n * 2) + 12 + ((flags & MEM_Str) != 0));
}
/*
** Return the length of the data corresponding to the supplied serial-type.
*/
SQLITE_PRIVATE int
sqlite3VdbeSerialTypeLen(u32 serial_type)
{
if(serial_type >= 12)
{
return (serial_type - 12) / 2;
}
else
{
static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 };
return aSize[serial_type];
}
}
/*
** If we are on an architecture with mixed-endian floating
** points (ex: ARM7) then swap the lower 4 bytes with the
** upper 4 bytes. Return the result.
**
** For most architectures, this is a no-op.
**
** (later): It is reported to me that the mixed-endian problem
** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
** that early versions of GCC stored the two words of a 64-bit
** float in the wrong order. And that error has been propagated
** ever since. The blame is not necessarily with GCC, though.
** GCC might have just copying the problem from a prior compiler.
** I am also told that newer versions of GCC that follow a different
** ABI get the byte order right.
**
** Developers using SQLite on an ARM7 should compile and run their
** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
** enabled, some asserts below will ensure that the byte order of
** floating point values is correct.
**
** (2007-08-30) Frank van Vugt has studied this problem closely
** and has send his findings to the SQLite developers. Frank
** writes that some Linux kernels offer floating point hardware
** emulation that uses only 32-bit mantissas instead of a full
** 48-bits as required by the IEEE standard. (This is the
** CONFIG_FPE_FASTFPE option.) On such systems, floating point
** byte swapping becomes very complicated. To avoid problems,
** the necessary byte swapping is carried out using a 64-bit integer
** rather than a 64-bit float. Frank assures us that the code here
** works for him. We, the developers, have no way to independently
** verify this, but Frank seems to know what he is talking about
** so we trust him.
*/
#ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
static u64
floatSwap(u64 in)
{
union
{
u64 r;
u32 i[2];
} u;
u32 t;
u.r = in;
t = u.i[0];
u.i[0] = u.i[1];
u.i[1] = t;
return u.r;
}
# define swapMixedEndianFloat(X) X = floatSwap(X)
#else
# define swapMixedEndianFloat(X)
#endif
/*
** Write the serialized data blob for the value stored in pMem into
** buf. It is assumed that the caller has allocated sufficient space.
** Return the number of bytes written.
**
** nBuf is the amount of space left in buf[]. nBuf must always be
** large enough to hold the entire field. Except, if the field is
** a blob with a zero-filled tail, then buf[] might be just the right
** size to hold everything except for the zero-filled tail. If buf[]
** is only big enough to hold the non-zero prefix, then only write that
** prefix into buf[]. But if buf[] is large enough to hold both the
** prefix and the tail then write the prefix and set the tail to all
** zeros.
**
** Return the number of bytes actually written into buf[]. The number
** of bytes in the zero-filled tail is included in the return value only
** if those bytes were zeroed in buf[].
*/
SQLITE_PRIVATE int
sqlite3VdbeSerialPut(u8 * buf, int nBuf, Mem * pMem, int file_format)
{
u32 serial_type = sqlite3VdbeSerialType(pMem, file_format);
int len;
/* Integer and Real */
if(serial_type <= 7 && serial_type > 0)
{
u64 v;
int i;
if(serial_type == 7)
{
assert(sizeof(v) == sizeof(pMem->r));
memcpy(&v, &pMem->r, sizeof(v));
swapMixedEndianFloat(v);
}
else
{
v = pMem->u.i;
}
len = i = sqlite3VdbeSerialTypeLen(serial_type);
assert(len <= nBuf);
while (i--)
{
buf[i] = (v & 0xFF);
v >>= 8;
}
return len;
}
/* String or blob */
if(serial_type >= 12)
{
assert(pMem->n + ((pMem->flags & MEM_Zero) ? pMem->u.i : 0)
== sqlite3VdbeSerialTypeLen(serial_type));
assert(pMem->n <= nBuf);
len = pMem->n;
memcpy(buf, pMem->z, len);
if(pMem->flags & MEM_Zero)
{
len += pMem->u.i;
if(len > nBuf)
{
len = nBuf;
}
memset(&buf[pMem->n], 0, len - pMem->n);
}
return len;
}
/* NULL or constants 0 or 1 */
return 0;
}
/*
** Deserialize the data blob pointed to by buf as serial type serial_type
** and store the result in pMem. Return the number of bytes read.
*/
SQLITE_PRIVATE int
sqlite3VdbeSerialGet(const unsigned char *buf, /* Buffer to deserialize from */
u32 serial_type, /* Serial type to deserialize */
Mem * pMem /* Memory cell to write value into */
)
{
switch (serial_type)
{
case 10: /* Reserved for future use */
case 11: /* Reserved for future use */
case 0:
{ /* NULL */
pMem->flags = MEM_Null;
break;
}
case 1:
{ /* 1-byte signed integer */
pMem->u.i = (signed char) buf[0];
pMem->flags = MEM_Int;
return 1;
}
case 2:
{ /* 2-byte signed integer */
pMem->u.i = (((signed char) buf[0]) << 8) | buf[1];
pMem->flags = MEM_Int;
return 2;
}
case 3:
{ /* 3-byte signed integer */
pMem->u.i = (((signed char) buf[0]) << 16) | (buf[1] << 8) | buf[2];
pMem->flags = MEM_Int;
return 3;
}
case 4:
{ /* 4-byte signed integer */
pMem->u.i = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
pMem->flags = MEM_Int;
return 4;
}
case 5:
{ /* 6-byte signed integer */
u64 x = (((signed char) buf[0]) << 8) | buf[1];
u32 y = (buf[2] << 24) | (buf[3] << 16) | (buf[4] << 8) | buf[5];
x = (x << 32) | y;
pMem->u.i = *(i64 *) & x;
pMem->flags = MEM_Int;
return 6;
}
case 6: /* 8-byte signed integer */
case 7:
{ /* IEEE floating point */
u64 x;
u32 y;
#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
/* Verify that integers and floating point values use the same
** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
** defined that 64-bit floating point values really are mixed
** endian.
*/
static const u64 t1 = ((u64) 0x3ff00000) << 32;
static const double r1 = 1.0;
u64 t2 = t1;
swapMixedEndianFloat(t2);
assert(sizeof(r1) == sizeof(t2) && memcmp(&r1, &t2, sizeof(r1)) == 0);
#endif
x = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
y = (buf[4] << 24) | (buf[5] << 16) | (buf[6] << 8) | buf[7];
x = (x << 32) | y;
if(serial_type == 6)
{
pMem->u.i = *(i64 *) & x;
pMem->flags = MEM_Int;
}
else
{
assert(sizeof(x) == 8 && sizeof(pMem->r) == 8);
swapMixedEndianFloat(x);
memcpy(&pMem->r, &x, sizeof(x));
pMem->flags = sqlite3IsNaN(pMem->r) ? MEM_Null : MEM_Real;
}
return 8;
}
case 8: /* Integer 0 */
case 9:
{ /* Integer 1 */
pMem->u.i = serial_type - 8;
pMem->flags = MEM_Int;
return 0;
}
default:
{
int len = (serial_type - 12) / 2;
pMem->z = (char *) buf;
pMem->n = len;
pMem->xDel = 0;
if(serial_type & 0x01)
{
pMem->flags = MEM_Str | MEM_Ephem;
}
else
{
pMem->flags = MEM_Blob | MEM_Ephem;
}
return len;
}
}
return 0;
}
/*
** Given the nKey-byte encoding of a record in pKey[], parse the
** record into a UnpackedRecord structure. Return a pointer to
** that structure.
**
** The calling function might provide szSpace bytes of memory
** space at pSpace. This space can be used to hold the returned
** VDbeParsedRecord structure if it is large enough. If it is
** not big enough, space is obtained from sqlite3_malloc().
**
** The returned structure should be closed by a call to
** sqlite3VdbeDeleteUnpackedRecord().
*/
SQLITE_PRIVATE UnpackedRecord *
sqlite3VdbeRecordUnpack(KeyInfo * pKeyInfo, /* Information about the record format */
int nKey, /* Size of the binary record */
const void *pKey, /* The binary record */
void *pSpace, /* Space available to hold resulting object */
int szSpace /* Size of pSpace[] in bytes */
)
{
const unsigned char *aKey = (const unsigned char *) pKey;
UnpackedRecord *p;
int nByte;
int i, idx, d;
u32 szHdr;
Mem *pMem;
assert(sizeof(Mem) > sizeof(*p));
nByte = sizeof(Mem) * (pKeyInfo->nField + 2);
if(nByte > szSpace)
{
p = sqlite3DbMallocRaw(pKeyInfo->db, nByte);
if(p == 0)
return 0;
p->needFree = 1;
}
else
{
p = pSpace;
p->needFree = 0;
}
p->pKeyInfo = pKeyInfo;
p->nField = pKeyInfo->nField + 1;
p->needDestroy = 1;
p->aMem = pMem = &((Mem *) p)[1];
idx = getVarint32(aKey, szHdr);
d = szHdr;
i = 0;
while (idx < szHdr && i < p->nField)
{
u32 serial_type;
idx += getVarint32(aKey + idx, serial_type);
if(d >= nKey && sqlite3VdbeSerialTypeLen(serial_type) > 0)
break;
pMem->enc = pKeyInfo->enc;
pMem->db = pKeyInfo->db;
pMem->flags = 0;
pMem->zMalloc = 0;
d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
pMem++;
i++;
}
p->nField = i;
return (void *) p;
}
/*
** This routine destroys a UnpackedRecord object
*/
SQLITE_PRIVATE void
sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord * p)
{
if(p)
{
if(p->needDestroy)
{
int i;
Mem *pMem;
for (i = 0, pMem = p->aMem; i < p->nField; i++, pMem++)
{
if(pMem->zMalloc)
{
sqlite3VdbeMemRelease(pMem);
}
}
}
if(p->needFree)
{
sqlite3_free(p);
}
}
}
/*
** This function compares the two table rows or index records
** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
** or positive integer if {nKey1, pKey1} is less than, equal to or
** greater than pPKey2. The {nKey1, pKey1} key must be a blob
** created by th OP_MakeRecord opcode of the VDBE. The pPKey2
** key must be a parsed key such as obtained from
** sqlite3VdbeParseRecord.
**
** Key1 and Key2 do not have to contain the same number of fields.
** But if the lengths differ, Key2 must be the shorter of the two.
**
** Historical note: In earlier versions of this routine both Key1
** and Key2 were blobs obtained from OP_MakeRecord. But we found
** that in typical use the same Key2 would be submitted multiple times
** in a row. So an optimization was added to parse the Key2 key
** separately and submit the parsed version. In this way, we avoid
** parsing the same Key2 multiple times in a row.
*/
SQLITE_PRIVATE int
sqlite3VdbeRecordCompare(int nKey1, const void *pKey1, UnpackedRecord * pPKey2)
{
u32 d1; /* Offset into aKey[] of next data element */
u32 idx1; /* Offset into aKey[] of next header element */
u32 szHdr1; /* Number of bytes in header */
int i = 0;
int nField;
int rc = 0;
const unsigned char *aKey1 = (const unsigned char *) pKey1;
KeyInfo *pKeyInfo;
Mem mem1;
pKeyInfo = pPKey2->pKeyInfo;
mem1.enc = pKeyInfo->enc;
mem1.db = pKeyInfo->db;
mem1.flags = 0;
mem1.zMalloc = 0;
idx1 = getVarint32(aKey1, szHdr1);
d1 = szHdr1;
nField = pKeyInfo->nField;
while (idx1 < szHdr1 && i < pPKey2->nField)
{
u32 serial_type1;
/* Read the serial types for the next element in each key. */
idx1 += getVarint32(aKey1 + idx1, serial_type1);
if(d1 >= nKey1 && sqlite3VdbeSerialTypeLen(serial_type1) > 0)
break;
/* Extract the values to be compared.
*/
d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
/* Do the comparison
*/
rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
i < nField ? pKeyInfo->aColl[i] : 0);
if(rc != 0)
{
break;
}
i++;
}
if(mem1.zMalloc)
sqlite3VdbeMemRelease(&mem1);
/* One of the keys ran out of fields, but all the fields up to that point
** were equal. If the incrKey flag is true, then the second key is
** treated as larger.
*/
if(rc == 0)
{
if(pKeyInfo->incrKey)
{
rc = -1;
}
else if(!pKeyInfo->prefixIsEqual)
{
if(d1 < nKey1)
{
rc = 1;
}
}
}
else if(pKeyInfo->aSortOrder && i < pKeyInfo->nField && pKeyInfo->aSortOrder[i])
{
rc = -rc;
}
return rc;
}
/*
** The argument is an index entry composed using the OP_MakeRecord opcode.
** The last entry in this record should be an integer (specifically
** an integer rowid). This routine returns the number of bytes in
** that integer.
*/
SQLITE_PRIVATE int
sqlite3VdbeIdxRowidLen(const u8 * aKey)
{
u32 szHdr; /* Size of the header */
u32 typeRowid; /* Serial type of the rowid */
(void) getVarint32(aKey, szHdr);
(void) getVarint32(&aKey[szHdr - 1], typeRowid);
return sqlite3VdbeSerialTypeLen(typeRowid);
}
/*
** pCur points at an index entry created using the OP_MakeRecord opcode.
** Read the rowid (the last field in the record) and store it in *rowid.
** Return SQLITE_OK if everything works, or an error code otherwise.
*/
SQLITE_PRIVATE int
sqlite3VdbeIdxRowid(BtCursor * pCur, i64 * rowid)
{
i64 nCellKey = 0;
int rc;
u32 szHdr; /* Size of the header */
u32 typeRowid; /* Serial type of the rowid */
u32 lenRowid; /* Size of the rowid */
Mem m, v;
sqlite3BtreeKeySize(pCur, &nCellKey);
if(nCellKey <= 0)
{
return SQLITE_CORRUPT_BKPT;
}
m.flags = 0;
m.db = 0;
m.zMalloc = 0;
rc = sqlite3VdbeMemFromBtree(pCur, 0, nCellKey, 1, &m);
if(rc)
{
return rc;
}
(void) getVarint32((u8 *) m.z, szHdr);
(void) getVarint32((u8 *) & m.z[szHdr - 1], typeRowid);
lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
sqlite3VdbeSerialGet((u8 *) & m.z[m.n - lenRowid], typeRowid, &v);
*rowid = v.u.i;
sqlite3VdbeMemRelease(&m);
return SQLITE_OK;
}
/*
** Compare the key of the index entry that cursor pC is point to against
** the key string in pKey (of length nKey). Write into *pRes a number
** that is negative, zero, or positive if pC is less than, equal to,
** or greater than pKey. Return SQLITE_OK on success.
**
** pKey is either created without a rowid or is truncated so that it
** omits the rowid at the end. The rowid at the end of the index entry
** is ignored as well.
*/
SQLITE_PRIVATE int
sqlite3VdbeIdxKeyCompare(Cursor * pC, /* The cursor to compare against */
UnpackedRecord * pUnpacked, int nKey, const u8 * pKey, /* The key to compare */
int *res /* Write the comparison result here */
)
{
i64 nCellKey = 0;
int rc;
BtCursor *pCur = pC->pCursor;
int lenRowid;
Mem m;
UnpackedRecord *pRec;
char zSpace[200];
sqlite3BtreeKeySize(pCur, &nCellKey);
if(nCellKey <= 0)
{
*res = 0;
return SQLITE_OK;
}
m.db = 0;
m.flags = 0;
m.zMalloc = 0;
rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, nCellKey, 1, &m);
if(rc)
{
return rc;
}
lenRowid = sqlite3VdbeIdxRowidLen((u8 *) m.z);
if(!pUnpacked)
{
pRec = sqlite3VdbeRecordUnpack(pC->pKeyInfo, nKey, pKey, zSpace, sizeof(zSpace));
}
else
{
pRec = pUnpacked;
}
if(pRec == 0)
{
return SQLITE_NOMEM;
}
*res = sqlite3VdbeRecordCompare(m.n - lenRowid, m.z, pRec);
if(!pUnpacked)
{
sqlite3VdbeDeleteUnpackedRecord(pRec);
}
sqlite3VdbeMemRelease(&m);
return SQLITE_OK;
}
/*
** This routine sets the value to be returned by subsequent calls to
** sqlite3_changes() on the database handle 'db'.
*/
SQLITE_PRIVATE void
sqlite3VdbeSetChanges(sqlite3 * db, int nChange)
{
assert(sqlite3_mutex_held(db->mutex));
db->nChange = nChange;
db->nTotalChange += nChange;
}
/*
** Set a flag in the vdbe to update the change counter when it is finalised
** or reset.
*/
SQLITE_PRIVATE void
sqlite3VdbeCountChanges(Vdbe * v)
{
v->changeCntOn = 1;
}
/*
** Mark every prepared statement associated with a database connection
** as expired.
**
** An expired statement means that recompilation of the statement is
** recommend. Statements expire when things happen that make their
** programs obsolete. Removing user-defined functions or collating
** sequences, or changing an authorization function are the types of
** things that make prepared statements obsolete.
*/
SQLITE_PRIVATE void
sqlite3ExpirePreparedStatements(sqlite3 * db)
{
Vdbe *p;
for (p = db->pVdbe; p; p = p->pNext)
{
p->expired = 1;
}
}
/*
** Return the database associated with the Vdbe.
*/
SQLITE_PRIVATE sqlite3 *
sqlite3VdbeDb(Vdbe * v)
{
return v->db;
}
/************** End of vdbeaux.c *********************************************/
/************** Begin file vdbeapi.c *****************************************/
/*
** 2004 May 26
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains code use to implement APIs that are part of the
** VDBE.
*/
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
/*
** The following structure contains pointers to the end points of a
** doubly-linked list of all compiled SQL statements that may be holding
** buffers eligible for release when the sqlite3_release_memory() interface is
** invoked. Access to this list is protected by the SQLITE_MUTEX_STATIC_LRU2
** mutex.
**
** Statements are added to the end of this list when sqlite3_reset() is
** called. They are removed either when sqlite3_step() or sqlite3_finalize()
** is called. When statements are added to this list, the associated
** register array (p->aMem[1..p->nMem]) may contain dynamic buffers that
** can be freed using sqlite3VdbeReleaseMemory().
**
** When statements are added or removed from this list, the mutex
** associated with the Vdbe being added or removed (Vdbe.db->mutex) is
** already held. The LRU2 mutex is then obtained, blocking if necessary,
** the linked-list pointers manipulated and the LRU2 mutex relinquished.
*/
struct StatementLruList
{
Vdbe *pFirst;
Vdbe *pLast;
};
static struct StatementLruList sqlite3LruStatements;
/*
** Check that the list looks to be internally consistent. This is used
** as part of an assert() statement as follows:
**
** assert( stmtLruCheck() );
*/
#ifndef NDEBUG
static int
stmtLruCheck()
{
Vdbe *p;
for (p = sqlite3LruStatements.pFirst; p; p = p->pLruNext)
{
assert(p->pLruNext || p == sqlite3LruStatements.pLast);
assert(!p->pLruNext || p->pLruNext->pLruPrev == p);
assert(p->pLruPrev || p == sqlite3LruStatements.pFirst);
assert(!p->pLruPrev || p->pLruPrev->pLruNext == p);
}
return 1;
}
#endif
/*
** Add vdbe p to the end of the statement lru list. It is assumed that
** p is not already part of the list when this is called. The lru list
** is protected by the SQLITE_MUTEX_STATIC_LRU mutex.
*/
static void
stmtLruAdd(Vdbe * p)
{
sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU2));
if(p->pLruPrev || p->pLruNext || sqlite3LruStatements.pFirst == p)
{
sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU2));
return;
}
assert(stmtLruCheck());
if(!sqlite3LruStatements.pFirst)
{
assert(!sqlite3LruStatements.pLast);
sqlite3LruStatements.pFirst = p;
sqlite3LruStatements.pLast = p;
}
else
{
assert(!sqlite3LruStatements.pLast->pLruNext);
p->pLruPrev = sqlite3LruStatements.pLast;
sqlite3LruStatements.pLast->pLruNext = p;
sqlite3LruStatements.pLast = p;
}
assert(stmtLruCheck());
sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU2));
}
/*
** Assuming the SQLITE_MUTEX_STATIC_LRU2 mutext is already held, remove
** statement p from the least-recently-used statement list. If the
** statement is not currently part of the list, this call is a no-op.
*/
static void
stmtLruRemoveNomutex(Vdbe * p)
{
if(p->pLruPrev || p->pLruNext || p == sqlite3LruStatements.pFirst)
{
assert(stmtLruCheck());
if(p->pLruNext)
{
p->pLruNext->pLruPrev = p->pLruPrev;
}
else
{
sqlite3LruStatements.pLast = p->pLruPrev;
}
if(p->pLruPrev)
{
p->pLruPrev->pLruNext = p->pLruNext;
}
else
{
sqlite3LruStatements.pFirst = p->pLruNext;
}
p->pLruNext = 0;
p->pLruPrev = 0;
assert(stmtLruCheck());
}
}
/*
** Assuming the SQLITE_MUTEX_STATIC_LRU2 mutext is not held, remove
** statement p from the least-recently-used statement list. If the
** statement is not currently part of the list, this call is a no-op.
*/
static void
stmtLruRemove(Vdbe * p)
{
sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU2));
stmtLruRemoveNomutex(p);
sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU2));
}
/*
** Try to release n bytes of memory by freeing buffers associated
** with the memory registers of currently unused vdbes.
*/
SQLITE_PRIVATE int
sqlite3VdbeReleaseMemory(int n)
{
Vdbe *p;
Vdbe *pNext;
int nFree = 0;
sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU2));
for (p = sqlite3LruStatements.pFirst; p && nFree < n; p = pNext)
{
pNext = p->pLruNext;
/* For each statement handle in the lru list, attempt to obtain the
** associated database mutex. If it cannot be obtained, continue
** to the next statement handle. It is not possible to block on
** the database mutex - that could cause deadlock.
*/
if(SQLITE_OK == sqlite3_mutex_try(p->db->mutex))
{
nFree += sqlite3VdbeReleaseBuffers(p);
stmtLruRemoveNomutex(p);
sqlite3_mutex_leave(p->db->mutex);
}
}
sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU2));
return nFree;
}
/*
** Call sqlite3Reprepare() on the statement. Remove it from the
** lru list before doing so, as Reprepare() will free all the
** memory register buffers anyway.
*/
int
vdbeReprepare(Vdbe * p)
{
stmtLruRemove(p);
return sqlite3Reprepare(p);
}
#else /* !SQLITE_ENABLE_MEMORY_MANAGEMENT */
#define stmtLruRemove(x)
#define stmtLruAdd(x)
#define vdbeReprepare(x) sqlite3Reprepare(x)
#endif
/*
** Return TRUE (non-zero) of the statement supplied as an argument needs
** to be recompiled. A statement needs to be recompiled whenever the
** execution environment changes in a way that would alter the program
** that sqlite3_prepare() generates. For example, if new functions or
** collating sequences are registered or if an authorizer function is
** added or changed.
*/
SQLITE_API int
sqlite3_expired(sqlite3_stmt * pStmt)
{
Vdbe *p = (Vdbe *) pStmt;
return p == 0 || p->expired;
}
/*
** The following routine destroys a virtual machine that is created by
** the sqlite3_compile() routine. The integer returned is an SQLITE_
** success/failure code that describes the result of executing the virtual
** machine.
**
** This routine sets the error code and string returned by
** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
*/
SQLITE_API int
sqlite3_finalize(sqlite3_stmt * pStmt)
{
int rc;
if(pStmt == 0)
{
rc = SQLITE_OK;
}
else
{
Vdbe *v = (Vdbe *) pStmt;
#ifndef SQLITE_MUTEX_NOOP
sqlite3_mutex *mutex = v->db->mutex;
#endif
sqlite3_mutex_enter(mutex);
stmtLruRemove(v);
rc = sqlite3VdbeFinalize(v);
sqlite3_mutex_leave(mutex);
}
return rc;
}
/*
** Terminate the current execution of an SQL statement and reset it
** back to its starting state so that it can be reused. A success code from
** the prior execution is returned.
**
** This routine sets the error code and string returned by
** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
*/
SQLITE_API int
sqlite3_reset(sqlite3_stmt * pStmt)
{
int rc;
if(pStmt == 0)
{
rc = SQLITE_OK;
}
else
{
Vdbe *v = (Vdbe *) pStmt;
sqlite3_mutex_enter(v->db->mutex);
rc = sqlite3VdbeReset(v, 1);
stmtLruAdd(v);
sqlite3VdbeMakeReady(v, -1, 0, 0, 0);
assert((rc & (v->db->errMask)) == rc);
sqlite3_mutex_leave(v->db->mutex);
}
return rc;
}
/*
** Set all the parameters in the compiled SQL statement to NULL.
*/
SQLITE_API int
sqlite3_clear_bindings(sqlite3_stmt * pStmt)
{
int i;
int rc = SQLITE_OK;
Vdbe *p = (Vdbe *) pStmt;
#ifndef SQLITE_MUTEX_NOOP
sqlite3_mutex *mutex = ((Vdbe *) pStmt)->db->mutex;
#endif
sqlite3_mutex_enter(mutex);
for (i = 0; i < p->nVar; i++)
{
sqlite3VdbeMemRelease(&p->aVar[i]);
p->aVar[i].flags = MEM_Null;
}
sqlite3_mutex_leave(mutex);
return rc;
}
/**************************** sqlite3_value_ *******************************
** The following routines extract information from a Mem or sqlite3_value
** structure.
*/
SQLITE_API const void *
sqlite3_value_blob(sqlite3_value * pVal)
{
Mem *p = (Mem *) pVal;
if(p->flags & (MEM_Blob | MEM_Str))
{
sqlite3VdbeMemExpandBlob(p);
p->flags &= ~MEM_Str;
p->flags |= MEM_Blob;
return p->z;
}
else
{
return sqlite3_value_text(pVal);
}
}
SQLITE_API int
sqlite3_value_bytes(sqlite3_value * pVal)
{
return sqlite3ValueBytes(pVal, SQLITE_UTF8);
}
SQLITE_API int
sqlite3_value_bytes16(sqlite3_value * pVal)
{
return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
}
SQLITE_API double
sqlite3_value_double(sqlite3_value * pVal)
{
return sqlite3VdbeRealValue((Mem *) pVal);
}
SQLITE_API int
sqlite3_value_int(sqlite3_value * pVal)
{
return sqlite3VdbeIntValue((Mem *) pVal);
}
SQLITE_API sqlite_int64
sqlite3_value_int64(sqlite3_value * pVal)
{
return sqlite3VdbeIntValue((Mem *) pVal);
}
SQLITE_API const unsigned char *
sqlite3_value_text(sqlite3_value * pVal)
{
return (const unsigned char *) sqlite3ValueText(pVal, SQLITE_UTF8);
}
#ifndef SQLITE_OMIT_UTF16
SQLITE_API const void *
sqlite3_value_text16(sqlite3_value * pVal)
{
return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
}
SQLITE_API const void *
sqlite3_value_text16be(sqlite3_value * pVal)
{
return sqlite3ValueText(pVal, SQLITE_UTF16BE);
}
SQLITE_API const void *
sqlite3_value_text16le(sqlite3_value * pVal)
{
return sqlite3ValueText(pVal, SQLITE_UTF16LE);
}
#endif /* SQLITE_OMIT_UTF16 */
SQLITE_API int
sqlite3_value_type(sqlite3_value * pVal)
{
return pVal->type;
}
/**************************** sqlite3_result_ *******************************
** The following routines are used by user-defined functions to specify
** the function result.
*/
SQLITE_API void
sqlite3_result_blob(sqlite3_context * pCtx, const void *z, int n, void (*xDel) (void *))
{
assert(n >= 0);
assert(sqlite3_mutex_held(pCtx->s.db->mutex));
sqlite3VdbeMemSetStr(&pCtx->s, z, n, 0, xDel);
}
SQLITE_API void
sqlite3_result_double(sqlite3_context * pCtx, double rVal)
{
assert(sqlite3_mutex_held(pCtx->s.db->mutex));
sqlite3VdbeMemSetDouble(&pCtx->s, rVal);
}
SQLITE_API void
sqlite3_result_error(sqlite3_context * pCtx, const char *z, int n)
{
assert(sqlite3_mutex_held(pCtx->s.db->mutex));
pCtx->isError = SQLITE_ERROR;
sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
}
#ifndef SQLITE_OMIT_UTF16
SQLITE_API void
sqlite3_result_error16(sqlite3_context * pCtx, const void *z, int n)
{
assert(sqlite3_mutex_held(pCtx->s.db->mutex));
pCtx->isError = SQLITE_ERROR;
sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
}
#endif
SQLITE_API void
sqlite3_result_int(sqlite3_context * pCtx, int iVal)
{
assert(sqlite3_mutex_held(pCtx->s.db->mutex));
sqlite3VdbeMemSetInt64(&pCtx->s, (i64) iVal);
}
SQLITE_API void
sqlite3_result_int64(sqlite3_context * pCtx, i64 iVal)
{
assert(sqlite3_mutex_held(pCtx->s.db->mutex));
sqlite3VdbeMemSetInt64(&pCtx->s, iVal);
}
SQLITE_API void
sqlite3_result_null(sqlite3_context * pCtx)
{
assert(sqlite3_mutex_held(pCtx->s.db->mutex));
sqlite3VdbeMemSetNull(&pCtx->s);
}
SQLITE_API void
sqlite3_result_text(sqlite3_context * pCtx, const char *z, int n, void (*xDel) (void *))
{
assert(sqlite3_mutex_held(pCtx->s.db->mutex));
sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, xDel);
}
#ifndef SQLITE_OMIT_UTF16
SQLITE_API void
sqlite3_result_text16(sqlite3_context * pCtx, const void *z, int n, void (*xDel) (void *))
{
assert(sqlite3_mutex_held(pCtx->s.db->mutex));
sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, xDel);
}
SQLITE_API void
sqlite3_result_text16be(sqlite3_context * pCtx, const void *z, int n, void (*xDel) (void *))
{
assert(sqlite3_mutex_held(pCtx->s.db->mutex));
sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16BE, xDel);
}
SQLITE_API void
sqlite3_result_text16le(sqlite3_context * pCtx, const void *z, int n, void (*xDel) (void *))
{
assert(sqlite3_mutex_held(pCtx->s.db->mutex));
sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16LE, xDel);
}
#endif /* SQLITE_OMIT_UTF16 */
SQLITE_API void
sqlite3_result_value(sqlite3_context * pCtx, sqlite3_value * pValue)
{
assert(sqlite3_mutex_held(pCtx->s.db->mutex));
sqlite3VdbeMemCopy(&pCtx->s, pValue);
}
SQLITE_API void
sqlite3_result_zeroblob(sqlite3_context * pCtx, int n)
{
assert(sqlite3_mutex_held(pCtx->s.db->mutex));
sqlite3VdbeMemSetZeroBlob(&pCtx->s, n);
}
SQLITE_API void
sqlite3_result_error_code(sqlite3_context * pCtx, int errCode)
{
pCtx->isError = errCode;
}
/* Force an SQLITE_TOOBIG error. */
SQLITE_API void
sqlite3_result_error_toobig(sqlite3_context * pCtx)
{
assert(sqlite3_mutex_held(pCtx->s.db->mutex));
pCtx->isError = SQLITE_TOOBIG;
sqlite3VdbeMemSetStr(&pCtx->s, "string or blob too big", -1, SQLITE_UTF8, SQLITE_STATIC);
}
/* An SQLITE_NOMEM error. */
SQLITE_API void
sqlite3_result_error_nomem(sqlite3_context * pCtx)
{
assert(sqlite3_mutex_held(pCtx->s.db->mutex));
sqlite3VdbeMemSetNull(&pCtx->s);
pCtx->isError = SQLITE_NOMEM;
pCtx->s.db->mallocFailed = 1;
}
/*
** Execute the statement pStmt, either until a row of data is ready, the
** statement is completely executed or an error occurs.
**
** This routine implements the bulk of the logic behind the sqlite_step()
** API. The only thing omitted is the automatic recompile if a
** schema change has occurred. That detail is handled by the
** outer sqlite3_step() wrapper procedure.
*/
static int
sqlite3Step(Vdbe * p)
{
sqlite3 *db;
int rc;
assert(p);
if(p->magic != VDBE_MAGIC_RUN)
{
return SQLITE_MISUSE;
}
/* Assert that malloc() has not failed */
db = p->db;
assert(!db->mallocFailed);
if(p->aborted)
{
return SQLITE_ABORT;
}
if(p->pc <= 0 && p->expired)
{
if(p->rc == SQLITE_OK)
{
p->rc = SQLITE_SCHEMA;
}
rc = SQLITE_ERROR;
goto end_of_step;
}
if(sqlite3SafetyOn(db))
{
p->rc = SQLITE_MISUSE;
return SQLITE_MISUSE;
}
if(p->pc < 0)
{
/* If there are no other statements currently running, then
** reset the interrupt flag. This prevents a call to sqlite3_interrupt
** from interrupting a statement that has not yet started.
*/
if(db->activeVdbeCnt == 0)
{
db->u1.isInterrupted = 0;
}
#ifndef SQLITE_OMIT_TRACE
if(db->xProfile && !db->init.busy)
{
double rNow;
sqlite3OsCurrentTime(db->pVfs, &rNow);
p->startTime = (rNow - (int) rNow) * 3600.0 * 24.0 * 1000000000.0;
}
#endif
db->activeVdbeCnt++;
p->pc = 0;
stmtLruRemove(p);
}
#ifndef SQLITE_OMIT_EXPLAIN
if(p->explain)
{
rc = sqlite3VdbeList(p);
}
else
#endif /* SQLITE_OMIT_EXPLAIN */
{
rc = sqlite3VdbeExec(p);
}
if(sqlite3SafetyOff(db))
{
rc = SQLITE_MISUSE;
}
#ifndef SQLITE_OMIT_TRACE
/* Invoke the profile callback if there is one
*/
if(rc != SQLITE_ROW && db->xProfile && !db->init.busy && p->nOp > 0
&& p->aOp[0].opcode == OP_Trace && p->aOp[0].p4.z != 0)
{
double rNow;
u64 elapseTime;
sqlite3OsCurrentTime(db->pVfs, &rNow);
elapseTime = (rNow - (int) rNow) * 3600.0 * 24.0 * 1000000000.0 - p->startTime;
db->xProfile(db->pProfileArg, p->aOp[0].p4.z, elapseTime);
}
#endif
sqlite3Error(p->db, rc, 0);
p->rc = sqlite3ApiExit(p->db, p->rc);
end_of_step:
assert((rc & 0xff) == rc);
if(p->zSql && (rc & 0xff) < SQLITE_ROW)
{
/* This behavior occurs if sqlite3_prepare_v2() was used to build
** the prepared statement. Return error codes directly */
sqlite3Error(p->db, p->rc, 0);
return p->rc;
}
else
{
/* This is for legacy sqlite3_prepare() builds and when the code
** is SQLITE_ROW or SQLITE_DONE */
return rc;
}
}
/*
** This is the top-level implementation of sqlite3_step(). Call
** sqlite3Step() to do most of the work. If a schema error occurs,
** call sqlite3Reprepare() and try again.
*/
#ifdef SQLITE_OMIT_PARSER
SQLITE_API int
sqlite3_step(sqlite3_stmt * pStmt)
{
int rc = SQLITE_MISUSE;
if(pStmt)
{
Vdbe *v;
v = (Vdbe *) pStmt;
sqlite3_mutex_enter(v->db->mutex);
rc = sqlite3Step(v);
sqlite3_mutex_leave(v->db->mutex);
}
return rc;
}
#else
SQLITE_API int
sqlite3_step(sqlite3_stmt * pStmt)
{
int rc = SQLITE_MISUSE;
if(pStmt)
{
int cnt = 0;
Vdbe *v = (Vdbe *) pStmt;
sqlite3 *db = v->db;
sqlite3_mutex_enter(db->mutex);
while ((rc = sqlite3Step(v)) == SQLITE_SCHEMA && cnt++ < 5 && vdbeReprepare(v))
{
sqlite3_reset(pStmt);
v->expired = 0;
}
if(rc == SQLITE_SCHEMA && v->zSql && db->pErr)
{
/* This case occurs after failing to recompile an sql statement.
** The error message from the SQL compiler has already been loaded
** into the database handle. This block copies the error message
** from the database handle into the statement and sets the statement
** program counter to 0 to ensure that when the statement is
** finalized or reset the parser error message is available via
** sqlite3_errmsg() and sqlite3_errcode().
*/
const char *zErr = (const char *) sqlite3_value_text(db->pErr);
sqlite3_free(v->zErrMsg);
if(!db->mallocFailed)
{
v->zErrMsg = sqlite3DbStrDup(db, zErr);
}
else
{
v->zErrMsg = 0;
v->rc = SQLITE_NOMEM;
}
}
rc = sqlite3ApiExit(db, rc);
sqlite3_mutex_leave(db->mutex);
}
return rc;
}
#endif
/*
** Extract the user data from a sqlite3_context structure and return a
** pointer to it.
*/
SQLITE_API void *
sqlite3_user_data(sqlite3_context * p)
{
assert(p && p->pFunc);
return p->pFunc->pUserData;
}
/*
** Extract the user data from a sqlite3_context structure and return a
** pointer to it.
*/
SQLITE_API sqlite3 *
sqlite3_context_db_handle(sqlite3_context * p)
{
assert(p && p->pFunc);
return p->s.db;
}
/*
** The following is the implementation of an SQL function that always
** fails with an error message stating that the function is used in the
** wrong context. The sqlite3_overload_function() API might construct
** SQL function that use this routine so that the functions will exist
** for name resolution but are actually overloaded by the xFindFunction
** method of virtual tables.
*/
SQLITE_PRIVATE void
sqlite3InvalidFunction(sqlite3_context * context, /* The function calling context */
int argc, /* Number of arguments to the function */
sqlite3_value ** argv /* Value of each argument */
)
{
const char *zName = context->pFunc->zName;
char *zErr;
zErr = sqlite3MPrintf(0, "unable to use function %s in the requested context", zName);
sqlite3_result_error(context, zErr, -1);
sqlite3_free(zErr);
}
/*
** Allocate or return the aggregate context for a user function. A new
** context is allocated on the first call. Subsequent calls return the
** same context that was returned on prior calls.
*/
SQLITE_API void *
sqlite3_aggregate_context(sqlite3_context * p, int nByte)
{
Mem *pMem;
assert(p && p->pFunc && p->pFunc->xStep);
assert(sqlite3_mutex_held(p->s.db->mutex));
pMem = p->pMem;
if((pMem->flags & MEM_Agg) == 0)
{
if(nByte == 0)
{
sqlite3VdbeMemReleaseExternal(pMem);
pMem->flags = MEM_Null;
pMem->z = 0;
}
else
{
sqlite3VdbeMemGrow(pMem, nByte, 0);
pMem->flags = MEM_Agg;
pMem->u.pDef = p->pFunc;
if(pMem->z)
{
memset(pMem->z, 0, nByte);
}
}
}
return (void *) pMem->z;
}
/*
** Return the auxilary data pointer, if any, for the iArg'th argument to
** the user-function defined by pCtx.
*/
SQLITE_API void *
sqlite3_get_auxdata(sqlite3_context * pCtx, int iArg)
{
VdbeFunc *pVdbeFunc;
assert(sqlite3_mutex_held(pCtx->s.db->mutex));
pVdbeFunc = pCtx->pVdbeFunc;
if(!pVdbeFunc || iArg >= pVdbeFunc->nAux || iArg < 0)
{
return 0;
}
return pVdbeFunc->apAux[iArg].pAux;
}
/*
** Set the auxilary data pointer and delete function, for the iArg'th
** argument to the user-function defined by pCtx. Any previous value is
** deleted by calling the delete function specified when it was set.
*/
SQLITE_API void
sqlite3_set_auxdata(sqlite3_context * pCtx, int iArg, void *pAux, void (*xDelete) (void *))
{
struct AuxData *pAuxData;
VdbeFunc *pVdbeFunc;
if(iArg < 0)
goto failed;
assert(sqlite3_mutex_held(pCtx->s.db->mutex));
pVdbeFunc = pCtx->pVdbeFunc;
if(!pVdbeFunc || pVdbeFunc->nAux <= iArg)
{
int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0);
int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData) * iArg;
pVdbeFunc = sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc);
if(!pVdbeFunc)
{
goto failed;
}
pCtx->pVdbeFunc = pVdbeFunc;
memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData) * (iArg + 1 - nAux));
pVdbeFunc->nAux = iArg + 1;
pVdbeFunc->pFunc = pCtx->pFunc;
}
pAuxData = &pVdbeFunc->apAux[iArg];
if(pAuxData->pAux && pAuxData->xDelete)
{
pAuxData->xDelete(pAuxData->pAux);
}
pAuxData->pAux = pAux;
pAuxData->xDelete = xDelete;
return;
failed:
if(xDelete)
{
xDelete(pAux);
}
}
/*
** Return the number of times the Step function of a aggregate has been
** called.
**
** This function is deprecated. Do not use it for new code. It is
** provide only to avoid breaking legacy code. New aggregate function
** implementations should keep their own counts within their aggregate
** context.
*/
SQLITE_API int
sqlite3_aggregate_count(sqlite3_context * p)
{
assert(p && p->pFunc && p->pFunc->xStep);
return p->pMem->n;
}
/*
** Return the number of columns in the result set for the statement pStmt.
*/
SQLITE_API int
sqlite3_column_count(sqlite3_stmt * pStmt)
{
Vdbe *pVm = (Vdbe *) pStmt;
return pVm ? pVm->nResColumn : 0;
}
/*
** Return the number of values available from the current row of the
** currently executing statement pStmt.
*/
SQLITE_API int
sqlite3_data_count(sqlite3_stmt * pStmt)
{
Vdbe *pVm = (Vdbe *) pStmt;
if(pVm == 0 || pVm->pResultSet == 0)
return 0;
return pVm->nResColumn;
}
/*
** Check to see if column iCol of the given statement is valid. If
** it is, return a pointer to the Mem for the value of that column.
** If iCol is not valid, return a pointer to a Mem which has a value
** of NULL.
*/
static Mem *
columnMem(sqlite3_stmt * pStmt, int i)
{
Vdbe *pVm;
int vals;
Mem *pOut;
pVm = (Vdbe *) pStmt;
if(pVm && pVm->pResultSet != 0 && i < pVm->nResColumn && i >= 0)
{
sqlite3_mutex_enter(pVm->db->mutex);
vals = sqlite3_data_count(pStmt);
pOut = &pVm->pResultSet[i];
}
else
{
static const Mem nullMem = { {0}, 0.0, 0, "", 0, MEM_Null, SQLITE_NULL, 0, 0, 0 };
if(pVm->db)
{
sqlite3_mutex_enter(pVm->db->mutex);
sqlite3Error(pVm->db, SQLITE_RANGE, 0);
}
pOut = (Mem *) & nullMem;
}
return pOut;
}
/*
** This function is called after invoking an sqlite3_value_XXX function on a
** column value (i.e. a value returned by evaluating an SQL expression in the
** select list of a SELECT statement) that may cause a malloc() failure. If
** malloc() has failed, the threads mallocFailed flag is cleared and the result
** code of statement pStmt set to SQLITE_NOMEM.
**
** Specifically, this is called from within:
**
** sqlite3_column_int()
** sqlite3_column_int64()
** sqlite3_column_text()
** sqlite3_column_text16()
** sqlite3_column_real()
** sqlite3_column_bytes()
** sqlite3_column_bytes16()
**
** But not for sqlite3_column_blob(), which never calls malloc().
*/
static void
columnMallocFailure(sqlite3_stmt * pStmt)
{
/* If malloc() failed during an encoding conversion within an
** sqlite3_column_XXX API, then set the return code of the statement to
** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
** and _finalize() will return NOMEM.
*/
Vdbe *p = (Vdbe *) pStmt;
if(p)
{
p->rc = sqlite3ApiExit(p->db, p->rc);
sqlite3_mutex_leave(p->db->mutex);
}
}
/**************************** sqlite3_column_ *******************************
** The following routines are used to access elements of the current row
** in the result set.
*/
SQLITE_API const void *
sqlite3_column_blob(sqlite3_stmt * pStmt, int i)
{
const void *val;
val = sqlite3_value_blob(columnMem(pStmt, i));
/* Even though there is no encoding conversion, value_blob() might
** need to call malloc() to expand the result of a zeroblob()
** expression.
*/
columnMallocFailure(pStmt);
return val;
}
SQLITE_API int
sqlite3_column_bytes(sqlite3_stmt * pStmt, int i)
{
int val = sqlite3_value_bytes(columnMem(pStmt, i));
columnMallocFailure(pStmt);
return val;
}
SQLITE_API int
sqlite3_column_bytes16(sqlite3_stmt * pStmt, int i)
{
int val = sqlite3_value_bytes16(columnMem(pStmt, i));
columnMallocFailure(pStmt);
return val;
}
SQLITE_API double
sqlite3_column_double(sqlite3_stmt * pStmt, int i)
{
double val = sqlite3_value_double(columnMem(pStmt, i));
columnMallocFailure(pStmt);
return val;
}
SQLITE_API int
sqlite3_column_int(sqlite3_stmt * pStmt, int i)
{
int val = sqlite3_value_int(columnMem(pStmt, i));
columnMallocFailure(pStmt);
return val;
}
SQLITE_API sqlite_int64
sqlite3_column_int64(sqlite3_stmt * pStmt, int i)
{
sqlite_int64 val = sqlite3_value_int64(columnMem(pStmt, i));
columnMallocFailure(pStmt);
return val;
}
SQLITE_API const unsigned char *
sqlite3_column_text(sqlite3_stmt * pStmt, int i)
{
const unsigned char *val = sqlite3_value_text(columnMem(pStmt, i));
columnMallocFailure(pStmt);
return val;
}
SQLITE_API sqlite3_value *
sqlite3_column_value(sqlite3_stmt * pStmt, int i)
{
sqlite3_value *pOut = columnMem(pStmt, i);
columnMallocFailure(pStmt);
return pOut;
}
#ifndef SQLITE_OMIT_UTF16
SQLITE_API const void *
sqlite3_column_text16(sqlite3_stmt * pStmt, int i)
{
const void *val = sqlite3_value_text16(columnMem(pStmt, i));
columnMallocFailure(pStmt);
return val;
}
#endif /* SQLITE_OMIT_UTF16 */
SQLITE_API int
sqlite3_column_type(sqlite3_stmt * pStmt, int i)
{
int iType = sqlite3_value_type(columnMem(pStmt, i));
columnMallocFailure(pStmt);
return iType;
}
/* The following function is experimental and subject to change or
** removal */
/*int sqlite3_column_numeric_type(sqlite3_stmt *pStmt, int i){
** return sqlite3_value_numeric_type( columnMem(pStmt,i) );
**}
*/
/*
** Convert the N-th element of pStmt->pColName[] into a string using
** xFunc() then return that string. If N is out of range, return 0.
**
** There are up to 5 names for each column. useType determines which
** name is returned. Here are the names:
**
** 0 The column name as it should be displayed for output
** 1 The datatype name for the column
** 2 The name of the database that the column derives from
** 3 The name of the table that the column derives from
** 4 The name of the table column that the result column derives from
**
** If the result is not a simple column reference (if it is an expression
** or a constant) then useTypes 2, 3, and 4 return NULL.
*/
static const void *
columnName(sqlite3_stmt * pStmt, int N, const void *(*xFunc) (Mem *), int useType)
{
const void *ret = 0;
Vdbe *p = (Vdbe *) pStmt;
int n;
if(p != 0)
{
n = sqlite3_column_count(pStmt);
if(N < n && N >= 0)
{
N += useType * n;
sqlite3_mutex_enter(p->db->mutex);
ret = xFunc(&p->aColName[N]);
/* A malloc may have failed inside of the xFunc() call. If this
** is the case, clear the mallocFailed flag and return NULL.
*/
if(p->db && p->db->mallocFailed)
{
p->db->mallocFailed = 0;
ret = 0;
}
sqlite3_mutex_leave(p->db->mutex);
}
}
return ret;
}
/*
** Return the name of the Nth column of the result set returned by SQL
** statement pStmt.
*/
SQLITE_API const char *
sqlite3_column_name(sqlite3_stmt * pStmt, int N)
{
return columnName(pStmt, N, (const void *(*)(Mem *)) sqlite3_value_text, COLNAME_NAME);
}
#ifndef SQLITE_OMIT_UTF16
SQLITE_API const void *
sqlite3_column_name16(sqlite3_stmt * pStmt, int N)
{
return columnName(pStmt, N, (const void *(*)(Mem *)) sqlite3_value_text16, COLNAME_NAME);
}
#endif
/*
** Constraint: If you have ENABLE_COLUMN_METADATA then you must
** not define OMIT_DECLTYPE.
*/
#if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
# error "Must not define both SQLITE_OMIT_DECLTYPE \
and SQLITE_ENABLE_COLUMN_METADATA"
#endif
#ifndef SQLITE_OMIT_DECLTYPE
/*
** Return the column declaration type (if applicable) of the 'i'th column
** of the result set of SQL statement pStmt.
*/
SQLITE_API const char *
sqlite3_column_decltype(sqlite3_stmt * pStmt, int N)
{
return columnName(pStmt, N, (const void *(*)(Mem *)) sqlite3_value_text, COLNAME_DECLTYPE);
}
#ifndef SQLITE_OMIT_UTF16
SQLITE_API const void *
sqlite3_column_decltype16(sqlite3_stmt * pStmt, int N)
{
return columnName(pStmt, N, (const void *(*)(Mem *)) sqlite3_value_text16,
COLNAME_DECLTYPE);
}
#endif /* SQLITE_OMIT_UTF16 */
#endif /* SQLITE_OMIT_DECLTYPE */
#ifdef SQLITE_ENABLE_COLUMN_METADATA
/*
** Return the name of the database from which a result column derives.
** NULL is returned if the result column is an expression or constant or
** anything else which is not an unabiguous reference to a database column.
*/
SQLITE_API const char *
sqlite3_column_database_name(sqlite3_stmt * pStmt, int N)
{
return columnName(pStmt, N, (const void *(*)(Mem *)) sqlite3_value_text, COLNAME_DATABASE);
}
#ifndef SQLITE_OMIT_UTF16
SQLITE_API const void *
sqlite3_column_database_name16(sqlite3_stmt * pStmt, int N)
{
return columnName(pStmt, N, (const void *(*)(Mem *)) sqlite3_value_text16,
COLNAME_DATABASE);
}
#endif /* SQLITE_OMIT_UTF16 */
/*
** Return the name of the table from which a result column derives.
** NULL is returned if the result column is an expression or constant or
** anything else which is not an unabiguous reference to a database column.
*/
SQLITE_API const char *
sqlite3_column_table_name(sqlite3_stmt * pStmt, int N)
{
return columnName(pStmt, N, (const void *(*)(Mem *)) sqlite3_value_text, COLNAME_TABLE);
}
#ifndef SQLITE_OMIT_UTF16
SQLITE_API const void *
sqlite3_column_table_name16(sqlite3_stmt * pStmt, int N)
{
return columnName(pStmt, N, (const void *(*)(Mem *)) sqlite3_value_text16, COLNAME_TABLE);
}
#endif /* SQLITE_OMIT_UTF16 */
/*
** Return the name of the table column from which a result column derives.
** NULL is returned if the result column is an expression or constant or
** anything else which is not an unabiguous reference to a database column.
*/
SQLITE_API const char *
sqlite3_column_origin_name(sqlite3_stmt * pStmt, int N)
{
return columnName(pStmt, N, (const void *(*)(Mem *)) sqlite3_value_text, COLNAME_COLUMN);
}
#ifndef SQLITE_OMIT_UTF16
SQLITE_API const void *
sqlite3_column_origin_name16(sqlite3_stmt * pStmt, int N)
{
return columnName(pStmt, N, (const void *(*)(Mem *)) sqlite3_value_text16, COLNAME_COLUMN);
}
#endif /* SQLITE_OMIT_UTF16 */
#endif /* SQLITE_ENABLE_COLUMN_METADATA */
/******************************* sqlite3_bind_ ***************************
**
** Routines used to attach values to wildcards in a compiled SQL statement.
*/
/*
** Unbind the value bound to variable i in virtual machine p. This is the
** the same as binding a NULL value to the column. If the "i" parameter is
** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
**
** The error code stored in database p->db is overwritten with the return
** value in any case.
*/
static int
vdbeUnbind(Vdbe * p, int i)
{
Mem *pVar;
if(p == 0 || p->magic != VDBE_MAGIC_RUN || p->pc >= 0)
{
if(p)
sqlite3Error(p->db, SQLITE_MISUSE, 0);
return SQLITE_MISUSE;
}
if(i < 1 || i > p->nVar)
{
sqlite3Error(p->db, SQLITE_RANGE, 0);
return SQLITE_RANGE;
}
i--;
pVar = &p->aVar[i];
sqlite3VdbeMemRelease(pVar);
pVar->flags = MEM_Null;
sqlite3Error(p->db, SQLITE_OK, 0);
return SQLITE_OK;
}
/*
** Bind a text or BLOB value.
*/
static int
bindText(sqlite3_stmt * pStmt, /* The statement to bind against */
int i, /* Index of the parameter to bind */
const void *zData, /* Pointer to the data to be bound */
int nData, /* Number of bytes of data to be bound */
void (*xDel) (void *), /* Destructor for the data */
int encoding /* Encoding for the data */
)
{
Vdbe *p = (Vdbe *) pStmt;
Mem *pVar;
int rc;
if(p == 0)
{
return SQLITE_MISUSE;
}
sqlite3_mutex_enter(p->db->mutex);
rc = vdbeUnbind(p, i);
if(rc == SQLITE_OK && zData != 0)
{
pVar = &p->aVar[i - 1];
rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
if(rc == SQLITE_OK && encoding != 0)
{
rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
}
sqlite3Error(p->db, rc, 0);
rc = sqlite3ApiExit(p->db, rc);
}
sqlite3_mutex_leave(p->db->mutex);
return rc;
}
/*
** Bind a blob value to an SQL statement variable.
*/
SQLITE_API int
sqlite3_bind_blob(sqlite3_stmt * pStmt, int i, const void *zData, int nData, void (*xDel) (void *))
{
return bindText(pStmt, i, zData, nData, xDel, 0);
}
SQLITE_API int
sqlite3_bind_double(sqlite3_stmt * pStmt, int i, double rValue)
{
int rc;
Vdbe *p = (Vdbe *) pStmt;
sqlite3_mutex_enter(p->db->mutex);
rc = vdbeUnbind(p, i);
if(rc == SQLITE_OK)
{
sqlite3VdbeMemSetDouble(&p->aVar[i - 1], rValue);
}
sqlite3_mutex_leave(p->db->mutex);
return rc;
}
SQLITE_API int
sqlite3_bind_int(sqlite3_stmt * p, int i, int iValue)
{
return sqlite3_bind_int64(p, i, (i64) iValue);
}
SQLITE_API int
sqlite3_bind_int64(sqlite3_stmt * pStmt, int i, sqlite_int64 iValue)
{
int rc;
Vdbe *p = (Vdbe *) pStmt;
sqlite3_mutex_enter(p->db->mutex);
rc = vdbeUnbind(p, i);
if(rc == SQLITE_OK)
{
sqlite3VdbeMemSetInt64(&p->aVar[i - 1], iValue);
}
sqlite3_mutex_leave(p->db->mutex);
return rc;
}
SQLITE_API int
sqlite3_bind_null(sqlite3_stmt * pStmt, int i)
{
int rc;
Vdbe *p = (Vdbe *) pStmt;
sqlite3_mutex_enter(p->db->mutex);
rc = vdbeUnbind(p, i);
sqlite3_mutex_leave(p->db->mutex);
return rc;
}
SQLITE_API int
sqlite3_bind_text(sqlite3_stmt * pStmt, int i, const char *zData, int nData, void (*xDel) (void *))
{
return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
}
#ifndef SQLITE_OMIT_UTF16
SQLITE_API int
sqlite3_bind_text16(sqlite3_stmt * pStmt,
int i, const void *zData, int nData, void (*xDel) (void *))
{
return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
}
#endif /* SQLITE_OMIT_UTF16 */
SQLITE_API int
sqlite3_bind_value(sqlite3_stmt * pStmt, int i, const sqlite3_value * pValue)
{
int rc;
Vdbe *p = (Vdbe *) pStmt;
sqlite3_mutex_enter(p->db->mutex);
rc = vdbeUnbind(p, i);
if(rc == SQLITE_OK)
{
rc = sqlite3VdbeMemCopy(&p->aVar[i - 1], pValue);
}
rc = sqlite3ApiExit(p->db, rc);
sqlite3_mutex_leave(p->db->mutex);
return rc;
}
SQLITE_API int
sqlite3_bind_zeroblob(sqlite3_stmt * pStmt, int i, int n)
{
int rc;
Vdbe *p = (Vdbe *) pStmt;
sqlite3_mutex_enter(p->db->mutex);
rc = vdbeUnbind(p, i);
if(rc == SQLITE_OK)
{
sqlite3VdbeMemSetZeroBlob(&p->aVar[i - 1], n);
}
sqlite3_mutex_leave(p->db->mutex);
return rc;
}
/*
** Return the number of wildcards that can be potentially bound to.
** This routine is added to support DBD::SQLite.
*/
SQLITE_API int
sqlite3_bind_parameter_count(sqlite3_stmt * pStmt)
{
Vdbe *p = (Vdbe *) pStmt;
return p ? p->nVar : 0;
}
/*
** Create a mapping from variable numbers to variable names
** in the Vdbe.azVar[] array, if such a mapping does not already
** exist.
*/
static void
createVarMap(Vdbe * p)
{
if(!p->okVar)
{
sqlite3_mutex_enter(p->db->mutex);
if(!p->okVar)
{
int j;
Op *pOp;
for (j = 0, pOp = p->aOp; j < p->nOp; j++, pOp++)
{
if(pOp->opcode == OP_Variable)
{
assert(pOp->p1 > 0 && pOp->p1 <= p->nVar);
p->azVar[pOp->p1 - 1] = pOp->p4.z;
}
}
p->okVar = 1;
}
sqlite3_mutex_leave(p->db->mutex);
}
}
/*
** Return the name of a wildcard parameter. Return NULL if the index
** is out of range or if the wildcard is unnamed.
**
** The result is always UTF-8.
*/
SQLITE_API const char *
sqlite3_bind_parameter_name(sqlite3_stmt * pStmt, int i)
{
Vdbe *p = (Vdbe *) pStmt;
if(p == 0 || i < 1 || i > p->nVar)
{
return 0;
}
createVarMap(p);
return p->azVar[i - 1];
}
/*
** Given a wildcard parameter name, return the index of the variable
** with that name. If there is no variable with the given name,
** return 0.
*/
SQLITE_API int
sqlite3_bind_parameter_index(sqlite3_stmt * pStmt, const char *zName)
{
Vdbe *p = (Vdbe *) pStmt;
int i;
if(p == 0)
{
return 0;
}
createVarMap(p);
if(zName)
{
for (i = 0; i < p->nVar; i++)
{
const char *z = p->azVar[i];
if(z && strcmp(z, zName) == 0)
{
return i + 1;
}
}
}
return 0;
}
/*
** Transfer all bindings from the first statement over to the second.
** If the two statements contain a different number of bindings, then
** an SQLITE_ERROR is returned.
*/
SQLITE_API int
sqlite3_transfer_bindings(sqlite3_stmt * pFromStmt, sqlite3_stmt * pToStmt)
{
Vdbe *pFrom = (Vdbe *) pFromStmt;
Vdbe *pTo = (Vdbe *) pToStmt;
int i, rc = SQLITE_OK;
if((pFrom->magic != VDBE_MAGIC_RUN && pFrom->magic != VDBE_MAGIC_HALT)
|| (pTo->magic != VDBE_MAGIC_RUN && pTo->magic != VDBE_MAGIC_HALT)
|| pTo->db != pFrom->db)
{
return SQLITE_MISUSE;
}
if(pFrom->nVar != pTo->nVar)
{
return SQLITE_ERROR;
}
sqlite3_mutex_enter(pTo->db->mutex);
for (i = 0; rc == SQLITE_OK && i < pFrom->nVar; i++)
{
sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
}
sqlite3_mutex_leave(pTo->db->mutex);
assert(rc == SQLITE_OK || rc == SQLITE_NOMEM);
return rc;
}
/*
** Return the sqlite3* database handle to which the prepared statement given
** in the argument belongs. This is the same database handle that was
** the first argument to the sqlite3_prepare() that was used to create
** the statement in the first place.
*/
SQLITE_API sqlite3 *
sqlite3_db_handle(sqlite3_stmt * pStmt)
{
return pStmt ? ((Vdbe *) pStmt)->db : 0;
}
/************** End of vdbeapi.c *********************************************/
/************** Begin file vdbe.c ********************************************/
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** The code in this file implements execution method of the
** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c")
** handles housekeeping details such as creating and deleting
** VDBE instances. This file is solely interested in executing
** the VDBE program.
**
** In the external interface, an "sqlite3_stmt*" is an opaque pointer
** to a VDBE.
**
** The SQL parser generates a program which is then executed by
** the VDBE to do the work of the SQL statement. VDBE programs are
** similar in form to assembly language. The program consists of
** a linear sequence of operations. Each operation has an opcode
** and 5 operands. Operands P1, P2, and P3 are integers. Operand P4
** is a null-terminated string. Operand P5 is an unsigned character.
** Few opcodes use all 5 operands.
**
** Computation results are stored on a set of registers numbered beginning
** with 1 and going up to Vdbe.nMem. Each register can store
** either an integer, a null-terminated string, a floating point
** number, or the SQL "NULL" value. An inplicit conversion from one
** type to the other occurs as necessary.
**
** Most of the code in this file is taken up by the sqlite3VdbeExec()
** function which does the work of interpreting a VDBE program.
** But other routines are also provided to help in building up
** a program instruction by instruction.
**
** Various scripts scan this source file in order to generate HTML
** documentation, headers files, or other derived files. The formatting
** of the code in this file is, therefore, important. See other comments
** in this file for details. If in doubt, do not deviate from existing
** commenting and indentation practices when changing or adding code.
**
*/
/*
** The following global variable is incremented every time a cursor
** moves, either by the OP_MoveXX, OP_Next, or OP_Prev opcodes. The test
** procedures use this information to make sure that indices are
** working correctly. This variable has no function other than to
** help verify the correct operation of the library.
*/
#ifdef SQLITE_TEST
SQLITE_API int sqlite3_search_count = 0;
#endif
/*
** When this global variable is positive, it gets decremented once before
** each instruction in the VDBE. When reaches zero, the u1.isInterrupted
** field of the sqlite3 structure is set in order to simulate and interrupt.
**
** This facility is used for testing purposes only. It does not function
** in an ordinary build.
*/
#ifdef SQLITE_TEST
SQLITE_API int sqlite3_interrupt_count = 0;
#endif
/*
** The next global variable is incremented each type the OP_Sort opcode
** is executed. The test procedures use this information to make sure that
** sorting is occurring or not occuring at appropriate times. This variable
** has no function other than to help verify the correct operation of the
** library.
*/
#ifdef SQLITE_TEST
SQLITE_API int sqlite3_sort_count = 0;
#endif
/*
** The next global variable records the size of the largest MEM_Blob
** or MEM_Str that has been used by a VDBE opcode. The test procedures
** use this information to make sure that the zero-blob functionality
** is working correctly. This variable has no function other than to
** help verify the correct operation of the library.
*/
#ifdef SQLITE_TEST
SQLITE_API int sqlite3_max_blobsize = 0;
static void
updateMaxBlobsize(Mem * p)
{
if((p->flags & (MEM_Str | MEM_Blob)) != 0 && p->n > sqlite3_max_blobsize)
{
sqlite3_max_blobsize = p->n;
}
}
#endif
/*
** Test a register to see if it exceeds the current maximum blob size.
** If it does, record the new maximum blob size.
*/
#if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
# define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
#else
# define UPDATE_MAX_BLOBSIZE(P)
#endif
/*
** Release the memory associated with a register. This
** leaves the Mem.flags field in an inconsistent state.
*/
#define Release(P) if((P)->flags&MEM_Dyn){ sqlite3VdbeMemRelease(P); }
/*
** Convert the given register into a string if it isn't one
** already. Return non-zero if a malloc() fails.
*/
#define Stringify(P, enc) \
if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
{ goto no_mem; }
/*
** An ephemeral string value (signified by the MEM_Ephem flag) contains
** a pointer to a dynamically allocated string where some other entity
** is responsible for deallocating that string. Because the register
** does not control the string, it might be deleted without the register
** knowing it.
**
** This routine converts an ephemeral string into a dynamically allocated
** string that the register itself controls. In other words, it
** converts an MEM_Ephem string into an MEM_Dyn string.
*/
#define Deephemeralize(P) \
if( ((P)->flags&MEM_Ephem)!=0 \
&& sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
/*
** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
** P if required.
*/
#define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
/*
** Argument pMem points at a regiser that will be passed to a
** user-defined function or returned to the user as the result of a query.
** The second argument, 'db_enc' is the text encoding used by the vdbe for
** register variables. This routine sets the pMem->enc and pMem->type
** variables used by the sqlite3_value_*() routines.
*/
#define storeTypeInfo(A,B) _storeTypeInfo(A)
static void
_storeTypeInfo(Mem * pMem)
{
int flags = pMem->flags;
if(flags & MEM_Null)
{
pMem->type = SQLITE_NULL;
}
else if(flags & MEM_Int)
{
pMem->type = SQLITE_INTEGER;
}
else if(flags & MEM_Real)
{
pMem->type = SQLITE_FLOAT;
}
else if(flags & MEM_Str)
{
pMem->type = SQLITE_TEXT;
}
else
{
pMem->type = SQLITE_BLOB;
}
}
/*
** Properties of opcodes. The OPFLG_INITIALIZER macro is
** created by mkopcodeh.awk during compilation. Data is obtained
** from the comments following the "case OP_xxxx:" statements in
** this file.
*/
static unsigned char opcodeProperty[] = OPFLG_INITIALIZER;
/*
** Return true if an opcode has any of the OPFLG_xxx properties
** specified by mask.
*/
SQLITE_PRIVATE int
sqlite3VdbeOpcodeHasProperty(int opcode, int mask)
{
assert(opcode > 0 && opcode < sizeof(opcodeProperty));
return (opcodeProperty[opcode] & mask) != 0;
}
/*
** Allocate cursor number iCur. Return a pointer to it. Return NULL
** if we run out of memory.
*/
static Cursor *
allocateCursor(Vdbe * p, int iCur, Op * pOp, int iDb, int isBtreeCursor)
{
/* Find the memory cell that will be used to store the blob of memory
** required for this Cursor structure. It is convenient to use a
** vdbe memory cell to manage the memory allocation required for a
** Cursor structure for the following reasons:
**
** * Sometimes cursor numbers are used for a couple of different
** purposes in a vdbe program. The different uses might require
** different sized allocations. Memory cells provide growable
** allocations.
**
** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
** be freed lazily via the sqlite3_release_memory() API. This
** minimizes the number of malloc calls made by the system.
**
** Memory cells for cursors are allocated at the top of the address
** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
** cursor 1 is managed by memory cell (p->nMem-1), etc.
*/
Mem *pMem = &p->aMem[p->nMem - iCur];
int nByte;
Cursor *pCx = 0;
/* If the opcode of pOp is OP_SetNumColumns, then pOp->p2 contains
** the number of fields in the records contained in the table or
** index being opened. Use this to reserve space for the
** Cursor.aType[] array.
*/
int nField = 0;
if(pOp->opcode == OP_SetNumColumns || pOp->opcode == OP_OpenEphemeral)
{
nField = pOp->p2;
}
nByte = sizeof(Cursor) +
(isBtreeCursor ? sqlite3BtreeCursorSize() : 0) + 2 * nField * sizeof(u32);
assert(iCur < p->nCursor);
if(p->apCsr[iCur])
{
sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
p->apCsr[iCur] = 0;
}
if(SQLITE_OK == sqlite3VdbeMemGrow(pMem, nByte, 0))
{
p->apCsr[iCur] = pCx = (Cursor *) pMem->z;
memset(pMem->z, 0, nByte);
pCx->iDb = iDb;
pCx->nField = nField;
if(nField)
{
pCx->aType = (u32 *) & pMem->z[sizeof(Cursor)];
}
if(isBtreeCursor)
{
pCx->pCursor =
(BtCursor *) & pMem->z[sizeof(Cursor) + 2 * nField * sizeof(u32)];
}
}
return pCx;
}
/*
** Try to convert a value into a numeric representation if we can
** do so without loss of information. In other words, if the string
** looks like a number, convert it into a number. If it does not
** look like a number, leave it alone.
*/
static void
applyNumericAffinity(Mem * pRec)
{
if((pRec->flags & (MEM_Real | MEM_Int)) == 0)
{
int realnum;
sqlite3VdbeMemNulTerminate(pRec);
if((pRec->flags & MEM_Str) && sqlite3IsNumber(pRec->z, &realnum, pRec->enc))
{
i64 value;
sqlite3VdbeChangeEncoding(pRec, SQLITE_UTF8);
if(!realnum && sqlite3Atoi64(pRec->z, &value))
{
pRec->u.i = value;
MemSetTypeFlag(pRec, MEM_Int);
}
else
{
sqlite3VdbeMemRealify(pRec);
}
}
}
}
/*
** Processing is determine by the affinity parameter:
**
** SQLITE_AFF_INTEGER:
** SQLITE_AFF_REAL:
** SQLITE_AFF_NUMERIC:
** Try to convert pRec to an integer representation or a
** floating-point representation if an integer representation
** is not possible. Note that the integer representation is
** always preferred, even if the affinity is REAL, because
** an integer representation is more space efficient on disk.
**
** SQLITE_AFF_TEXT:
** Convert pRec to a text representation.
**
** SQLITE_AFF_NONE:
** No-op. pRec is unchanged.
*/
static void
applyAffinity(Mem * pRec, /* The value to apply affinity to */
char affinity, /* The affinity to be applied */
u8 enc /* Use this text encoding */
)
{
if(affinity == SQLITE_AFF_TEXT)
{
/* Only attempt the conversion to TEXT if there is an integer or real
** representation (blob and NULL do not get converted) but no string
** representation.
*/
if(0 == (pRec->flags & MEM_Str) && (pRec->flags & (MEM_Real | MEM_Int)))
{
sqlite3VdbeMemStringify(pRec, enc);
}
pRec->flags &= ~(MEM_Real | MEM_Int);
}
else if(affinity != SQLITE_AFF_NONE)
{
assert(affinity == SQLITE_AFF_INTEGER || affinity == SQLITE_AFF_REAL
|| affinity == SQLITE_AFF_NUMERIC);
applyNumericAffinity(pRec);
if(pRec->flags & MEM_Real)
{
sqlite3VdbeIntegerAffinity(pRec);
}
}
}
/*
** Try to convert the type of a function argument or a result column
** into a numeric representation. Use either INTEGER or REAL whichever
** is appropriate. But only do the conversion if it is possible without
** loss of information and return the revised type of the argument.
**
** This is an EXPERIMENTAL api and is subject to change or removal.
*/
SQLITE_API int
sqlite3_value_numeric_type(sqlite3_value * pVal)
{
Mem *pMem = (Mem *) pVal;
applyNumericAffinity(pMem);
storeTypeInfo(pMem, 0);
return pMem->type;
}
/*
** Exported version of applyAffinity(). This one works on sqlite3_value*,
** not the internal Mem* type.
*/
SQLITE_PRIVATE void
sqlite3ValueApplyAffinity(sqlite3_value * pVal, u8 affinity, u8 enc)
{
applyAffinity((Mem *) pVal, affinity, enc);
}
#ifdef SQLITE_DEBUG
/*
** Write a nice string representation of the contents of cell pMem
** into buffer zBuf, length nBuf.
*/
SQLITE_PRIVATE void
sqlite3VdbeMemPrettyPrint(Mem * pMem, char *zBuf)
{
char *zCsr = zBuf;
int f = pMem->flags;
static const char *const encnames[] = { "(X)", "(8)", "(16LE)", "(16BE)" };
if(f & MEM_Blob)
{
int i;
char c;
if(f & MEM_Dyn)
{
c = 'z';
assert((f & (MEM_Static | MEM_Ephem)) == 0);
}
else if(f & MEM_Static)
{
c = 't';
assert((f & (MEM_Dyn | MEM_Ephem)) == 0);
}
else if(f & MEM_Ephem)
{
c = 'e';
assert((f & (MEM_Static | MEM_Dyn)) == 0);
}
else
{
c = 's';
}
sqlite3_snprintf(100, zCsr, "%c", c);
zCsr += strlen(zCsr);
sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
zCsr += strlen(zCsr);
for (i = 0; i < 16 && i < pMem->n; i++)
{
sqlite3_snprintf(100, zCsr, "%02X", ((int) pMem->z[i] & 0xFF));
zCsr += strlen(zCsr);
}
for (i = 0; i < 16 && i < pMem->n; i++)
{
char z = pMem->z[i];
if(z < 32 || z > 126)
*zCsr++ = '.';
else
*zCsr++ = z;
}
sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
zCsr += strlen(zCsr);
if(f & MEM_Zero)
{
sqlite3_snprintf(100, zCsr, "+%lldz", pMem->u.i);
zCsr += strlen(zCsr);
}
*zCsr = '\0';
}
else if(f & MEM_Str)
{
int j, k;
zBuf[0] = ' ';
if(f & MEM_Dyn)
{
zBuf[1] = 'z';
assert((f & (MEM_Static | MEM_Ephem)) == 0);
}
else if(f & MEM_Static)
{
zBuf[1] = 't';
assert((f & (MEM_Dyn | MEM_Ephem)) == 0);
}
else if(f & MEM_Ephem)
{
zBuf[1] = 'e';
assert((f & (MEM_Static | MEM_Dyn)) == 0);
}
else
{
zBuf[1] = 's';
}
k = 2;
sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
k += strlen(&zBuf[k]);
zBuf[k++] = '[';
for (j = 0; j < 15 && j < pMem->n; j++)
{
u8 c = pMem->z[j];
if(c >= 0x20 && c < 0x7f)
{
zBuf[k++] = c;
}
else
{
zBuf[k++] = '.';
}
}
zBuf[k++] = ']';
sqlite3_snprintf(100, &zBuf[k], encnames[pMem->enc]);
k += strlen(&zBuf[k]);
zBuf[k++] = 0;
}
}
#endif
#ifdef SQLITE_DEBUG
/*
** Print the value of a register for tracing purposes:
*/
static void
memTracePrint(FILE * out, Mem * p)
{
if(p->flags & MEM_Null)
{
fprintf(out, " NULL");
}
else if((p->flags & (MEM_Int | MEM_Str)) == (MEM_Int | MEM_Str))
{
fprintf(out, " si:%lld", p->u.i);
}
else if(p->flags & MEM_Int)
{
fprintf(out, " i:%lld", p->u.i);
}
else if(p->flags & MEM_Real)
{
fprintf(out, " r:%g", p->r);
}
else
{
char zBuf[200];
sqlite3VdbeMemPrettyPrint(p, zBuf);
fprintf(out, " ");
fprintf(out, "%s", zBuf);
}
}
static void
registerTrace(FILE * out, int iReg, Mem * p)
{
fprintf(out, "REG[%d] = ", iReg);
memTracePrint(out, p);
fprintf(out, "\n");
}
#endif
#ifdef SQLITE_DEBUG
# define REGISTER_TRACE(R,M) if(p->trace&&R>0)registerTrace(p->trace,R,M)
#else
# define REGISTER_TRACE(R,M)
#endif
#ifdef VDBE_PROFILE
/*
** The following routine only works on pentium-class processors.
** It uses the RDTSC opcode to read the cycle count value out of the
** processor and returns that value. This can be used for high-res
** profiling.
*/
__inline__ unsigned long long int
hwtime(void)
{
unsigned int lo, hi;
/* We cannot use "=A", since this would use %rax on x86_64 */
__asm__ __volatile__("rdtsc":"=a"(lo), "=d"(hi));
return (unsigned long long int) hi << 32 | lo;
}
#endif
/*
** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
** sqlite3_interrupt() routine has been called. If it has been, then
** processing of the VDBE program is interrupted.
**
** This macro added to every instruction that does a jump in order to
** implement a loop. This test used to be on every single instruction,
** but that meant we more testing that we needed. By only testing the
** flag on jump instructions, we get a (small) speed improvement.
*/
#define CHECK_FOR_INTERRUPT \
if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
/*
** Execute as much of a VDBE program as we can then return.
**
** sqlite3VdbeMakeReady() must be called before this routine in order to
** close the program with a final OP_Halt and to set up the callbacks
** and the error message pointer.
**
** Whenever a row or result data is available, this routine will either
** invoke the result callback (if there is one) or return with
** SQLITE_ROW.
**
** If an attempt is made to open a locked database, then this routine
** will either invoke the busy callback (if there is one) or it will
** return SQLITE_BUSY.
**
** If an error occurs, an error message is written to memory obtained
** from sqlite3_malloc() and p->zErrMsg is made to point to that memory.
** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
**
** If the callback ever returns non-zero, then the program exits
** immediately. There will be no error message but the p->rc field is
** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
**
** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
** routine to return SQLITE_ERROR.
**
** Other fatal errors return SQLITE_ERROR.
**
** After this routine has finished, sqlite3VdbeFinalize() should be
** used to clean up the mess that was left behind.
*/
SQLITE_PRIVATE int
sqlite3VdbeExec(Vdbe * p /* The VDBE */
)
{
int pc; /* The program counter */
Op *pOp; /* Current operation */
int rc = SQLITE_OK; /* Value to return */
sqlite3 *db = p->db; /* The database */
u8 encoding = ENC(db); /* The database encoding */
Mem *pIn1, *pIn2, *pIn3; /* Input operands */
Mem *pOut; /* Output operand */
u8 opProperty;
#ifdef VDBE_PROFILE
unsigned long long start; /* CPU clock count at start of opcode */
int origPc; /* Program counter at start of opcode */
#endif
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
int nProgressOps = 0; /* Opcodes executed since progress callback. */
#endif
assert(p->magic == VDBE_MAGIC_RUN); /* sqlite3_step() verifies this */
assert(db->magic == SQLITE_MAGIC_BUSY);
sqlite3BtreeMutexArrayEnter(&p->aMutex);
if(p->rc == SQLITE_NOMEM)
{
/* This happens if a malloc() inside a call to sqlite3_column_text() or
** sqlite3_column_text16() failed. */
goto no_mem;
}
assert(p->rc == SQLITE_OK || p->rc == SQLITE_BUSY);
p->rc = SQLITE_OK;
assert(p->explain == 0);
p->pResultSet = 0;
db->busyHandler.nBusy = 0;
CHECK_FOR_INTERRUPT;
sqlite3VdbeIOTraceSql(p);
#ifdef SQLITE_DEBUG
sqlite3FaultBeginBenign(-1);
if(p->pc == 0 && ((p->db->flags & SQLITE_VdbeListing) != 0
|| sqlite3OsAccess(db->pVfs, "vdbe_explain", SQLITE_ACCESS_EXISTS) == 1))
{
int i;
printf("VDBE Program Listing:\n");
sqlite3VdbePrintSql(p);
for (i = 0; i < p->nOp; i++)
{
sqlite3VdbePrintOp(stdout, i, &p->aOp[i]);
}
}
if(sqlite3OsAccess(db->pVfs, "vdbe_trace", SQLITE_ACCESS_EXISTS) == 1)
{
p->trace = stdout;
}
sqlite3FaultEndBenign(-1);
#endif
for (pc = p->pc; rc == SQLITE_OK; pc++)
{
assert(pc >= 0 && pc < p->nOp);
if(db->mallocFailed)
goto no_mem;
#ifdef VDBE_PROFILE
origPc = pc;
start = hwtime();
#endif
pOp = &p->aOp[pc];
/* Only allow tracing if SQLITE_DEBUG is defined.
*/
#ifdef SQLITE_DEBUG
if(p->trace)
{
if(pc == 0)
{
printf("VDBE Execution Trace:\n");
sqlite3VdbePrintSql(p);
}
sqlite3VdbePrintOp(p->trace, pc, pOp);
}
if(p->trace == 0 && pc == 0)
{
sqlite3FaultBeginBenign(-1);
if(sqlite3OsAccess(db->pVfs, "vdbe_sqltrace", SQLITE_ACCESS_EXISTS) == 1)
{
sqlite3VdbePrintSql(p);
}
sqlite3FaultEndBenign(-1);
}
#endif
/* Check to see if we need to simulate an interrupt. This only happens
** if we have a special test build.
*/
#ifdef SQLITE_TEST
if(sqlite3_interrupt_count > 0)
{
sqlite3_interrupt_count--;
if(sqlite3_interrupt_count == 0)
{
sqlite3_interrupt(db);
}
}
#endif
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
/* Call the progress callback if it is configured and the required number
** of VDBE ops have been executed (either since this invocation of
** sqlite3VdbeExec() or since last time the progress callback was called).
** If the progress callback returns non-zero, exit the virtual machine with
** a return code SQLITE_ABORT.
*/
if(db->xProgress)
{
if(db->nProgressOps == nProgressOps)
{
int prc;
if(sqlite3SafetyOff(db))
goto abort_due_to_misuse;
prc = db->xProgress(db->pProgressArg);
if(sqlite3SafetyOn(db))
goto abort_due_to_misuse;
if(prc != 0)
{
rc = SQLITE_INTERRUPT;
goto vdbe_error_halt;
}
nProgressOps = 0;
}
nProgressOps++;
}
#endif
/* Do common setup processing for any opcode that is marked
** with the "out2-prerelease" tag. Such opcodes have a single
** output which is specified by the P2 parameter. The P2 register
** is initialized to a NULL.
*/
opProperty = opcodeProperty[pOp->opcode];
if((opProperty & OPFLG_OUT2_PRERELEASE) != 0)
{
assert(pOp->p2 > 0);
assert(pOp->p2 <= p->nMem);
pOut = &p->aMem[pOp->p2];
sqlite3VdbeMemReleaseExternal(pOut);
pOut->flags = MEM_Null;
}
else
/* Do common setup for opcodes marked with one of the following
** combinations of properties.
**
** in1
** in1 in2
** in1 in2 out3
** in1 in3
**
** Variables pIn1, pIn2, and pIn3 are made to point to appropriate
** registers for inputs. Variable pOut points to the output register.
*/
if((opProperty & OPFLG_IN1) != 0)
{
assert(pOp->p1 > 0);
assert(pOp->p1 <= p->nMem);
pIn1 = &p->aMem[pOp->p1];
REGISTER_TRACE(pOp->p1, pIn1);
if((opProperty & OPFLG_IN2) != 0)
{
assert(pOp->p2 > 0);
assert(pOp->p2 <= p->nMem);
pIn2 = &p->aMem[pOp->p2];
REGISTER_TRACE(pOp->p2, pIn2);
if((opProperty & OPFLG_OUT3) != 0)
{
assert(pOp->p3 > 0);
assert(pOp->p3 <= p->nMem);
pOut = &p->aMem[pOp->p3];
}
}
else if((opProperty & OPFLG_IN3) != 0)
{
assert(pOp->p3 > 0);
assert(pOp->p3 <= p->nMem);
pIn3 = &p->aMem[pOp->p3];
REGISTER_TRACE(pOp->p3, pIn3);
}
}
else if((opProperty & OPFLG_IN2) != 0)
{
assert(pOp->p2 > 0);
assert(pOp->p2 <= p->nMem);
pIn2 = &p->aMem[pOp->p2];
REGISTER_TRACE(pOp->p2, pIn2);
}
else if((opProperty & OPFLG_IN3) != 0)
{
assert(pOp->p3 > 0);
assert(pOp->p3 <= p->nMem);
pIn3 = &p->aMem[pOp->p3];
REGISTER_TRACE(pOp->p3, pIn3);
}
switch (pOp->opcode)
{
/*****************************************************************************
** What follows is a massive switch statement where each case implements a
** separate instruction in the virtual machine. If we follow the usual
** indentation conventions, each case should be indented by 6 spaces. But
** that is a lot of wasted space on the left margin. So the code within
** the switch statement will break with convention and be flush-left. Another
** big comment (similar to this one) will mark the point in the code where
** we transition back to normal indentation.
**
** The formatting of each case is important. The makefile for SQLite
** generates two C files "opcodes.h" and "opcodes.c" by scanning this
** file looking for lines that begin with "case OP_". The opcodes.h files
** will be filled with #defines that give unique integer values to each
** opcode and the opcodes.c file is filled with an array of strings where
** each string is the symbolic name for the corresponding opcode. If the
** case statement is followed by a comment of the form "/# same as ... #/"
** that comment is used to determine the particular value of the opcode.
**
** Other keywords in the comment that follows each case are used to
** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See
** the mkopcodeh.awk script for additional information.
**
** Documentation about VDBE opcodes is generated by scanning this file
** for lines of that contain "Opcode:". That line and all subsequent
** comment lines are used in the generation of the opcode.html documentation
** file.
**
** SUMMARY:
**
** Formatting is important to scripts that scan this file.
** Do not deviate from the formatting style currently in use.
**
*****************************************************************************/
/* Opcode: Goto * P2 * * *
**
** An unconditional jump to address P2.
** The next instruction executed will be
** the one at index P2 from the beginning of
** the program.
*/
case OP_Goto:
{ /* jump */
CHECK_FOR_INTERRUPT;
pc = pOp->p2 - 1;
break;
}
/* Opcode: Gosub * P2 * * *
**
** Push the current address plus 1 onto the return address stack
** and then jump to address P2.
**
** The return address stack is of limited depth. If too many
** OP_Gosub operations occur without intervening OP_Returns, then
** the return address stack will fill up and processing will abort
** with a fatal error.
*/
case OP_Gosub:
{ /* jump */
assert(p->returnDepth <
sizeof(p->returnStack) / sizeof(p->returnStack[0]));
p->returnStack[p->returnDepth++] = pc + 1;
pc = pOp->p2 - 1;
break;
}
/* Opcode: Return * * * * *
**
** Jump immediately to the next instruction after the last unreturned
** OP_Gosub. If an OP_Return has occurred for all OP_Gosubs, then
** processing aborts with a fatal error.
*/
case OP_Return:
{
assert(p->returnDepth > 0);
p->returnDepth--;
pc = p->returnStack[p->returnDepth] - 1;
break;
}
/* Opcode: Halt P1 P2 * P4 *
**
** Exit immediately. All open cursors, Fifos, etc are closed
** automatically.
**
** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
** For errors, it can be some other value. If P1!=0 then P2 will determine
** whether or not to rollback the current transaction. Do not rollback
** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
** then back out all changes that have occurred during this execution of the
** VDBE, but do not rollback the transaction.
**
** If P4 is not null then it is an error message string.
**
** There is an implied "Halt 0 0 0" instruction inserted at the very end of
** every program. So a jump past the last instruction of the program
** is the same as executing Halt.
*/
case OP_Halt:
{
p->rc = pOp->p1;
p->pc = pc;
p->errorAction = pOp->p2;
if(pOp->p4.z)
{
sqlite3SetString(&p->zErrMsg, pOp->p4.z, (char *) 0);
}
rc = sqlite3VdbeHalt(p);
assert(rc == SQLITE_BUSY || rc == SQLITE_OK);
if(rc == SQLITE_BUSY)
{
p->rc = rc = SQLITE_BUSY;
}
else
{
rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
}
goto vdbe_return;
}
/* Opcode: Integer P1 P2 * * *
**
** The 32-bit integer value P1 is written into register P2.
*/
case OP_Integer:
{ /* out2-prerelease */
pOut->flags = MEM_Int;
pOut->u.i = pOp->p1;
break;
}
/* Opcode: Int64 * P2 * P4 *
**
** P4 is a pointer to a 64-bit integer value.
** Write that value into register P2.
*/
case OP_Int64:
{ /* out2-prerelease */
assert(pOp->p4.pI64 != 0);
pOut->flags = MEM_Int;
pOut->u.i = *pOp->p4.pI64;
break;
}
/* Opcode: Real * P2 * P4 *
**
** P4 is a pointer to a 64-bit floating point value.
** Write that value into register P2.
*/
case OP_Real:
{ /* same as TK_FLOAT, out2-prerelease */
pOut->flags = MEM_Real;
assert(!sqlite3IsNaN(*pOp->p4.pReal));
pOut->r = *pOp->p4.pReal;
break;
}
/* Opcode: String8 * P2 * P4 *
**
** P4 points to a nul terminated UTF-8 string. This opcode is transformed
** into an OP_String before it is executed for the first time.
*/
case OP_String8:
{ /* same as TK_STRING, out2-prerelease */
assert(pOp->p4.z != 0);
pOp->opcode = OP_String;
pOp->p1 = strlen(pOp->p4.z);
#ifndef SQLITE_OMIT_UTF16
if(encoding != SQLITE_UTF8)
{
sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8,
SQLITE_STATIC);
if(SQLITE_OK != sqlite3VdbeChangeEncoding(pOut, encoding))
goto no_mem;
if(SQLITE_OK != sqlite3VdbeMemDynamicify(pOut))
goto no_mem;
pOut->zMalloc = 0;
pOut->flags |= MEM_Static;
pOut->flags &= ~MEM_Dyn;
if(pOp->p4type == P4_DYNAMIC)
{
sqlite3_free(pOp->p4.z);
}
pOp->p4type = P4_DYNAMIC;
pOp->p4.z = pOut->z;
pOp->p1 = pOut->n;
if(pOp->p1 > db->aLimit[SQLITE_LIMIT_LENGTH])
{
goto too_big;
}
UPDATE_MAX_BLOBSIZE(pOut);
break;
}
#endif
if(pOp->p1 > db->aLimit[SQLITE_LIMIT_LENGTH])
{
goto too_big;
}
/* Fall through to the next case, OP_String */
}
/* Opcode: String P1 P2 * P4 *
**
** The string value P4 of length P1 (bytes) is stored in register P2.
*/
case OP_String:
{ /* out2-prerelease */
assert(pOp->p4.z != 0);
pOut->flags = MEM_Str | MEM_Static | MEM_Term;
pOut->z = pOp->p4.z;
pOut->n = pOp->p1;
pOut->enc = encoding;
UPDATE_MAX_BLOBSIZE(pOut);
break;
}
/* Opcode: Null * P2 * * *
**
** Write a NULL into register P2.
*/
case OP_Null:
{ /* out2-prerelease */
break;
}
#ifndef SQLITE_OMIT_BLOB_LITERAL
/* Opcode: Blob P1 P2 * P4
**
** P4 points to a blob of data P1 bytes long. Store this
** blob in register P2. This instruction is not coded directly
** by the compiler. Instead, the compiler layer specifies
** an OP_HexBlob opcode, with the hex string representation of
** the blob as P4. This opcode is transformed to an OP_Blob
** the first time it is executed.
*/
case OP_Blob:
{ /* out2-prerelease */
assert(pOp->p1 <= SQLITE_MAX_LENGTH);
sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
pOut->enc = encoding;
UPDATE_MAX_BLOBSIZE(pOut);
break;
}
#endif /* SQLITE_OMIT_BLOB_LITERAL */
/* Opcode: Variable P1 P2 * * *
**
** The value of variable P1 is written into register P2. A variable is
** an unknown in the original SQL string as handed to sqlite3_compile().
** Any occurance of the '?' character in the original SQL is considered
** a variable. Variables in the SQL string are number from left to
** right beginning with 1. The values of variables are set using the
** sqlite3_bind() API.
*/
case OP_Variable:
{ /* out2-prerelease */
int j = pOp->p1 - 1;
Mem *pVar;
assert(j >= 0 && j < p->nVar);
pVar = &p->aVar[j];
if(sqlite3VdbeMemTooBig(pVar))
{
goto too_big;
}
sqlite3VdbeMemShallowCopy(pOut, &p->aVar[j], MEM_Static);
UPDATE_MAX_BLOBSIZE(pOut);
break;
}
/* Opcode: Move P1 P2 * * *
**
** Move the value in register P1 over into register P2. Register P1
** is left holding a NULL. It is an error for P1 and P2 to be the
** same register.
*/
case OP_Move:
{
char *zMalloc;
assert(pOp->p1 > 0);
assert(pOp->p1 <= p->nMem);
pIn1 = &p->aMem[pOp->p1];
REGISTER_TRACE(pOp->p1, pIn1);
assert(pOp->p2 > 0);
assert(pOp->p2 <= p->nMem);
pOut = &p->aMem[pOp->p2];
assert(pOut != pIn1);
zMalloc = pOut->zMalloc;
pOut->zMalloc = 0;
sqlite3VdbeMemMove(pOut, pIn1);
pIn1->zMalloc = zMalloc;
REGISTER_TRACE(pOp->p2, pOut);
break;
}
/* Opcode: Copy P1 P2 * * *
**
** Make a copy of register P1 into register P2.
**
** This instruction makes a deep copy of the value. A duplicate
** is made of any string or blob constant. See also OP_SCopy.
*/
case OP_Copy:
{
assert(pOp->p1 > 0);
assert(pOp->p1 <= p->nMem);
pIn1 = &p->aMem[pOp->p1];
REGISTER_TRACE(pOp->p1, pIn1);
assert(pOp->p2 > 0);
assert(pOp->p2 <= p->nMem);
pOut = &p->aMem[pOp->p2];
assert(pOut != pIn1);
sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
Deephemeralize(pOut);
REGISTER_TRACE(pOp->p2, pOut);
break;
}
/* Opcode: SCopy P1 P2 * * *
**
** Make a shallow copy of register P1 into register P2.
**
** This instruction makes a shallow copy of the value. If the value
** is a string or blob, then the copy is only a pointer to the
** original and hence if the original changes so will the copy.
** Worse, if the original is deallocated, the copy becomes invalid.
** Thus the program must guarantee that the original will not change
** during the lifetime of the copy. Use OP_Copy to make a complete
** copy.
*/
case OP_SCopy:
{
assert(pOp->p1 > 0);
assert(pOp->p1 <= p->nMem);
pIn1 = &p->aMem[pOp->p1];
REGISTER_TRACE(pOp->p1, pIn1);
assert(pOp->p2 > 0);
assert(pOp->p2 <= p->nMem);
pOut = &p->aMem[pOp->p2];
assert(pOut != pIn1);
sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
REGISTER_TRACE(pOp->p2, pOut);
break;
}
/* Opcode: ResultRow P1 P2 * * *
**
** The registers P1 throught P1+P2-1 contain a single row of
** results. This opcode causes the sqlite3_step() call to terminate
** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
** structure to provide access to the top P1 values as the result
** row.
*/
case OP_ResultRow:
{
Mem *pMem;
int i;
assert(p->nResColumn == pOp->p2);
assert(pOp->p1 > 0);
assert(pOp->p1 + pOp->p2 <= p->nMem);
/* Invalidate all ephemeral cursor row caches */
p->cacheCtr = (p->cacheCtr + 2) | 1;
/* Make sure the results of the current row are \000 terminated
** and have an assigned type. The results are deephemeralized as
** as side effect.
*/
pMem = p->pResultSet = &p->aMem[pOp->p1];
for (i = 0; i < pOp->p2; i++)
{
sqlite3VdbeMemNulTerminate(&pMem[i]);
storeTypeInfo(&pMem[i], encoding);
}
if(db->mallocFailed)
goto no_mem;
/* Return SQLITE_ROW
*/
p->nCallback++;
p->pc = pc + 1;
rc = SQLITE_ROW;
goto vdbe_return;
}
/* Opcode: Concat P1 P2 P3 * *
**
** Add the text in register P1 onto the end of the text in
** register P2 and store the result in register P3.
** If either the P1 or P2 text are NULL then store NULL in P3.
**
** P3 = P2 || P1
**
** It is illegal for P1 and P3 to be the same register. Sometimes,
** if P3 is the same register as P2, the implementation is able
** to avoid a memcpy().
*/
case OP_Concat:
{ /* same as TK_CONCAT, in1, in2, out3 */
i64 nByte;
assert(pIn1 != pOut);
if((pIn1->flags | pIn2->flags) & MEM_Null)
{
sqlite3VdbeMemSetNull(pOut);
break;
}
ExpandBlob(pIn1);
Stringify(pIn1, encoding);
ExpandBlob(pIn2);
Stringify(pIn2, encoding);
nByte = pIn1->n + pIn2->n;
if(nByte > db->aLimit[SQLITE_LIMIT_LENGTH])
{
goto too_big;
}
MemSetTypeFlag(pOut, MEM_Str);
if(sqlite3VdbeMemGrow(pOut, nByte + 2, pOut == pIn2))
{
goto no_mem;
}
if(pOut != pIn2)
{
memcpy(pOut->z, pIn2->z, pIn2->n);
}
memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
pOut->z[nByte] = 0;
pOut->z[nByte + 1] = 0;
pOut->flags |= MEM_Term;
pOut->n = nByte;
pOut->enc = encoding;
UPDATE_MAX_BLOBSIZE(pOut);
break;
}
/* Opcode: Add P1 P2 P3 * *
**
** Add the value in register P1 to the value in register P2
** and store the result in regiser P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: Multiply P1 P2 P3 * *
**
**
** Multiply the value in regiser P1 by the value in regiser P2
** and store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: Subtract P1 P2 P3 * *
**
** Subtract the value in register P1 from the value in register P2
** and store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: Divide P1 P2 P3 * *
**
** Divide the value in register P1 by the value in register P2
** and store the result in register P3. If the value in register P2
** is zero, then the result is NULL.
** If either input is NULL, the result is NULL.
*/
/* Opcode: Remainder P1 P2 P3 * *
**
** Compute the remainder after integer division of the value in
** register P1 by the value in register P2 and store the result in P3.
** If the value in register P2 is zero the result is NULL.
** If either operand is NULL, the result is NULL.
*/
case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
case OP_Remainder:
{ /* same as TK_REM, in1, in2, out3 */
int flags;
flags = pIn1->flags | pIn2->flags;
if((flags & MEM_Null) != 0)
goto arithmetic_result_is_null;
if((pIn1->flags & pIn2->flags & MEM_Int) == MEM_Int)
{
i64 a, b;
a = pIn1->u.i;
b = pIn2->u.i;
switch (pOp->opcode)
{
case OP_Add:
b += a;
break;
case OP_Subtract:
b -= a;
break;
case OP_Multiply:
b *= a;
break;
case OP_Divide:
{
if(a == 0)
goto arithmetic_result_is_null;
/* Dividing the largest possible negative 64-bit integer (1<<63) by
** -1 returns an integer too large to store in a 64-bit data-type. On
** some architectures, the value overflows to (1<<63). On others,
** a SIGFPE is issued. The following statement normalizes this
** behaviour so that all architectures behave as if integer
** overflow occured.
*/
if(a == -1 && b == SMALLEST_INT64)
a = 1;
b /= a;
break;
}
default:
{
if(a == 0)
goto arithmetic_result_is_null;
if(a == -1)
a = 1;
b %= a;
break;
}
}
pOut->u.i = b;
MemSetTypeFlag(pOut, MEM_Int);
}
else
{
double a, b;
a = sqlite3VdbeRealValue(pIn1);
b = sqlite3VdbeRealValue(pIn2);
switch (pOp->opcode)
{
case OP_Add:
b += a;
break;
case OP_Subtract:
b -= a;
break;
case OP_Multiply:
b *= a;
break;
case OP_Divide:
{
if(a == 0.0)
goto arithmetic_result_is_null;
b /= a;
break;
}
default:
{
i64 ia = (i64) a;
i64 ib = (i64) b;
if(ia == 0)
goto arithmetic_result_is_null;
if(ia == -1)
ia = 1;
b = ib % ia;
break;
}
}
if(sqlite3IsNaN(b))
{
goto arithmetic_result_is_null;
}
pOut->r = b;
MemSetTypeFlag(pOut, MEM_Real);
if((flags & MEM_Real) == 0)
{
sqlite3VdbeIntegerAffinity(pOut);
}
}
break;
arithmetic_result_is_null:
sqlite3VdbeMemSetNull(pOut);
break;
}
/* Opcode: CollSeq * * P4
**
** P4 is a pointer to a CollSeq struct. If the next call to a user function
** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
** be returned. This is used by the built-in min(), max() and nullif()
** functions.
**
** The interface used by the implementation of the aforementioned functions
** to retrieve the collation sequence set by this opcode is not available
** publicly, only to user functions defined in func.c.
*/
case OP_CollSeq:
{
assert(pOp->p4type == P4_COLLSEQ);
break;
}
/* Opcode: Function P1 P2 P3 P4 P5
**
** Invoke a user function (P4 is a pointer to a Function structure that
** defines the function) with P5 arguments taken from register P2 and
** successors. The result of the function is stored in register P3.
** Register P3 must not be one of the function inputs.
**
** P1 is a 32-bit bitmask indicating whether or not each argument to the
** function was determined to be constant at compile time. If the first
** argument was constant then bit 0 of P1 is set. This is used to determine
** whether meta data associated with a user function argument using the
** sqlite3_set_auxdata() API may be safely retained until the next
** invocation of this opcode.
**
** See also: AggStep and AggFinal
*/
case OP_Function:
{
int i;
Mem *pArg;
sqlite3_context ctx;
sqlite3_value **apVal;
int n = pOp->p5;
apVal = p->apArg;
assert(apVal || n == 0);
assert(n == 0 || (pOp->p2 > 0 && pOp->p2 + n <= p->nMem));
assert(pOp->p3 < pOp->p2 || pOp->p3 >= pOp->p2 + n);
pArg = &p->aMem[pOp->p2];
for (i = 0; i < n; i++, pArg++)
{
apVal[i] = pArg;
storeTypeInfo(pArg, encoding);
REGISTER_TRACE(pOp->p2, pArg);
}
assert(pOp->p4type == P4_FUNCDEF || pOp->p4type == P4_VDBEFUNC);
if(pOp->p4type == P4_FUNCDEF)
{
ctx.pFunc = pOp->p4.pFunc;
ctx.pVdbeFunc = 0;
}
else
{
ctx.pVdbeFunc = (VdbeFunc *) pOp->p4.pVdbeFunc;
ctx.pFunc = ctx.pVdbeFunc->pFunc;
}
assert(pOp->p3 > 0 && pOp->p3 <= p->nMem);
pOut = &p->aMem[pOp->p3];
ctx.s.flags = MEM_Null;
ctx.s.db = db;
ctx.s.xDel = 0;
ctx.s.zMalloc = 0;
/* The output cell may already have a buffer allocated. Move
** the pointer to ctx.s so in case the user-function can use
** the already allocated buffer instead of allocating a new one.
*/
sqlite3VdbeMemMove(&ctx.s, pOut);
MemSetTypeFlag(&ctx.s, MEM_Null);
ctx.isError = 0;
if(ctx.pFunc->needCollSeq)
{
assert(pOp > p->aOp);
assert(pOp[-1].p4type == P4_COLLSEQ);
assert(pOp[-1].opcode == OP_CollSeq);
ctx.pColl = pOp[-1].p4.pColl;
}
if(sqlite3SafetyOff(db))
goto abort_due_to_misuse;
(*ctx.pFunc->xFunc) (&ctx, n, apVal);
if(sqlite3SafetyOn(db))
{
sqlite3VdbeMemRelease(&ctx.s);
goto abort_due_to_misuse;
}
if(db->mallocFailed)
{
/* Even though a malloc() has failed, the implementation of the
** user function may have called an sqlite3_result_XXX() function
** to return a value. The following call releases any resources
** associated with such a value.
**
** Note: Maybe MemRelease() should be called if sqlite3SafetyOn()
** fails also (the if(...) statement above). But if people are
** misusing sqlite, they have bigger problems than a leaked value.
*/
sqlite3VdbeMemRelease(&ctx.s);
goto no_mem;
}
/* If any auxilary data functions have been called by this user function,
** immediately call the destructor for any non-static values.
*/
if(ctx.pVdbeFunc)
{
sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1);
pOp->p4.pVdbeFunc = ctx.pVdbeFunc;
pOp->p4type = P4_VDBEFUNC;
}
/* If the function returned an error, throw an exception */
if(ctx.isError)
{
sqlite3SetString(&p->zErrMsg, sqlite3_value_text(&ctx.s),
(char *) 0);
rc = ctx.isError;
}
/* Copy the result of the function into register P3 */
sqlite3VdbeChangeEncoding(&ctx.s, encoding);
sqlite3VdbeMemMove(pOut, &ctx.s);
if(sqlite3VdbeMemTooBig(pOut))
{
goto too_big;
}
REGISTER_TRACE(pOp->p3, pOut);
UPDATE_MAX_BLOBSIZE(pOut);
break;
}
/* Opcode: BitAnd P1 P2 P3 * *
**
** Take the bit-wise AND of the values in register P1 and P2 and
** store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: BitOr P1 P2 P3 * *
**
** Take the bit-wise OR of the values in register P1 and P2 and
** store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: ShiftLeft P1 P2 P3 * *
**
** Shift the integer value in register P2 to the left by the
** number of bits specified by the integer in regiser P1.
** Store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: ShiftRight P1 P2 P3 * *
**
** Shift the integer value in register P2 to the right by the
** number of bits specified by the integer in register P1.
** Store the result in register P3.
** If either input is NULL, the result is NULL.
*/
case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
case OP_ShiftRight:
{ /* same as TK_RSHIFT, in1, in2, out3 */
i64 a, b;
if((pIn1->flags | pIn2->flags) & MEM_Null)
{
sqlite3VdbeMemSetNull(pOut);
break;
}
a = sqlite3VdbeIntValue(pIn2);
b = sqlite3VdbeIntValue(pIn1);
switch (pOp->opcode)
{
case OP_BitAnd:
a &= b;
break;
case OP_BitOr:
a |= b;
break;
case OP_ShiftLeft:
a <<= b;
break;
default:
assert(pOp->opcode == OP_ShiftRight);
a >>= b;
break;
}
pOut->u.i = a;
MemSetTypeFlag(pOut, MEM_Int);
break;
}
/* Opcode: AddImm P1 P2 * * *
**
** Add the constant P2 the value in register P1.
** The result is always an integer.
**
** To force any register to be an integer, just add 0.
*/
case OP_AddImm:
{ /* in1 */
sqlite3VdbeMemIntegerify(pIn1);
pIn1->u.i += pOp->p2;
break;
}
/* Opcode: ForceInt P1 P2 P3 * *
**
** Convert value in register P1 into an integer. If the value
** in P1 is not numeric (meaning that is is a NULL or a string that
** does not look like an integer or floating point number) then
** jump to P2. If the value in P1 is numeric then
** convert it into the least integer that is greater than or equal to its
** current value if P3==0, or to the least integer that is strictly
** greater than its current value if P3==1.
*/
case OP_ForceInt:
{ /* jump, in1 */
i64 v;
applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
if((pIn1->flags & (MEM_Int | MEM_Real)) == 0)
{
pc = pOp->p2 - 1;
break;
}
if(pIn1->flags & MEM_Int)
{
v = pIn1->u.i + (pOp->p3 != 0);
}
else
{
assert(pIn1->flags & MEM_Real);
v = (sqlite3_int64) pIn1->r;
if(pIn1->r > (double) v)
v++;
if(pOp->p3 && pIn1->r == (double) v)
v++;
}
pIn1->u.i = v;
MemSetTypeFlag(pIn1, MEM_Int);
break;
}
/* Opcode: MustBeInt P1 P2 * * *
**
** Force the value in register P1 to be an integer. If the value
** in P1 is not an integer and cannot be converted into an integer
** without data loss, then jump immediately to P2, or if P2==0
** raise an SQLITE_MISMATCH exception.
*/
case OP_MustBeInt:
{ /* jump, in1 */
applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
if((pIn1->flags & MEM_Int) == 0)
{
if(pOp->p2 == 0)
{
rc = SQLITE_MISMATCH;
goto abort_due_to_error;
}
else
{
pc = pOp->p2 - 1;
}
}
else
{
MemSetTypeFlag(pIn1, MEM_Int);
}
break;
}
/* Opcode: RealAffinity P1 * * * *
**
** If register P1 holds an integer convert it to a real value.
**
** This opcode is used when extracting information from a column that
** has REAL affinity. Such column values may still be stored as
** integers, for space efficiency, but after extraction we want them
** to have only a real value.
*/
case OP_RealAffinity:
{ /* in1 */
if(pIn1->flags & MEM_Int)
{
sqlite3VdbeMemRealify(pIn1);
}
break;
}
#ifndef SQLITE_OMIT_CAST
/* Opcode: ToText P1 * * * *
**
** Force the value in register P1 to be text.
** If the value is numeric, convert it to a string using the
** equivalent of printf(). Blob values are unchanged and
** are afterwards simply interpreted as text.
**
** A NULL value is not changed by this routine. It remains NULL.
*/
case OP_ToText:
{ /* same as TK_TO_TEXT, in1 */
if(pIn1->flags & MEM_Null)
break;
assert(MEM_Str == (MEM_Blob >> 3));
pIn1->flags |= (pIn1->flags & MEM_Blob) >> 3;
applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
rc = ExpandBlob(pIn1);
assert(pIn1->flags & MEM_Str || db->mallocFailed);
pIn1->flags &= ~(MEM_Int | MEM_Real | MEM_Blob);
UPDATE_MAX_BLOBSIZE(pIn1);
break;
}
/* Opcode: ToBlob P1 * * * *
**
** Force the value in register P1 to be a BLOB.
** If the value is numeric, convert it to a string first.
** Strings are simply reinterpreted as blobs with no change
** to the underlying data.
**
** A NULL value is not changed by this routine. It remains NULL.
*/
case OP_ToBlob:
{ /* same as TK_TO_BLOB, in1 */
if(pIn1->flags & MEM_Null)
break;
if((pIn1->flags & MEM_Blob) == 0)
{
applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
assert(pIn1->flags & MEM_Str || db->mallocFailed);
}
MemSetTypeFlag(pIn1, MEM_Blob);
UPDATE_MAX_BLOBSIZE(pIn1);
break;
}
/* Opcode: ToNumeric P1 * * * *
**
** Force the value in register P1 to be numeric (either an
** integer or a floating-point number.)
** If the value is text or blob, try to convert it to an using the
** equivalent of atoi() or atof() and store 0 if no such conversion
** is possible.
**
** A NULL value is not changed by this routine. It remains NULL.
*/
case OP_ToNumeric:
{ /* same as TK_TO_NUMERIC, in1 */
if((pIn1->flags & (MEM_Null | MEM_Int | MEM_Real)) == 0)
{
sqlite3VdbeMemNumerify(pIn1);
}
break;
}
#endif /* SQLITE_OMIT_CAST */
/* Opcode: ToInt P1 * * * *
**
** Force the value in register P1 be an integer. If
** The value is currently a real number, drop its fractional part.
** If the value is text or blob, try to convert it to an integer using the
** equivalent of atoi() and store 0 if no such conversion is possible.
**
** A NULL value is not changed by this routine. It remains NULL.
*/
case OP_ToInt:
{ /* same as TK_TO_INT, in1 */
if((pIn1->flags & MEM_Null) == 0)
{
sqlite3VdbeMemIntegerify(pIn1);
}
break;
}
#ifndef SQLITE_OMIT_CAST
/* Opcode: ToReal P1 * * * *
**
** Force the value in register P1 to be a floating point number.
** If The value is currently an integer, convert it.
** If the value is text or blob, try to convert it to an integer using the
** equivalent of atoi() and store 0.0 if no such conversion is possible.
**
** A NULL value is not changed by this routine. It remains NULL.
*/
case OP_ToReal:
{ /* same as TK_TO_REAL, in1 */
if((pIn1->flags & MEM_Null) == 0)
{
sqlite3VdbeMemRealify(pIn1);
}
break;
}
#endif /* SQLITE_OMIT_CAST */
/* Opcode: Lt P1 P2 P3 P4 P5
**
** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
** jump to address P2.
**
** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL
** bit is clear then fall thru if either operand is NULL.
**
** If the SQLITE_NULLEQUAL bit of P5 is set then treat NULL operands
** as being equal to one another. Normally NULLs are not equal to
** anything including other NULLs.
**
** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
** to coerce both inputs according to this affinity before the
** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
** affinity is used. Note that the affinity conversions are stored
** back into the input registers P1 and P3. So this opcode can cause
** persistent changes to registers P1 and P3.
**
** Once any conversions have taken place, and neither value is NULL,
** the values are compared. If both values are blobs then memcmp() is
** used to determine the results of the comparison. If both values
** are text, then the appropriate collating function specified in
** P4 is used to do the comparison. If P4 is not specified then
** memcmp() is used to compare text string. If both values are
** numeric, then a numeric comparison is used. If the two values
** are of different types, then numbers are considered less than
** strings and strings are considered less than blobs.
**
** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead,
** store a boolean result (either 0, or 1, or NULL) in register P2.
*/
/* Opcode: Ne P1 P2 P3 P4 P5
**
** This works just like the Lt opcode except that the jump is taken if
** the operands in registers P1 and P3 are not equal. See the Lt opcode for
** additional information.
*/
/* Opcode: Eq P1 P2 P3 P4 P5
**
** This works just like the Lt opcode except that the jump is taken if
** the operands in registers P1 and P3 are equal.
** See the Lt opcode for additional information.
*/
/* Opcode: Le P1 P2 P3 P4 P5
**
** This works just like the Lt opcode except that the jump is taken if
** the content of register P3 is less than or equal to the content of
** register P1. See the Lt opcode for additional information.
*/
/* Opcode: Gt P1 P2 P3 P4 P5
**
** This works just like the Lt opcode except that the jump is taken if
** the content of register P3 is greater than the content of
** register P1. See the Lt opcode for additional information.
*/
/* Opcode: Ge P1 P2 P3 P4 P5
**
** This works just like the Lt opcode except that the jump is taken if
** the content of register P3 is greater than or equal to the content of
** register P1. See the Lt opcode for additional information.
*/
case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
case OP_Ne: /* same as TK_NE, jump, in1, in3 */
case OP_Lt: /* same as TK_LT, jump, in1, in3 */
case OP_Le: /* same as TK_LE, jump, in1, in3 */
case OP_Gt: /* same as TK_GT, jump, in1, in3 */
case OP_Ge:
{ /* same as TK_GE, jump, in1, in3 */
int flags;
int res;
char affinity;
Mem x1, x3;
flags = pIn1->flags | pIn3->flags;
if(flags & MEM_Null)
{
if((pOp->p5 & SQLITE_NULLEQUAL) != 0)
{
/*
** When SQLITE_NULLEQUAL set and either operand is NULL
** then both operands are converted to integers prior to being
** passed down into the normal comparison logic below.
** NULL operands are converted to zero and non-NULL operands
** are converted to 1. Thus, for example, with SQLITE_NULLEQUAL
** set, NULL==NULL is true whereas it would normally NULL.
** Similarly, NULL!=123 is true.
*/
x1.flags = MEM_Int;
x1.u.i = (pIn1->flags & MEM_Null) == 0;
pIn1 = &x1;
x3.flags = MEM_Int;
x3.u.i = (pIn3->flags & MEM_Null) == 0;
pIn3 = &x3;
}
else
{
/* If the SQLITE_NULLEQUAL bit is clear and either operand is NULL then
** the result is always NULL. The jump is taken if the
** SQLITE_JUMPIFNULL bit is set.
*/
if(pOp->p5 & SQLITE_STOREP2)
{
pOut = &p->aMem[pOp->p2];
MemSetTypeFlag(pOut, MEM_Null);
REGISTER_TRACE(pOp->p2, pOut);
}
else if(pOp->p5 & SQLITE_JUMPIFNULL)
{
pc = pOp->p2 - 1;
}
break;
}
}
affinity = pOp->p5 & SQLITE_AFF_MASK;
if(affinity)
{
applyAffinity(pIn1, affinity, encoding);
applyAffinity(pIn3, affinity, encoding);
}
assert(pOp->p4type == P4_COLLSEQ || pOp->p4.pColl == 0);
ExpandBlob(pIn1);
ExpandBlob(pIn3);
res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
switch (pOp->opcode)
{
case OP_Eq:
res = res == 0;
break;
case OP_Ne:
res = res != 0;
break;
case OP_Lt:
res = res < 0;
break;
case OP_Le:
res = res <= 0;
break;
case OP_Gt:
res = res > 0;
break;
default:
res = res >= 0;
break;
}
if(pOp->p5 & SQLITE_STOREP2)
{
pOut = &p->aMem[pOp->p2];
MemSetTypeFlag(pOut, MEM_Int);
pOut->u.i = res;
REGISTER_TRACE(pOp->p2, pOut);
}
else if(res)
{
pc = pOp->p2 - 1;
}
break;
}
/* Opcode: And P1 P2 P3 * *
**
** Take the logical AND of the values in registers P1 and P2 and
** write the result into register P3.
**
** If either P1 or P2 is 0 (false) then the result is 0 even if
** the other input is NULL. A NULL and true or two NULLs give
** a NULL output.
*/
/* Opcode: Or P1 P2 P3 * *
**
** Take the logical OR of the values in register P1 and P2 and
** store the answer in register P3.
**
** If either P1 or P2 is nonzero (true) then the result is 1 (true)
** even if the other input is NULL. A NULL and false or two NULLs
** give a NULL output.
*/
case OP_And: /* same as TK_AND, in1, in2, out3 */
case OP_Or:
{ /* same as TK_OR, in1, in2, out3 */
int v1, v2; /* 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
if(pIn1->flags & MEM_Null)
{
v1 = 2;
}
else
{
v1 = sqlite3VdbeIntValue(pIn1) != 0;
}
if(pIn2->flags & MEM_Null)
{
v2 = 2;
}
else
{
v2 = sqlite3VdbeIntValue(pIn2) != 0;
}
if(pOp->opcode == OP_And)
{
static const unsigned char and_logic[] =
{ 0, 0, 0, 0, 1, 2, 0, 2, 2 };
v1 = and_logic[v1 * 3 + v2];
}
else
{
static const unsigned char or_logic[] =
{ 0, 1, 2, 1, 1, 1, 2, 1, 2 };
v1 = or_logic[v1 * 3 + v2];
}
if(v1 == 2)
{
MemSetTypeFlag(pOut, MEM_Null);
}
else
{
pOut->u.i = v1;
MemSetTypeFlag(pOut, MEM_Int);
}
break;
}
/* Opcode: Not P1 * * * *
**
** Interpret the value in register P1 as a boolean value. Replace it
** with its complement. If the value in register P1 is NULL its value
** is unchanged.
*/
case OP_Not:
{ /* same as TK_NOT, in1 */
if(pIn1->flags & MEM_Null)
break; /* Do nothing to NULLs */
sqlite3VdbeMemIntegerify(pIn1);
pIn1->u.i = !pIn1->u.i;
assert(pIn1->flags & MEM_Int);
break;
}
/* Opcode: BitNot P1 * * * *
**
** Interpret the content of register P1 as an integer. Replace it
** with its ones-complement. If the value is originally NULL, leave
** it unchanged.
*/
case OP_BitNot:
{ /* same as TK_BITNOT, in1 */
if(pIn1->flags & MEM_Null)
break; /* Do nothing to NULLs */
sqlite3VdbeMemIntegerify(pIn1);
pIn1->u.i = ~pIn1->u.i;
assert(pIn1->flags & MEM_Int);
break;
}
/* Opcode: If P1 P2 P3 * *
**
** Jump to P2 if the value in register P1 is true. The value is
** is considered true if it is numeric and non-zero. If the value
** in P1 is NULL then take the jump if P3 is true.
*/
/* Opcode: IfNot P1 P2 P3 * *
**
** Jump to P2 if the value in register P1 is False. The value is
** is considered true if it has a numeric value of zero. If the value
** in P1 is NULL then take the jump if P3 is true.
*/
case OP_If: /* jump, in1 */
case OP_IfNot:
{ /* jump, in1 */
int c;
if(pIn1->flags & MEM_Null)
{
c = pOp->p3;
}
else
{
#ifdef SQLITE_OMIT_FLOATING_POINT
c = sqlite3VdbeIntValue(pIn1);
#else
c = sqlite3VdbeRealValue(pIn1) != 0.0;
#endif
if(pOp->opcode == OP_IfNot)
c = !c;
}
if(c)
{
pc = pOp->p2 - 1;
}
break;
}
/* Opcode: IsNull P1 P2 P3 * *
**
** Jump to P2 if the value in register P1 is NULL. If P3 is greater
** than zero, then check all values reg(P1), reg(P1+1),
** reg(P1+2), ..., reg(P1+P3-1).
*/
case OP_IsNull:
{ /* same as TK_ISNULL, jump, in1 */
int n = pOp->p3;
assert(pOp->p3 == 0 || pOp->p1 > 0);
do
{
if((pIn1->flags & MEM_Null) != 0)
{
pc = pOp->p2 - 1;
break;
}
pIn1++;
}
while (--n > 0);
break;
}
/* Opcode: NotNull P1 P2 * * *
**
** Jump to P2 if the value in register P1 is not NULL.
*/
case OP_NotNull:
{ /* same as TK_NOTNULL, jump, in1 */
if((pIn1->flags & MEM_Null) == 0)
{
pc = pOp->p2 - 1;
}
break;
}
/* Opcode: SetNumColumns * P2 * * *
**
** This opcode sets the number of columns for the cursor opened by the
** following instruction to P2.
**
** An OP_SetNumColumns is only useful if it occurs immediately before
** one of the following opcodes:
**
** OpenRead
** OpenWrite
** OpenPseudo
**
** If the OP_Column opcode is to be executed on a cursor, then
** this opcode must be present immediately before the opcode that
** opens the cursor.
*/
case OP_SetNumColumns:
{
break;
}
/* Opcode: Column P1 P2 P3 P4 *
**
** Interpret the data that cursor P1 points to as a structure built using
** the MakeRecord instruction. (See the MakeRecord opcode for additional
** information about the format of the data.) Extract the P2-th column
** from this record. If there are less that (P2+1)
** values in the record, extract a NULL.
**
** The value extracted is stored in register P3.
**
** If the KeyAsData opcode has previously executed on this cursor, then the
** field might be extracted from the key rather than the data.
**
** If the column contains fewer than P2 fields, then extract a NULL. Or,
** if the P4 argument is a P4_MEM use the value of the P4 argument as
** the result.
*/
case OP_Column:
{
u32 payloadSize; /* Number of bytes in the record */
int p1 = pOp->p1; /* P1 value of the opcode */
int p2 = pOp->p2; /* column number to retrieve */
Cursor *pC = 0; /* The VDBE cursor */
char *zRec; /* Pointer to complete record-data */
BtCursor *pCrsr; /* The BTree cursor */
u32 *aType; /* aType[i] holds the numeric type of the i-th column */
u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
u32 nField; /* number of fields in the record */
int len; /* The length of the serialized data for the column */
int i; /* Loop counter */
char *zData; /* Part of the record being decoded */
Mem *pDest; /* Where to write the extracted value */
Mem sMem; /* For storing the record being decoded */
sMem.flags = 0;
sMem.db = 0;
sMem.zMalloc = 0;
assert(p1 < p->nCursor);
assert(pOp->p3 > 0 && pOp->p3 <= p->nMem);
pDest = &p->aMem[pOp->p3];
MemSetTypeFlag(pDest, MEM_Null);
/* This block sets the variable payloadSize to be the total number of
** bytes in the record.
**
** zRec is set to be the complete text of the record if it is available.
** The complete record text is always available for pseudo-tables
** If the record is stored in a cursor, the complete record text
** might be available in the pC->aRow cache. Or it might not be.
** If the data is unavailable, zRec is set to NULL.
**
** We also compute the number of columns in the record. For cursors,
** the number of columns is stored in the Cursor.nField element.
*/
pC = p->apCsr[p1];
assert(pC != 0);
#ifndef SQLITE_OMIT_VIRTUALTABLE
assert(pC->pVtabCursor == 0);
#endif
if(pC->pCursor != 0)
{
/* The record is stored in a B-Tree */
rc = sqlite3VdbeCursorMoveto(pC);
if(rc)
goto abort_due_to_error;
zRec = 0;
pCrsr = pC->pCursor;
if(pC->nullRow)
{
payloadSize = 0;
}
else if(pC->cacheStatus == p->cacheCtr)
{
payloadSize = pC->payloadSize;
zRec = (char *) pC->aRow;
}
else if(pC->isIndex)
{
i64 payloadSize64;
sqlite3BtreeKeySize(pCrsr, &payloadSize64);
payloadSize = payloadSize64;
}
else
{
sqlite3BtreeDataSize(pCrsr, &payloadSize);
}
nField = pC->nField;
}
else
{
assert(pC->pseudoTable);
/* The record is the sole entry of a pseudo-table */
payloadSize = pC->nData;
zRec = pC->pData;
pC->cacheStatus = CACHE_STALE;
assert(payloadSize == 0 || zRec != 0);
nField = pC->nField;
pCrsr = 0;
}
/* If payloadSize is 0, then just store a NULL */
if(payloadSize == 0)
{
assert(pDest->flags & MEM_Null);
goto op_column_out;
}
if(payloadSize > db->aLimit[SQLITE_LIMIT_LENGTH])
{
goto too_big;
}
assert(p2 < nField);
/* Read and parse the table header. Store the results of the parse
** into the record header cache fields of the cursor.
*/
aType = pC->aType;
if(pC->cacheStatus == p->cacheCtr)
{
aOffset = pC->aOffset;
}
else
{
u8 *zIdx; /* Index into header */
u8 *zEndHdr; /* Pointer to first byte after the header */
u32 offset; /* Offset into the data */
int szHdrSz; /* Size of the header size field at start of record */
int avail; /* Number of bytes of available data */
assert(aType);
pC->aOffset = aOffset = &aType[nField];
pC->payloadSize = payloadSize;
pC->cacheStatus = p->cacheCtr;
/* Figure out how many bytes are in the header */
if(zRec)
{
zData = zRec;
}
else
{
if(pC->isIndex)
{
zData = (char *) sqlite3BtreeKeyFetch(pCrsr,
&avail);
}
else
{
zData = (char *)
sqlite3BtreeDataFetch(pCrsr,
&avail);
}
/* If KeyFetch()/DataFetch() managed to get the entire payload,
** save the payload in the pC->aRow cache. That will save us from
** having to make additional calls to fetch the content portion of
** the record.
*/
if(avail >= payloadSize)
{
zRec = zData;
pC->aRow = (u8 *) zData;
}
else
{
pC->aRow = 0;
}
}
/* The following assert is true in all cases accept when
** the database file has been corrupted externally.
** assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
szHdrSz = getVarint32((u8 *) zData, offset);
/* The KeyFetch() or DataFetch() above are fast and will get the entire
** record header in most cases. But they will fail to get the complete
** record header if the record header does not fit on a single page
** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to
** acquire the complete header text.
*/
if(!zRec && avail < offset)
{
sMem.flags = 0;
sMem.db = 0;
rc = sqlite3VdbeMemFromBtree(pCrsr, 0, offset,
pC->isIndex, &sMem);
if(rc != SQLITE_OK)
{
goto op_column_out;
}
zData = sMem.z;
}
zEndHdr = (u8 *) & zData[offset];
zIdx = (u8 *) & zData[szHdrSz];
/* Scan the header and use it to fill in the aType[] and aOffset[]
** arrays. aType[i] will contain the type integer for the i-th
** column and aOffset[i] will contain the offset from the beginning
** of the record to the start of the data for the i-th column
*/
for (i = 0; i < nField; i++)
{
if(zIdx < zEndHdr)
{
aOffset[i] = offset;
zIdx += getVarint32(zIdx, aType[i]);
offset +=
sqlite3VdbeSerialTypeLen(aType[i]);
}
else
{
/* If i is less that nField, then there are less fields in this
** record than SetNumColumns indicated there are columns in the
** table. Set the offset for any extra columns not present in
** the record to 0. This tells code below to store a NULL
** instead of deserializing a value from the record.
*/
aOffset[i] = 0;
}
}
sqlite3VdbeMemRelease(&sMem);
sMem.flags = MEM_Null;
/* If we have read more header data than was contained in the header,
** or if the end of the last field appears to be past the end of the
** record, or if the end of the last field appears to be before the end
** of the record (when all fields present), then we must be dealing
** with a corrupt database.
*/
if(zIdx > zEndHdr || offset > payloadSize
|| (zIdx == zEndHdr && offset != payloadSize))
{
rc = SQLITE_CORRUPT_BKPT;
goto op_column_out;
}
}
/* Get the column information. If aOffset[p2] is non-zero, then
** deserialize the value from the record. If aOffset[p2] is zero,
** then there are not enough fields in the record to satisfy the
** request. In this case, set the value NULL or to P4 if P4 is
** a pointer to a Mem object.
*/
if(aOffset[p2])
{
assert(rc == SQLITE_OK);
if(zRec)
{
if(pDest->flags & MEM_Dyn)
{
sqlite3VdbeSerialGet((u8 *) &
zRec[aOffset[p2]],
aType[p2], &sMem);
sMem.db = db;
rc = sqlite3VdbeMemCopy(pDest, &sMem);
assert(!(sMem.flags & MEM_Dyn));
if(rc != SQLITE_OK)
{
goto op_column_out;
}
}
else
{
sqlite3VdbeSerialGet((u8 *) &
zRec[aOffset[p2]],
aType[p2], pDest);
}
}
else
{
len = sqlite3VdbeSerialTypeLen(aType[p2]);
sqlite3VdbeMemMove(&sMem, pDest);
rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2],
len, pC->isIndex,
&sMem);
if(rc != SQLITE_OK)
{
goto op_column_out;
}
zData = sMem.z;
sqlite3VdbeSerialGet((u8 *) zData, aType[p2],
pDest);
}
pDest->enc = encoding;
}
else
{
if(pOp->p4type == P4_MEM)
{
sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem,
MEM_Static);
}
else
{
assert(pDest->flags & MEM_Null);
}
}
/* If we dynamically allocated space to hold the data (in the
** sqlite3VdbeMemFromBtree() call above) then transfer control of that
** dynamically allocated space over to the pDest structure.
** This prevents a memory copy.
*/
if(sMem.zMalloc)
{
assert(sMem.z == sMem.zMalloc);
assert(!(pDest->flags & MEM_Dyn));
assert(!(pDest->flags & (MEM_Blob | MEM_Str))
|| pDest->z == sMem.z);
pDest->flags &= ~(MEM_Ephem | MEM_Static);
pDest->flags |= MEM_Term;
pDest->z = sMem.z;
pDest->zMalloc = sMem.zMalloc;
}
rc = sqlite3VdbeMemMakeWriteable(pDest);
op_column_out:
UPDATE_MAX_BLOBSIZE(pDest);
REGISTER_TRACE(pOp->p3, pDest);
break;
}
/* Opcode: Affinity P1 P2 * P4 *
**
** Apply affinities to a range of P2 registers starting with P1.
**
** P4 is a string that is P2 characters long. The nth character of the
** string indicates the column affinity that should be used for the nth
** memory cell in the range.
*/
case OP_Affinity:
{
char *zAffinity = pOp->p4.z;
Mem *pData0 = &p->aMem[pOp->p1];
Mem *pLast = &pData0[pOp->p2 - 1];
Mem *pRec;
for (pRec = pData0; pRec <= pLast; pRec++)
{
ExpandBlob(pRec);
applyAffinity(pRec, zAffinity[pRec - pData0], encoding);
}
break;
}
/* Opcode: MakeRecord P1 P2 P3 P4 *
**
** Convert P2 registers beginning with P1 into a single entry
** suitable for use as a data record in a database table or as a key
** in an index. The details of the format are irrelavant as long as
** the OP_Column opcode can decode the record later.
** Refer to source code comments for the details of the record
** format.
**
** P4 may be a string that is P2 characters long. The nth character of the
** string indicates the column affinity that should be used for the nth
** field of the index key.
**
** The mapping from character to affinity is given by the SQLITE_AFF_
** macros defined in sqliteInt.h.
**
** If P4 is NULL then all index fields have the affinity NONE.
*/
case OP_MakeRecord:
{
/* Assuming the record contains N fields, the record format looks
** like this:
**
** ------------------------------------------------------------------------
** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
** ------------------------------------------------------------------------
**
** Data(0) is taken from register P1. Data(1) comes from register P1+1
** and so froth.
**
** Each type field is a varint representing the serial type of the
** corresponding data element (see sqlite3VdbeSerialType()). The
** hdr-size field is also a varint which is the offset from the beginning
** of the record to data0.
*/
u8 *zNewRecord; /* A buffer to hold the data for the new record */
Mem *pRec; /* The new record */
u64 nData = 0; /* Number of bytes of data space */
int nHdr = 0; /* Number of bytes of header space */
u64 nByte = 0; /* Data space required for this record */
int nZero = 0; /* Number of zero bytes at the end of the record */
int nVarint; /* Number of bytes in a varint */
u32 serial_type; /* Type field */
Mem *pData0; /* First field to be combined into the record */
Mem *pLast; /* Last field of the record */
int nField; /* Number of fields in the record */
char *zAffinity; /* The affinity string for the record */
int file_format; /* File format to use for encoding */
int i; /* Space used in zNewRecord[] */
nField = pOp->p1;
zAffinity = pOp->p4.z;
assert(nField > 0 && pOp->p2 > 0 && pOp->p2 + nField <= p->nMem);
pData0 = &p->aMem[nField];
nField = pOp->p2;
pLast = &pData0[nField - 1];
file_format = p->minWriteFileFormat;
/* Loop through the elements that will make up the record to figure
** out how much space is required for the new record.
*/
for (pRec = pData0; pRec <= pLast; pRec++)
{
int len;
if(zAffinity)
{
applyAffinity(pRec, zAffinity[pRec - pData0],
encoding);
}
if(pRec->flags & MEM_Zero && pRec->n > 0)
{
sqlite3VdbeMemExpandBlob(pRec);
}
serial_type = sqlite3VdbeSerialType(pRec, file_format);
len = sqlite3VdbeSerialTypeLen(serial_type);
nData += len;
nHdr += sqlite3VarintLen(serial_type);
if(pRec->flags & MEM_Zero)
{
/* Only pure zero-filled BLOBs can be input to this Opcode.
** We do not allow blobs with a prefix and a zero-filled tail. */
nZero += pRec->u.i;
}
else if(len)
{
nZero = 0;
}
}
/* Add the initial header varint and total the size */
nHdr += nVarint = sqlite3VarintLen(nHdr);
if(nVarint < sqlite3VarintLen(nHdr))
{
nHdr++;
}
nByte = nHdr + nData - nZero;
if(nByte > db->aLimit[SQLITE_LIMIT_LENGTH])
{
goto too_big;
}
/* Make sure the output register has a buffer large enough to store
** the new record. The output register (pOp->p3) is not allowed to
** be one of the input registers (because the following call to
** sqlite3VdbeMemGrow() could clobber the value before it is used).
*/
assert(pOp->p3 < pOp->p1 || pOp->p3 >= pOp->p1 + pOp->p2);
pOut = &p->aMem[pOp->p3];
if(sqlite3VdbeMemGrow(pOut, nByte, 0))
{
goto no_mem;
}
zNewRecord = (u8 *) pOut->z;
/* Write the record */
i = putVarint32(zNewRecord, nHdr);
for (pRec = pData0; pRec <= pLast; pRec++)
{
serial_type = sqlite3VdbeSerialType(pRec, file_format);
i += putVarint32(&zNewRecord[i], serial_type); /* serial type */
}
for (pRec = pData0; pRec <= pLast; pRec++)
{ /* serial data */
i += sqlite3VdbeSerialPut(&zNewRecord[i], nByte - i, pRec,
file_format);
}
assert(i == nByte);
assert(pOp->p3 > 0 && pOp->p3 <= p->nMem);
pOut->n = nByte;
pOut->flags = MEM_Blob | MEM_Dyn;
pOut->xDel = 0;
if(nZero)
{
pOut->u.i = nZero;
pOut->flags |= MEM_Zero;
}
pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
REGISTER_TRACE(pOp->p3, pOut);
UPDATE_MAX_BLOBSIZE(pOut);
break;
}
/* Opcode: Statement P1 * * * *
**
** Begin an individual statement transaction which is part of a larger
** transaction. This is needed so that the statement
** can be rolled back after an error without having to roll back the
** entire transaction. The statement transaction will automatically
** commit when the VDBE halts.
**
** If the database connection is currently in autocommit mode (that
** is to say, if it is in between BEGIN and COMMIT)
** and if there are no other active statements on the same database
** connection, then this operation is a no-op. No statement transaction
** is needed since any error can use the normal ROLLBACK process to
** undo changes.
**
** If a statement transaction is started, then a statement journal file
** will be allocated and initialized.
**
** The statement is begun on the database file with index P1. The main
** database file has an index of 0 and the file used for temporary tables
** has an index of 1.
*/
case OP_Statement:
{
if(db->autoCommit == 0 || db->activeVdbeCnt > 1)
{
int i = pOp->p1;
Btree *pBt;
assert(i >= 0 && i < db->nDb);
assert(db->aDb[i].pBt != 0);
pBt = db->aDb[i].pBt;
assert(sqlite3BtreeIsInTrans(pBt));
assert((p->btreeMask & (1 << i)) != 0);
if(!sqlite3BtreeIsInStmt(pBt))
{
rc = sqlite3BtreeBeginStmt(pBt);
p->openedStatement = 1;
}
}
break;
}
/* Opcode: AutoCommit P1 P2 * * *
**
** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
** back any currently active btree transactions. If there are any active
** VMs (apart from this one), then the COMMIT or ROLLBACK statement fails.
**
** This instruction causes the VM to halt.
*/
case OP_AutoCommit:
{
u8 i = pOp->p1;
u8 rollback = pOp->p2;
assert(i == 1 || i == 0);
assert(i == 1 || rollback == 0);
assert(db->activeVdbeCnt > 0); /* At least this one VM is active */
if(db->activeVdbeCnt > 1 && i && !db->autoCommit)
{
/* If this instruction implements a COMMIT or ROLLBACK, other VMs are
** still running, and a transaction is active, return an error indicating
** that the other VMs must complete first.
*/
sqlite3SetString(&p->zErrMsg, "cannot ",
rollback ? "rollback" : "commit",
" transaction - SQL statements in progress",
(char *) 0);
rc = SQLITE_ERROR;
}
else if(i != db->autoCommit)
{
if(pOp->p2)
{
assert(i == 1);
sqlite3RollbackAll(db);
db->autoCommit = 1;
}
else
{
db->autoCommit = i;
if(sqlite3VdbeHalt(p) == SQLITE_BUSY)
{
p->pc = pc;
db->autoCommit = 1 - i;
p->rc = rc = SQLITE_BUSY;
goto vdbe_return;
}
}
if(p->rc == SQLITE_OK)
{
rc = SQLITE_DONE;
}
else
{
rc = SQLITE_ERROR;
}
goto vdbe_return;
}
else
{
sqlite3SetString(&p->zErrMsg,
(!i) ?
"cannot start a transaction within a transaction"
: ((rollback) ?
"cannot rollback - no transaction is active"
:
"cannot commit - no transaction is active"),
(char *) 0);
rc = SQLITE_ERROR;
}
break;
}
/* Opcode: Transaction P1 P2 * * *
**
** Begin a transaction. The transaction ends when a Commit or Rollback
** opcode is encountered. Depending on the ON CONFLICT setting, the
** transaction might also be rolled back if an error is encountered.
**
** P1 is the index of the database file on which the transaction is
** started. Index 0 is the main database file and index 1 is the
** file used for temporary tables. Indices of 2 or more are used for
** attached databases.
**
** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is
** obtained on the database file when a write-transaction is started. No
** other process can start another write transaction while this transaction is
** underway. Starting a write transaction also creates a rollback journal. A
** write transaction must be started before any changes can be made to the
** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
** on the file.
**
** If P2 is zero, then a read-lock is obtained on the database file.
*/
case OP_Transaction:
{
int i = pOp->p1;
Btree *pBt;
assert(i >= 0 && i < db->nDb);
assert((p->btreeMask & (1 << i)) != 0);
pBt = db->aDb[i].pBt;
if(pBt)
{
rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
if(rc == SQLITE_BUSY)
{
p->pc = pc;
p->rc = rc = SQLITE_BUSY;
goto vdbe_return;
}
if(rc != SQLITE_OK
&& rc != SQLITE_READONLY /* && rc!=SQLITE_BUSY */ )
{
goto abort_due_to_error;
}
}
break;
}
/* Opcode: ReadCookie P1 P2 P3 * *
**
** Read cookie number P3 from database P1 and write it into register P2.
** P3==0 is the schema version. P3==1 is the database format.
** P3==2 is the recommended pager cache size, and so forth. P1==0 is
** the main database file and P1==1 is the database file used to store
** temporary tables.
**
** If P1 is negative, then this is a request to read the size of a
** databases free-list. P3 must be set to 1 in this case. The actual
** database accessed is ((P1+1)*-1). For example, a P1 parameter of -1
** corresponds to database 0 ("main"), a P1 of -2 is database 1 ("temp").
**
** There must be a read-lock on the database (either a transaction
** must be started or there must be an open cursor) before
** executing this instruction.
*/
case OP_ReadCookie:
{ /* out2-prerelease */
int iMeta;
int iDb = pOp->p1;
int iCookie = pOp->p3;
assert(pOp->p3 < SQLITE_N_BTREE_META);
if(iDb < 0)
{
iDb = (-1 * (iDb + 1));
iCookie *= -1;
}
assert(iDb >= 0 && iDb < db->nDb);
assert(db->aDb[iDb].pBt != 0);
assert((p->btreeMask & (1 << iDb)) != 0);
/* The indexing of meta values at the schema layer is off by one from
** the indexing in the btree layer. The btree considers meta[0] to
** be the number of free pages in the database (a read-only value)
** and meta[1] to be the schema cookie. The schema layer considers
** meta[1] to be the schema cookie. So we have to shift the index
** by one in the following statement.
*/
rc = sqlite3BtreeGetMeta(db->aDb[iDb].pBt, 1 + iCookie,
(u32 *) & iMeta);
pOut->u.i = iMeta;
MemSetTypeFlag(pOut, MEM_Int);
break;
}
/* Opcode: SetCookie P1 P2 P3 * *
**
** Write the content of register P3 (interpreted as an integer)
** into cookie number P2 of database P1.
** P2==0 is the schema version. P2==1 is the database format.
** P2==2 is the recommended pager cache size, and so forth. P1==0 is
** the main database file and P1==1 is the database file used to store
** temporary tables.
**
** A transaction must be started before executing this opcode.
*/
case OP_SetCookie:
{ /* in3 */
Db *pDb;
assert(pOp->p2 < SQLITE_N_BTREE_META);
assert(pOp->p1 >= 0 && pOp->p1 < db->nDb);
assert((p->btreeMask & (1 << pOp->p1)) != 0);
pDb = &db->aDb[pOp->p1];
assert(pDb->pBt != 0);
sqlite3VdbeMemIntegerify(pIn3);
/* See note about index shifting on OP_ReadCookie */
rc = sqlite3BtreeUpdateMeta(pDb->pBt, 1 + pOp->p2, (int) pIn3->u.i);
if(pOp->p2 == 0)
{
/* When the schema cookie changes, record the new cookie internally */
pDb->pSchema->schema_cookie = pIn3->u.i;
db->flags |= SQLITE_InternChanges;
}
else if(pOp->p2 == 1)
{
/* Record changes in the file format */
pDb->pSchema->file_format = pIn3->u.i;
}
if(pOp->p1 == 1)
{
/* Invalidate all prepared statements whenever the TEMP database
** schema is changed. Ticket #1644 */
sqlite3ExpirePreparedStatements(db);
}
break;
}
/* Opcode: VerifyCookie P1 P2 *
**
** Check the value of global database parameter number 0 (the
** schema version) and make sure it is equal to P2.
** P1 is the database number which is 0 for the main database file
** and 1 for the file holding temporary tables and some higher number
** for auxiliary databases.
**
** The cookie changes its value whenever the database schema changes.
** This operation is used to detect when that the cookie has changed
** and that the current process needs to reread the schema.
**
** Either a transaction needs to have been started or an OP_Open needs
** to be executed (to establish a read lock) before this opcode is
** invoked.
*/
case OP_VerifyCookie:
{
int iMeta;
Btree *pBt;
assert(pOp->p1 >= 0 && pOp->p1 < db->nDb);
assert((p->btreeMask & (1 << pOp->p1)) != 0);
pBt = db->aDb[pOp->p1].pBt;
if(pBt)
{
rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *) & iMeta);
}
else
{
rc = SQLITE_OK;
iMeta = 0;
}
if(rc == SQLITE_OK && iMeta != pOp->p2)
{
sqlite3_free(p->zErrMsg);
p->zErrMsg =
sqlite3DbStrDup(db, "database schema has changed");
/* If the schema-cookie from the database file matches the cookie
** stored with the in-memory representation of the schema, do
** not reload the schema from the database file.
**
** If virtual-tables are in use, this is not just an optimisation.
** Often, v-tables store their data in other SQLite tables, which
** are queried from within xNext() and other v-table methods using
** prepared queries. If such a query is out-of-date, we do not want to
** discard the database schema, as the user code implementing the
** v-table would have to be ready for the sqlite3_vtab structure itself
** to be invalidated whenever sqlite3_step() is called from within
** a v-table method.
*/
if(db->aDb[pOp->p1].pSchema->schema_cookie != iMeta)
{
sqlite3ResetInternalSchema(db, pOp->p1);
}
sqlite3ExpirePreparedStatements(db);
rc = SQLITE_SCHEMA;
}
break;
}
/* Opcode: OpenRead P1 P2 P3 P4 P5
**
** Open a read-only cursor for the database table whose root page is
** P2 in a database file. The database file is determined by P3.
** P3==0 means the main database, P3==1 means the database used for
** temporary tables, and P3>1 means used the corresponding attached
** database. Give the new cursor an identifier of P1. The P1
** values need not be contiguous but all P1 values should be small integers.
** It is an error for P1 to be negative.
**
** If P5!=0 then use the content of register P2 as the root page, not
** the value of P2 itself.
**
** There will be a read lock on the database whenever there is an
** open cursor. If the database was unlocked prior to this instruction
** then a read lock is acquired as part of this instruction. A read
** lock allows other processes to read the database but prohibits
** any other process from modifying the database. The read lock is
** released when all cursors are closed. If this instruction attempts
** to get a read lock but fails, the script terminates with an
** SQLITE_BUSY error code.
**
** The P4 value is a pointer to a KeyInfo structure that defines the
** content and collating sequence of indices. P4 is NULL for cursors
** that are not pointing to indices.
**
** See also OpenWrite.
*/
/* Opcode: OpenWrite P1 P2 P3 P4 P5
**
** Open a read/write cursor named P1 on the table or index whose root
** page is P2. Or if P5!=0 use the content of register P2 to find the
** root page.
**
** The P4 value is a pointer to a KeyInfo structure that defines the
** content and collating sequence of indices. P4 is NULL for cursors
** that are not pointing to indices.
**
** This instruction works just like OpenRead except that it opens the cursor
** in read/write mode. For a given table, there can be one or more read-only
** cursors or a single read/write cursor but not both.
**
** See also OpenRead.
*/
case OP_OpenRead:
case OP_OpenWrite:
{
int i = pOp->p1;
int p2 = pOp->p2;
int iDb = pOp->p3;
int wrFlag;
Btree *pX;
Cursor *pCur;
Db *pDb;
assert(iDb >= 0 && iDb < db->nDb);
assert((p->btreeMask & (1 << iDb)) != 0);
pDb = &db->aDb[iDb];
pX = pDb->pBt;
assert(pX != 0);
if(pOp->opcode == OP_OpenWrite)
{
wrFlag = 1;
if(pDb->pSchema->file_format < p->minWriteFileFormat)
{
p->minWriteFileFormat = pDb->pSchema->file_format;
}
}
else
{
wrFlag = 0;
}
if(pOp->p5)
{
assert(p2 > 0);
assert(p2 <= p->nMem);
pIn2 = &p->aMem[p2];
sqlite3VdbeMemIntegerify(pIn2);
p2 = pIn2->u.i;
assert(p2 >= 2);
}
assert(i >= 0);
pCur = allocateCursor(p, i, &pOp[-1], iDb, 1);
if(pCur == 0)
goto no_mem;
pCur->nullRow = 1;
rc = sqlite3BtreeCursor(pX, p2, wrFlag, pOp->p4.p, pCur->pCursor);
if(pOp->p4type == P4_KEYINFO)
{
pCur->pKeyInfo = pOp->p4.pKeyInfo;
pCur->pIncrKey = &pCur->pKeyInfo->incrKey;
pCur->pKeyInfo->enc = ENC(p->db);
}
else
{
pCur->pKeyInfo = 0;
pCur->pIncrKey = &pCur->bogusIncrKey;
}
switch (rc)
{
case SQLITE_BUSY:
{
p->pc = pc;
p->rc = rc = SQLITE_BUSY;
goto vdbe_return;
}
case SQLITE_OK:
{
int flags = sqlite3BtreeFlags(pCur->pCursor);
/* Sanity checking. Only the lower four bits of the flags byte should
** be used. Bit 3 (mask 0x08) is unpreditable. The lower 3 bits
** (mask 0x07) should be either 5 (intkey+leafdata for tables) or
** 2 (zerodata for indices). If these conditions are not met it can
** only mean that we are dealing with a corrupt database file
*/
if((flags & 0xf0) != 0
|| ((flags & 0x07) != 5 && (flags & 0x07) != 2))
{
rc = SQLITE_CORRUPT_BKPT;
goto abort_due_to_error;
}
pCur->isTable = (flags & BTREE_INTKEY) != 0;
pCur->isIndex = (flags & BTREE_ZERODATA) != 0;
/* If P4==0 it means we are expected to open a table. If P4!=0 then
** we expect to be opening an index. If this is not what happened,
** then the database is corrupt
*/
if((pCur->isTable && pOp->p4type == P4_KEYINFO)
|| (pCur->isIndex && pOp->p4type != P4_KEYINFO))
{
rc = SQLITE_CORRUPT_BKPT;
goto abort_due_to_error;
}
break;
}
case SQLITE_EMPTY:
{
pCur->isTable = pOp->p4type != P4_KEYINFO;
pCur->isIndex = !pCur->isTable;
pCur->pCursor = 0;
rc = SQLITE_OK;
break;
}
default:
{
goto abort_due_to_error;
}
}
break;
}
/* Opcode: OpenEphemeral P1 P2 * P4 *
**
** Open a new cursor P1 to a transient table.
** The cursor is always opened read/write even if
** the main database is read-only. The transient or virtual
** table is deleted automatically when the cursor is closed.
**
** P2 is the number of columns in the virtual table.
** The cursor points to a BTree table if P4==0 and to a BTree index
** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
** that defines the format of keys in the index.
**
** This opcode was once called OpenTemp. But that created
** confusion because the term "temp table", might refer either
** to a TEMP table at the SQL level, or to a table opened by
** this opcode. Then this opcode was call OpenVirtual. But
** that created confusion with the whole virtual-table idea.
*/
case OP_OpenEphemeral:
{
int i = pOp->p1;
Cursor *pCx;
static const int openFlags =
SQLITE_OPEN_READWRITE |
SQLITE_OPEN_CREATE |
SQLITE_OPEN_EXCLUSIVE |
SQLITE_OPEN_DELETEONCLOSE | SQLITE_OPEN_TRANSIENT_DB;
assert(i >= 0);
pCx = allocateCursor(p, i, pOp, -1, 1);
if(pCx == 0)
goto no_mem;
pCx->nullRow = 1;
rc = sqlite3BtreeFactory(db, 0, 1, SQLITE_DEFAULT_TEMP_CACHE_SIZE,
openFlags, &pCx->pBt);
if(rc == SQLITE_OK)
{
rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
}
if(rc == SQLITE_OK)
{
/* If a transient index is required, create it by calling
** sqlite3BtreeCreateTable() with the BTREE_ZERODATA flag before
** opening it. If a transient table is required, just use the
** automatically created table with root-page 1 (an INTKEY table).
*/
if(pOp->p4.pKeyInfo)
{
int pgno;
assert(pOp->p4type == P4_KEYINFO);
rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno,
BTREE_ZERODATA);
if(rc == SQLITE_OK)
{
assert(pgno == MASTER_ROOT + 1);
rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1,
(KeyInfo *) pOp->p4.
z, pCx->pCursor);
pCx->pKeyInfo = pOp->p4.pKeyInfo;
pCx->pKeyInfo->enc = ENC(p->db);
pCx->pIncrKey = &pCx->pKeyInfo->incrKey;
}
pCx->isTable = 0;
}
else
{
rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0,
pCx->pCursor);
pCx->isTable = 1;
pCx->pIncrKey = &pCx->bogusIncrKey;
}
}
pCx->isIndex = !pCx->isTable;
break;
}
/* Opcode: OpenPseudo P1 P2 * * *
**
** Open a new cursor that points to a fake table that contains a single
** row of data. Any attempt to write a second row of data causes the
** first row to be deleted. All data is deleted when the cursor is
** closed.
**
** A pseudo-table created by this opcode is useful for holding the
** NEW or OLD tables in a trigger. Also used to hold the a single
** row output from the sorter so that the row can be decomposed into
** individual columns using the OP_Column opcode.
**
** When OP_Insert is executed to insert a row in to the pseudo table,
** the pseudo-table cursor may or may not make it's own copy of the
** original row data. If P2 is 0, then the pseudo-table will copy the
** original row data. Otherwise, a pointer to the original memory cell
** is stored. In this case, the vdbe program must ensure that the
** memory cell containing the row data is not overwritten until the
** pseudo table is closed (or a new row is inserted into it).
*/
case OP_OpenPseudo:
{
int i = pOp->p1;
Cursor *pCx;
assert(i >= 0);
pCx = allocateCursor(p, i, &pOp[-1], -1, 0);
if(pCx == 0)
goto no_mem;
pCx->nullRow = 1;
pCx->pseudoTable = 1;
pCx->ephemPseudoTable = pOp->p2;
pCx->pIncrKey = &pCx->bogusIncrKey;
pCx->isTable = 1;
pCx->isIndex = 0;
break;
}
/* Opcode: Close P1 * * * *
**
** Close a cursor previously opened as P1. If P1 is not
** currently open, this instruction is a no-op.
*/
case OP_Close:
{
int i = pOp->p1;
assert(i >= 0 && i < p->nCursor);
sqlite3VdbeFreeCursor(p, p->apCsr[i]);
p->apCsr[i] = 0;
break;
}
/* Opcode: MoveGe P1 P2 P3 P4 *
**
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
** use the integer value in register P3 as a key. If cursor P1 refers
** to an SQL index, then P3 is the first in an array of P4 registers
** that are used as an unpacked index key.
**
** Reposition cursor P1 so that it points to the smallest entry that
** is greater than or equal to the key value. If there are no records
** greater than or equal to the key and P2 is not zero, then jump to P2.
**
** A special feature of this opcode (and different from the
** related OP_MoveGt, OP_MoveLt, and OP_MoveLe) is that if P2 is
** zero and P1 is an SQL table (a b-tree with integer keys) then
** the seek is deferred until it is actually needed. It might be
** the case that the cursor is never accessed. By deferring the
** seek, we avoid unnecessary seeks.
**
** See also: Found, NotFound, Distinct, MoveLt, MoveGt, MoveLe
*/
/* Opcode: MoveGt P1 P2 P3 P4 *
**
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
** use the integer value in register P3 as a key. If cursor P1 refers
** to an SQL index, then P3 is the first in an array of P4 registers
** that are used as an unpacked index key.
**
** Reposition cursor P1 so that it points to the smallest entry that
** is greater than the key value. If there are no records greater than
** the key and P2 is not zero, then jump to P2.
**
** See also: Found, NotFound, Distinct, MoveLt, MoveGe, MoveLe
*/
/* Opcode: MoveLt P1 P2 P3 P4 *
**
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
** use the integer value in register P3 as a key. If cursor P1 refers
** to an SQL index, then P3 is the first in an array of P4 registers
** that are used as an unpacked index key.
**
** Reposition cursor P1 so that it points to the largest entry that
** is less than the key value. If there are no records less than
** the key and P2 is not zero, then jump to P2.
**
** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLe
*/
/* Opcode: MoveLe P1 P2 P3 P4 *
**
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
** use the integer value in register P3 as a key. If cursor P1 refers
** to an SQL index, then P3 is the first in an array of P4 registers
** that are used as an unpacked index key.
**
** Reposition cursor P1 so that it points to the largest entry that
** is less than or equal to the key value. If there are no records
** less than or equal to the key and P2 is not zero, then jump to P2.
**
** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLt
*/
case OP_MoveLt: /* jump, in3 */
case OP_MoveLe: /* jump, in3 */
case OP_MoveGe: /* jump, in3 */
case OP_MoveGt:
{ /* jump, in3 */
int i = pOp->p1;
Cursor *pC;
assert(i >= 0 && i < p->nCursor);
pC = p->apCsr[i];
assert(pC != 0);
if(pC->pCursor != 0)
{
int res, oc;
oc = pOp->opcode;
pC->nullRow = 0;
*pC->pIncrKey = oc == OP_MoveGt || oc == OP_MoveLe;
if(pC->isTable)
{
i64 iKey = sqlite3VdbeIntValue(pIn3);
if(pOp->p2 == 0)
{
assert(pOp->opcode == OP_MoveGe);
pC->movetoTarget = iKey;
pC->rowidIsValid = 0;
pC->deferredMoveto = 1;
break;
}
rc = sqlite3BtreeMoveto(pC->pCursor, 0, 0,
(u64) iKey, 0, &res);
if(rc != SQLITE_OK)
{
goto abort_due_to_error;
}
pC->lastRowid = iKey;
pC->rowidIsValid = res == 0;
}
else
{
UnpackedRecord r;
int nField = pOp->p4.i;
assert(pOp->p4type == P4_INT32);
assert(nField > 0);
r.pKeyInfo = pC->pKeyInfo;
r.nField = nField;
r.needFree = 0;
r.needDestroy = 0;
r.aMem = &p->aMem[pOp->p3];
rc = sqlite3BtreeMoveto(pC->pCursor, 0, &r, 0, 0,
&res);
if(rc != SQLITE_OK)
{
goto abort_due_to_error;
}
pC->rowidIsValid = 0;
}
pC->deferredMoveto = 0;
pC->cacheStatus = CACHE_STALE;
*pC->pIncrKey = 0;
#ifdef SQLITE_TEST
sqlite3_search_count++;
#endif
if(oc == OP_MoveGe || oc == OP_MoveGt)
{
if(res < 0)
{
rc = sqlite3BtreeNext(pC->pCursor, &res);
if(rc != SQLITE_OK)
goto abort_due_to_error;
pC->rowidIsValid = 0;
}
else
{
res = 0;
}
}
else
{
assert(oc == OP_MoveLt || oc == OP_MoveLe);
if(res >= 0)
{
rc = sqlite3BtreePrevious(pC->pCursor,
&res);
if(rc != SQLITE_OK)
goto abort_due_to_error;
pC->rowidIsValid = 0;
}
else
{
/* res might be negative because the table is empty. Check to
** see if this is the case.
*/
res = sqlite3BtreeEof(pC->pCursor);
}
}
assert(pOp->p2 > 0);
if(res)
{
pc = pOp->p2 - 1;
}
}
break;
}
/* Opcode: Found P1 P2 P3 * *
**
** Register P3 holds a blob constructed by MakeRecord. P1 is an index.
** If an entry that matches the value in register p3 exists in P1 then
** jump to P2. If the P3 value does not match any entry in P1
** then fall thru. The P1 cursor is left pointing at the matching entry
** if it exists.
**
** This instruction is used to implement the IN operator where the
** left-hand side is a SELECT statement. P1 may be a true index, or it
** may be a temporary index that holds the results of the SELECT
** statement. This instruction is also used to implement the
** DISTINCT keyword in SELECT statements.
**
** This instruction checks if index P1 contains a record for which
** the first N serialised values exactly match the N serialised values
** in the record in register P3, where N is the total number of values in
** the P3 record (the P3 record is a prefix of the P1 record).
**
** See also: NotFound, MoveTo, IsUnique, NotExists
*/
/* Opcode: NotFound P1 P2 P3 * *
**
** Register P3 holds a blob constructed by MakeRecord. P1 is
** an index. If no entry exists in P1 that matches the blob then jump
** to P2. If an entry does existing, fall through. The cursor is left
** pointing to the entry that matches.
**
** See also: Found, MoveTo, NotExists, IsUnique
*/
case OP_NotFound: /* jump, in3 */
case OP_Found:
{ /* jump, in3 */
int i = pOp->p1;
int alreadyExists = 0;
Cursor *pC;
assert(i >= 0 && i < p->nCursor);
assert(p->apCsr[i] != 0);
if((pC = p->apCsr[i])->pCursor != 0)
{
int res;
assert(pC->isTable == 0);
assert(pIn3->flags & MEM_Blob);
if(pOp->opcode == OP_Found)
{
pC->pKeyInfo->prefixIsEqual = 1;
}
rc = sqlite3BtreeMoveto(pC->pCursor, pIn3->z, 0, pIn3->n, 0,
&res);
pC->pKeyInfo->prefixIsEqual = 0;
if(rc != SQLITE_OK)
{
break;
}
alreadyExists = (res == 0);
pC->deferredMoveto = 0;
pC->cacheStatus = CACHE_STALE;
}
if(pOp->opcode == OP_Found)
{
if(alreadyExists)
pc = pOp->p2 - 1;
}
else
{
if(!alreadyExists)
pc = pOp->p2 - 1;
}
break;
}
/* Opcode: IsUnique P1 P2 P3 P4 *
**
** The P3 register contains an integer record number. Call this
** record number R. The P4 register contains an index key created
** using MakeIdxRec. Call it K.
**
** P1 is an index. So it has no data and its key consists of a
** record generated by OP_MakeRecord where the last field is the
** rowid of the entry that the index refers to.
**
** This instruction asks if there is an entry in P1 where the
** fields matches K but the rowid is different from R.
** If there is no such entry, then there is an immediate
** jump to P2. If any entry does exist where the index string
** matches K but the record number is not R, then the record
** number for that entry is written into P3 and control
** falls through to the next instruction.
**
** See also: NotFound, NotExists, Found
*/
case OP_IsUnique:
{ /* jump, in3 */
int i = pOp->p1;
Cursor *pCx;
BtCursor *pCrsr;
Mem *pK;
i64 R;
/* Pop the value R off the top of the stack
*/
assert(pOp->p4type == P4_INT32);
assert(pOp->p4.i > 0 && pOp->p4.i <= p->nMem);
pK = &p->aMem[pOp->p4.i];
sqlite3VdbeMemIntegerify(pIn3);
R = pIn3->u.i;
assert(i >= 0 && i < p->nCursor);
pCx = p->apCsr[i];
assert(pCx != 0);
pCrsr = pCx->pCursor;
if(pCrsr != 0)
{
int res;
i64 v; /* The record number on the P1 entry that matches K */
char *zKey; /* The value of K */
int nKey; /* Number of bytes in K */
int len; /* Number of bytes in K without the rowid at the end */
int szRowid; /* Size of the rowid column at the end of zKey */
/* Make sure K is a string and make zKey point to K
*/
assert(pK->flags & MEM_Blob);
zKey = pK->z;
nKey = pK->n;
szRowid = sqlite3VdbeIdxRowidLen((u8 *) zKey);
len = nKey - szRowid;
/* Search for an entry in P1 where all but the last four bytes match K.
** If there is no such entry, jump immediately to P2.
*/
assert(pCx->deferredMoveto == 0);
pCx->cacheStatus = CACHE_STALE;
rc = sqlite3BtreeMoveto(pCrsr, zKey, 0, len, 0, &res);
if(rc != SQLITE_OK)
{
goto abort_due_to_error;
}
if(res < 0)
{
rc = sqlite3BtreeNext(pCrsr, &res);
if(res)
{
pc = pOp->p2 - 1;
break;
}
}
rc = sqlite3VdbeIdxKeyCompare(pCx, 0, len, (u8 *) zKey,
&res);
if(rc != SQLITE_OK)
goto abort_due_to_error;
if(res > 0)
{
pc = pOp->p2 - 1;
break;
}
/* At this point, pCrsr is pointing to an entry in P1 where all but
** the final entry (the rowid) matches K. Check to see if the
** final rowid column is different from R. If it equals R then jump
** immediately to P2.
*/
rc = sqlite3VdbeIdxRowid(pCrsr, &v);
if(rc != SQLITE_OK)
{
goto abort_due_to_error;
}
if(v == R)
{
pc = pOp->p2 - 1;
break;
}
/* The final varint of the key is different from R. Store it back
** into register R3. (The record number of an entry that violates
** a UNIQUE constraint.)
*/
pIn3->u.i = v;
assert(pIn3->flags & MEM_Int);
}
break;
}
/* Opcode: NotExists P1 P2 P3 * *
**
** Use the content of register P3 as a integer key. If a record
** with that key does not exist in table of P1, then jump to P2.
** If the record does exist, then fall thru. The cursor is left
** pointing to the record if it exists.
**
** The difference between this operation and NotFound is that this
** operation assumes the key is an integer and that P1 is a table whereas
** NotFound assumes key is a blob constructed from MakeRecord and
** P1 is an index.
**
** See also: Found, MoveTo, NotFound, IsUnique
*/
case OP_NotExists:
{ /* jump, in3 */
int i = pOp->p1;
Cursor *pC;
BtCursor *pCrsr;
assert(i >= 0 && i < p->nCursor);
assert(p->apCsr[i] != 0);
if((pCrsr = (pC = p->apCsr[i])->pCursor) != 0)
{
int res;
u64 iKey;
assert(pIn3->flags & MEM_Int);
assert(p->apCsr[i]->isTable);
iKey = intToKey(pIn3->u.i);
rc = sqlite3BtreeMoveto(pCrsr, 0, 0, iKey, 0, &res);
pC->lastRowid = pIn3->u.i;
pC->rowidIsValid = res == 0;
pC->nullRow = 0;
pC->cacheStatus = CACHE_STALE;
/* res might be uninitialized if rc!=SQLITE_OK. But if rc!=SQLITE_OK
** processing is about to abort so we really do not care whether or not
** the following jump is taken. (In other words, do not stress over
** the error that valgrind sometimes shows on the next statement when
** running ioerr.test and similar failure-recovery test scripts.) */
if(res != 0)
{
pc = pOp->p2 - 1;
assert(pC->rowidIsValid == 0);
}
}
break;
}
/* Opcode: Sequence P1 P2 * * *
**
** Find the next available sequence number for cursor P1.
** Write the sequence number into register P2.
** The sequence number on the cursor is incremented after this
** instruction.
*/
case OP_Sequence:
{ /* out2-prerelease */
int i = pOp->p1;
assert(i >= 0 && i < p->nCursor);
assert(p->apCsr[i] != 0);
pOut->u.i = p->apCsr[i]->seqCount++;
MemSetTypeFlag(pOut, MEM_Int);
break;
}
/* Opcode: NewRowid P1 P2 P3 * *
**
** Get a new integer record number (a.k.a "rowid") used as the key to a table.
** The record number is not previously used as a key in the database
** table that cursor P1 points to. The new record number is written
** written to register P2.
**
** If P3>0 then P3 is a register that holds the largest previously
** generated record number. No new record numbers are allowed to be less
** than this value. When this value reaches its maximum, a SQLITE_FULL
** error is generated. The P3 register is updated with the generated
** record number. This P3 mechanism is used to help implement the
** AUTOINCREMENT feature.
*/
case OP_NewRowid:
{ /* out2-prerelease */
int i = pOp->p1;
i64 v = 0;
Cursor *pC;
assert(i >= 0 && i < p->nCursor);
assert(p->apCsr[i] != 0);
if((pC = p->apCsr[i])->pCursor == 0)
{
/* The zero initialization above is all that is needed */
}
else
{
/* The next rowid or record number (different terms for the same
** thing) is obtained in a two-step algorithm.
**
** First we attempt to find the largest existing rowid and add one
** to that. But if the largest existing rowid is already the maximum
** positive integer, we have to fall through to the second
** probabilistic algorithm
**
** The second algorithm is to select a rowid at random and see if
** it already exists in the table. If it does not exist, we have
** succeeded. If the random rowid does exist, we select a new one
** and try again, up to 1000 times.
**
** For a table with less than 2 billion entries, the probability
** of not finding a unused rowid is about 1.0e-300. This is a
** non-zero probability, but it is still vanishingly small and should
** never cause a problem. You are much, much more likely to have a
** hardware failure than for this algorithm to fail.
**
** The analysis in the previous paragraph assumes that you have a good
** source of random numbers. Is a library function like lrand48()
** good enough? Maybe. Maybe not. It's hard to know whether there
** might be subtle bugs is some implementations of lrand48() that
** could cause problems. To avoid uncertainty, SQLite uses its own
** random number generator based on the RC4 algorithm.
**
** To promote locality of reference for repetitive inserts, the
** first few attempts at chosing a random rowid pick values just a little
** larger than the previous rowid. This has been shown experimentally
** to double the speed of the COPY operation.
*/
int res, rx = SQLITE_OK, cnt;
i64 x;
cnt = 0;
if((sqlite3BtreeFlags(pC->pCursor) &
(BTREE_INTKEY | BTREE_ZERODATA)) != BTREE_INTKEY)
{
rc = SQLITE_CORRUPT_BKPT;
goto abort_due_to_error;
}
assert((sqlite3BtreeFlags(pC->pCursor) & BTREE_INTKEY) !=
0);
assert((sqlite3BtreeFlags(pC->pCursor) & BTREE_ZERODATA) ==
0);
#ifdef SQLITE_32BIT_ROWID
# define MAX_ROWID 0x7fffffff
#else
/* Some compilers complain about constants of the form 0x7fffffffffffffff.
** Others complain about 0x7ffffffffffffffffLL. The following macro seems
** to provide the constant while making all compilers happy.
*/
# define MAX_ROWID ( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
#endif
if(!pC->useRandomRowid)
{
if(pC->nextRowidValid)
{
v = pC->nextRowid;
}
else
{
rc = sqlite3BtreeLast(pC->pCursor, &res);
if(rc != SQLITE_OK)
{
goto abort_due_to_error;
}
if(res)
{
v = 1;
}
else
{
sqlite3BtreeKeySize(pC->pCursor,
&v);
v = keyToInt(v);
if(v == MAX_ROWID)
{
pC->useRandomRowid = 1;
}
else
{
v++;
}
}
}
#ifndef SQLITE_OMIT_AUTOINCREMENT
if(pOp->p3)
{
Mem *pMem;
assert(pOp->p3 > 0 && pOp->p3 <= p->nMem); /* P3 is a valid memory cell */
pMem = &p->aMem[pOp->p3];
REGISTER_TRACE(pOp->p3, pMem);
sqlite3VdbeMemIntegerify(pMem);
assert((pMem->flags & MEM_Int) != 0); /* mem(P3) holds an integer */
if(pMem->u.i == MAX_ROWID
|| pC->useRandomRowid)
{
rc = SQLITE_FULL;
goto abort_due_to_error;
}
if(v < pMem->u.i + 1)
{
v = pMem->u.i + 1;
}
pMem->u.i = v;
}
#endif
if(v < MAX_ROWID)
{
pC->nextRowidValid = 1;
pC->nextRowid = v + 1;
}
else
{
pC->nextRowidValid = 0;
}
}
if(pC->useRandomRowid)
{
assert(pOp->p3 == 0); /* SQLITE_FULL must have occurred prior to this */
v = db->priorNewRowid;
cnt = 0;
do
{
if(cnt == 0 && (v & 0xffffff) == v)
{
v++;
}
else
{
sqlite3_randomness(sizeof(v), &v);
if(cnt < 5)
v &= 0xffffff;
}
if(v == 0)
continue;
x = intToKey(v);
rx = sqlite3BtreeMoveto(pC->pCursor, 0, 0,
(u64) x, 0, &res);
cnt++;
}
while (cnt < 100 && rx == SQLITE_OK && res == 0);
db->priorNewRowid = v;
if(rx == SQLITE_OK && res == 0)
{
rc = SQLITE_FULL;
goto abort_due_to_error;
}
}
pC->rowidIsValid = 0;
pC->deferredMoveto = 0;
pC->cacheStatus = CACHE_STALE;
}
MemSetTypeFlag(pOut, MEM_Int);
pOut->u.i = v;
break;
}
/* Opcode: Insert P1 P2 P3 P4 P5
**
** Write an entry into the table of cursor P1. A new entry is
** created if it doesn't already exist or the data for an existing
** entry is overwritten. The data is the value stored register
** number P2. The key is stored in register P3. The key must
** be an integer.
**
** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
** then rowid is stored for subsequent return by the
** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
**
** Parameter P4 may point to a string containing the table-name, or
** may be NULL. If it is not NULL, then the update-hook
** (sqlite3.xUpdateCallback) is invoked following a successful insert.
**
** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
** allocated, then ownership of P2 is transferred to the pseudo-cursor
** and register P2 becomes ephemeral. If the cursor is changed, the
** value of register P2 will then change. Make sure this does not
** cause any problems.)
**
** This instruction only works on tables. The equivalent instruction
** for indices is OP_IdxInsert.
*/
case OP_Insert:
{
Mem *pData = &p->aMem[pOp->p2];
Mem *pKey = &p->aMem[pOp->p3];
i64 iKey; /* The integer ROWID or key for the record to be inserted */
int i = pOp->p1;
Cursor *pC;
assert(i >= 0 && i < p->nCursor);
pC = p->apCsr[i];
assert(pC != 0);
assert(pC->pCursor != 0 || pC->pseudoTable);
assert(pKey->flags & MEM_Int);
assert(pC->isTable);
REGISTER_TRACE(pOp->p2, pData);
REGISTER_TRACE(pOp->p3, pKey);
iKey = intToKey(pKey->u.i);
if(pOp->p5 & OPFLAG_NCHANGE)
p->nChange++;
if(pOp->p5 & OPFLAG_LASTROWID)
db->lastRowid = pKey->u.i;
if(pC->nextRowidValid && pKey->u.i >= pC->nextRowid)
{
pC->nextRowidValid = 0;
}
if(pData->flags & MEM_Null)
{
pData->z = 0;
pData->n = 0;
}
else
{
assert(pData->flags & (MEM_Blob | MEM_Str));
}
if(pC->pseudoTable)
{
if(!pC->ephemPseudoTable)
{
sqlite3_free(pC->pData);
}
pC->iKey = iKey;
pC->nData = pData->n;
if(pData->z == pData->zMalloc || pC->ephemPseudoTable)
{
pC->pData = pData->z;
if(!pC->ephemPseudoTable)
{
pData->flags &= ~MEM_Dyn;
pData->flags |= MEM_Ephem;
pData->zMalloc = 0;
}
}
else
{
pC->pData = sqlite3_malloc(pC->nData + 2);
if(!pC->pData)
goto no_mem;
memcpy(pC->pData, pData->z, pC->nData);
pC->pData[pC->nData] = 0;
pC->pData[pC->nData + 1] = 0;
}
pC->nullRow = 0;
}
else
{
int nZero;
if(pData->flags & MEM_Zero)
{
nZero = pData->u.i;
}
else
{
nZero = 0;
}
rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
pData->z, pData->n, nZero,
pOp->p5 & OPFLAG_APPEND);
}
pC->rowidIsValid = 0;
pC->deferredMoveto = 0;
pC->cacheStatus = CACHE_STALE;
/* Invoke the update-hook if required. */
if(rc == SQLITE_OK && db->xUpdateCallback && pOp->p4.z)
{
const char *zDb = db->aDb[pC->iDb].zName;
const char *zTbl = pOp->p4.z;
int op = ((pOp->
p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE :
SQLITE_INSERT);
assert(pC->isTable);
db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
assert(pC->iDb >= 0);
}
break;
}
/* Opcode: Delete P1 P2 * P4 *
**
** Delete the record at which the P1 cursor is currently pointing.
**
** The cursor will be left pointing at either the next or the previous
** record in the table. If it is left pointing at the next record, then
** the next Next instruction will be a no-op. Hence it is OK to delete
** a record from within an Next loop.
**
** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
** incremented (otherwise not).
**
** P1 must not be pseudo-table. It has to be a real table with
** multiple rows.
**
** If P4 is not NULL, then it is the name of the table that P1 is
** pointing to. The update hook will be invoked, if it exists.
** If P4 is not NULL then the P1 cursor must have been positioned
** using OP_NotFound prior to invoking this opcode.
*/
case OP_Delete:
{
int i = pOp->p1;
i64 iKey;
Cursor *pC;
assert(i >= 0 && i < p->nCursor);
pC = p->apCsr[i];
assert(pC != 0);
assert(pC->pCursor != 0); /* Only valid for real tables, no pseudotables */
/* If the update-hook will be invoked, set iKey to the rowid of the
** row being deleted.
*/
if(db->xUpdateCallback && pOp->p4.z)
{
assert(pC->isTable);
assert(pC->rowidIsValid); /* lastRowid set by previous OP_NotFound */
iKey = pC->lastRowid;
}
rc = sqlite3VdbeCursorMoveto(pC);
if(rc)
goto abort_due_to_error;
rc = sqlite3BtreeDelete(pC->pCursor);
pC->nextRowidValid = 0;
pC->cacheStatus = CACHE_STALE;
/* Invoke the update-hook if required. */
if(rc == SQLITE_OK && db->xUpdateCallback && pOp->p4.z)
{
const char *zDb = db->aDb[pC->iDb].zName;
const char *zTbl = pOp->p4.z;
db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb,
zTbl, iKey);
assert(pC->iDb >= 0);
}
if(pOp->p2 & OPFLAG_NCHANGE)
p->nChange++;
break;
}
/* Opcode: ResetCount P1 * *
**
** This opcode resets the VMs internal change counter to 0. If P1 is true,
** then the value of the change counter is copied to the database handle
** change counter (returned by subsequent calls to sqlite3_changes())
** before it is reset. This is used by trigger programs.
*/
case OP_ResetCount:
{
if(pOp->p1)
{
sqlite3VdbeSetChanges(db, p->nChange);
}
p->nChange = 0;
break;
}
/* Opcode: RowData P1 P2 * * *
**
** Write into register P2 the complete row data for cursor P1.
** There is no interpretation of the data.
** It is just copied onto the P2 register exactly as
** it is found in the database file.
**
** If the P1 cursor must be pointing to a valid row (not a NULL row)
** of a real table, not a pseudo-table.
*/
/* Opcode: RowKey P1 P2 * * *
**
** Write into register P2 the complete row key for cursor P1.
** There is no interpretation of the data.
** The key is copied onto the P3 register exactly as
** it is found in the database file.
**
** If the P1 cursor must be pointing to a valid row (not a NULL row)
** of a real table, not a pseudo-table.
*/
case OP_RowKey:
case OP_RowData:
{
int i = pOp->p1;
Cursor *pC;
BtCursor *pCrsr;
u32 n;
pOut = &p->aMem[pOp->p2];
/* Note that RowKey and RowData are really exactly the same instruction */
assert(i >= 0 && i < p->nCursor);
pC = p->apCsr[i];
assert(pC->isTable || pOp->opcode == OP_RowKey);
assert(pC->isIndex || pOp->opcode == OP_RowData);
assert(pC != 0);
assert(pC->nullRow == 0);
assert(pC->pseudoTable == 0);
assert(pC->pCursor != 0);
pCrsr = pC->pCursor;
rc = sqlite3VdbeCursorMoveto(pC);
if(rc)
goto abort_due_to_error;
if(pC->isIndex)
{
i64 n64;
assert(!pC->isTable);
sqlite3BtreeKeySize(pCrsr, &n64);
if(n64 > db->aLimit[SQLITE_LIMIT_LENGTH])
{
goto too_big;
}
n = n64;
}
else
{
sqlite3BtreeDataSize(pCrsr, &n);
if(n > db->aLimit[SQLITE_LIMIT_LENGTH])
{
goto too_big;
}
}
if(sqlite3VdbeMemGrow(pOut, n, 0))
{
goto no_mem;
}
pOut->n = n;
MemSetTypeFlag(pOut, MEM_Blob);
if(pC->isIndex)
{
rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
}
else
{
rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
}
pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */
UPDATE_MAX_BLOBSIZE(pOut);
break;
}
/* Opcode: Rowid P1 P2 * * *
**
** Store in register P2 an integer which is the key of the table entry that
** P1 is currently point to. If p2==0 then push the integer.
*/
case OP_Rowid:
{ /* out2-prerelease */
int i = pOp->p1;
Cursor *pC;
i64 v;
assert(i >= 0 && i < p->nCursor);
pC = p->apCsr[i];
assert(pC != 0);
rc = sqlite3VdbeCursorMoveto(pC);
if(rc)
goto abort_due_to_error;
if(pC->rowidIsValid)
{
v = pC->lastRowid;
}
else if(pC->pseudoTable)
{
v = keyToInt(pC->iKey);
}
else if(pC->nullRow)
{
/* Leave the rowid set to a NULL */
break;
}
else
{
assert(pC->pCursor != 0);
sqlite3BtreeKeySize(pC->pCursor, &v);
v = keyToInt(v);
}
pOut->u.i = v;
MemSetTypeFlag(pOut, MEM_Int);
break;
}
/* Opcode: NullRow P1 * * * *
**
** Move the cursor P1 to a null row. Any OP_Column operations
** that occur while the cursor is on the null row will always
** write a NULL.
*/
case OP_NullRow:
{
int i = pOp->p1;
Cursor *pC;
assert(i >= 0 && i < p->nCursor);
pC = p->apCsr[i];
assert(pC != 0);
pC->nullRow = 1;
pC->rowidIsValid = 0;
break;
}
/* Opcode: Last P1 P2 * * *
**
** The next use of the Rowid or Column or Next instruction for P1
** will refer to the last entry in the database table or index.
** If the table or index is empty and P2>0, then jump immediately to P2.
** If P2 is 0 or if the table or index is not empty, fall through
** to the following instruction.
*/
case OP_Last:
{ /* jump */
int i = pOp->p1;
Cursor *pC;
BtCursor *pCrsr;
int res;
assert(i >= 0 && i < p->nCursor);
pC = p->apCsr[i];
assert(pC != 0);
pCrsr = pC->pCursor;
assert(pCrsr != 0);
rc = sqlite3BtreeLast(pCrsr, &res);
pC->nullRow = res;
pC->deferredMoveto = 0;
pC->cacheStatus = CACHE_STALE;
if(res && pOp->p2 > 0)
{
pc = pOp->p2 - 1;
}
break;
}
/* Opcode: Sort P1 P2 * * *
**
** This opcode does exactly the same thing as OP_Rewind except that
** it increments an undocumented global variable used for testing.
**
** Sorting is accomplished by writing records into a sorting index,
** then rewinding that index and playing it back from beginning to
** end. We use the OP_Sort opcode instead of OP_Rewind to do the
** rewinding so that the global variable will be incremented and
** regression tests can determine whether or not the optimizer is
** correctly optimizing out sorts.
*/
case OP_Sort:
{ /* jump */
#ifdef SQLITE_TEST
sqlite3_sort_count++;
sqlite3_search_count--;
#endif
/* Fall through into OP_Rewind */
}
/* Opcode: Rewind P1 P2 * * *
**
** The next use of the Rowid or Column or Next instruction for P1
** will refer to the first entry in the database table or index.
** If the table or index is empty and P2>0, then jump immediately to P2.
** If P2 is 0 or if the table or index is not empty, fall through
** to the following instruction.
*/
case OP_Rewind:
{ /* jump */
int i = pOp->p1;
Cursor *pC;
BtCursor *pCrsr;
int res;
assert(i >= 0 && i < p->nCursor);
pC = p->apCsr[i];
assert(pC != 0);
if((pCrsr = pC->pCursor) != 0)
{
rc = sqlite3BtreeFirst(pCrsr, &res);
pC->atFirst = res == 0;
pC->deferredMoveto = 0;
pC->cacheStatus = CACHE_STALE;
}
else
{
res = 1;
}
pC->nullRow = res;
assert(pOp->p2 > 0 && pOp->p2 < p->nOp);
if(res)
{
pc = pOp->p2 - 1;
}
break;
}
/* Opcode: Next P1 P2 * * *
**
** Advance cursor P1 so that it points to the next key/data pair in its
** table or index. If there are no more key/value pairs then fall through
** to the following instruction. But if the cursor advance was successful,
** jump immediately to P2.
**
** The P1 cursor must be for a real table, not a pseudo-table.
**
** See also: Prev
*/
/* Opcode: Prev P1 P2 * * *
**
** Back up cursor P1 so that it points to the previous key/data pair in its
** table or index. If there is no previous key/value pairs then fall through
** to the following instruction. But if the cursor backup was successful,
** jump immediately to P2.
**
** The P1 cursor must be for a real table, not a pseudo-table.
*/
case OP_Prev: /* jump */
case OP_Next:
{ /* jump */
Cursor *pC;
BtCursor *pCrsr;
CHECK_FOR_INTERRUPT;
assert(pOp->p1 >= 0 && pOp->p1 < p->nCursor);
pC = p->apCsr[pOp->p1];
if(pC == 0)
{
break; /* See ticket #2273 */
}
pCrsr = pC->pCursor;
assert(pCrsr);
if(pC->nullRow == 0)
{
int res = 1;
assert(pC->deferredMoveto == 0);
rc = pOp->opcode == OP_Next ? sqlite3BtreeNext(pCrsr,
&res) :
sqlite3BtreePrevious(pCrsr, &res);
pC->nullRow = res;
pC->cacheStatus = CACHE_STALE;
if(res == 0)
{
pc = pOp->p2 - 1;
#ifdef SQLITE_TEST
sqlite3_search_count++;
#endif
}
}
pC->rowidIsValid = 0;
break;
}
/* Opcode: IdxInsert P1 P2 P3 * *
**
** Register P2 holds a SQL index key made using the
** MakeIdxRec instructions. This opcode writes that key
** into the index P1. Data for the entry is nil.
**
** P3 is a flag that provides a hint to the b-tree layer that this
** insert is likely to be an append.
**
** This instruction only works for indices. The equivalent instruction
** for tables is OP_Insert.
*/
case OP_IdxInsert:
{ /* in2 */
int i = pOp->p1;
Cursor *pC;
BtCursor *pCrsr;
assert(i >= 0 && i < p->nCursor);
assert(p->apCsr[i] != 0);
assert(pIn2->flags & MEM_Blob);
if((pCrsr = (pC = p->apCsr[i])->pCursor) != 0)
{
assert(pC->isTable == 0);
rc = ExpandBlob(pIn2);
if(rc == SQLITE_OK)
{
int nKey = pIn2->n;
const char *zKey = pIn2->z;
rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0,
pOp->p3);
assert(pC->deferredMoveto == 0);
pC->cacheStatus = CACHE_STALE;
}
}
break;
}
/* Opcode: IdxDeleteM P1 P2 P3 * *
**
** The content of P3 registers starting at register P2 form
** an unpacked index key. This opcode removes that entry from the
** index opened by cursor P1.
*/
case OP_IdxDelete:
{
int i = pOp->p1;
Cursor *pC;
BtCursor *pCrsr;
assert(pOp->p3 > 0);
assert(pOp->p2 > 0 && pOp->p2 + pOp->p3 <= p->nMem);
assert(i >= 0 && i < p->nCursor);
assert(p->apCsr[i] != 0);
if((pCrsr = (pC = p->apCsr[i])->pCursor) != 0)
{
int res;
UnpackedRecord r;
r.pKeyInfo = pC->pKeyInfo;
r.nField = pOp->p3;
r.needFree = 0;
r.needDestroy = 0;
r.aMem = &p->aMem[pOp->p2];
rc = sqlite3BtreeMoveto(pCrsr, 0, &r, 0, 0, &res);
if(rc == SQLITE_OK && res == 0)
{
rc = sqlite3BtreeDelete(pCrsr);
}
assert(pC->deferredMoveto == 0);
pC->cacheStatus = CACHE_STALE;
}
break;
}
/* Opcode: IdxRowid P1 P2 * * *
**
** Write into register P2 an integer which is the last entry in the record at
** the end of the index key pointed to by cursor P1. This integer should be
** the rowid of the table entry to which this index entry points.
**
** See also: Rowid, MakeIdxRec.
*/
case OP_IdxRowid:
{ /* out2-prerelease */
int i = pOp->p1;
BtCursor *pCrsr;
Cursor *pC;
assert(i >= 0 && i < p->nCursor);
assert(p->apCsr[i] != 0);
if((pCrsr = (pC = p->apCsr[i])->pCursor) != 0)
{
i64 rowid;
assert(pC->deferredMoveto == 0);
assert(pC->isTable == 0);
if(!pC->nullRow)
{
rc = sqlite3VdbeIdxRowid(pCrsr, &rowid);
if(rc != SQLITE_OK)
{
goto abort_due_to_error;
}
MemSetTypeFlag(pOut, MEM_Int);
pOut->u.i = rowid;
}
}
break;
}
/* Opcode: IdxGE P1 P2 P3 P4 P5
**
** The P4 register values beginning with P3 form an unpacked index
** key that omits the ROWID. Compare this key value against the index
** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
**
** If the P1 index entry is greater than or equal to the key value
** then jump to P2. Otherwise fall through to the next instruction.
**
** If P5 is non-zero then the key value is increased by an epsilon
** prior to the comparison. This make the opcode work like IdxGT except
** that if the key from register P3 is a prefix of the key in the cursor,
** the result is false whereas it would be true with IdxGT.
*/
/* Opcode: IdxLT P1 P2 P3 * P5
**
** The P4 register values beginning with P3 form an unpacked index
** key that omits the ROWID. Compare this key value against the index
** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
**
** If the P1 index entry is less than the key value then jump to P2.
** Otherwise fall through to the next instruction.
**
** If P5 is non-zero then the key value is increased by an epsilon prior
** to the comparison. This makes the opcode work like IdxLE.
*/
case OP_IdxLT: /* jump, in3 */
case OP_IdxGE:
{ /* jump, in3 */
int i = pOp->p1;
Cursor *pC;
assert(i >= 0 && i < p->nCursor);
assert(p->apCsr[i] != 0);
if((pC = p->apCsr[i])->pCursor != 0)
{
int res;
UnpackedRecord r;
assert(pC->deferredMoveto == 0);
assert(pOp->p5 == 0 || pOp->p5 == 1);
assert(pOp->p4type == P4_INT32);
r.pKeyInfo = pC->pKeyInfo;
r.nField = pOp->p4.i;
r.needFree = 0;
r.needDestroy = 0;
r.aMem = &p->aMem[pOp->p3];
*pC->pIncrKey = pOp->p5;
rc = sqlite3VdbeIdxKeyCompare(pC, &r, 0, 0, &res);
*pC->pIncrKey = 0;
if(pOp->opcode == OP_IdxLT)
{
res = -res;
}
else
{
assert(pOp->opcode == OP_IdxGE);
res++;
}
if(res > 0)
{
pc = pOp->p2 - 1;
}
}
break;
}
/* Opcode: Destroy P1 P2 P3 * *
**
** Delete an entire database table or index whose root page in the database
** file is given by P1.
**
** The table being destroyed is in the main database file if P3==0. If
** P3==1 then the table to be clear is in the auxiliary database file
** that is used to store tables create using CREATE TEMPORARY TABLE.
**
** If AUTOVACUUM is enabled then it is possible that another root page
** might be moved into the newly deleted root page in order to keep all
** root pages contiguous at the beginning of the database. The former
** value of the root page that moved - its value before the move occurred -
** is stored in register P2. If no page
** movement was required (because the table being dropped was already
** the last one in the database) then a zero is stored in register P2.
** If AUTOVACUUM is disabled then a zero is stored in register P2.
**
** See also: Clear
*/
case OP_Destroy:
{ /* out2-prerelease */
int iMoved;
int iCnt;
#ifndef SQLITE_OMIT_VIRTUALTABLE
Vdbe *pVdbe;
iCnt = 0;
for (pVdbe = db->pVdbe; pVdbe; pVdbe = pVdbe->pNext)
{
if(pVdbe->magic == VDBE_MAGIC_RUN && pVdbe->inVtabMethod < 2
&& pVdbe->pc >= 0)
{
iCnt++;
}
}
#else
iCnt = db->activeVdbeCnt;
#endif
if(iCnt > 1)
{
rc = SQLITE_LOCKED;
p->errorAction = OE_Abort;
}
else
{
int iDb = pOp->p3;
assert(iCnt == 1);
assert((p->btreeMask & (1 << iDb)) != 0);
rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1,
&iMoved);
MemSetTypeFlag(pOut, MEM_Int);
pOut->u.i = iMoved;
#ifndef SQLITE_OMIT_AUTOVACUUM
if(rc == SQLITE_OK && iMoved != 0)
{
sqlite3RootPageMoved(&db->aDb[iDb], iMoved,
pOp->p1);
}
#endif
}
break;
}
/* Opcode: Clear P1 P2 *
**
** Delete all contents of the database table or index whose root page
** in the database file is given by P1. But, unlike Destroy, do not
** remove the table or index from the database file.
**
** The table being clear is in the main database file if P2==0. If
** P2==1 then the table to be clear is in the auxiliary database file
** that is used to store tables create using CREATE TEMPORARY TABLE.
**
** See also: Destroy
*/
case OP_Clear:
{
assert((p->btreeMask & (1 << pOp->p2)) != 0);
rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, pOp->p1);
break;
}
/* Opcode: CreateTable P1 P2 * * *
**
** Allocate a new table in the main database file if P1==0 or in the
** auxiliary database file if P1==1 or in an attached database if
** P1>1. Write the root page number of the new table into
** register P2
**
** The difference between a table and an index is this: A table must
** have a 4-byte integer key and can have arbitrary data. An index
** has an arbitrary key but no data.
**
** See also: CreateIndex
*/
/* Opcode: CreateIndex P1 P2 * * *
**
** Allocate a new index in the main database file if P1==0 or in the
** auxiliary database file if P1==1 or in an attached database if
** P1>1. Write the root page number of the new table into
** register P2.
**
** See documentation on OP_CreateTable for additional information.
*/
case OP_CreateIndex: /* out2-prerelease */
case OP_CreateTable:
{ /* out2-prerelease */
int pgno;
int flags;
Db *pDb;
assert(pOp->p1 >= 0 && pOp->p1 < db->nDb);
assert((p->btreeMask & (1 << pOp->p1)) != 0);
pDb = &db->aDb[pOp->p1];
assert(pDb->pBt != 0);
if(pOp->opcode == OP_CreateTable)
{
/* flags = BTREE_INTKEY; */
flags = BTREE_LEAFDATA | BTREE_INTKEY;
}
else
{
flags = BTREE_ZERODATA;
}
rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
if(rc == SQLITE_OK)
{
pOut->u.i = pgno;
MemSetTypeFlag(pOut, MEM_Int);
}
break;
}
/* Opcode: ParseSchema P1 P2 * P4 *
**
** Read and parse all entries from the SQLITE_MASTER table of database P1
** that match the WHERE clause P4. P2 is the "force" flag. Always do
** the parsing if P2 is true. If P2 is false, then this routine is a
** no-op if the schema is not currently loaded. In other words, if P2
** is false, the SQLITE_MASTER table is only parsed if the rest of the
** schema is already loaded into the symbol table.
**
** This opcode invokes the parser to create a new virtual machine,
** then runs the new virtual machine. It is thus a reentrant opcode.
*/
case OP_ParseSchema:
{
char *zSql;
int iDb = pOp->p1;
const char *zMaster;
InitData initData;
assert(iDb >= 0 && iDb < db->nDb);
if(!pOp->p2 && !DbHasProperty(db, iDb, DB_SchemaLoaded))
{
break;
}
zMaster = SCHEMA_TABLE(iDb);
initData.db = db;
initData.iDb = pOp->p1;
initData.pzErrMsg = &p->zErrMsg;
zSql = sqlite3MPrintf(db,
"SELECT name, rootpage, sql FROM '%q'.%s WHERE %s",
db->aDb[iDb].zName, zMaster, pOp->p4.z);
if(zSql == 0)
goto no_mem;
(void) sqlite3SafetyOff(db);
assert(db->init.busy == 0);
db->init.busy = 1;
assert(!db->mallocFailed);
rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
if(rc == SQLITE_ABORT)
rc = initData.rc;
sqlite3_free(zSql);
db->init.busy = 0;
(void) sqlite3SafetyOn(db);
if(rc == SQLITE_NOMEM)
{
goto no_mem;
}
break;
}
#if !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER)
/* Opcode: LoadAnalysis P1 * * * *
**
** Read the sqlite_stat1 table for database P1 and load the content
** of that table into the internal index hash table. This will cause
** the analysis to be used when preparing all subsequent queries.
*/
case OP_LoadAnalysis:
{
int iDb = pOp->p1;
assert(iDb >= 0 && iDb < db->nDb);
rc = sqlite3AnalysisLoad(db, iDb);
break;
}
#endif /* !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER) */
/* Opcode: DropTable P1 * * P4 *
**
** Remove the internal (in-memory) data structures that describe
** the table named P4 in database P1. This is called after a table
** is dropped in order to keep the internal representation of the
** schema consistent with what is on disk.
*/
case OP_DropTable:
{
sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
break;
}
/* Opcode: DropIndex P1 * * P4 *
**
** Remove the internal (in-memory) data structures that describe
** the index named P4 in database P1. This is called after an index
** is dropped in order to keep the internal representation of the
** schema consistent with what is on disk.
*/
case OP_DropIndex:
{
sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
break;
}
/* Opcode: DropTrigger P1 * * P4 *
**
** Remove the internal (in-memory) data structures that describe
** the trigger named P4 in database P1. This is called after a trigger
** is dropped in order to keep the internal representation of the
** schema consistent with what is on disk.
*/
case OP_DropTrigger:
{
sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
break;
}
#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/* Opcode: IntegrityCk P1 P2 P3 * P5
**
** Do an analysis of the currently open database. Store in
** register P1 the text of an error message describing any problems.
** If no problems are found, store a NULL in register P1.
**
** The register P3 contains the maximum number of allowed errors.
** At most reg(P3) errors will be reported.
** In other words, the analysis stops as soon as reg(P1) errors are
** seen. Reg(P1) is updated with the number of errors remaining.
**
** The root page numbers of all tables in the database are integer
** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables
** total.
**
** If P5 is not zero, the check is done on the auxiliary database
** file, not the main database file.
**
** This opcode is used to implement the integrity_check pragma.
*/
case OP_IntegrityCk:
{
int nRoot; /* Number of tables to check. (Number of root pages.) */
int *aRoot; /* Array of rootpage numbers for tables to be checked */
int j; /* Loop counter */
int nErr; /* Number of errors reported */
char *z; /* Text of the error report */
Mem *pnErr; /* Register keeping track of errors remaining */
nRoot = pOp->p2;
assert(nRoot > 0);
aRoot = sqlite3_malloc(sizeof(int) * (nRoot + 1));
if(aRoot == 0)
goto no_mem;
assert(pOp->p3 > 0 && pOp->p3 <= p->nMem);
pnErr = &p->aMem[pOp->p3];
assert((pnErr->flags & MEM_Int) != 0);
assert((pnErr->flags & (MEM_Str | MEM_Blob)) == 0);
pIn1 = &p->aMem[pOp->p1];
for (j = 0; j < nRoot; j++)
{
aRoot[j] = sqlite3VdbeIntValue(&pIn1[j]);
}
aRoot[j] = 0;
assert(pOp->p5 < db->nDb);
assert((p->btreeMask & (1 << pOp->p5)) != 0);
z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
pnErr->u.i, &nErr);
pnErr->u.i -= nErr;
sqlite3VdbeMemSetNull(pIn1);
if(nErr == 0)
{
assert(z == 0);
}
else
{
sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8,
sqlite3_free);
}
UPDATE_MAX_BLOBSIZE(pIn1);
sqlite3VdbeChangeEncoding(pIn1, encoding);
sqlite3_free(aRoot);
break;
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
/* Opcode: FifoWrite P1 * * * *
**
** Write the integer from register P1 into the Fifo.
*/
case OP_FifoWrite:
{ /* in1 */
if(sqlite3VdbeFifoPush(&p->sFifo, sqlite3VdbeIntValue(pIn1)) ==
SQLITE_NOMEM)
{
goto no_mem;
}
break;
}
/* Opcode: FifoRead P1 P2 * * *
**
** Attempt to read a single integer from the Fifo. Store that
** integer in register P1.
**
** If the Fifo is empty jump to P2.
*/
case OP_FifoRead:
{ /* jump */
CHECK_FOR_INTERRUPT;
assert(pOp->p1 > 0 && pOp->p1 <= p->nMem);
pOut = &p->aMem[pOp->p1];
MemSetTypeFlag(pOut, MEM_Int);
if(sqlite3VdbeFifoPop(&p->sFifo, &pOut->u.i) == SQLITE_DONE)
{
pc = pOp->p2 - 1;
}
break;
}
#ifndef SQLITE_OMIT_TRIGGER
/* Opcode: ContextPush * * *
**
** Save the current Vdbe context such that it can be restored by a ContextPop
** opcode. The context stores the last insert row id, the last statement change
** count, and the current statement change count.
*/
case OP_ContextPush:
{
int i = p->contextStackTop++;
Context *pContext;
assert(i >= 0);
/* FIX ME: This should be allocated as part of the vdbe at compile-time */
if(i >= p->contextStackDepth)
{
p->contextStackDepth = i + 1;
p->contextStack =
sqlite3DbReallocOrFree(db, p->contextStack,
sizeof(Context) * (i + 1));
if(p->contextStack == 0)
goto no_mem;
}
pContext = &p->contextStack[i];
pContext->lastRowid = db->lastRowid;
pContext->nChange = p->nChange;
pContext->sFifo = p->sFifo;
sqlite3VdbeFifoInit(&p->sFifo);
break;
}
/* Opcode: ContextPop * * *
**
** Restore the Vdbe context to the state it was in when contextPush was last
** executed. The context stores the last insert row id, the last statement
** change count, and the current statement change count.
*/
case OP_ContextPop:
{
Context *pContext = &p->contextStack[--p->contextStackTop];
assert(p->contextStackTop >= 0);
db->lastRowid = pContext->lastRowid;
p->nChange = pContext->nChange;
sqlite3VdbeFifoClear(&p->sFifo);
p->sFifo = pContext->sFifo;
break;
}
#endif /* #ifndef SQLITE_OMIT_TRIGGER */
#ifndef SQLITE_OMIT_AUTOINCREMENT
/* Opcode: MemMax P1 P2 * * *
**
** Set the value of register P1 to the maximum of its current value
** and the value in register P2.
**
** This instruction throws an error if the memory cell is not initially
** an integer.
*/
case OP_MemMax:
{ /* in1, in2 */
sqlite3VdbeMemIntegerify(pIn1);
sqlite3VdbeMemIntegerify(pIn2);
if(pIn1->u.i < pIn2->u.i)
{
pIn1->u.i = pIn2->u.i;
}
break;
}
#endif /* SQLITE_OMIT_AUTOINCREMENT */
/* Opcode: IfPos P1 P2 * * *
**
** If the value of register P1 is 1 or greater, jump to P2.
**
** It is illegal to use this instruction on a register that does
** not contain an integer. An assertion fault will result if you try.
*/
case OP_IfPos:
{ /* jump, in1 */
assert(pIn1->flags & MEM_Int);
if(pIn1->u.i > 0)
{
pc = pOp->p2 - 1;
}
break;
}
/* Opcode: IfNeg P1 P2 * * *
**
** If the value of register P1 is less than zero, jump to P2.
**
** It is illegal to use this instruction on a register that does
** not contain an integer. An assertion fault will result if you try.
*/
case OP_IfNeg:
{ /* jump, in1 */
assert(pIn1->flags & MEM_Int);
if(pIn1->u.i < 0)
{
pc = pOp->p2 - 1;
}
break;
}
/* Opcode: IfZero P1 P2 * * *
**
** If the value of register P1 is exactly 0, jump to P2.
**
** It is illegal to use this instruction on a register that does
** not contain an integer. An assertion fault will result if you try.
*/
case OP_IfZero:
{ /* jump, in1 */
assert(pIn1->flags & MEM_Int);
if(pIn1->u.i == 0)
{
pc = pOp->p2 - 1;
}
break;
}
/* Opcode: AggStep * P2 P3 P4 P5
**
** Execute the step function for an aggregate. The
** function has P5 arguments. P4 is a pointer to the FuncDef
** structure that specifies the function. Use register
** P3 as the accumulator.
**
** The P5 arguments are taken from register P2 and its
** successors.
*/
case OP_AggStep:
{
int n = pOp->p5;
int i;
Mem *pMem, *pRec;
sqlite3_context ctx;
sqlite3_value **apVal;
assert(n >= 0);
pRec = &p->aMem[pOp->p2];
apVal = p->apArg;
assert(apVal || n == 0);
for (i = 0; i < n; i++, pRec++)
{
apVal[i] = pRec;
storeTypeInfo(pRec, encoding);
}
ctx.pFunc = pOp->p4.pFunc;
assert(pOp->p3 > 0 && pOp->p3 <= p->nMem);
ctx.pMem = pMem = &p->aMem[pOp->p3];
pMem->n++;
ctx.s.flags = MEM_Null;
ctx.s.z = 0;
ctx.s.zMalloc = 0;
ctx.s.xDel = 0;
ctx.s.db = db;
ctx.isError = 0;
ctx.pColl = 0;
if(ctx.pFunc->needCollSeq)
{
assert(pOp > p->aOp);
assert(pOp[-1].p4type == P4_COLLSEQ);
assert(pOp[-1].opcode == OP_CollSeq);
ctx.pColl = pOp[-1].p4.pColl;
}
(ctx.pFunc->xStep) (&ctx, n, apVal);
if(ctx.isError)
{
sqlite3SetString(&p->zErrMsg, sqlite3_value_text(&ctx.s),
(char *) 0);
rc = ctx.isError;
}
sqlite3VdbeMemRelease(&ctx.s);
break;
}
/* Opcode: AggFinal P1 P2 * P4 *
**
** Execute the finalizer function for an aggregate. P1 is
** the memory location that is the accumulator for the aggregate.
**
** P2 is the number of arguments that the step function takes and
** P4 is a pointer to the FuncDef for this function. The P2
** argument is not used by this opcode. It is only there to disambiguate
** functions that can take varying numbers of arguments. The
** P4 argument is only needed for the degenerate case where
** the step function was not previously called.
*/
case OP_AggFinal:
{
Mem *pMem;
assert(pOp->p1 > 0 && pOp->p1 <= p->nMem);
pMem = &p->aMem[pOp->p1];
assert((pMem->flags & ~(MEM_Null | MEM_Agg)) == 0);
rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
if(rc == SQLITE_ERROR)
{
sqlite3SetString(&p->zErrMsg, sqlite3_value_text(pMem),
(char *) 0);
}
sqlite3VdbeChangeEncoding(pMem, encoding);
UPDATE_MAX_BLOBSIZE(pMem);
if(sqlite3VdbeMemTooBig(pMem))
{
goto too_big;
}
break;
}
#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
/* Opcode: Vacuum * * * * *
**
** Vacuum the entire database. This opcode will cause other virtual
** machines to be created and run. It may not be called from within
** a transaction.
*/
case OP_Vacuum:
{
if(sqlite3SafetyOff(db))
goto abort_due_to_misuse;
rc = sqlite3RunVacuum(&p->zErrMsg, db);
if(sqlite3SafetyOn(db))
goto abort_due_to_misuse;
break;
}
#endif
#if !defined(SQLITE_OMIT_AUTOVACUUM)
/* Opcode: IncrVacuum P1 P2 * * *
**
** Perform a single step of the incremental vacuum procedure on
** the P1 database. If the vacuum has finished, jump to instruction
** P2. Otherwise, fall through to the next instruction.
*/
case OP_IncrVacuum:
{ /* jump */
Btree *pBt;
assert(pOp->p1 >= 0 && pOp->p1 < db->nDb);
assert((p->btreeMask & (1 << pOp->p1)) != 0);
pBt = db->aDb[pOp->p1].pBt;
rc = sqlite3BtreeIncrVacuum(pBt);
if(rc == SQLITE_DONE)
{
pc = pOp->p2 - 1;
rc = SQLITE_OK;
}
break;
}
#endif
/* Opcode: Expire P1 * * * *
**
** Cause precompiled statements to become expired. An expired statement
** fails with an error code of SQLITE_SCHEMA if it is ever executed
** (via sqlite3_step()).
**
** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
** then only the currently executing statement is affected.
*/
case OP_Expire:
{
if(!pOp->p1)
{
sqlite3ExpirePreparedStatements(db);
}
else
{
p->expired = 1;
}
break;
}
#ifndef SQLITE_OMIT_SHARED_CACHE
/* Opcode: TableLock P1 P2 P3 P4 *
**
** Obtain a lock on a particular table. This instruction is only used when
** the shared-cache feature is enabled.
**
** If P1 is the index of the database in sqlite3.aDb[] of the database
** on which the lock is acquired. A readlock is obtained if P3==0 or
** a write lock if P3==1.
**
** P2 contains the root-page of the table to lock.
**
** P4 contains a pointer to the name of the table being locked. This is only
** used to generate an error message if the lock cannot be obtained.
*/
case OP_TableLock:
{
int p1 = pOp->p1;
u8 isWriteLock = pOp->p3;
assert(p1 >= 0 && p1 < db->nDb);
assert((p->btreeMask & (1 << p1)) != 0);
assert(isWriteLock == 0 || isWriteLock == 1);
rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
if(rc == SQLITE_LOCKED)
{
const char *z = pOp->p4.z;
sqlite3SetString(&p->zErrMsg, "database table is locked: ",
z, (char *) 0);
}
break;
}
#endif /* SQLITE_OMIT_SHARED_CACHE */
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VBegin * * * P4 *
**
** P4 a pointer to an sqlite3_vtab structure. Call the xBegin method
** for that table.
*/
case OP_VBegin:
{
rc = sqlite3VtabBegin(db, pOp->p4.pVtab);
break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VCreate P1 * * P4 *
**
** P4 is the name of a virtual table in database P1. Call the xCreate method
** for that table.
*/
case OP_VCreate:
{
rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg);
break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VDestroy P1 * * P4 *
**
** P4 is the name of a virtual table in database P1. Call the xDestroy method
** of that table.
*/
case OP_VDestroy:
{
p->inVtabMethod = 2;
rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
p->inVtabMethod = 0;
break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VOpen P1 * * P4 *
**
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
** P1 is a cursor number. This opcode opens a cursor to the virtual
** table and stores that cursor in P1.
*/
case OP_VOpen:
{
Cursor *pCur = 0;
sqlite3_vtab_cursor *pVtabCursor = 0;
sqlite3_vtab *pVtab = pOp->p4.pVtab;
sqlite3_module *pModule = (sqlite3_module *) pVtab->pModule;
assert(pVtab && pModule);
if(sqlite3SafetyOff(db))
goto abort_due_to_misuse;
rc = pModule->xOpen(pVtab, &pVtabCursor);
if(sqlite3SafetyOn(db))
goto abort_due_to_misuse;
if(SQLITE_OK == rc)
{
/* Initialise sqlite3_vtab_cursor base class */
pVtabCursor->pVtab = pVtab;
/* Initialise vdbe cursor object */
pCur = allocateCursor(p, pOp->p1, &pOp[-1], -1, 0);
if(pCur)
{
pCur->pVtabCursor = pVtabCursor;
pCur->pModule = pVtabCursor->pVtab->pModule;
}
else
{
db->mallocFailed = 1;
pModule->xClose(pVtabCursor);
}
}
break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VFilter P1 P2 P3 P4 *
**
** P1 is a cursor opened using VOpen. P2 is an address to jump to if
** the filtered result set is empty.
**
** P4 is either NULL or a string that was generated by the xBestIndex
** method of the module. The interpretation of the P4 string is left
** to the module implementation.
**
** This opcode invokes the xFilter method on the virtual table specified
** by P1. The integer query plan parameter to xFilter is stored in register
** P3. Register P3+1 stores the argc parameter to be passed to the
** xFilter method. Registers P3+2..P3+1+argc are the argc additional
** parametersneath additional parameters which are passed to
** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
**
** A jump is made to P2 if the result set after filtering would be empty.
*/
case OP_VFilter:
{ /* jump */
int nArg;
int iQuery;
const sqlite3_module *pModule;
Mem *pQuery = &p->aMem[pOp->p3];
Mem *pArgc = &pQuery[1];
Cursor *pCur = p->apCsr[pOp->p1];
REGISTER_TRACE(pOp->p3, pQuery);
assert(pCur->pVtabCursor);
pModule = pCur->pVtabCursor->pVtab->pModule;
/* Grab the index number and argc parameters */
assert((pQuery->flags & MEM_Int) != 0 && pArgc->flags == MEM_Int);
nArg = pArgc->u.i;
iQuery = pQuery->u.i;
/* Invoke the xFilter method */
{
int res = 0;
int i;
Mem **apArg = p->apArg;
for (i = 0; i < nArg; i++)
{
apArg[i] = &pArgc[i + 1];
storeTypeInfo(apArg[i], 0);
}
if(sqlite3SafetyOff(db))
goto abort_due_to_misuse;
p->inVtabMethod = 1;
rc = pModule->xFilter(pCur->pVtabCursor, iQuery, pOp->p4.z,
nArg, apArg);
p->inVtabMethod = 0;
if(rc == SQLITE_OK)
{
res = pModule->xEof(pCur->pVtabCursor);
}
if(sqlite3SafetyOn(db))
goto abort_due_to_misuse;
if(res)
{
pc = pOp->p2 - 1;
}
}
pCur->nullRow = 0;
break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VRowid P1 P2 * * *
**
** Store into register P2 the rowid of
** the virtual-table that the P1 cursor is pointing to.
*/
case OP_VRowid:
{ /* out2-prerelease */
const sqlite3_module *pModule;
sqlite_int64 iRow;
Cursor *pCur = p->apCsr[pOp->p1];
assert(pCur->pVtabCursor);
if(pCur->nullRow)
{
break;
}
pModule = pCur->pVtabCursor->pVtab->pModule;
assert(pModule->xRowid);
if(sqlite3SafetyOff(db))
goto abort_due_to_misuse;
rc = pModule->xRowid(pCur->pVtabCursor, &iRow);
if(sqlite3SafetyOn(db))
goto abort_due_to_misuse;
MemSetTypeFlag(pOut, MEM_Int);
pOut->u.i = iRow;
break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VColumn P1 P2 P3 * *
**
** Store the value of the P2-th column of
** the row of the virtual-table that the
** P1 cursor is pointing to into register P3.
*/
case OP_VColumn:
{
const sqlite3_module *pModule;
Mem *pDest;
sqlite3_context sContext;
Cursor *pCur = p->apCsr[pOp->p1];
assert(pCur->pVtabCursor);
assert(pOp->p3 > 0 && pOp->p3 <= p->nMem);
pDest = &p->aMem[pOp->p3];
if(pCur->nullRow)
{
sqlite3VdbeMemSetNull(pDest);
break;
}
pModule = pCur->pVtabCursor->pVtab->pModule;
assert(pModule->xColumn);
memset(&sContext, 0, sizeof(sContext));
/* The output cell may already have a buffer allocated. Move
** the current contents to sContext.s so in case the user-function
** can use the already allocated buffer instead of allocating a
** new one.
*/
sqlite3VdbeMemMove(&sContext.s, pDest);
MemSetTypeFlag(&sContext.s, MEM_Null);
if(sqlite3SafetyOff(db))
goto abort_due_to_misuse;
rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
/* Copy the result of the function to the P3 register. We
** do this regardless of whether or not an error occured to ensure any
** dynamic allocation in sContext.s (a Mem struct) is released.
*/
sqlite3VdbeChangeEncoding(&sContext.s, encoding);
REGISTER_TRACE(pOp->p3, pDest);
sqlite3VdbeMemMove(pDest, &sContext.s);
UPDATE_MAX_BLOBSIZE(pDest);
if(sqlite3SafetyOn(db))
{
goto abort_due_to_misuse;
}
if(sqlite3VdbeMemTooBig(pDest))
{
goto too_big;
}
break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VNext P1 P2 * * *
**
** Advance virtual table P1 to the next row in its result set and
** jump to instruction P2. Or, if the virtual table has reached
** the end of its result set, then fall through to the next instruction.
*/
case OP_VNext:
{ /* jump */
const sqlite3_module *pModule;
int res = 0;
Cursor *pCur = p->apCsr[pOp->p1];
assert(pCur->pVtabCursor);
if(pCur->nullRow)
{
break;
}
pModule = pCur->pVtabCursor->pVtab->pModule;
assert(pModule->xNext);
/* Invoke the xNext() method of the module. There is no way for the
** underlying implementation to return an error if one occurs during
** xNext(). Instead, if an error occurs, true is returned (indicating that
** data is available) and the error code returned when xColumn or
** some other method is next invoked on the save virtual table cursor.
*/
if(sqlite3SafetyOff(db))
goto abort_due_to_misuse;
p->inVtabMethod = 1;
rc = pModule->xNext(pCur->pVtabCursor);
p->inVtabMethod = 0;
if(rc == SQLITE_OK)
{
res = pModule->xEof(pCur->pVtabCursor);
}
if(sqlite3SafetyOn(db))
goto abort_due_to_misuse;
if(!res)
{
/* If there is data, jump to P2 */
pc = pOp->p2 - 1;
}
break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VRename P1 * * P4 *
**
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
** This opcode invokes the corresponding xRename method. The value
** in register P1 is passed as the zName argument to the xRename method.
*/
case OP_VRename:
{
sqlite3_vtab *pVtab = pOp->p4.pVtab;
Mem *pName = &p->aMem[pOp->p1];
assert(pVtab->pModule->xRename);
REGISTER_TRACE(pOp->p1, pName);
Stringify(pName, encoding);
if(sqlite3SafetyOff(db))
goto abort_due_to_misuse;
sqlite3VtabLock(pVtab);
rc = pVtab->pModule->xRename(pVtab, pName->z);
sqlite3VtabUnlock(db, pVtab);
if(sqlite3SafetyOn(db))
goto abort_due_to_misuse;
break;
}
#endif
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VUpdate P1 P2 P3 P4 *
**
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
** This opcode invokes the corresponding xUpdate method. P2 values
** are contiguous memory cells starting at P3 to pass to the xUpdate
** invocation. The value in register (P3+P2-1) corresponds to the
** p2th element of the argv array passed to xUpdate.
**
** The xUpdate method will do a DELETE or an INSERT or both.
** The argv[0] element (which corresponds to memory cell P3)
** is the rowid of a row to delete. If argv[0] is NULL then no
** deletion occurs. The argv[1] element is the rowid of the new
** row. This can be NULL to have the virtual table select the new
** rowid for itself. The subsequent elements in the array are
** the values of columns in the new row.
**
** If P2==1 then no insert is performed. argv[0] is the rowid of
** a row to delete.
**
** P1 is a boolean flag. If it is set to true and the xUpdate call
** is successful, then the value returned by sqlite3_last_insert_rowid()
** is set to the value of the rowid for the row just inserted.
*/
case OP_VUpdate:
{
sqlite3_vtab *pVtab = pOp->p4.pVtab;
sqlite3_module *pModule = (sqlite3_module *) pVtab->pModule;
int nArg = pOp->p2;
assert(pOp->p4type == P4_VTAB);
if(pModule->xUpdate == 0)
{
sqlite3SetString(&p->zErrMsg, "read-only table", 0);
rc = SQLITE_ERROR;
}
else
{
int i;
sqlite_int64 rowid;
Mem **apArg = p->apArg;
Mem *pX = &p->aMem[pOp->p3];
for (i = 0; i < nArg; i++)
{
storeTypeInfo(pX, 0);
apArg[i] = pX;
pX++;
}
if(sqlite3SafetyOff(db))
goto abort_due_to_misuse;
sqlite3VtabLock(pVtab);
rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
sqlite3VtabUnlock(db, pVtab);
if(sqlite3SafetyOn(db))
goto abort_due_to_misuse;
if(pOp->p1 && rc == SQLITE_OK)
{
assert(nArg > 1 && apArg[0]
&& (apArg[0]->flags & MEM_Null));
db->lastRowid = rowid;
}
p->nChange++;
}
break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifndef SQLITE_OMIT_TRACE
/* Opcode: Trace * * * P4 *
**
** If tracing is enabled (by the sqlite3_trace()) interface, then
** the UTF-8 string contained in P4 is emitted on the trace callback.
*/
case OP_Trace:
{
if(pOp->p4.z)
{
if(db->xTrace)
{
db->xTrace(db->pTraceArg, pOp->p4.z);
}
#ifdef SQLITE_DEBUG
if((db->flags & SQLITE_SqlTrace) != 0)
{
sqlite3DebugPrintf("SQL-trace: %s\n", pOp->p4.z);
}
#endif /* SQLITE_DEBUG */
}
break;
}
#endif
/* Opcode: Noop * * * * *
**
** Do nothing. This instruction is often useful as a jump
** destination.
*/
/*
** The magic Explain opcode are only inserted when explain==2 (which
** is to say when the EXPLAIN QUERY PLAN syntax is used.)
** This opcode records information from the optimizer. It is the
** the same as a no-op. This opcodesnever appears in a real VM program.
*/
default:
{ /* This is really OP_Noop and OP_Explain */
break;
}
/*****************************************************************************
** The cases of the switch statement above this line should all be indented
** by 6 spaces. But the left-most 6 spaces have been removed to improve the
** readability. From this point on down, the normal indentation rules are
** restored.
*****************************************************************************/
}
#ifdef VDBE_PROFILE
{
long long elapse = hwtime() - start;
pOp->cycles += elapse;
pOp->cnt++;
#if 0
fprintf(stdout, "%10lld ", elapse);
sqlite3VdbePrintOp(stdout, origPc, &p->aOp[origPc]);
#endif
}
#endif
/* The following code adds nothing to the actual functionality
** of the program. It is only here for testing and debugging.
** On the other hand, it does burn CPU cycles every time through
** the evaluator loop. So we can leave it out when NDEBUG is defined.
*/
#ifndef NDEBUG
assert(pc >= -1 && pc < p->nOp);
#ifdef SQLITE_DEBUG
if(p->trace)
{
if(rc != 0)
fprintf(p->trace, "rc=%d\n", rc);
if(opProperty & OPFLG_OUT2_PRERELEASE)
{
registerTrace(p->trace, pOp->p2, pOut);
}
if(opProperty & OPFLG_OUT3)
{
registerTrace(p->trace, pOp->p3, pOut);
}
}
#endif /* SQLITE_DEBUG */
#endif /* NDEBUG */
} /* The end of the for(;;) loop the loops through opcodes */
/* If we reach this point, it means that execution is finished with
** an error of some kind.
*/
vdbe_error_halt:
assert(rc);
p->rc = rc;
rc = SQLITE_ERROR;
sqlite3VdbeHalt(p);
/* This is the only way out of this procedure. We have to
** release the mutexes on btrees that were acquired at the
** top. */
vdbe_return:
sqlite3BtreeMutexArrayLeave(&p->aMutex);
return rc;
/* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
** is encountered.
*/
too_big:
sqlite3SetString(&p->zErrMsg, "string or blob too big", (char *) 0);
rc = SQLITE_TOOBIG;
goto vdbe_error_halt;
/* Jump to here if a malloc() fails.
*/
no_mem:
db->mallocFailed = 1;
sqlite3SetString(&p->zErrMsg, "out of memory", (char *) 0);
rc = SQLITE_NOMEM;
goto vdbe_error_halt;
/* Jump to here for an SQLITE_MISUSE error.
*/
abort_due_to_misuse:
rc = SQLITE_MISUSE;
/* Fall thru into abort_due_to_error */
/* Jump to here for any other kind of fatal error. The "rc" variable
** should hold the error number.
*/
abort_due_to_error:
assert(p->zErrMsg == 0);
if(db->mallocFailed)
rc = SQLITE_NOMEM;
sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(rc), (char *) 0);
goto vdbe_error_halt;
/* Jump to here if the sqlite3_interrupt() API sets the interrupt
** flag.
*/
abort_due_to_interrupt:
assert(db->u1.isInterrupted);
rc = SQLITE_INTERRUPT;
p->rc = rc;
sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(rc), (char *) 0);
goto vdbe_error_halt;
}
/************** End of vdbe.c ************************************************/
/************** Begin file vdbeblob.c ****************************************/
/*
** 2007 May 1
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains code used to implement incremental BLOB I/O.
**
*/
#ifndef SQLITE_OMIT_INCRBLOB
/*
** Valid sqlite3_blob* handles point to Incrblob structures.
*/
typedef struct Incrblob Incrblob;
struct Incrblob
{
int flags; /* Copy of "flags" passed to sqlite3_blob_open() */
int nByte; /* Size of open blob, in bytes */
int iOffset; /* Byte offset of blob in cursor data */
BtCursor *pCsr; /* Cursor pointing at blob row */
sqlite3_stmt *pStmt; /* Statement holding cursor open */
sqlite3 *db; /* The associated database */
};
/*
** Open a blob handle.
*/
SQLITE_API int
sqlite3_blob_open(sqlite3 * db, /* The database connection */
const char *zDb, /* The attached database containing the blob */
const char *zTable, /* The table containing the blob */
const char *zColumn, /* The column containing the blob */
sqlite_int64 iRow, /* The row containing the glob */
int flags, /* True -> read/write access, false -> read-only */
sqlite3_blob ** ppBlob /* Handle for accessing the blob returned here */
)
{
int nAttempt = 0;
int iCol; /* Index of zColumn in row-record */
/* This VDBE program seeks a btree cursor to the identified
** db/table/row entry. The reason for using a vdbe program instead
** of writing code to use the b-tree layer directly is that the
** vdbe program will take advantage of the various transaction,
** locking and error handling infrastructure built into the vdbe.
**
** After seeking the cursor, the vdbe executes an OP_ResultRow.
** Code external to the Vdbe then "borrows" the b-tree cursor and
** uses it to implement the blob_read(), blob_write() and
** blob_bytes() functions.
**
** The sqlite3_blob_close() function finalizes the vdbe program,
** which closes the b-tree cursor and (possibly) commits the
** transaction.
*/
static const VdbeOpList openBlob[] = {
{OP_Transaction, 0, 0, 0}, /* 0: Start a transaction */
{OP_VerifyCookie, 0, 0, 0}, /* 1: Check the schema cookie */
/* One of the following two instructions is replaced by an
** OP_Noop before exection.
*/
{OP_SetNumColumns, 0, 0, 0}, /* 2: Num cols for cursor */
{OP_OpenRead, 0, 0, 0}, /* 3: Open cursor 0 for reading */
{OP_SetNumColumns, 0, 0, 0}, /* 4: Num cols for cursor */
{OP_OpenWrite, 0, 0, 0}, /* 5: Open cursor 0 for read/write */
{OP_Variable, 1, 1, 0}, /* 6: Push the rowid to the stack */
{OP_NotExists, 0, 10, 1}, /* 7: Seek the cursor */
{OP_Column, 0, 0, 1}, /* 8 */
{OP_ResultRow, 1, 0, 0}, /* 9 */
{OP_Close, 0, 0, 0}, /* 10 */
{OP_Halt, 0, 0, 0}, /* 11 */
};
Vdbe *v = 0;
int rc = SQLITE_OK;
char zErr[128];
zErr[0] = 0;
sqlite3_mutex_enter(db->mutex);
do
{
Parse sParse;
Table *pTab;
memset(&sParse, 0, sizeof(Parse));
sParse.db = db;
rc = sqlite3SafetyOn(db);
if(rc != SQLITE_OK)
{
sqlite3_mutex_leave(db->mutex);
return rc;
}
sqlite3BtreeEnterAll(db);
pTab = sqlite3LocateTable(&sParse, 0, zTable, zDb);
if(pTab && IsVirtual(pTab))
{
pTab = 0;
sqlite3ErrorMsg(&sParse, "cannot open virtual table: %s", zTable);
}
#ifndef SQLITE_OMIT_VIEW
if(pTab && pTab->pSelect)
{
pTab = 0;
sqlite3ErrorMsg(&sParse, "cannot open view: %s", zTable);
}
#endif
if(!pTab)
{
if(sParse.zErrMsg)
{
sqlite3_snprintf(sizeof(zErr), zErr, "%s", sParse.zErrMsg);
}
sqlite3_free(sParse.zErrMsg);
rc = SQLITE_ERROR;
(void) sqlite3SafetyOff(db);
sqlite3BtreeLeaveAll(db);
goto blob_open_out;
}
/* Now search pTab for the exact column. */
for (iCol = 0; iCol < pTab->nCol; iCol++)
{
if(sqlite3StrICmp(pTab->aCol[iCol].zName, zColumn) == 0)
{
break;
}
}
if(iCol == pTab->nCol)
{
sqlite3_snprintf(sizeof(zErr), zErr, "no such column: \"%s\"", zColumn);
rc = SQLITE_ERROR;
(void) sqlite3SafetyOff(db);
sqlite3BtreeLeaveAll(db);
goto blob_open_out;
}
/* If the value is being opened for writing, check that the
** column is not indexed. It is against the rules to open an
** indexed column for writing.
*/
if(flags)
{
Index *pIdx;
for (pIdx = pTab->pIndex; pIdx; pIdx = pIdx->pNext)
{
int j;
for (j = 0; j < pIdx->nColumn; j++)
{
if(pIdx->aiColumn[j] == iCol)
{
sqlite3_snprintf(sizeof(zErr), zErr,
"cannot open indexed column for writing");
rc = SQLITE_ERROR;
(void) sqlite3SafetyOff(db);
sqlite3BtreeLeaveAll(db);
goto blob_open_out;
}
}
}
}
v = sqlite3VdbeCreate(db);
if(v)
{
int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
sqlite3VdbeAddOpList(v, sizeof(openBlob) / sizeof(VdbeOpList), openBlob);
/* Configure the OP_Transaction */
sqlite3VdbeChangeP1(v, 0, iDb);
sqlite3VdbeChangeP2(v, 0, (flags ? 1 : 0));
/* Configure the OP_VerifyCookie */
sqlite3VdbeChangeP1(v, 1, iDb);
sqlite3VdbeChangeP2(v, 1, pTab->pSchema->schema_cookie);
/* Make sure a mutex is held on the table to be accessed */
sqlite3VdbeUsesBtree(v, iDb);
/* Remove either the OP_OpenWrite or OpenRead. Set the P2
** parameter of the other to pTab->tnum.
*/
sqlite3VdbeChangeToNoop(v, (flags ? 3 : 5), 1);
sqlite3VdbeChangeP2(v, (flags ? 5 : 3), pTab->tnum);
sqlite3VdbeChangeP3(v, (flags ? 5 : 3), iDb);
/* Configure the OP_SetNumColumns. Configure the cursor to
** think that the table has one more column than it really
** does. An OP_Column to retrieve this imaginary column will
** always return an SQL NULL. This is useful because it means
** we can invoke OP_Column to fill in the vdbe cursors type
** and offset cache without causing any IO.
*/
sqlite3VdbeChangeP2(v, flags ? 4 : 2, pTab->nCol + 1);
if(!db->mallocFailed)
{
sqlite3VdbeMakeReady(v, 1, 1, 1, 0);
}
}
sqlite3BtreeLeaveAll(db);
rc = sqlite3SafetyOff(db);
if(rc != SQLITE_OK || db->mallocFailed)
{
goto blob_open_out;
}
sqlite3_bind_int64((sqlite3_stmt *) v, 1, iRow);
rc = sqlite3_step((sqlite3_stmt *) v);
if(rc != SQLITE_ROW)
{
nAttempt++;
rc = sqlite3_finalize((sqlite3_stmt *) v);
sqlite3_snprintf(sizeof(zErr), zErr, sqlite3_errmsg(db));
v = 0;
}
}
while (nAttempt < 5 && rc == SQLITE_SCHEMA);
if(rc == SQLITE_ROW)
{
/* The row-record has been opened successfully. Check that the
** column in question contains text or a blob. If it contains
** text, it is up to the caller to get the encoding right.
*/
Incrblob *pBlob;
u32 type = v->apCsr[0]->aType[iCol];
if(type < 12)
{
sqlite3_snprintf(sizeof(zErr), zErr, "cannot open value of type %s",
type == 0 ? "null" : type == 7 ? "real" : "integer");
rc = SQLITE_ERROR;
goto blob_open_out;
}
pBlob = (Incrblob *) sqlite3DbMallocZero(db, sizeof(Incrblob));
if(db->mallocFailed)
{
sqlite3_free(pBlob);
goto blob_open_out;
}
pBlob->flags = flags;
pBlob->pCsr = v->apCsr[0]->pCursor;
sqlite3BtreeEnterCursor(pBlob->pCsr);
sqlite3BtreeCacheOverflow(pBlob->pCsr);
sqlite3BtreeLeaveCursor(pBlob->pCsr);
pBlob->pStmt = (sqlite3_stmt *) v;
pBlob->iOffset = v->apCsr[0]->aOffset[iCol];
pBlob->nByte = sqlite3VdbeSerialTypeLen(type);
pBlob->db = db;
*ppBlob = (sqlite3_blob *) pBlob;
rc = SQLITE_OK;
}
else if(rc == SQLITE_OK)
{
sqlite3_snprintf(sizeof(zErr), zErr, "no such rowid: %lld", iRow);
rc = SQLITE_ERROR;
}
blob_open_out:
zErr[sizeof(zErr) - 1] = '\0';
if(rc != SQLITE_OK || db->mallocFailed)
{
sqlite3_finalize((sqlite3_stmt *) v);
}
sqlite3Error(db, rc, (rc == SQLITE_OK ? 0 : zErr));
rc = sqlite3ApiExit(db, rc);
sqlite3_mutex_leave(db->mutex);
return rc;
}
/*
** Close a blob handle that was previously created using
** sqlite3_blob_open().
*/
SQLITE_API int
sqlite3_blob_close(sqlite3_blob * pBlob)
{
Incrblob *p = (Incrblob *) pBlob;
int rc;
rc = sqlite3_finalize(p->pStmt);
sqlite3_free(p);
return rc;
}
/*
** Perform a read or write operation on a blob
*/
static int
blobReadWrite(sqlite3_blob * pBlob,
void *z, int n, int iOffset, int (*xCall) (BtCursor *, u32, u32, void *))
{
int rc;
Incrblob *p = (Incrblob *) pBlob;
Vdbe *v;
sqlite3 *db = p->db;
/* Request is out of range. Return a transient error. */
if((iOffset + n) > p->nByte)
{
return SQLITE_ERROR;
}
sqlite3_mutex_enter(db->mutex);
/* If there is no statement handle, then the blob-handle has
** already been invalidated. Return SQLITE_ABORT in this case.
*/
v = (Vdbe *) p->pStmt;
if(v == 0)
{
rc = SQLITE_ABORT;
}
else
{
/* Call either BtreeData() or BtreePutData(). If SQLITE_ABORT is
** returned, clean-up the statement handle.
*/
assert(db == v->db);
sqlite3BtreeEnterCursor(p->pCsr);
rc = xCall(p->pCsr, iOffset + p->iOffset, n, z);
sqlite3BtreeLeaveCursor(p->pCsr);
if(rc == SQLITE_ABORT)
{
sqlite3VdbeFinalize(v);
p->pStmt = 0;
}
else
{
db->errCode = rc;
v->rc = rc;
}
}
rc = sqlite3ApiExit(db, rc);
sqlite3_mutex_leave(db->mutex);
return rc;
}
/*
** Read data from a blob handle.
*/
SQLITE_API int
sqlite3_blob_read(sqlite3_blob * pBlob, void *z, int n, int iOffset)
{
return blobReadWrite(pBlob, z, n, iOffset, sqlite3BtreeData);
}
/*
** Write data to a blob handle.
*/
SQLITE_API int
sqlite3_blob_write(sqlite3_blob * pBlob, const void *z, int n, int iOffset)
{
return blobReadWrite(pBlob, (void *) z, n, iOffset, sqlite3BtreePutData);
}
/*
** Query a blob handle for the size of the data.
**
** The Incrblob.nByte field is fixed for the lifetime of the Incrblob
** so no mutex is required for access.
*/
SQLITE_API int
sqlite3_blob_bytes(sqlite3_blob * pBlob)
{
Incrblob *p = (Incrblob *) pBlob;
return p->nByte;
}
#endif /* #ifndef SQLITE_OMIT_INCRBLOB */
/************** End of vdbeblob.c ********************************************/
/************** Begin file journal.c *****************************************/
/*
** 2007 August 22
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
*/
#ifdef SQLITE_ENABLE_ATOMIC_WRITE
/*
** This file implements a special kind of sqlite3_file object used
** by SQLite to create journal files if the atomic-write optimization
** is enabled.
**
** The distinctive characteristic of this sqlite3_file is that the
** actual on disk file is created lazily. When the file is created,
** the caller specifies a buffer size for an in-memory buffer to
** be used to service read() and write() requests. The actual file
** on disk is not created or populated until either:
**
** 1) The in-memory representation grows too large for the allocated
** buffer, or
** 2) The xSync() method is called.
*/
/*
** A JournalFile object is a subclass of sqlite3_file used by
** as an open file handle for journal files.
*/
struct JournalFile
{
sqlite3_io_methods *pMethod; /* I/O methods on journal files */
int nBuf; /* Size of zBuf[] in bytes */
char *zBuf; /* Space to buffer journal writes */
int iSize; /* Amount of zBuf[] currently used */
int flags; /* xOpen flags */
sqlite3_vfs *pVfs; /* The "real" underlying VFS */
sqlite3_file *pReal; /* The "real" underlying file descriptor */
const char *zJournal; /* Name of the journal file */
};
typedef struct JournalFile JournalFile;
/*
** If it does not already exists, create and populate the on-disk file
** for JournalFile p.
*/
static int
createFile(JournalFile * p)
{
int rc = SQLITE_OK;
if(!p->pReal)
{
sqlite3_file *pReal = (sqlite3_file *) & p[1];
rc = sqlite3OsOpen(p->pVfs, p->zJournal, pReal, p->flags, 0);
if(rc == SQLITE_OK)
{
p->pReal = pReal;
if(p->iSize > 0)
{
assert(p->iSize <= p->nBuf);
rc = sqlite3OsWrite(p->pReal, p->zBuf, p->iSize, 0);
}
}
}
return rc;
}
/*
** Close the file.
*/
static int
jrnlClose(sqlite3_file * pJfd)
{
JournalFile *p = (JournalFile *) pJfd;
if(p->pReal)
{
sqlite3OsClose(p->pReal);
}
sqlite3_free(p->zBuf);
return SQLITE_OK;
}
/*
** Read data from the file.
*/
static int
jrnlRead(sqlite3_file * pJfd, /* The journal file from which to read */
void *zBuf, /* Put the results here */
int iAmt, /* Number of bytes to read */
sqlite_int64 iOfst /* Begin reading at this offset */
)
{
int rc = SQLITE_OK;
JournalFile *p = (JournalFile *) pJfd;
if(p->pReal)
{
rc = sqlite3OsRead(p->pReal, zBuf, iAmt, iOfst);
}
else
{
assert(iAmt + iOfst <= p->iSize);
memcpy(zBuf, &p->zBuf[iOfst], iAmt);
}
return rc;
}
/*
** Write data to the file.
*/
static int
jrnlWrite(sqlite3_file * pJfd, /* The journal file into which to write */
const void *zBuf, /* Take data to be written from here */
int iAmt, /* Number of bytes to write */
sqlite_int64 iOfst /* Begin writing at this offset into the file */
)
{
int rc = SQLITE_OK;
JournalFile *p = (JournalFile *) pJfd;
if(!p->pReal && (iOfst + iAmt) > p->nBuf)
{
rc = createFile(p);
}
if(rc == SQLITE_OK)
{
if(p->pReal)
{
rc = sqlite3OsWrite(p->pReal, zBuf, iAmt, iOfst);
}
else
{
memcpy(&p->zBuf[iOfst], zBuf, iAmt);
if(p->iSize < (iOfst + iAmt))
{
p->iSize = (iOfst + iAmt);
}
}
}
return rc;
}
/*
** Truncate the file.
*/
static int
jrnlTruncate(sqlite3_file * pJfd, sqlite_int64 size)
{
int rc = SQLITE_OK;
JournalFile *p = (JournalFile *) pJfd;
if(p->pReal)
{
rc = sqlite3OsTruncate(p->pReal, size);
}
else if(size < p->iSize)
{
p->iSize = size;
}
return rc;
}
/*
** Sync the file.
*/
static int
jrnlSync(sqlite3_file * pJfd, int flags)
{
int rc;
JournalFile *p = (JournalFile *) pJfd;
if(p->pReal)
{
rc = sqlite3OsSync(p->pReal, flags);
}
else
{
rc = SQLITE_OK;
}
return rc;
}
/*
** Query the size of the file in bytes.
*/
static int
jrnlFileSize(sqlite3_file * pJfd, sqlite_int64 * pSize)
{
int rc = SQLITE_OK;
JournalFile *p = (JournalFile *) pJfd;
if(p->pReal)
{
rc = sqlite3OsFileSize(p->pReal, pSize);
}
else
{
*pSize = (sqlite_int64) p->iSize;
}
return rc;
}
/*
** Table of methods for JournalFile sqlite3_file object.
*/
static struct sqlite3_io_methods JournalFileMethods = {
1, /* iVersion */
jrnlClose, /* xClose */
jrnlRead, /* xRead */
jrnlWrite, /* xWrite */
jrnlTruncate, /* xTruncate */
jrnlSync, /* xSync */
jrnlFileSize, /* xFileSize */
0, /* xLock */
0, /* xUnlock */
0, /* xCheckReservedLock */
0, /* xFileControl */
0, /* xSectorSize */
0 /* xDeviceCharacteristics */
};
/*
** Open a journal file.
*/
SQLITE_PRIVATE int
sqlite3JournalOpen(sqlite3_vfs * pVfs, /* The VFS to use for actual file I/O */
const char *zName, /* Name of the journal file */
sqlite3_file * pJfd, /* Preallocated, blank file handle */
int flags, /* Opening flags */
int nBuf /* Bytes buffered before opening the file */
)
{
JournalFile *p = (JournalFile *) pJfd;
memset(p, 0, sqlite3JournalSize(pVfs));
if(nBuf > 0)
{
p->zBuf = sqlite3MallocZero(nBuf);
if(!p->zBuf)
{
return SQLITE_NOMEM;
}
}
else
{
return sqlite3OsOpen(pVfs, zName, pJfd, flags, 0);
}
p->pMethod = &JournalFileMethods;
p->nBuf = nBuf;
p->flags = flags;
p->zJournal = zName;
p->pVfs = pVfs;
return SQLITE_OK;
}
/*
** If the argument p points to a JournalFile structure, and the underlying
** file has not yet been created, create it now.
*/
SQLITE_PRIVATE int
sqlite3JournalCreate(sqlite3_file * p)
{
if(p->pMethods != &JournalFileMethods)
{
return SQLITE_OK;
}
return createFile((JournalFile *) p);
}
/*
** Return the number of bytes required to store a JournalFile that uses vfs
** pVfs to create the underlying on-disk files.
*/
SQLITE_PRIVATE int
sqlite3JournalSize(sqlite3_vfs * pVfs)
{
return (pVfs->szOsFile + sizeof(JournalFile));
}
#endif
/************** End of journal.c *********************************************/
/************** Begin file expr.c ********************************************/
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains routines used for analyzing expressions and
** for generating VDBE code that evaluates expressions in SQLite.
**
*/
/*
** Return the 'affinity' of the expression pExpr if any.
**
** If pExpr is a column, a reference to a column via an 'AS' alias,
** or a sub-select with a column as the return value, then the
** affinity of that column is returned. Otherwise, 0x00 is returned,
** indicating no affinity for the expression.
**
** i.e. the WHERE clause expresssions in the following statements all
** have an affinity:
**
** CREATE TABLE t1(a);
** SELECT * FROM t1 WHERE a;
** SELECT a AS b FROM t1 WHERE b;
** SELECT * FROM t1 WHERE (select a from t1);
*/
SQLITE_PRIVATE char
sqlite3ExprAffinity(Expr * pExpr)
{
int op = pExpr->op;
if(op == TK_SELECT)
{
return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr);
}
#ifndef SQLITE_OMIT_CAST
if(op == TK_CAST)
{
return sqlite3AffinityType(&pExpr->token);
}
#endif
return pExpr->affinity;
}
/*
** Set the collating sequence for expression pExpr to be the collating
** sequence named by pToken. Return a pointer to the revised expression.
** The collating sequence is marked as "explicit" using the EP_ExpCollate
** flag. An explicit collating sequence will override implicit
** collating sequences.
*/
SQLITE_PRIVATE Expr *
sqlite3ExprSetColl(Parse * pParse, Expr * pExpr, Token * pName)
{
char *zColl = 0; /* Dequoted name of collation sequence */
CollSeq *pColl;
zColl = sqlite3NameFromToken(pParse->db, pName);
if(pExpr && zColl)
{
pColl = sqlite3LocateCollSeq(pParse, zColl, -1);
if(pColl)
{
pExpr->pColl = pColl;
pExpr->flags |= EP_ExpCollate;
}
}
sqlite3_free(zColl);
return pExpr;
}
/*
** Return the default collation sequence for the expression pExpr. If
** there is no default collation type, return 0.
*/
SQLITE_PRIVATE CollSeq *
sqlite3ExprCollSeq(Parse * pParse, Expr * pExpr)
{
CollSeq *pColl = 0;
if(pExpr)
{
int op;
pColl = pExpr->pColl;
op = pExpr->op;
if((op == TK_CAST || op == TK_UPLUS) && !pColl)
{
return sqlite3ExprCollSeq(pParse, pExpr->pLeft);
}
}
if(sqlite3CheckCollSeq(pParse, pColl))
{
pColl = 0;
}
return pColl;
}
/*
** pExpr is an operand of a comparison operator. aff2 is the
** type affinity of the other operand. This routine returns the
** type affinity that should be used for the comparison operator.
*/
SQLITE_PRIVATE char
sqlite3CompareAffinity(Expr * pExpr, char aff2)
{
char aff1 = sqlite3ExprAffinity(pExpr);
if(aff1 && aff2)
{
/* Both sides of the comparison are columns. If one has numeric
** affinity, use that. Otherwise use no affinity.
*/
if(sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2))
{
return SQLITE_AFF_NUMERIC;
}
else
{
return SQLITE_AFF_NONE;
}
}
else if(!aff1 && !aff2)
{
/* Neither side of the comparison is a column. Compare the
** results directly.
*/
return SQLITE_AFF_NONE;
}
else
{
/* One side is a column, the other is not. Use the columns affinity. */
assert(aff1 == 0 || aff2 == 0);
return (aff1 + aff2);
}
}
/*
** pExpr is a comparison operator. Return the type affinity that should
** be applied to both operands prior to doing the comparison.
*/
static char
comparisonAffinity(Expr * pExpr)
{
char aff;
assert(pExpr->op == TK_EQ || pExpr->op == TK_IN || pExpr->op == TK_LT ||
pExpr->op == TK_GT || pExpr->op == TK_GE || pExpr->op == TK_LE ||
pExpr->op == TK_NE);
assert(pExpr->pLeft);
aff = sqlite3ExprAffinity(pExpr->pLeft);
if(pExpr->pRight)
{
aff = sqlite3CompareAffinity(pExpr->pRight, aff);
}
else if(pExpr->pSelect)
{
aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff);
}
else if(!aff)
{
aff = SQLITE_AFF_NONE;
}
return aff;
}
/*
** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
** idx_affinity is the affinity of an indexed column. Return true
** if the index with affinity idx_affinity may be used to implement
** the comparison in pExpr.
*/
SQLITE_PRIVATE int
sqlite3IndexAffinityOk(Expr * pExpr, char idx_affinity)
{
char aff = comparisonAffinity(pExpr);
switch (aff)
{
case SQLITE_AFF_NONE:
return 1;
case SQLITE_AFF_TEXT:
return idx_affinity == SQLITE_AFF_TEXT;
default:
return sqlite3IsNumericAffinity(idx_affinity);
}
}
/*
** Return the P5 value that should be used for a binary comparison
** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
*/
static u8
binaryCompareP5(Expr * pExpr1, Expr * pExpr2, int jumpIfNull)
{
u8 aff = (char) sqlite3ExprAffinity(pExpr2);
aff = sqlite3CompareAffinity(pExpr1, aff) | jumpIfNull;
return aff;
}
/*
** Return a pointer to the collation sequence that should be used by
** a binary comparison operator comparing pLeft and pRight.
**
** If the left hand expression has a collating sequence type, then it is
** used. Otherwise the collation sequence for the right hand expression
** is used, or the default (BINARY) if neither expression has a collating
** type.
**
** Argument pRight (but not pLeft) may be a null pointer. In this case,
** it is not considered.
*/
SQLITE_PRIVATE CollSeq *
sqlite3BinaryCompareCollSeq(Parse * pParse, Expr * pLeft, Expr * pRight)
{
CollSeq *pColl;
assert(pLeft);
if(pLeft->flags & EP_ExpCollate)
{
assert(pLeft->pColl);
pColl = pLeft->pColl;
}
else if(pRight && pRight->flags & EP_ExpCollate)
{
assert(pRight->pColl);
pColl = pRight->pColl;
}
else
{
pColl = sqlite3ExprCollSeq(pParse, pLeft);
if(!pColl)
{
pColl = sqlite3ExprCollSeq(pParse, pRight);
}
}
return pColl;
}
/*
** Generate the operands for a comparison operation. Before
** generating the code for each operand, set the EP_AnyAff
** flag on the expression so that it will be able to used a
** cached column value that has previously undergone an
** affinity change.
*/
static void
codeCompareOperands(Parse * pParse, /* Parsing and code generating context */
Expr * pLeft, /* The left operand */
int *pRegLeft, /* Register where left operand is stored */
int *pFreeLeft, /* Free this register when done */
Expr * pRight, /* The right operand */
int *pRegRight, /* Register where right operand is stored */
int *pFreeRight /* Write temp register for right operand there */
)
{
while (pLeft->op == TK_UPLUS)
pLeft = pLeft->pLeft;
pLeft->flags |= EP_AnyAff;
*pRegLeft = sqlite3ExprCodeTemp(pParse, pLeft, pFreeLeft);
while (pRight->op == TK_UPLUS)
pRight = pRight->pLeft;
pRight->flags |= EP_AnyAff;
*pRegRight = sqlite3ExprCodeTemp(pParse, pRight, pFreeRight);
}
/*
** Generate code for a comparison operator.
*/
static int
codeCompare(Parse * pParse, /* The parsing (and code generating) context */
Expr * pLeft, /* The left operand */
Expr * pRight, /* The right operand */
int opcode, /* The comparison opcode */
int in1, int in2, /* Register holding operands */
int dest, /* Jump here if true. */
int jumpIfNull /* If true, jump if either operand is NULL */
)
{
int p5;
int addr;
CollSeq *p4;
p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, (void *) p4, P4_COLLSEQ);
sqlite3VdbeChangeP5(pParse->pVdbe, p5);
if(p5 & SQLITE_AFF_MASK)
{
sqlite3ExprCacheAffinityChange(pParse, in1, 1);
sqlite3ExprCacheAffinityChange(pParse, in2, 1);
}
return addr;
}
/*
** Construct a new expression node and return a pointer to it. Memory
** for this node is obtained from sqlite3_malloc(). The calling function
** is responsible for making sure the node eventually gets freed.
*/
SQLITE_PRIVATE Expr *
sqlite3Expr(sqlite3 * db, /* Handle for sqlite3DbMallocZero() (may be null) */
int op, /* Expression opcode */
Expr * pLeft, /* Left operand */
Expr * pRight, /* Right operand */
const Token * pToken /* Argument token */
)
{
Expr *pNew;
pNew = sqlite3DbMallocZero(db, sizeof(Expr));
if(pNew == 0)
{
/* When malloc fails, delete pLeft and pRight. Expressions passed to
** this function must always be allocated with sqlite3Expr() for this
** reason.
*/
sqlite3ExprDelete(pLeft);
sqlite3ExprDelete(pRight);
return 0;
}
pNew->op = op;
pNew->pLeft = pLeft;
pNew->pRight = pRight;
pNew->iAgg = -1;
if(pToken)
{
assert(pToken->dyn == 0);
pNew->span = pNew->token = *pToken;
}
else if(pLeft)
{
if(pRight)
{
sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span);
if(pRight->flags & EP_ExpCollate)
{
pNew->flags |= EP_ExpCollate;
pNew->pColl = pRight->pColl;
}
}
if(pLeft->flags & EP_ExpCollate)
{
pNew->flags |= EP_ExpCollate;
pNew->pColl = pLeft->pColl;
}
}
sqlite3ExprSetHeight(pNew);
return pNew;
}
/*
** Works like sqlite3Expr() except that it takes an extra Parse*
** argument and notifies the associated connection object if malloc fails.
*/
SQLITE_PRIVATE Expr *
sqlite3PExpr(Parse * pParse, /* Parsing context */
int op, /* Expression opcode */
Expr * pLeft, /* Left operand */
Expr * pRight, /* Right operand */
const Token * pToken /* Argument token */
)
{
return sqlite3Expr(pParse->db, op, pLeft, pRight, pToken);
}
/*
** When doing a nested parse, you can include terms in an expression
** that look like this: #1 #2 ... These terms refer to registers
** in the virtual machine. #N is the N-th register.
**
** This routine is called by the parser to deal with on of those terms.
** It immediately generates code to store the value in a memory location.
** The returns an expression that will code to extract the value from
** that memory location as needed.
*/
SQLITE_PRIVATE Expr *
sqlite3RegisterExpr(Parse * pParse, Token * pToken)
{
Vdbe *v = pParse->pVdbe;
Expr *p;
if(pParse->nested == 0)
{
sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken);
return sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
}
if(v == 0)
return 0;
p = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, pToken);
if(p == 0)
{
return 0; /* Malloc failed */
}
p->iTable = atoi((char *) &pToken->z[1]);
return p;
}
/*
** Join two expressions using an AND operator. If either expression is
** NULL, then just return the other expression.
*/
SQLITE_PRIVATE Expr *
sqlite3ExprAnd(sqlite3 * db, Expr * pLeft, Expr * pRight)
{
if(pLeft == 0)
{
return pRight;
}
else if(pRight == 0)
{
return pLeft;
}
else
{
return sqlite3Expr(db, TK_AND, pLeft, pRight, 0);
}
}
/*
** Set the Expr.span field of the given expression to span all
** text between the two given tokens.
*/
SQLITE_PRIVATE void
sqlite3ExprSpan(Expr * pExpr, Token * pLeft, Token * pRight)
{
assert(pRight != 0);
assert(pLeft != 0);
if(pExpr && pRight->z && pLeft->z)
{
assert(pLeft->dyn == 0 || pLeft->z[pLeft->n] == 0);
if(pLeft->dyn == 0 && pRight->dyn == 0)
{
pExpr->span.z = pLeft->z;
pExpr->span.n = pRight->n + (pRight->z - pLeft->z);
}
else
{
pExpr->span.z = 0;
}
}
}
/*
** Construct a new expression node for a function with multiple
** arguments.
*/
SQLITE_PRIVATE Expr *
sqlite3ExprFunction(Parse * pParse, ExprList * pList, Token * pToken)
{
Expr *pNew;
assert(pToken);
pNew = sqlite3DbMallocZero(pParse->db, sizeof(Expr));
if(pNew == 0)
{
sqlite3ExprListDelete(pList); /* Avoid leaking memory when malloc fails */
return 0;
}
pNew->op = TK_FUNCTION;
pNew->pList = pList;
assert(pToken->dyn == 0);
pNew->token = *pToken;
pNew->span = pNew->token;
sqlite3ExprSetHeight(pNew);
return pNew;
}
/*
** Assign a variable number to an expression that encodes a wildcard
** in the original SQL statement.
**
** Wildcards consisting of a single "?" are assigned the next sequential
** variable number.
**
** Wildcards of the form "?nnn" are assigned the number "nnn". We make
** sure "nnn" is not too be to avoid a denial of service attack when
** the SQL statement comes from an external source.
**
** Wildcards of the form ":aaa" or "$aaa" are assigned the same number
** as the previous instance of the same wildcard. Or if this is the first
** instance of the wildcard, the next sequenial variable number is
** assigned.
*/
SQLITE_PRIVATE void
sqlite3ExprAssignVarNumber(Parse * pParse, Expr * pExpr)
{
Token *pToken;
sqlite3 *db = pParse->db;
if(pExpr == 0)
return;
pToken = &pExpr->token;
assert(pToken->n >= 1);
assert(pToken->z != 0);
assert(pToken->z[0] != 0);
if(pToken->n == 1)
{
/* Wildcard of the form "?". Assign the next variable number */
pExpr->iTable = ++pParse->nVar;
}
else if(pToken->z[0] == '?')
{
/* Wildcard of the form "?nnn". Convert "nnn" to an integer and
** use it as the variable number */
int i;
pExpr->iTable = i = atoi((char *) &pToken->z[1]);
testcase(i == 0);
testcase(i == 1);
testcase(i == db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] - 1);
testcase(i == db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
if(i < 1 || i > db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER])
{
sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
}
if(i > pParse->nVar)
{
pParse->nVar = i;
}
}
else
{
/* Wildcards of the form ":aaa" or "$aaa". Reuse the same variable
** number as the prior appearance of the same name, or if the name
** has never appeared before, reuse the same variable number
*/
int i, n;
n = pToken->n;
for (i = 0; i < pParse->nVarExpr; i++)
{
Expr *pE;
if((pE = pParse->apVarExpr[i]) != 0
&& pE->token.n == n && memcmp(pE->token.z, pToken->z, n) == 0)
{
pExpr->iTable = pE->iTable;
break;
}
}
if(i >= pParse->nVarExpr)
{
pExpr->iTable = ++pParse->nVar;
if(pParse->nVarExpr >= pParse->nVarExprAlloc - 1)
{
pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
pParse->apVarExpr =
sqlite3DbReallocOrFree(db,
pParse->apVarExpr,
pParse->nVarExprAlloc *
sizeof(pParse->apVarExpr[0]));
}
if(!db->mallocFailed)
{
assert(pParse->apVarExpr != 0);
pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
}
}
}
if(!pParse->nErr && pParse->nVar > db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER])
{
sqlite3ErrorMsg(pParse, "too many SQL variables");
}
}
/*
** Recursively delete an expression tree.
*/
SQLITE_PRIVATE void
sqlite3ExprDelete(Expr * p)
{
if(p == 0)
return;
if(p->span.dyn)
sqlite3_free((char *) p->span.z);
if(p->token.dyn)
sqlite3_free((char *) p->token.z);
sqlite3ExprDelete(p->pLeft);
sqlite3ExprDelete(p->pRight);
sqlite3ExprListDelete(p->pList);
sqlite3SelectDelete(p->pSelect);
sqlite3_free(p);
}
/*
** The Expr.token field might be a string literal that is quoted.
** If so, remove the quotation marks.
*/
SQLITE_PRIVATE void
sqlite3DequoteExpr(sqlite3 * db, Expr * p)
{
if(ExprHasAnyProperty(p, EP_Dequoted))
{
return;
}
ExprSetProperty(p, EP_Dequoted);
if(p->token.dyn == 0)
{
sqlite3TokenCopy(db, &p->token, &p->token);
}
sqlite3Dequote((char *) p->token.z);
}
/*
** The following group of routines make deep copies of expressions,
** expression lists, ID lists, and select statements. The copies can
** be deleted (by being passed to their respective ...Delete() routines)
** without effecting the originals.
**
** The expression list, ID, and source lists return by sqlite3ExprListDup(),
** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
** by subsequent calls to sqlite*ListAppend() routines.
**
** Any tables that the SrcList might point to are not duplicated.
*/
SQLITE_PRIVATE Expr *
sqlite3ExprDup(sqlite3 * db, Expr * p)
{
Expr *pNew;
if(p == 0)
return 0;
pNew = sqlite3DbMallocRaw(db, sizeof(*p));
if(pNew == 0)
return 0;
memcpy(pNew, p, sizeof(*pNew));
if(p->token.z != 0)
{
pNew->token.z = (u8 *) sqlite3DbStrNDup(db, (char *) p->token.z, p->token.n);
pNew->token.dyn = 1;
}
else
{
assert(pNew->token.z == 0);
}
pNew->span.z = 0;
pNew->pLeft = sqlite3ExprDup(db, p->pLeft);
pNew->pRight = sqlite3ExprDup(db, p->pRight);
pNew->pList = sqlite3ExprListDup(db, p->pList);
pNew->pSelect = sqlite3SelectDup(db, p->pSelect);
return pNew;
}
SQLITE_PRIVATE void
sqlite3TokenCopy(sqlite3 * db, Token * pTo, Token * pFrom)
{
if(pTo->dyn)
sqlite3_free((char *) pTo->z);
if(pFrom->z)
{
pTo->n = pFrom->n;
pTo->z = (u8 *) sqlite3DbStrNDup(db, (char *) pFrom->z, pFrom->n);
pTo->dyn = 1;
}
else
{
pTo->z = 0;
}
}
SQLITE_PRIVATE ExprList *
sqlite3ExprListDup(sqlite3 * db, ExprList * p)
{
ExprList *pNew;
struct ExprList_item *pItem, *pOldItem;
int i;
if(p == 0)
return 0;
pNew = sqlite3DbMallocRaw(db, sizeof(*pNew));
if(pNew == 0)
return 0;
pNew->iECursor = 0;
pNew->nExpr = pNew->nAlloc = p->nExpr;
pNew->a = pItem = sqlite3DbMallocRaw(db, p->nExpr * sizeof(p->a[0]));
if(pItem == 0)
{
sqlite3_free(pNew);
return 0;
}
pOldItem = p->a;
for (i = 0; i < p->nExpr; i++, pItem++, pOldItem++)
{
Expr *pNewExpr, *pOldExpr;
pItem->pExpr = pNewExpr = sqlite3ExprDup(db, pOldExpr = pOldItem->pExpr);
if(pOldExpr->span.z != 0 && pNewExpr)
{
/* Always make a copy of the span for top-level expressions in the
** expression list. The logic in SELECT processing that determines
** the names of columns in the result set needs this information */
sqlite3TokenCopy(db, &pNewExpr->span, &pOldExpr->span);
}
assert(pNewExpr == 0 || pNewExpr->span.z != 0
|| pOldExpr->span.z == 0 || db->mallocFailed);
pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
pItem->sortOrder = pOldItem->sortOrder;
pItem->isAgg = pOldItem->isAgg;
pItem->done = 0;
}
return pNew;
}
/*
** If cursors, triggers, views and subqueries are all omitted from
** the build, then none of the following routines, except for
** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
** called with a NULL argument.
*/
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
|| !defined(SQLITE_OMIT_SUBQUERY)
SQLITE_PRIVATE SrcList *
sqlite3SrcListDup(sqlite3 * db, SrcList * p)
{
SrcList *pNew;
int i;
int nByte;
if(p == 0)
return 0;
nByte = sizeof(*p) + (p->nSrc > 0 ? sizeof(p->a[0]) * (p->nSrc - 1) : 0);
pNew = sqlite3DbMallocRaw(db, nByte);
if(pNew == 0)
return 0;
pNew->nSrc = pNew->nAlloc = p->nSrc;
for (i = 0; i < p->nSrc; i++)
{
struct SrcList_item *pNewItem = &pNew->a[i];
struct SrcList_item *pOldItem = &p->a[i];
Table *pTab;
pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
pNewItem->jointype = pOldItem->jointype;
pNewItem->iCursor = pOldItem->iCursor;
pNewItem->isPopulated = pOldItem->isPopulated;
pTab = pNewItem->pTab = pOldItem->pTab;
if(pTab)
{
pTab->nRef++;
}
pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect);
pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn);
pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
pNewItem->colUsed = pOldItem->colUsed;
}
return pNew;
}
SQLITE_PRIVATE IdList *
sqlite3IdListDup(sqlite3 * db, IdList * p)
{
IdList *pNew;
int i;
if(p == 0)
return 0;
pNew = sqlite3DbMallocRaw(db, sizeof(*pNew));
if(pNew == 0)
return 0;
pNew->nId = pNew->nAlloc = p->nId;
pNew->a = sqlite3DbMallocRaw(db, p->nId * sizeof(p->a[0]));
if(pNew->a == 0)
{
sqlite3_free(pNew);
return 0;
}
for (i = 0; i < p->nId; i++)
{
struct IdList_item *pNewItem = &pNew->a[i];
struct IdList_item *pOldItem = &p->a[i];
pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
pNewItem->idx = pOldItem->idx;
}
return pNew;
}
SQLITE_PRIVATE Select *
sqlite3SelectDup(sqlite3 * db, Select * p)
{
Select *pNew;
if(p == 0)
return 0;
pNew = sqlite3DbMallocRaw(db, sizeof(*p));
if(pNew == 0)
return 0;
pNew->isDistinct = p->isDistinct;
pNew->pEList = sqlite3ExprListDup(db, p->pEList);
pNew->pSrc = sqlite3SrcListDup(db, p->pSrc);
pNew->pWhere = sqlite3ExprDup(db, p->pWhere);
pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy);
pNew->pHaving = sqlite3ExprDup(db, p->pHaving);
pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy);
pNew->op = p->op;
pNew->pPrior = sqlite3SelectDup(db, p->pPrior);
pNew->pLimit = sqlite3ExprDup(db, p->pLimit);
pNew->pOffset = sqlite3ExprDup(db, p->pOffset);
pNew->iLimit = -1;
pNew->iOffset = -1;
pNew->isResolved = p->isResolved;
pNew->isAgg = p->isAgg;
pNew->usesEphm = 0;
pNew->disallowOrderBy = 0;
pNew->pRightmost = 0;
pNew->addrOpenEphm[0] = -1;
pNew->addrOpenEphm[1] = -1;
pNew->addrOpenEphm[2] = -1;
return pNew;
}
#else
SQLITE_PRIVATE Select *
sqlite3SelectDup(sqlite3 * db, Select * p)
{
assert(p == 0);
return 0;
}
#endif
/*
** Add a new element to the end of an expression list. If pList is
** initially NULL, then create a new expression list.
*/
SQLITE_PRIVATE ExprList *
sqlite3ExprListAppend(Parse * pParse, /* Parsing context */
ExprList * pList, /* List to which to append. Might be NULL */
Expr * pExpr, /* Expression to be appended */
Token * pName /* AS keyword for the expression */
)
{
sqlite3 *db = pParse->db;
if(pList == 0)
{
pList = sqlite3DbMallocZero(db, sizeof(ExprList));
if(pList == 0)
{
goto no_mem;
}
assert(pList->nAlloc == 0);
}
if(pList->nAlloc <= pList->nExpr)
{
struct ExprList_item *a;
int n = pList->nAlloc * 2 + 4;
a = sqlite3DbRealloc(db, pList->a, n * sizeof(pList->a[0]));
if(a == 0)
{
goto no_mem;
}
pList->a = a;
pList->nAlloc = n;
}
assert(pList->a != 0);
if(pExpr || pName)
{
struct ExprList_item *pItem = &pList->a[pList->nExpr++];
memset(pItem, 0, sizeof(*pItem));
pItem->zName = sqlite3NameFromToken(db, pName);
pItem->pExpr = pExpr;
}
return pList;
no_mem:
/* Avoid leaking memory if malloc has failed. */
sqlite3ExprDelete(pExpr);
sqlite3ExprListDelete(pList);
return 0;
}
/*
** If the expression list pEList contains more than iLimit elements,
** leave an error message in pParse.
*/
SQLITE_PRIVATE void
sqlite3ExprListCheckLength(Parse * pParse, ExprList * pEList, const char *zObject)
{
int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
testcase(pEList && pEList->nExpr == mx);
testcase(pEList && pEList->nExpr == mx + 1);
if(pEList && pEList->nExpr > mx)
{
sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
}
}
/* The following three functions, heightOfExpr(), heightOfExprList()
** and heightOfSelect(), are used to determine the maximum height
** of any expression tree referenced by the structure passed as the
** first argument.
**
** If this maximum height is greater than the current value pointed
** to by pnHeight, the second parameter, then set *pnHeight to that
** value.
*/
static void
heightOfExpr(Expr * p, int *pnHeight)
{
if(p)
{
if(p->nHeight > *pnHeight)
{
*pnHeight = p->nHeight;
}
}
}
static void
heightOfExprList(ExprList * p, int *pnHeight)
{
if(p)
{
int i;
for (i = 0; i < p->nExpr; i++)
{
heightOfExpr(p->a[i].pExpr, pnHeight);
}
}
}
static void
heightOfSelect(Select * p, int *pnHeight)
{
if(p)
{
heightOfExpr(p->pWhere, pnHeight);
heightOfExpr(p->pHaving, pnHeight);
heightOfExpr(p->pLimit, pnHeight);
heightOfExpr(p->pOffset, pnHeight);
heightOfExprList(p->pEList, pnHeight);
heightOfExprList(p->pGroupBy, pnHeight);
heightOfExprList(p->pOrderBy, pnHeight);
heightOfSelect(p->pPrior, pnHeight);
}
}
/*
** Set the Expr.nHeight variable in the structure passed as an
** argument. An expression with no children, Expr.pList or
** Expr.pSelect member has a height of 1. Any other expression
** has a height equal to the maximum height of any other
** referenced Expr plus one.
*/
SQLITE_PRIVATE void
sqlite3ExprSetHeight(Expr * p)
{
int nHeight = 0;
heightOfExpr(p->pLeft, &nHeight);
heightOfExpr(p->pRight, &nHeight);
heightOfExprList(p->pList, &nHeight);
heightOfSelect(p->pSelect, &nHeight);
p->nHeight = nHeight + 1;
}
/*
** Return the maximum height of any expression tree referenced
** by the select statement passed as an argument.
*/
SQLITE_PRIVATE int
sqlite3SelectExprHeight(Select * p)
{
int nHeight = 0;
heightOfSelect(p, &nHeight);
return nHeight;
}
/*
** Delete an entire expression list.
*/
SQLITE_PRIVATE void
sqlite3ExprListDelete(ExprList * pList)
{
int i;
struct ExprList_item *pItem;
if(pList == 0)
return;
assert(pList->a != 0 || (pList->nExpr == 0 && pList->nAlloc == 0));
assert(pList->nExpr <= pList->nAlloc);
for (pItem = pList->a, i = 0; i < pList->nExpr; i++, pItem++)
{
sqlite3ExprDelete(pItem->pExpr);
sqlite3_free(pItem->zName);
}
sqlite3_free(pList->a);
sqlite3_free(pList);
}
/*
** Walk an expression tree. Call xFunc for each node visited. xFunc
** is called on the node before xFunc is called on the nodes children.
**
** The return value from xFunc determines whether the tree walk continues.
** 0 means continue walking the tree. 1 means do not walk children
** of the current node but continue with siblings. 2 means abandon
** the tree walk completely.
**
** The return value from this routine is 1 to abandon the tree walk
** and 0 to continue.
**
** NOTICE: This routine does *not* descend into subqueries.
*/
static int walkExprList(ExprList *, int (*)(void *, Expr *), void *);
static int
walkExprTree(Expr * pExpr, int (*xFunc) (void *, Expr *), void *pArg)
{
int rc;
if(pExpr == 0)
return 0;
rc = (*xFunc) (pArg, pExpr);
if(rc == 0)
{
if(walkExprTree(pExpr->pLeft, xFunc, pArg))
return 1;
if(walkExprTree(pExpr->pRight, xFunc, pArg))
return 1;
if(walkExprList(pExpr->pList, xFunc, pArg))
return 1;
}
return rc > 1;
}
/*
** Call walkExprTree() for every expression in list p.
*/
static int
walkExprList(ExprList * p, int (*xFunc) (void *, Expr *), void *pArg)
{
int i;
struct ExprList_item *pItem;
if(!p)
return 0;
for (i = p->nExpr, pItem = p->a; i > 0; i--, pItem++)
{
if(walkExprTree(pItem->pExpr, xFunc, pArg))
return 1;
}
return 0;
}
/*
** Call walkExprTree() for every expression in Select p, not including
** expressions that are part of sub-selects in any FROM clause or the LIMIT
** or OFFSET expressions..
*/
static int
walkSelectExpr(Select * p, int (*xFunc) (void *, Expr *), void *pArg)
{
walkExprList(p->pEList, xFunc, pArg);
walkExprTree(p->pWhere, xFunc, pArg);
walkExprList(p->pGroupBy, xFunc, pArg);
walkExprTree(p->pHaving, xFunc, pArg);
walkExprList(p->pOrderBy, xFunc, pArg);
if(p->pPrior)
{
walkSelectExpr(p->pPrior, xFunc, pArg);
}
return 0;
}
/*
** This routine is designed as an xFunc for walkExprTree().
**
** pArg is really a pointer to an integer. If we can tell by looking
** at pExpr that the expression that contains pExpr is not a constant
** expression, then set *pArg to 0 and return 2 to abandon the tree walk.
** If pExpr does does not disqualify the expression from being a constant
** then do nothing.
**
** After walking the whole tree, if no nodes are found that disqualify
** the expression as constant, then we assume the whole expression
** is constant. See sqlite3ExprIsConstant() for additional information.
*/
static int
exprNodeIsConstant(void *pArg, Expr * pExpr)
{
int *pN = (int *) pArg;
/* If *pArg is 3 then any term of the expression that comes from
** the ON or USING clauses of a join disqualifies the expression
** from being considered constant. */
if((*pN) == 3 && ExprHasAnyProperty(pExpr, EP_FromJoin))
{
*pN = 0;
return 2;
}
switch (pExpr->op)
{
/* Consider functions to be constant if all their arguments are constant
** and *pArg==2 */
case TK_FUNCTION:
if((*pN) == 2)
return 0;
/* Fall through */
case TK_ID:
case TK_COLUMN:
case TK_DOT:
case TK_AGG_FUNCTION:
case TK_AGG_COLUMN:
#ifndef SQLITE_OMIT_SUBQUERY
case TK_SELECT:
case TK_EXISTS:
testcase(pExpr->op == TK_SELECT);
testcase(pExpr->op == TK_EXISTS);
#endif
testcase(pExpr->op == TK_ID);
testcase(pExpr->op == TK_COLUMN);
testcase(pExpr->op == TK_DOT);
testcase(pExpr->op == TK_AGG_FUNCTION);
testcase(pExpr->op == TK_AGG_COLUMN);
*pN = 0;
return 2;
case TK_IN:
if(pExpr->pSelect)
{
*pN = 0;
return 2;
}
default:
return 0;
}
}
/*
** Walk an expression tree. Return 1 if the expression is constant
** and 0 if it involves variables or function calls.
**
** For the purposes of this function, a double-quoted string (ex: "abc")
** is considered a variable but a single-quoted string (ex: 'abc') is
** a constant.
*/
SQLITE_PRIVATE int
sqlite3ExprIsConstant(Expr * p)
{
int isConst = 1;
walkExprTree(p, exprNodeIsConstant, &isConst);
return isConst;
}
/*
** Walk an expression tree. Return 1 if the expression is constant
** that does no originate from the ON or USING clauses of a join.
** Return 0 if it involves variables or function calls or terms from
** an ON or USING clause.
*/
SQLITE_PRIVATE int
sqlite3ExprIsConstantNotJoin(Expr * p)
{
int isConst = 3;
walkExprTree(p, exprNodeIsConstant, &isConst);
return isConst != 0;
}
/*
** Walk an expression tree. Return 1 if the expression is constant
** or a function call with constant arguments. Return and 0 if there
** are any variables.
**
** For the purposes of this function, a double-quoted string (ex: "abc")
** is considered a variable but a single-quoted string (ex: 'abc') is
** a constant.
*/
SQLITE_PRIVATE int
sqlite3ExprIsConstantOrFunction(Expr * p)
{
int isConst = 2;
walkExprTree(p, exprNodeIsConstant, &isConst);
return isConst != 0;
}
/*
** If the expression p codes a constant integer that is small enough
** to fit in a 32-bit integer, return 1 and put the value of the integer
** in *pValue. If the expression is not an integer or if it is too big
** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
*/
SQLITE_PRIVATE int
sqlite3ExprIsInteger(Expr * p, int *pValue)
{
switch (p->op)
{
case TK_INTEGER:
{
if(sqlite3GetInt32((char *) p->token.z, pValue))
{
return 1;
}
break;
}
case TK_UPLUS:
{
return sqlite3ExprIsInteger(p->pLeft, pValue);
}
case TK_UMINUS:
{
int v;
if(sqlite3ExprIsInteger(p->pLeft, &v))
{
*pValue = -v;
return 1;
}
break;
}
default:
break;
}
return 0;
}
/*
** Return TRUE if the given string is a row-id column name.
*/
SQLITE_PRIVATE int
sqlite3IsRowid(const char *z)
{
if(sqlite3StrICmp(z, "_ROWID_") == 0)
return 1;
if(sqlite3StrICmp(z, "ROWID") == 0)
return 1;
if(sqlite3StrICmp(z, "OID") == 0)
return 1;
return 0;
}
/*
** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up
** that name in the set of source tables in pSrcList and make the pExpr
** expression node refer back to that source column. The following changes
** are made to pExpr:
**
** pExpr->iDb Set the index in db->aDb[] of the database holding
** the table.
** pExpr->iTable Set to the cursor number for the table obtained
** from pSrcList.
** pExpr->iColumn Set to the column number within the table.
** pExpr->op Set to TK_COLUMN.
** pExpr->pLeft Any expression this points to is deleted
** pExpr->pRight Any expression this points to is deleted.
**
** The pDbToken is the name of the database (the "X"). This value may be
** NULL meaning that name is of the form Y.Z or Z. Any available database
** can be used. The pTableToken is the name of the table (the "Y"). This
** value can be NULL if pDbToken is also NULL. If pTableToken is NULL it
** means that the form of the name is Z and that columns from any table
** can be used.
**
** If the name cannot be resolved unambiguously, leave an error message
** in pParse and return non-zero. Return zero on success.
*/
static int
lookupName(Parse * pParse, /* The parsing context */
Token * pDbToken, /* Name of the database containing table, or NULL */
Token * pTableToken, /* Name of table containing column, or NULL */
Token * pColumnToken, /* Name of the column. */
NameContext * pNC, /* The name context used to resolve the name */
Expr * pExpr /* Make this EXPR node point to the selected column */
)
{
char *zDb = 0; /* Name of the database. The "X" in X.Y.Z */
char *zTab = 0; /* Name of the table. The "Y" in X.Y.Z or Y.Z */
char *zCol = 0; /* Name of the column. The "Z" */
int i, j; /* Loop counters */
int cnt = 0; /* Number of matching column names */
int cntTab = 0; /* Number of matching table names */
sqlite3 *db = pParse->db; /* The database */
struct SrcList_item *pItem; /* Use for looping over pSrcList items */
struct SrcList_item *pMatch = 0; /* The matching pSrcList item */
NameContext *pTopNC = pNC; /* First namecontext in the list */
Schema *pSchema = 0; /* Schema of the expression */
assert(pColumnToken && pColumnToken->z); /* The Z in X.Y.Z cannot be NULL */
zDb = sqlite3NameFromToken(db, pDbToken);
zTab = sqlite3NameFromToken(db, pTableToken);
zCol = sqlite3NameFromToken(db, pColumnToken);
if(db->mallocFailed)
{
goto lookupname_end;
}
pExpr->iTable = -1;
while (pNC && cnt == 0)
{
ExprList *pEList;
SrcList *pSrcList = pNC->pSrcList;
if(pSrcList)
{
for (i = 0, pItem = pSrcList->a; i < pSrcList->nSrc; i++, pItem++)
{
Table *pTab;
int iDb;
Column *pCol;
pTab = pItem->pTab;
assert(pTab != 0);
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
assert(pTab->nCol > 0);
if(zTab)
{
if(pItem->zAlias)
{
char *zTabName = pItem->zAlias;
if(sqlite3StrICmp(zTabName, zTab) != 0)
continue;
}
else
{
char *zTabName = pTab->zName;
if(zTabName == 0
|| sqlite3StrICmp(zTabName, zTab) != 0)
continue;
if(zDb != 0
&& sqlite3StrICmp(db->aDb[iDb].zName, zDb) != 0)
{
continue;
}
}
}
if(0 == (cntTab++))
{
pExpr->iTable = pItem->iCursor;
pSchema = pTab->pSchema;
pMatch = pItem;
}
for (j = 0, pCol = pTab->aCol; j < pTab->nCol; j++, pCol++)
{
if(sqlite3StrICmp(pCol->zName, zCol) == 0)
{
const char *zColl = pTab->aCol[j].zColl;
IdList *pUsing;
cnt++;
pExpr->iTable = pItem->iCursor;
pMatch = pItem;
pSchema = pTab->pSchema;
/* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
pExpr->iColumn = j == pTab->iPKey ? -1 : j;
pExpr->affinity = pTab->aCol[j].affinity;
if((pExpr->flags & EP_ExpCollate) == 0)
{
pExpr->pColl =
sqlite3FindCollSeq(db, ENC(db),
zColl, -1, 0);
}
if(i < pSrcList->nSrc - 1)
{
if(pItem[1].jointype & JT_NATURAL)
{
/* If this match occurred in the left table of a natural join,
** then skip the right table to avoid a duplicate match */
pItem++;
i++;
}
else if((pUsing = pItem[1].pUsing) != 0)
{
/* If this match occurs on a column that is in the USING clause
** of a join, skip the search of the right table of the join
** to avoid a duplicate match there. */
int k;
for (k = 0; k < pUsing->nId; k++)
{
if(sqlite3StrICmp
(pUsing->a[k].zName,
zCol) == 0)
{
pItem++;
i++;
break;
}
}
}
}
break;
}
}
}
}
#ifndef SQLITE_OMIT_TRIGGER
/* If we have not already resolved the name, then maybe
** it is a new.* or old.* trigger argument reference
*/
if(zDb == 0 && zTab != 0 && cnt == 0 && pParse->trigStack != 0)
{
TriggerStack *pTriggerStack = pParse->trigStack;
Table *pTab = 0;
u32 *piColMask;
if(pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0)
{
pExpr->iTable = pTriggerStack->newIdx;
assert(pTriggerStack->pTab);
pTab = pTriggerStack->pTab;
piColMask = &(pTriggerStack->newColMask);
}
else if(pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab) == 0)
{
pExpr->iTable = pTriggerStack->oldIdx;
assert(pTriggerStack->pTab);
pTab = pTriggerStack->pTab;
piColMask = &(pTriggerStack->oldColMask);
}
if(pTab)
{
int iCol;
Column *pCol = pTab->aCol;
pSchema = pTab->pSchema;
cntTab++;
for (iCol = 0; iCol < pTab->nCol; iCol++, pCol++)
{
if(sqlite3StrICmp(pCol->zName, zCol) == 0)
{
const char *zColl = pTab->aCol[iCol].zColl;
cnt++;
pExpr->iColumn = iCol == pTab->iPKey ? -1 : iCol;
pExpr->affinity = pTab->aCol[iCol].affinity;
if((pExpr->flags & EP_ExpCollate) == 0)
{
pExpr->pColl =
sqlite3FindCollSeq(db, ENC(db),
zColl, -1, 0);
}
pExpr->pTab = pTab;
if(iCol >= 0)
{
testcase(iCol == 31);
testcase(iCol == 32);
*piColMask |=
((u32) 1 << iCol) | (iCol >=
32 ? 0xffffffff
: 0);
}
break;
}
}
}
}
#endif /* !defined(SQLITE_OMIT_TRIGGER) */
/*
** Perhaps the name is a reference to the ROWID
*/
if(cnt == 0 && cntTab == 1 && sqlite3IsRowid(zCol))
{
cnt = 1;
pExpr->iColumn = -1;
pExpr->affinity = SQLITE_AFF_INTEGER;
}
/*
** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
** might refer to an result-set alias. This happens, for example, when
** we are resolving names in the WHERE clause of the following command:
**
** SELECT a+b AS x FROM table WHERE x<10;
**
** In cases like this, replace pExpr with a copy of the expression that
** forms the result set entry ("a+b" in the example) and return immediately.
** Note that the expression in the result set should have already been
** resolved by the time the WHERE clause is resolved.
*/
if(cnt == 0 && (pEList = pNC->pEList) != 0 && zTab == 0)
{
for (j = 0; j < pEList->nExpr; j++)
{
char *zAs = pEList->a[j].zName;
if(zAs != 0 && sqlite3StrICmp(zAs, zCol) == 0)
{
Expr *pDup, *pOrig;
assert(pExpr->pLeft == 0 && pExpr->pRight == 0);
assert(pExpr->pList == 0);
assert(pExpr->pSelect == 0);
pOrig = pEList->a[j].pExpr;
if(!pNC->allowAgg && ExprHasProperty(pOrig, EP_Agg))
{
sqlite3ErrorMsg(pParse,
"misuse of aliased aggregate %s",
zAs);
sqlite3_free(zCol);
return 2;
}
pDup = sqlite3ExprDup(db, pOrig);
if(pExpr->flags & EP_ExpCollate)
{
pDup->pColl = pExpr->pColl;
pDup->flags |= EP_ExpCollate;
}
if(pExpr->span.dyn)
sqlite3_free((char *) pExpr->span.z);
if(pExpr->token.dyn)
sqlite3_free((char *) pExpr->token.z);
memcpy(pExpr, pDup, sizeof(*pExpr));
sqlite3_free(pDup);
cnt = 1;
pMatch = 0;
assert(zTab == 0 && zDb == 0);
goto lookupname_end_2;
}
}
}
/* Advance to the next name context. The loop will exit when either
** we have a match (cnt>0) or when we run out of name contexts.
*/
if(cnt == 0)
{
pNC = pNC->pNext;
}
}
/*
** If X and Y are NULL (in other words if only the column name Z is
** supplied) and the value of Z is enclosed in double-quotes, then
** Z is a string literal if it doesn't match any column names. In that
** case, we need to return right away and not make any changes to
** pExpr.
**
** Because no reference was made to outer contexts, the pNC->nRef
** fields are not changed in any context.
*/
if(cnt == 0 && zTab == 0 && pColumnToken->z[0] == '"')
{
sqlite3_free(zCol);
return 0;
}
/*
** cnt==0 means there was not match. cnt>1 means there were two or
** more matches. Either way, we have an error.
*/
if(cnt != 1)
{
const char *zErr;
zErr = cnt == 0 ? "no such column" : "ambiguous column name";
if(zDb)
{
sqlite3ErrorMsg(pParse, "%s: %s.%s.%s", zErr, zDb, zTab, zCol);
}
else if(zTab)
{
sqlite3ErrorMsg(pParse, "%s: %s.%s", zErr, zTab, zCol);
}
else
{
sqlite3ErrorMsg(pParse, "%s: %s", zErr, zCol);
}
pTopNC->nErr++;
}
/* If a column from a table in pSrcList is referenced, then record
** this fact in the pSrcList.a[].colUsed bitmask. Column 0 causes
** bit 0 to be set. Column 1 sets bit 1. And so forth. If the
** column number is greater than the number of bits in the bitmask
** then set the high-order bit of the bitmask.
*/
if(pExpr->iColumn >= 0 && pMatch != 0)
{
int n = pExpr->iColumn;
testcase(n == sizeof(Bitmask) * 8 - 1);
if(n >= sizeof(Bitmask) * 8)
{
n = sizeof(Bitmask) * 8 - 1;
}
assert(pMatch->iCursor == pExpr->iTable);
pMatch->colUsed |= ((Bitmask) 1) << n;
}
lookupname_end:
/* Clean up and return
*/
sqlite3_free(zDb);
sqlite3_free(zTab);
sqlite3ExprDelete(pExpr->pLeft);
pExpr->pLeft = 0;
sqlite3ExprDelete(pExpr->pRight);
pExpr->pRight = 0;
pExpr->op = TK_COLUMN;
lookupname_end_2:
sqlite3_free(zCol);
if(cnt == 1)
{
assert(pNC != 0);
sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList);
if(pMatch && !pMatch->pSelect)
{
pExpr->pTab = pMatch->pTab;
}
/* Increment the nRef value on all name contexts from TopNC up to
** the point where the name matched. */
for (;;)
{
assert(pTopNC != 0);
pTopNC->nRef++;
if(pTopNC == pNC)
break;
pTopNC = pTopNC->pNext;
}
return 0;
}
else
{
return 1;
}
}
/*
** This routine is designed as an xFunc for walkExprTree().
**
** Resolve symbolic names into TK_COLUMN operators for the current
** node in the expression tree. Return 0 to continue the search down
** the tree or 2 to abort the tree walk.
**
** This routine also does error checking and name resolution for
** function names. The operator for aggregate functions is changed
** to TK_AGG_FUNCTION.
*/
static int
nameResolverStep(void *pArg, Expr * pExpr)
{
NameContext *pNC = (NameContext *) pArg;
Parse *pParse;
if(pExpr == 0)
return 1;
assert(pNC != 0);
pParse = pNC->pParse;
if(ExprHasAnyProperty(pExpr, EP_Resolved))
return 1;
ExprSetProperty(pExpr, EP_Resolved);
#ifndef NDEBUG
if(pNC->pSrcList && pNC->pSrcList->nAlloc > 0)
{
SrcList *pSrcList = pNC->pSrcList;
int i;
for (i = 0; i < pNC->pSrcList->nSrc; i++)
{
assert(pSrcList->a[i].iCursor >= 0
&& pSrcList->a[i].iCursor < pParse->nTab);
}
}
#endif
switch (pExpr->op)
{
/* Double-quoted strings (ex: "abc") are used as identifiers if
** possible. Otherwise they remain as strings. Single-quoted
** strings (ex: 'abc') are always string literals.
*/
case TK_STRING:
{
if(pExpr->token.z[0] == '\'')
break;
/* Fall thru into the TK_ID case if this is a double-quoted string */
}
/* A lone identifier is the name of a column.
*/
case TK_ID:
{
lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr);
return 1;
}
/* A table name and column name: ID.ID
** Or a database, table and column: ID.ID.ID
*/
case TK_DOT:
{
Token *pColumn;
Token *pTable;
Token *pDb;
Expr *pRight;
/* if( pSrcList==0 ) break; */
pRight = pExpr->pRight;
if(pRight->op == TK_ID)
{
pDb = 0;
pTable = &pExpr->pLeft->token;
pColumn = &pRight->token;
}
else
{
assert(pRight->op == TK_DOT);
pDb = &pExpr->pLeft->token;
pTable = &pRight->pLeft->token;
pColumn = &pRight->pRight->token;
}
lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr);
return 1;
}
/* Resolve function names
*/
case TK_CONST_FUNC:
case TK_FUNCTION:
{
ExprList *pList = pExpr->pList; /* The argument list */
int n = pList ? pList->nExpr : 0; /* Number of arguments */
int no_such_func = 0; /* True if no such function exists */
int wrong_num_args = 0; /* True if wrong number of arguments */
int is_agg = 0; /* True if is an aggregate function */
int i;
int auth; /* Authorization to use the function */
int nId; /* Number of characters in function name */
const char *zId; /* The function name. */
FuncDef *pDef; /* Information about the function */
int enc = ENC(pParse->db); /* The database encoding */
zId = (char *) pExpr->token.z;
nId = pExpr->token.n;
pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0);
if(pDef == 0)
{
pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0);
if(pDef == 0)
{
no_such_func = 1;
}
else
{
wrong_num_args = 1;
}
}
else
{
is_agg = pDef->xFunc == 0;
}
#ifndef SQLITE_OMIT_AUTHORIZATION
if(pDef)
{
auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0);
if(auth != SQLITE_OK)
{
if(auth == SQLITE_DENY)
{
sqlite3ErrorMsg(pParse,
"not authorized to use function: %s",
pDef->zName);
pNC->nErr++;
}
pExpr->op = TK_NULL;
return 1;
}
}
#endif
if(is_agg && !pNC->allowAgg)
{
sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,
zId);
pNC->nErr++;
is_agg = 0;
}
else if(no_such_func)
{
sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId);
pNC->nErr++;
}
else if(wrong_num_args)
{
sqlite3ErrorMsg(pParse,
"wrong number of arguments to function %.*s()", nId,
zId);
pNC->nErr++;
}
if(is_agg)
{
pExpr->op = TK_AGG_FUNCTION;
pNC->hasAgg = 1;
}
if(is_agg)
pNC->allowAgg = 0;
for (i = 0; pNC->nErr == 0 && i < n; i++)
{
walkExprTree(pList->a[i].pExpr, nameResolverStep, pNC);
}
if(is_agg)
pNC->allowAgg = 1;
/* FIX ME: Compute pExpr->affinity based on the expected return
** type of the function
*/
return is_agg;
}
#ifndef SQLITE_OMIT_SUBQUERY
case TK_SELECT:
case TK_EXISTS:
#endif
case TK_IN:
{
if(pExpr->pSelect)
{
int nRef = pNC->nRef;
#ifndef SQLITE_OMIT_CHECK
if(pNC->isCheck)
{
sqlite3ErrorMsg(pParse,
"subqueries prohibited in CHECK constraints");
}
#endif
sqlite3SelectResolve(pParse, pExpr->pSelect, pNC);
assert(pNC->nRef >= nRef);
if(nRef != pNC->nRef)
{
ExprSetProperty(pExpr, EP_VarSelect);
}
}
break;
}
#ifndef SQLITE_OMIT_CHECK
case TK_VARIABLE:
{
if(pNC->isCheck)
{
sqlite3ErrorMsg(pParse,
"parameters prohibited in CHECK constraints");
}
break;
}
#endif
}
return 0;
}
/*
** This routine walks an expression tree and resolves references to
** table columns. Nodes of the form ID.ID or ID resolve into an
** index to the table in the table list and a column offset. The
** Expr.opcode for such nodes is changed to TK_COLUMN. The Expr.iTable
** value is changed to the index of the referenced table in pTabList
** plus the "base" value. The base value will ultimately become the
** VDBE cursor number for a cursor that is pointing into the referenced
** table. The Expr.iColumn value is changed to the index of the column
** of the referenced table. The Expr.iColumn value for the special
** ROWID column is -1. Any INTEGER PRIMARY KEY column is tried as an
** alias for ROWID.
**
** Also resolve function names and check the functions for proper
** usage. Make sure all function names are recognized and all functions
** have the correct number of arguments. Leave an error message
** in pParse->zErrMsg if anything is amiss. Return the number of errors.
**
** If the expression contains aggregate functions then set the EP_Agg
** property on the expression.
*/
SQLITE_PRIVATE int
sqlite3ExprResolveNames(NameContext * pNC, /* Namespace to resolve expressions in. */
Expr * pExpr /* The expression to be analyzed. */
)
{
int savedHasAgg;
if(pExpr == 0)
return 0;
#if SQLITE_MAX_EXPR_DEPTH>0
{
int mxDepth = pNC->pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
if((pExpr->nHeight + pNC->pParse->nHeight) > mxDepth)
{
sqlite3ErrorMsg(pNC->pParse,
"Expression tree is too large (maximum depth %d)", mxDepth);
return 1;
}
pNC->pParse->nHeight += pExpr->nHeight;
}
#endif
savedHasAgg = pNC->hasAgg;
pNC->hasAgg = 0;
walkExprTree(pExpr, nameResolverStep, pNC);
#if SQLITE_MAX_EXPR_DEPTH>0
pNC->pParse->nHeight -= pExpr->nHeight;
#endif
if(pNC->nErr > 0)
{
ExprSetProperty(pExpr, EP_Error);
}
if(pNC->hasAgg)
{
ExprSetProperty(pExpr, EP_Agg);
}
else if(savedHasAgg)
{
pNC->hasAgg = 1;
}
return ExprHasProperty(pExpr, EP_Error);
}
/*
** A pointer instance of this structure is used to pass information
** through walkExprTree into codeSubqueryStep().
*/
typedef struct QueryCoder QueryCoder;
struct QueryCoder
{
Parse *pParse; /* The parsing context */
NameContext *pNC; /* Namespace of first enclosing query */
};
#ifdef SQLITE_TEST
int sqlite3_enable_in_opt = 1;
#else
#define sqlite3_enable_in_opt 1
#endif
/*
** Return true if the IN operator optimization is enabled and
** the SELECT statement p exists and is of the
** simple form:
**
** SELECT <column> FROM <table>
**
** If this is the case, it may be possible to use an existing table
** or index instead of generating an epheremal table.
*/
#ifndef SQLITE_OMIT_SUBQUERY
static int
isCandidateForInOpt(Select * p)
{
SrcList *pSrc;
ExprList *pEList;
Table *pTab;
if(!sqlite3_enable_in_opt)
return 0; /* IN optimization must be enabled */
if(p == 0)
return 0; /* right-hand side of IN is SELECT */
if(p->pPrior)
return 0; /* Not a compound SELECT */
if(p->isDistinct)
return 0; /* No DISTINCT keyword */
if(p->isAgg)
return 0; /* Contains no aggregate functions */
if(p->pGroupBy)
return 0; /* Has no GROUP BY clause */
if(p->pLimit)
return 0; /* Has no LIMIT clause */
if(p->pOffset)
return 0;
if(p->pWhere)
return 0; /* Has no WHERE clause */
pSrc = p->pSrc;
if(pSrc == 0)
return 0; /* A single table in the FROM clause */
if(pSrc->nSrc != 1)
return 0;
if(pSrc->a[0].pSelect)
return 0; /* FROM clause is not a subquery */
pTab = pSrc->a[0].pTab;
if(pTab == 0)
return 0;
if(pTab->pSelect)
return 0; /* FROM clause is not a view */
if(IsVirtual(pTab))
return 0; /* FROM clause not a virtual table */
pEList = p->pEList;
if(pEList->nExpr != 1)
return 0; /* One column in the result set */
if(pEList->a[0].pExpr->op != TK_COLUMN)
return 0; /* Result is a column */
return 1;
}
#endif /* SQLITE_OMIT_SUBQUERY */
/*
** This function is used by the implementation of the IN (...) operator.
** It's job is to find or create a b-tree structure that may be used
** either to test for membership of the (...) set or to iterate through
** its members, skipping duplicates.
**
** The cursor opened on the structure (database table, database index
** or ephermal table) is stored in pX->iTable before this function returns.
** The returned value indicates the structure type, as follows:
**
** IN_INDEX_ROWID - The cursor was opened on a database table.
** IN_INDEX_INDEX - The cursor was opened on a database index.
** IN_INDEX_EPH - The cursor was opened on a specially created and
** populated epheremal table.
**
** An existing structure may only be used if the SELECT is of the simple
** form:
**
** SELECT <column> FROM <table>
**
** If the mustBeUnique parameter is false, the structure will be used
** for fast set membership tests. In this case an epheremal table must
** be used unless <column> is an INTEGER PRIMARY KEY or an index can
** be found with <column> as its left-most column.
**
** If mustBeUnique is true, then the structure will be used to iterate
** through the set members, skipping any duplicates. In this case an
** epheremal table must be used unless the selected <column> is guaranteed
** to be unique - either because it is an INTEGER PRIMARY KEY or it
** is unique by virtue of a constraint or implicit index.
*/
#ifndef SQLITE_OMIT_SUBQUERY
SQLITE_PRIVATE int
sqlite3FindInIndex(Parse * pParse, Expr * pX, int mustBeUnique)
{
Select *p;
int eType = 0;
int iTab = pParse->nTab++;
/* The follwing if(...) expression is true if the SELECT is of the
** simple form:
**
** SELECT <column> FROM <table>
**
** If this is the case, it may be possible to use an existing table
** or index instead of generating an epheremal table.
*/
p = pX->pSelect;
if(isCandidateForInOpt(p))
{
sqlite3 *db = pParse->db;
Index *pIdx;
Expr *pExpr = p->pEList->a[0].pExpr;
int iCol = pExpr->iColumn;
Vdbe *v = sqlite3GetVdbe(pParse);
/* This function is only called from two places. In both cases the vdbe
** has already been allocated. So assume sqlite3GetVdbe() is always
** successful here.
*/
assert(v);
if(iCol < 0)
{
int iMem = ++pParse->nMem;
int iAddr;
Table *pTab = p->pSrc->a[0].pTab;
int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
sqlite3VdbeUsesBtree(v, iDb);
iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
eType = IN_INDEX_ROWID;
sqlite3VdbeJumpHere(v, iAddr);
}
else
{
/* The collation sequence used by the comparison. If an index is to
** be used in place of a temp-table, it must be ordered according
** to this collation sequence.
*/
CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
/* Check that the affinity that will be used to perform the
** comparison is the same as the affinity of the column. If
** it is not, it is not possible to use any index.
*/
Table *pTab = p->pSrc->a[0].pTab;
char aff = comparisonAffinity(pX);
int affinity_ok = (pTab->aCol[iCol].affinity == aff
|| aff == SQLITE_AFF_NONE);
for (pIdx = pTab->pIndex; pIdx && eType == 0 && affinity_ok;
pIdx = pIdx->pNext)
{
if((pIdx->aiColumn[0] == iCol)
&& (pReq ==
sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], -1, 0))
&& (!mustBeUnique
|| (pIdx->nColumn == 1 && pIdx->onError != OE_None)))
{
int iDb;
int iMem = ++pParse->nMem;
int iAddr;
char *pKey;
pKey = (char *) sqlite3IndexKeyinfo(pParse, pIdx);
iDb = sqlite3SchemaToIndex(db, pIdx->pSchema);
sqlite3VdbeUsesBtree(v, iDb);
iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pIdx->nColumn);
sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
pKey, P4_KEYINFO_HANDOFF);
VdbeComment((v, "%s", pIdx->zName));
eType = IN_INDEX_INDEX;
sqlite3VdbeJumpHere(v, iAddr);
}
}
}
}
if(eType == 0)
{
sqlite3CodeSubselect(pParse, pX);
eType = IN_INDEX_EPH;
}
else
{
pX->iTable = iTab;
}
return eType;
}
#endif
/*
** Generate code for scalar subqueries used as an expression
** and IN operators. Examples:
**
** (SELECT a FROM b) -- subquery
** EXISTS (SELECT a FROM b) -- EXISTS subquery
** x IN (4,5,11) -- IN operator with list on right-hand side
** x IN (SELECT a FROM b) -- IN operator with subquery on the right
**
** The pExpr parameter describes the expression that contains the IN
** operator or subquery.
*/
#ifndef SQLITE_OMIT_SUBQUERY
SQLITE_PRIVATE void
sqlite3CodeSubselect(Parse * pParse, Expr * pExpr)
{
int testAddr = 0; /* One-time test address */
Vdbe *v = sqlite3GetVdbe(pParse);
if(v == 0)
return;
/* This code must be run in its entirety every time it is encountered
** if any of the following is true:
**
** * The right-hand side is a correlated subquery
** * The right-hand side is an expression list containing variables
** * We are inside a trigger
**
** If all of the above are false, then we can run this code just once
** save the results, and reuse the same result on subsequent invocations.
*/
if(!ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack)
{
int mem = ++pParse->nMem;
sqlite3VdbeAddOp1(v, OP_If, mem);
testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem);
assert(testAddr > 0 || pParse->db->mallocFailed);
}
switch (pExpr->op)
{
case TK_IN:
{
char affinity;
KeyInfo keyInfo;
int addr; /* Address of OP_OpenEphemeral instruction */
affinity = sqlite3ExprAffinity(pExpr->pLeft);
/* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
** expression it is handled the same way. A virtual table is
** filled with single-field index keys representing the results
** from the SELECT or the <exprlist>.
**
** If the 'x' expression is a column value, or the SELECT...
** statement returns a column value, then the affinity of that
** column is used to build the index keys. If both 'x' and the
** SELECT... statement are columns, then numeric affinity is used
** if either column has NUMERIC or INTEGER affinity. If neither
** 'x' nor the SELECT... statement are columns, then numeric affinity
** is used.
*/
pExpr->iTable = pParse->nTab++;
addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, 1);
memset(&keyInfo, 0, sizeof(keyInfo));
keyInfo.nField = 1;
if(pExpr->pSelect)
{
/* Case 1: expr IN (SELECT ...)
**
** Generate code to write the results of the select into the temporary
** table allocated and opened above.
*/
SelectDest dest;
ExprList *pEList;
sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
dest.affinity = (int) affinity;
assert((pExpr->iTable & 0x0000FFFF) == pExpr->iTable);
if(sqlite3Select(pParse, pExpr->pSelect, &dest, 0, 0, 0, 0))
{
return;
}
pEList = pExpr->pSelect->pEList;
if(pEList && pEList->nExpr > 0)
{
keyInfo.aColl[0] =
sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
pEList->a[0].pExpr);
}
}
else if(pExpr->pList)
{
/* Case 2: expr IN (exprlist)
**
** For each expression, build an index key from the evaluation and
** store it in the temporary table. If <expr> is a column, then use
** that columns affinity when building index keys. If <expr> is not
** a column, use numeric affinity.
*/
int i;
ExprList *pList = pExpr->pList;
struct ExprList_item *pItem;
int r1, r2;
if(!affinity)
{
affinity = SQLITE_AFF_NONE;
}
keyInfo.aColl[0] = pExpr->pLeft->pColl;
/* Loop through each expression in <exprlist>. */
r1 = sqlite3GetTempReg(pParse);
r2 = sqlite3GetTempReg(pParse);
for (i = pList->nExpr, pItem = pList->a; i > 0; i--, pItem++)
{
Expr *pE2 = pItem->pExpr;
/* If the expression is not constant then we will need to
** disable the test that was generated above that makes sure
** this code only executes once. Because for a non-constant
** expression we need to rerun this code each time.
*/
if(testAddr && !sqlite3ExprIsConstant(pE2))
{
sqlite3VdbeChangeToNoop(v, testAddr - 1, 2);
testAddr = 0;
}
/* Evaluate the expression and insert it into the temp table */
pParse->disableColCache++;
sqlite3ExprCode(pParse, pE2, r1);
assert(pParse->disableColCache > 0);
pParse->disableColCache--;
sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity,
1);
sqlite3ExprCacheAffinityChange(pParse, r1, 1);
sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
}
sqlite3ReleaseTempReg(pParse, r1);
sqlite3ReleaseTempReg(pParse, r2);
}
sqlite3VdbeChangeP4(v, addr, (void *) &keyInfo, P4_KEYINFO);
break;
}
case TK_EXISTS:
case TK_SELECT:
{
/* This has to be a scalar SELECT. Generate code to put the
** value of this select in a memory cell and record the number
** of the memory cell in iColumn.
*/
static const Token one = { (u8 *) "1", 0, 1 };
Select *pSel;
SelectDest dest;
pSel = pExpr->pSelect;
sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
if(pExpr->op == TK_SELECT)
{
dest.eDest = SRT_Mem;
sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm);
VdbeComment((v, "Init subquery result"));
}
else
{
dest.eDest = SRT_Exists;
sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm);
VdbeComment((v, "Init EXISTS result"));
}
sqlite3ExprDelete(pSel->pLimit);
pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one);
if(sqlite3Select(pParse, pSel, &dest, 0, 0, 0, 0))
{
return;
}
pExpr->iColumn = dest.iParm;
break;
}
}
if(testAddr)
{
sqlite3VdbeJumpHere(v, testAddr - 1);
}
return;
}
#endif /* SQLITE_OMIT_SUBQUERY */
/*
** Duplicate an 8-byte value
*/
static char *
dup8bytes(Vdbe * v, const char *in)
{
char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
if(out)
{
memcpy(out, in, 8);
}
return out;
}
/*
** Generate an instruction that will put the floating point
** value described by z[0..n-1] into register iMem.
**
** The z[] string will probably not be zero-terminated. But the
** z[n] character is guaranteed to be something that does not look
** like the continuation of the number.
*/
static void
codeReal(Vdbe * v, const char *z, int n, int negateFlag, int iMem)
{
assert(z || v == 0 || sqlite3VdbeDb(v)->mallocFailed);
if(z)
{
double value;
char *zV;
assert(!isdigit(z[n]));
sqlite3AtoF(z, &value);
if(sqlite3IsNaN(value))
{
sqlite3VdbeAddOp2(v, OP_Null, 0, iMem);
}
else
{
if(negateFlag)
value = -value;
zV = dup8bytes(v, (char *) &value);
sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
}
}
}
/*
** Generate an instruction that will put the integer describe by
** text z[0..n-1] into register iMem.
**
** The z[] string will probably not be zero-terminated. But the
** z[n] character is guaranteed to be something that does not look
** like the continuation of the number.
*/
static void
codeInteger(Vdbe * v, const char *z, int n, int negFlag, int iMem)
{
assert(z || v == 0 || sqlite3VdbeDb(v)->mallocFailed);
if(z)
{
int i;
assert(!isdigit(z[n]));
if(sqlite3GetInt32(z, &i))
{
if(negFlag)
i = -i;
sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
}
else if(sqlite3FitsIn64Bits(z, negFlag))
{
i64 value;
char *zV;
sqlite3Atoi64(z, &value);
if(negFlag)
value = -value;
zV = dup8bytes(v, (char *) &value);
sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
}
else
{
codeReal(v, z, n, negFlag, iMem);
}
}
}
/*
** Generate code that will extract the iColumn-th column from
** table pTab and store the column value in a register. An effort
** is made to store the column value in register iReg, but this is
** not guaranteed. The location of the column value is returned.
**
** There must be an open cursor to pTab in iTable when this routine
** is called. If iColumn<0 then code is generated that extracts the rowid.
**
** This routine might attempt to reuse the value of the column that
** has already been loaded into a register. The value will always
** be used if it has not undergone any affinity changes. But if
** an affinity change has occurred, then the cached value will only be
** used if allowAffChng is true.
*/
SQLITE_PRIVATE int
sqlite3ExprCodeGetColumn(Parse * pParse, /* Parsing and code generating context */
Table * pTab, /* Description of the table we are reading from */
int iColumn, /* Index of the table column */
int iTable, /* The cursor pointing to the table */
int iReg, /* Store results here */
int allowAffChng /* True if prior affinity changes are OK */
)
{
Vdbe *v = pParse->pVdbe;
int i;
struct yColCache *p;
for (i = 0, p = pParse->aColCache; i < pParse->nColCache; i++, p++)
{
if(p->iTable == iTable && p->iColumn == iColumn && (!p->affChange || allowAffChng))
{
#if 0
sqlite3VdbeAddOp0(v, OP_Noop);
VdbeComment((v, "OPT: tab%d.col%d -> r%d", iTable, iColumn, p->iReg));
#endif
return p->iReg;
}
}
assert(v != 0);
if(iColumn < 0)
{
int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid;
sqlite3VdbeAddOp2(v, op, iTable, iReg);
}
else if(pTab == 0)
{
sqlite3VdbeAddOp3(v, OP_Column, iTable, iColumn, iReg);
}
else
{
int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
sqlite3VdbeAddOp3(v, op, iTable, iColumn, iReg);
sqlite3ColumnDefault(v, pTab, iColumn);
#ifndef SQLITE_OMIT_FLOATING_POINT
if(pTab->aCol[iColumn].affinity == SQLITE_AFF_REAL)
{
sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
}
#endif
}
if(pParse->disableColCache == 0)
{
i = pParse->iColCache;
p = &pParse->aColCache[i];
p->iTable = iTable;
p->iColumn = iColumn;
p->iReg = iReg;
p->affChange = 0;
i++;
if(i >= ArraySize(pParse->aColCache))
i = 0;
if(i > pParse->nColCache)
pParse->nColCache = i;
pParse->iColCache = i;
}
return iReg;
}
/*
** Clear all column cache entries associated with the vdbe
** cursor with cursor number iTable.
*/
SQLITE_PRIVATE void
sqlite3ExprClearColumnCache(Parse * pParse, int iTable)
{
if(iTable < 0)
{
pParse->nColCache = 0;
pParse->iColCache = 0;
}
else
{
int i;
for (i = 0; i < pParse->nColCache; i++)
{
if(pParse->aColCache[i].iTable == iTable)
{
testcase(i == pParse->nColCache - 1);
pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache];
pParse->iColCache = pParse->nColCache;
}
}
}
}
/*
** Record the fact that an affinity change has occurred on iCount
** registers starting with iStart.
*/
SQLITE_PRIVATE void
sqlite3ExprCacheAffinityChange(Parse * pParse, int iStart, int iCount)
{
int iEnd = iStart + iCount - 1;
int i;
for (i = 0; i < pParse->nColCache; i++)
{
int r = pParse->aColCache[i].iReg;
if(r >= iStart && r <= iEnd)
{
pParse->aColCache[i].affChange = 1;
}
}
}
/*
** Generate code to moves content from one register to another.
** Keep the column cache up-to-date.
*/
SQLITE_PRIVATE void
sqlite3ExprCodeMove(Parse * pParse, int iFrom, int iTo)
{
int i;
if(iFrom == iTo)
return;
sqlite3VdbeAddOp2(pParse->pVdbe, OP_Move, iFrom, iTo);
for (i = 0; i < pParse->nColCache; i++)
{
if(pParse->aColCache[i].iReg == iFrom)
{
pParse->aColCache[i].iReg = iTo;
}
}
}
/*
** Return true if any register in the range iFrom..iTo (inclusive)
** is used as part of the column cache.
*/
static int
usedAsColumnCache(Parse * pParse, int iFrom, int iTo)
{
int i;
for (i = 0; i < pParse->nColCache; i++)
{
int r = pParse->aColCache[i].iReg;
if(r >= iFrom && r <= iTo)
return 1;
}
return 0;
}
/*
** Theres is a value in register iCurrent. We ultimately want
** the value to be in register iTarget. It might be that
** iCurrent and iTarget are the same register.
**
** We are going to modify the value, so we need to make sure it
** is not a cached register. If iCurrent is a cached register,
** then try to move the value over to iTarget. If iTarget is a
** cached register, then clear the corresponding cache line.
**
** Return the register that the value ends up in.
*/
SQLITE_PRIVATE int
sqlite3ExprWritableRegister(Parse * pParse, int iCurrent, int iTarget)
{
int i;
assert(pParse->pVdbe != 0);
if(!usedAsColumnCache(pParse, iCurrent, iCurrent))
{
return iCurrent;
}
if(iCurrent != iTarget)
{
sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, iCurrent, iTarget);
}
for (i = 0; i < pParse->nColCache; i++)
{
if(pParse->aColCache[i].iReg == iTarget)
{
pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache];
pParse->iColCache = pParse->nColCache;
}
}
return iTarget;
}
/*
** If the last instruction coded is an ephemeral copy of any of
** the registers in the nReg registers beginning with iReg, then
** convert the last instruction from OP_SCopy to OP_Copy.
*/
SQLITE_PRIVATE void
sqlite3ExprHardCopy(Parse * pParse, int iReg, int nReg)
{
int addr;
VdbeOp *pOp;
Vdbe *v;
v = pParse->pVdbe;
addr = sqlite3VdbeCurrentAddr(v);
pOp = sqlite3VdbeGetOp(v, addr - 1);
assert(pOp || pParse->db->mallocFailed);
if(pOp && pOp->opcode == OP_SCopy && pOp->p1 >= iReg && pOp->p1 < iReg + nReg)
{
pOp->opcode = OP_Copy;
}
}
/*
** Generate code into the current Vdbe to evaluate the given
** expression. Attempt to store the results in register "target".
** Return the register where results are stored.
**
** With this routine, there is no guaranteed that results will
** be stored in target. The result might be stored in some other
** register if it is convenient to do so. The calling function
** must check the return code and move the results to the desired
** register.
*/
SQLITE_PRIVATE int
sqlite3ExprCodeTarget(Parse * pParse, Expr * pExpr, int target)
{
Vdbe *v = pParse->pVdbe; /* The VM under construction */
int op; /* The opcode being coded */
int inReg = target; /* Results stored in register inReg */
int regFree1 = 0; /* If non-zero free this temporary register */
int regFree2 = 0; /* If non-zero free this temporary register */
int r1, r2, r3, r4; /* Various register numbers */
assert(v != 0 || pParse->db->mallocFailed);
assert(target > 0 && target <= pParse->nMem);
if(v == 0)
return 0;
if(pExpr == 0)
{
op = TK_NULL;
}
else
{
op = pExpr->op;
}
switch (op)
{
case TK_AGG_COLUMN:
{
AggInfo *pAggInfo = pExpr->pAggInfo;
struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
if(!pAggInfo->directMode)
{
assert(pCol->iMem > 0);
inReg = pCol->iMem;
break;
}
else if(pAggInfo->useSortingIdx)
{
sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx,
pCol->iSorterColumn, target);
break;
}
/* Otherwise, fall thru into the TK_COLUMN case */
}
case TK_COLUMN:
{
if(pExpr->iTable < 0)
{
/* This only happens when coding check constraints */
assert(pParse->ckBase > 0);
inReg = pExpr->iColumn + pParse->ckBase;
}
else
{
testcase((pExpr->flags & EP_AnyAff) != 0);
inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
pExpr->iColumn, pExpr->iTable,
target, pExpr->flags & EP_AnyAff);
}
break;
}
case TK_INTEGER:
{
codeInteger(v, (char *) pExpr->token.z, pExpr->token.n, 0, target);
break;
}
case TK_FLOAT:
{
codeReal(v, (char *) pExpr->token.z, pExpr->token.n, 0, target);
break;
}
case TK_STRING:
{
sqlite3DequoteExpr(pParse->db, pExpr);
sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0,
(char *) pExpr->token.z, pExpr->token.n);
break;
}
case TK_NULL:
{
sqlite3VdbeAddOp2(v, OP_Null, 0, target);
break;
}
#ifndef SQLITE_OMIT_BLOB_LITERAL
case TK_BLOB:
{
int n;
const char *z;
char *zBlob;
assert(pExpr->token.n >= 3);
assert(pExpr->token.z[0] == 'x' || pExpr->token.z[0] == 'X');
assert(pExpr->token.z[1] == '\'');
assert(pExpr->token.z[pExpr->token.n - 1] == '\'');
n = pExpr->token.n - 3;
z = (char *) pExpr->token.z + 2;
zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
sqlite3VdbeAddOp4(v, OP_Blob, n / 2, target, 0, zBlob, P4_DYNAMIC);
break;
}
#endif
case TK_VARIABLE:
{
sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iTable, target);
if(pExpr->token.n > 1)
{
sqlite3VdbeChangeP4(v, -1, (char *) pExpr->token.z, pExpr->token.n);
}
break;
}
case TK_REGISTER:
{
inReg = pExpr->iTable;
break;
}
#ifndef SQLITE_OMIT_CAST
case TK_CAST:
{
/* Expressions of the form: CAST(pLeft AS token) */
int aff, to_op;
inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
aff = sqlite3AffinityType(&pExpr->token);
to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
assert(to_op == OP_ToText || aff != SQLITE_AFF_TEXT);
assert(to_op == OP_ToBlob || aff != SQLITE_AFF_NONE);
assert(to_op == OP_ToNumeric || aff != SQLITE_AFF_NUMERIC);
assert(to_op == OP_ToInt || aff != SQLITE_AFF_INTEGER);
assert(to_op == OP_ToReal || aff != SQLITE_AFF_REAL);
testcase(to_op == OP_ToText);
testcase(to_op == OP_ToBlob);
testcase(to_op == OP_ToNumeric);
testcase(to_op == OP_ToInt);
testcase(to_op == OP_ToReal);
sqlite3VdbeAddOp1(v, to_op, inReg);
testcase(usedAsColumnCache(pParse, inReg, inReg));
sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
break;
}
#endif /* SQLITE_OMIT_CAST */
case TK_LT:
case TK_LE:
case TK_GT:
case TK_GE:
case TK_NE:
case TK_EQ:
{
assert(TK_LT == OP_Lt);
assert(TK_LE == OP_Le);
assert(TK_GT == OP_Gt);
assert(TK_GE == OP_Ge);
assert(TK_EQ == OP_Eq);
assert(TK_NE == OP_Ne);
testcase(op == TK_LT);
testcase(op == TK_LE);
testcase(op == TK_GT);
testcase(op == TK_GE);
testcase(op == TK_EQ);
testcase(op == TK_NE);
codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
pExpr->pRight, &r2, &regFree2);
codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
r1, r2, inReg, SQLITE_STOREP2);
testcase(regFree1 == 0);
testcase(regFree2 == 0);
break;
}
case TK_AND:
case TK_OR:
case TK_PLUS:
case TK_STAR:
case TK_MINUS:
case TK_REM:
case TK_BITAND:
case TK_BITOR:
case TK_SLASH:
case TK_LSHIFT:
case TK_RSHIFT:
case TK_CONCAT:
{
assert(TK_AND == OP_And);
assert(TK_OR == OP_Or);
assert(TK_PLUS == OP_Add);
assert(TK_MINUS == OP_Subtract);
assert(TK_REM == OP_Remainder);
assert(TK_BITAND == OP_BitAnd);
assert(TK_BITOR == OP_BitOr);
assert(TK_SLASH == OP_Divide);
assert(TK_LSHIFT == OP_ShiftLeft);
assert(TK_RSHIFT == OP_ShiftRight);
assert(TK_CONCAT == OP_Concat);
testcase(op == TK_AND);
testcase(op == TK_OR);
testcase(op == TK_PLUS);
testcase(op == TK_MINUS);
testcase(op == TK_REM);
testcase(op == TK_BITAND);
testcase(op == TK_BITOR);
testcase(op == TK_SLASH);
testcase(op == TK_LSHIFT);
testcase(op == TK_RSHIFT);
testcase(op == TK_CONCAT);
r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
sqlite3VdbeAddOp3(v, op, r2, r1, target);
testcase(regFree1 == 0);
testcase(regFree2 == 0);
break;
}
case TK_UMINUS:
{
Expr *pLeft = pExpr->pLeft;
assert(pLeft);
if(pLeft->op == TK_FLOAT || pLeft->op == TK_INTEGER)
{
Token *p = &pLeft->token;
if(pLeft->op == TK_FLOAT)
{
codeReal(v, (char *) p->z, p->n, 1, target);
}
else
{
codeInteger(v, (char *) p->z, p->n, 1, target);
}
}
else
{
regFree1 = r1 = sqlite3GetTempReg(pParse);
sqlite3VdbeAddOp2(v, OP_Integer, 0, r1);
r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
testcase(regFree2 == 0);
}
inReg = target;
break;
}
case TK_BITNOT:
case TK_NOT:
{
assert(TK_BITNOT == OP_BitNot);
assert(TK_NOT == OP_Not);
testcase(op == TK_BITNOT);
testcase(op == TK_NOT);
inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
testcase(inReg == target);
testcase(usedAsColumnCache(pParse, inReg, inReg));
inReg = sqlite3ExprWritableRegister(pParse, inReg, target);
sqlite3VdbeAddOp1(v, op, inReg);
break;
}
case TK_ISNULL:
case TK_NOTNULL:
{
int addr;
assert(TK_ISNULL == OP_IsNull);
assert(TK_NOTNULL == OP_NotNull);
testcase(op == TK_ISNULL);
testcase(op == TK_NOTNULL);
sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
testcase(regFree1 == 0);
addr = sqlite3VdbeAddOp1(v, op, r1);
sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
sqlite3VdbeJumpHere(v, addr);
break;
}
case TK_AGG_FUNCTION:
{
AggInfo *pInfo = pExpr->pAggInfo;
if(pInfo == 0)
{
sqlite3ErrorMsg(pParse, "misuse of aggregate: %T", &pExpr->span);
}
else
{
inReg = pInfo->aFunc[pExpr->iAgg].iMem;
}
break;
}
case TK_CONST_FUNC:
case TK_FUNCTION:
{
ExprList *pList = pExpr->pList;
int nExpr = pList ? pList->nExpr : 0;
FuncDef *pDef;
int nId;
const char *zId;
int constMask = 0;
int i;
sqlite3 *db = pParse->db;
u8 enc = ENC(db);
CollSeq *pColl = 0;
testcase(op == TK_CONST_FUNC);
testcase(op == TK_FUNCTION);
zId = (char *) pExpr->token.z;
nId = pExpr->token.n;
pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0);
assert(pDef != 0);
if(pList)
{
nExpr = pList->nExpr;
r1 = sqlite3GetTempRange(pParse, nExpr);
sqlite3ExprCodeExprList(pParse, pList, r1, 1);
}
else
{
nExpr = r1 = 0;
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Possibly overload the function if the first argument is
** a virtual table column.
**
** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
** second argument, not the first, as the argument to test to
** see if it is a column in a virtual table. This is done because
** the left operand of infix functions (the operand we want to
** control overloading) ends up as the second argument to the
** function. The expression "A glob B" is equivalent to
** "glob(B,A). We want to use the A in "A glob B" to test
** for function overloading. But we use the B term in "glob(B,A)".
*/
if(nExpr >= 2 && (pExpr->flags & EP_InfixFunc))
{
pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr,
pList->a[1].pExpr);
}
else if(nExpr > 0)
{
pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr,
pList->a[0].pExpr);
}
#endif
for (i = 0; i < nExpr && i < 32; i++)
{
if(sqlite3ExprIsConstant(pList->a[i].pExpr))
{
constMask |= (1 << i);
}
if(pDef->needCollSeq && !pColl)
{
pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr);
}
}
if(pDef->needCollSeq)
{
if(!pColl)
pColl = pParse->db->pDfltColl;
sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *) pColl,
P4_COLLSEQ);
}
sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
(char *) pDef, P4_FUNCDEF);
sqlite3VdbeChangeP5(v, nExpr);
if(nExpr)
{
sqlite3ReleaseTempRange(pParse, r1, nExpr);
}
sqlite3ExprCacheAffinityChange(pParse, r1, nExpr);
break;
}
#ifndef SQLITE_OMIT_SUBQUERY
case TK_EXISTS:
case TK_SELECT:
{
testcase(op == TK_EXISTS);
testcase(op == TK_SELECT);
if(pExpr->iColumn == 0)
{
sqlite3CodeSubselect(pParse, pExpr);
}
inReg = pExpr->iColumn;
break;
}
case TK_IN:
{
int j1, j2, j3, j4, j5;
char affinity;
int eType;
eType = sqlite3FindInIndex(pParse, pExpr, 0);
/* Figure out the affinity to use to create a key from the results
** of the expression. affinityStr stores a static string suitable for
** P4 of OP_MakeRecord.
*/
affinity = comparisonAffinity(pExpr);
sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
/* Code the <expr> from "<expr> IN (...)". The temporary table
** pExpr->iTable contains the values that make up the (...) set.
*/
r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
testcase(regFree1 == 0);
j1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1);
sqlite3VdbeAddOp2(v, OP_Null, 0, target);
j2 = sqlite3VdbeAddOp0(v, OP_Goto);
sqlite3VdbeJumpHere(v, j1);
if(eType == IN_INDEX_ROWID)
{
j3 = sqlite3VdbeAddOp1(v, OP_MustBeInt, r1);
j4 = sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, 0, r1);
j5 = sqlite3VdbeAddOp0(v, OP_Goto);
sqlite3VdbeJumpHere(v, j3);
sqlite3VdbeJumpHere(v, j4);
}
else
{
r2 = regFree2 = sqlite3GetTempReg(pParse);
sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
sqlite3ExprCacheAffinityChange(pParse, r1, 1);
j5 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, r2);
}
sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
sqlite3VdbeJumpHere(v, j2);
sqlite3VdbeJumpHere(v, j5);
break;
}
#endif
/*
** x BETWEEN y AND z
**
** This is equivalent to
**
** x>=y AND x<=z
**
** X is stored in pExpr->pLeft.
** Y is stored in pExpr->pList->a[0].pExpr.
** Z is stored in pExpr->pList->a[1].pExpr.
*/
case TK_BETWEEN:
{
Expr *pLeft = pExpr->pLeft;
struct ExprList_item *pLItem = pExpr->pList->a;
Expr *pRight = pLItem->pExpr;
codeCompareOperands(pParse, pLeft, &r1, &regFree1, pRight, &r2, &regFree2);
testcase(regFree1 == 0);
testcase(regFree2 == 0);
r3 = sqlite3GetTempReg(pParse);
r4 = sqlite3GetTempReg(pParse);
codeCompare(pParse, pLeft, pRight, OP_Ge, r1, r2, r3, SQLITE_STOREP2);
pLItem++;
pRight = pLItem->pExpr;
sqlite3ReleaseTempReg(pParse, regFree2);
r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
testcase(regFree2 == 0);
codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
sqlite3ReleaseTempReg(pParse, r3);
sqlite3ReleaseTempReg(pParse, r4);
break;
}
case TK_UPLUS:
{
inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
break;
}
/*
** Form A:
** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
**
** Form B:
** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
**
** Form A is can be transformed into the equivalent form B as follows:
** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
** WHEN x=eN THEN rN ELSE y END
**
** X (if it exists) is in pExpr->pLeft.
** Y is in pExpr->pRight. The Y is also optional. If there is no
** ELSE clause and no other term matches, then the result of the
** exprssion is NULL.
** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
**
** The result of the expression is the Ri for the first matching Ei,
** or if there is no matching Ei, the ELSE term Y, or if there is
** no ELSE term, NULL.
*/
case TK_CASE:
{
int endLabel; /* GOTO label for end of CASE stmt */
int nextCase; /* GOTO label for next WHEN clause */
int nExpr; /* 2x number of WHEN terms */
int i; /* Loop counter */
ExprList *pEList; /* List of WHEN terms */
struct ExprList_item *aListelem; /* Array of WHEN terms */
Expr opCompare; /* The X==Ei expression */
Expr cacheX; /* Cached expression X */
Expr *pX; /* The X expression */
Expr *pTest; /* X==Ei (form A) or just Ei (form B) */
assert(pExpr->pList);
assert((pExpr->pList->nExpr % 2) == 0);
assert(pExpr->pList->nExpr > 0);
pEList = pExpr->pList;
aListelem = pEList->a;
nExpr = pEList->nExpr;
endLabel = sqlite3VdbeMakeLabel(v);
if((pX = pExpr->pLeft) != 0)
{
cacheX = *pX;
testcase(pX->op == TK_COLUMN || pX->op == TK_REGISTER);
cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, &regFree1);
testcase(regFree1 == 0);
cacheX.op = TK_REGISTER;
cacheX.iColumn = 0;
opCompare.op = TK_EQ;
opCompare.pLeft = &cacheX;
pTest = &opCompare;
}
pParse->disableColCache++;
for (i = 0; i < nExpr; i = i + 2)
{
if(pX)
{
opCompare.pRight = aListelem[i].pExpr;
}
else
{
pTest = aListelem[i].pExpr;
}
nextCase = sqlite3VdbeMakeLabel(v);
testcase(pTest->op == TK_COLUMN || pTest->op == TK_REGISTER);
sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
testcase(aListelem[i + 1].pExpr->op == TK_COLUMN);
testcase(aListelem[i + 1].pExpr->op == TK_REGISTER);
sqlite3ExprCode(pParse, aListelem[i + 1].pExpr, target);
sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
sqlite3VdbeResolveLabel(v, nextCase);
}
if(pExpr->pRight)
{
sqlite3ExprCode(pParse, pExpr->pRight, target);
}
else
{
sqlite3VdbeAddOp2(v, OP_Null, 0, target);
}
sqlite3VdbeResolveLabel(v, endLabel);
assert(pParse->disableColCache > 0);
pParse->disableColCache--;
break;
}
#ifndef SQLITE_OMIT_TRIGGER
case TK_RAISE:
{
if(!pParse->trigStack)
{
sqlite3ErrorMsg(pParse,
"RAISE() may only be used within a trigger-program");
return 0;
}
if(pExpr->iColumn != OE_Ignore)
{
assert(pExpr->iColumn == OE_Rollback ||
pExpr->iColumn == OE_Abort || pExpr->iColumn == OE_Fail);
sqlite3DequoteExpr(pParse->db, pExpr);
sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn, 0,
(char *) pExpr->token.z, pExpr->token.n);
}
else
{
assert(pExpr->iColumn == OE_Ignore);
sqlite3VdbeAddOp2(v, OP_ContextPop, 0, 0);
sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->trigStack->ignoreJump);
VdbeComment((v, "raise(IGNORE)"));
}
break;
}
#endif
}
sqlite3ReleaseTempReg(pParse, regFree1);
sqlite3ReleaseTempReg(pParse, regFree2);
return inReg;
}
/*
** Generate code to evaluate an expression and store the results
** into a register. Return the register number where the results
** are stored.
**
** If the register is a temporary register that can be deallocated,
** then write its number into *pReg. If the result register is not
** a temporary, then set *pReg to zero.
*/
SQLITE_PRIVATE int
sqlite3ExprCodeTemp(Parse * pParse, Expr * pExpr, int *pReg)
{
int r1 = sqlite3GetTempReg(pParse);
int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
if(r2 == r1)
{
*pReg = r1;
}
else
{
sqlite3ReleaseTempReg(pParse, r1);
*pReg = 0;
}
return r2;
}
/*
** Generate code that will evaluate expression pExpr and store the
** results in register target. The results are guaranteed to appear
** in register target.
*/
SQLITE_PRIVATE int
sqlite3ExprCode(Parse * pParse, Expr * pExpr, int target)
{
int inReg;
assert(target > 0 && target <= pParse->nMem);
inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
assert(pParse->pVdbe || pParse->db->mallocFailed);
if(inReg != target && pParse->pVdbe)
{
sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
}
return target;
}
/*
** Generate code that evalutes the given expression and puts the result
** in register target.
**
** Also make a copy of the expression results into another "cache" register
** and modify the expression so that the next time it is evaluated,
** the result is a copy of the cache register.
**
** This routine is used for expressions that are used multiple
** times. They are evaluated once and the results of the expression
** are reused.
*/
SQLITE_PRIVATE int
sqlite3ExprCodeAndCache(Parse * pParse, Expr * pExpr, int target)
{
Vdbe *v = pParse->pVdbe;
int inReg;
inReg = sqlite3ExprCode(pParse, pExpr, target);
assert(target > 0);
if(pExpr->op != TK_REGISTER)
{
int iMem;
iMem = ++pParse->nMem;
sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
pExpr->iTable = iMem;
pExpr->iColumn = pExpr->op;
pExpr->op = TK_REGISTER;
}
return inReg;
}
/*
** Return TRUE if pExpr is an constant expression that is appropriate
** for factoring out of a loop. Appropriate expressions are:
**
** * Any expression that evaluates to two or more opcodes.
**
** * Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null,
** or OP_Variable that does not need to be placed in a
** specific register.
**
** There is no point in factoring out single-instruction constant
** expressions that need to be placed in a particular register.
** We could factor them out, but then we would end up adding an
** OP_SCopy instruction to move the value into the correct register
** later. We might as well just use the original instruction and
** avoid the OP_SCopy.
*/
static int
isAppropriateForFactoring(Expr * p)
{
if(!sqlite3ExprIsConstantNotJoin(p))
{
return 0; /* Only constant expressions are appropriate for factoring */
}
if((p->flags & EP_FixedDest) == 0)
{
return 1; /* Any constant without a fixed destination is appropriate */
}
while (p->op == TK_UPLUS)
p = p->pLeft;
switch (p->op)
{
#ifndef SQLITE_OMIT_BLOB_LITERAL
case TK_BLOB:
#endif
case TK_VARIABLE:
case TK_INTEGER:
case TK_FLOAT:
case TK_NULL:
case TK_STRING:
{
testcase(p->op == TK_BLOB);
testcase(p->op == TK_VARIABLE);
testcase(p->op == TK_INTEGER);
testcase(p->op == TK_FLOAT);
testcase(p->op == TK_NULL);
testcase(p->op == TK_STRING);
/* Single-instruction constants with a fixed destination are
** better done in-line. If we factor them, they will just end
** up generating an OP_SCopy to move the value to the destination
** register. */
return 0;
}
case TK_UMINUS:
{
if(p->pLeft->op == TK_FLOAT || p->pLeft->op == TK_INTEGER)
{
return 0;
}
break;
}
default:
{
break;
}
}
return 1;
}
/*
** If pExpr is a constant expression that is appropriate for
** factoring out of a loop, then evaluate the expression
** into a register and convert the expression into a TK_REGISTER
** expression.
*/
static int
evalConstExpr(void *pArg, Expr * pExpr)
{
Parse *pParse = (Parse *) pArg;
switch (pExpr->op)
{
case TK_REGISTER:
{
return 1;
}
case TK_FUNCTION:
case TK_AGG_FUNCTION:
case TK_CONST_FUNC:
{
/* The arguments to a function have a fixed destination.
** Mark them this way to avoid generated unneeded OP_SCopy
** instructions.
*/
ExprList *pList = pExpr->pList;
if(pList)
{
int i = pList->nExpr;
struct ExprList_item *pItem = pList->a;
for (; i > 0; i--, pItem++)
{
if(pItem->pExpr)
pItem->pExpr->flags |= EP_FixedDest;
}
}
break;
}
}
if(isAppropriateForFactoring(pExpr))
{
int r1 = ++pParse->nMem;
int r2;
r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
if(r1 != r2)
sqlite3ReleaseTempReg(pParse, r1);
pExpr->iColumn = pExpr->op;
pExpr->op = TK_REGISTER;
pExpr->iTable = r2;
return 1;
}
return 0;
}
/*
** Preevaluate constant subexpressions within pExpr and store the
** results in registers. Modify pExpr so that the constant subexpresions
** are TK_REGISTER opcodes that refer to the precomputed values.
*/
SQLITE_PRIVATE void
sqlite3ExprCodeConstants(Parse * pParse, Expr * pExpr)
{
walkExprTree(pExpr, evalConstExpr, pParse);
}
/*
** Generate code that pushes the value of every element of the given
** expression list into a sequence of registers beginning at target.
**
** Return the number of elements evaluated.
*/
SQLITE_PRIVATE int
sqlite3ExprCodeExprList(Parse * pParse, /* Parsing context */
ExprList * pList, /* The expression list to be coded */
int target, /* Where to write results */
int doHardCopy /* Call sqlite3ExprHardCopy on each element if true */
)
{
struct ExprList_item *pItem;
int i, n;
assert(pList != 0 || pParse->db->mallocFailed);
if(pList == 0)
{
return 0;
}
assert(target > 0);
n = pList->nExpr;
for (pItem = pList->a, i = 0; i < n; i++, pItem++)
{
sqlite3ExprCode(pParse, pItem->pExpr, target + i);
if(doHardCopy)
sqlite3ExprHardCopy(pParse, target, n);
}
return n;
}
/*
** Generate code for a boolean expression such that a jump is made
** to the label "dest" if the expression is true but execution
** continues straight thru if the expression is false.
**
** If the expression evaluates to NULL (neither true nor false), then
** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
**
** This code depends on the fact that certain token values (ex: TK_EQ)
** are the same as opcode values (ex: OP_Eq) that implement the corresponding
** operation. Special comments in vdbe.c and the mkopcodeh.awk script in
** the make process cause these values to align. Assert()s in the code
** below verify that the numbers are aligned correctly.
*/
SQLITE_PRIVATE void
sqlite3ExprIfTrue(Parse * pParse, Expr * pExpr, int dest, int jumpIfNull)
{
Vdbe *v = pParse->pVdbe;
int op = 0;
int regFree1 = 0;
int regFree2 = 0;
int r1, r2;
assert(jumpIfNull == SQLITE_JUMPIFNULL || jumpIfNull == 0);
if(v == 0 || pExpr == 0)
return;
op = pExpr->op;
switch (op)
{
case TK_AND:
{
int d2 = sqlite3VdbeMakeLabel(v);
testcase(jumpIfNull == 0);
testcase(pParse->disableColCache == 0);
sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,
jumpIfNull ^ SQLITE_JUMPIFNULL);
pParse->disableColCache++;
sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
assert(pParse->disableColCache > 0);
pParse->disableColCache--;
sqlite3VdbeResolveLabel(v, d2);
break;
}
case TK_OR:
{
testcase(jumpIfNull == 0);
testcase(pParse->disableColCache == 0);
sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
pParse->disableColCache++;
sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
assert(pParse->disableColCache > 0);
pParse->disableColCache--;
break;
}
case TK_NOT:
{
testcase(jumpIfNull == 0);
sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
break;
}
case TK_LT:
case TK_LE:
case TK_GT:
case TK_GE:
case TK_NE:
case TK_EQ:
{
assert(TK_LT == OP_Lt);
assert(TK_LE == OP_Le);
assert(TK_GT == OP_Gt);
assert(TK_GE == OP_Ge);
assert(TK_EQ == OP_Eq);
assert(TK_NE == OP_Ne);
testcase(op == TK_LT);
testcase(op == TK_LE);
testcase(op == TK_GT);
testcase(op == TK_GE);
testcase(op == TK_EQ);
testcase(op == TK_NE);
testcase(jumpIfNull == 0);
codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
pExpr->pRight, &r2, &regFree2);
codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
r1, r2, dest, jumpIfNull);
testcase(regFree1 == 0);
testcase(regFree2 == 0);
break;
}
case TK_ISNULL:
case TK_NOTNULL:
{
assert(TK_ISNULL == OP_IsNull);
assert(TK_NOTNULL == OP_NotNull);
testcase(op == TK_ISNULL);
testcase(op == TK_NOTNULL);
r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
sqlite3VdbeAddOp2(v, op, r1, dest);
testcase(regFree1 == 0);
break;
}
case TK_BETWEEN:
{
/* x BETWEEN y AND z
**
** Is equivalent to
**
** x>=y AND x<=z
**
** Code it as such, taking care to do the common subexpression
** elementation of x.
*/
Expr exprAnd;
Expr compLeft;
Expr compRight;
Expr exprX;
exprX = *pExpr->pLeft;
exprAnd.op = TK_AND;
exprAnd.pLeft = &compLeft;
exprAnd.pRight = &compRight;
compLeft.op = TK_GE;
compLeft.pLeft = &exprX;
compLeft.pRight = pExpr->pList->a[0].pExpr;
compRight.op = TK_LE;
compRight.pLeft = &exprX;
compRight.pRight = pExpr->pList->a[1].pExpr;
exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
testcase(regFree1 == 0);
exprX.op = TK_REGISTER;
testcase(jumpIfNull == 0);
sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
break;
}
default:
{
r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull != 0);
testcase(regFree1 == 0);
testcase(jumpIfNull == 0);
break;
}
}
sqlite3ReleaseTempReg(pParse, regFree1);
sqlite3ReleaseTempReg(pParse, regFree2);
}
/*
** Generate code for a boolean expression such that a jump is made
** to the label "dest" if the expression is false but execution
** continues straight thru if the expression is true.
**
** If the expression evaluates to NULL (neither true nor false) then
** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
** is 0.
*/
SQLITE_PRIVATE void
sqlite3ExprIfFalse(Parse * pParse, Expr * pExpr, int dest, int jumpIfNull)
{
Vdbe *v = pParse->pVdbe;
int op = 0;
int regFree1 = 0;
int regFree2 = 0;
int r1, r2;
assert(jumpIfNull == SQLITE_JUMPIFNULL || jumpIfNull == 0);
if(v == 0 || pExpr == 0)
return;
/* The value of pExpr->op and op are related as follows:
**
** pExpr->op op
** --------- ----------
** TK_ISNULL OP_NotNull
** TK_NOTNULL OP_IsNull
** TK_NE OP_Eq
** TK_EQ OP_Ne
** TK_GT OP_Le
** TK_LE OP_Gt
** TK_GE OP_Lt
** TK_LT OP_Ge
**
** For other values of pExpr->op, op is undefined and unused.
** The value of TK_ and OP_ constants are arranged such that we
** can compute the mapping above using the following expression.
** Assert()s verify that the computation is correct.
*/
op = ((pExpr->op + (TK_ISNULL & 1)) ^ 1) - (TK_ISNULL & 1);
/* Verify correct alignment of TK_ and OP_ constants
*/
assert(pExpr->op != TK_ISNULL || op == OP_NotNull);
assert(pExpr->op != TK_NOTNULL || op == OP_IsNull);
assert(pExpr->op != TK_NE || op == OP_Eq);
assert(pExpr->op != TK_EQ || op == OP_Ne);
assert(pExpr->op != TK_LT || op == OP_Ge);
assert(pExpr->op != TK_LE || op == OP_Gt);
assert(pExpr->op != TK_GT || op == OP_Le);
assert(pExpr->op != TK_GE || op == OP_Lt);
switch (pExpr->op)
{
case TK_AND:
{
testcase(jumpIfNull == 0);
testcase(pParse->disableColCache == 0);
sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
pParse->disableColCache++;
sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
assert(pParse->disableColCache > 0);
pParse->disableColCache--;
break;
}
case TK_OR:
{
int d2 = sqlite3VdbeMakeLabel(v);
testcase(jumpIfNull == 0);
testcase(pParse->disableColCache == 0);
sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull ^ SQLITE_JUMPIFNULL);
pParse->disableColCache++;
sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
assert(pParse->disableColCache > 0);
pParse->disableColCache--;
sqlite3VdbeResolveLabel(v, d2);
break;
}
case TK_NOT:
{
sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
break;
}
case TK_LT:
case TK_LE:
case TK_GT:
case TK_GE:
case TK_NE:
case TK_EQ:
{
testcase(op == TK_LT);
testcase(op == TK_LE);
testcase(op == TK_GT);
testcase(op == TK_GE);
testcase(op == TK_EQ);
testcase(op == TK_NE);
testcase(jumpIfNull == 0);
codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
pExpr->pRight, &r2, &regFree2);
codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
r1, r2, dest, jumpIfNull);
testcase(regFree1 == 0);
testcase(regFree2 == 0);
break;
}
case TK_ISNULL:
case TK_NOTNULL:
{
testcase(op == TK_ISNULL);
testcase(op == TK_NOTNULL);
r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
sqlite3VdbeAddOp2(v, op, r1, dest);
testcase(regFree1 == 0);
break;
}
case TK_BETWEEN:
{
/* x BETWEEN y AND z
**
** Is equivalent to
**
** x>=y AND x<=z
**
** Code it as such, taking care to do the common subexpression
** elementation of x.
*/
Expr exprAnd;
Expr compLeft;
Expr compRight;
Expr exprX;
exprX = *pExpr->pLeft;
exprAnd.op = TK_AND;
exprAnd.pLeft = &compLeft;
exprAnd.pRight = &compRight;
compLeft.op = TK_GE;
compLeft.pLeft = &exprX;
compLeft.pRight = pExpr->pList->a[0].pExpr;
compRight.op = TK_LE;
compRight.pLeft = &exprX;
compRight.pRight = pExpr->pList->a[1].pExpr;
exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
testcase(regFree1 == 0);
exprX.op = TK_REGISTER;
testcase(jumpIfNull == 0);
sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
break;
}
default:
{
r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull != 0);
testcase(regFree1 == 0);
testcase(jumpIfNull == 0);
break;
}
}
sqlite3ReleaseTempReg(pParse, regFree1);
sqlite3ReleaseTempReg(pParse, regFree2);
}
/*
** Do a deep comparison of two expression trees. Return TRUE (non-zero)
** if they are identical and return FALSE if they differ in any way.
**
** Sometimes this routine will return FALSE even if the two expressions
** really are equivalent. If we cannot prove that the expressions are
** identical, we return FALSE just to be safe. So if this routine
** returns false, then you do not really know for certain if the two
** expressions are the same. But if you get a TRUE return, then you
** can be sure the expressions are the same. In the places where
** this routine is used, it does not hurt to get an extra FALSE - that
** just might result in some slightly slower code. But returning
** an incorrect TRUE could lead to a malfunction.
*/
SQLITE_PRIVATE int
sqlite3ExprCompare(Expr * pA, Expr * pB)
{
int i;
if(pA == 0 || pB == 0)
{
return pB == pA;
}
if(pA->op != pB->op)
return 0;
if((pA->flags & EP_Distinct) != (pB->flags & EP_Distinct))
return 0;
if(!sqlite3ExprCompare(pA->pLeft, pB->pLeft))
return 0;
if(!sqlite3ExprCompare(pA->pRight, pB->pRight))
return 0;
if(pA->pList)
{
if(pB->pList == 0)
return 0;
if(pA->pList->nExpr != pB->pList->nExpr)
return 0;
for (i = 0; i < pA->pList->nExpr; i++)
{
if(!sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr))
{
return 0;
}
}
}
else if(pB->pList)
{
return 0;
}
if(pA->pSelect || pB->pSelect)
return 0;
if(pA->iTable != pB->iTable || pA->iColumn != pB->iColumn)
return 0;
if(pA->op != TK_COLUMN && pA->token.z)
{
if(pB->token.z == 0)
return 0;
if(pB->token.n != pA->token.n)
return 0;
if(sqlite3StrNICmp((char *) pA->token.z, (char *) pB->token.z, pB->token.n) != 0)
{
return 0;
}
}
return 1;
}
/*
** Add a new element to the pAggInfo->aCol[] array. Return the index of
** the new element. Return a negative number if malloc fails.
*/
static int
addAggInfoColumn(sqlite3 * db, AggInfo * pInfo)
{
int i;
pInfo->aCol = sqlite3ArrayAllocate(db,
pInfo->aCol,
sizeof(pInfo->aCol[0]),
3, &pInfo->nColumn, &pInfo->nColumnAlloc, &i);
return i;
}
/*
** Add a new element to the pAggInfo->aFunc[] array. Return the index of
** the new element. Return a negative number if malloc fails.
*/
static int
addAggInfoFunc(sqlite3 * db, AggInfo * pInfo)
{
int i;
pInfo->aFunc = sqlite3ArrayAllocate(db,
pInfo->aFunc,
sizeof(pInfo->aFunc[0]),
3, &pInfo->nFunc, &pInfo->nFuncAlloc, &i);
return i;
}
/*
** This is an xFunc for walkExprTree() used to implement
** sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates
** for additional information.
**
** This routine analyzes the aggregate function at pExpr.
*/
static int
analyzeAggregate(void *pArg, Expr * pExpr)
{
int i;
NameContext *pNC = (NameContext *) pArg;
Parse *pParse = pNC->pParse;
SrcList *pSrcList = pNC->pSrcList;
AggInfo *pAggInfo = pNC->pAggInfo;
switch (pExpr->op)
{
case TK_AGG_COLUMN:
case TK_COLUMN:
{
/* Check to see if the column is in one of the tables in the FROM
** clause of the aggregate query */
if(pSrcList)
{
struct SrcList_item *pItem = pSrcList->a;
for (i = 0; i < pSrcList->nSrc; i++, pItem++)
{
struct AggInfo_col *pCol;
if(pExpr->iTable == pItem->iCursor)
{
/* If we reach this point, it means that pExpr refers to a table
** that is in the FROM clause of the aggregate query.
**
** Make an entry for the column in pAggInfo->aCol[] if there
** is not an entry there already.
*/
int k;
pCol = pAggInfo->aCol;
for (k = 0; k < pAggInfo->nColumn; k++, pCol++)
{
if(pCol->iTable == pExpr->iTable &&
pCol->iColumn == pExpr->iColumn)
{
break;
}
}
if((k >= pAggInfo->nColumn)
&& (k =
addAggInfoColumn(pParse->db, pAggInfo)) >= 0)
{
pCol = &pAggInfo->aCol[k];
pCol->pTab = pExpr->pTab;
pCol->iTable = pExpr->iTable;
pCol->iColumn = pExpr->iColumn;
pCol->iMem = ++pParse->nMem;
pCol->iSorterColumn = -1;
pCol->pExpr = pExpr;
if(pAggInfo->pGroupBy)
{
int j, n;
ExprList *pGB = pAggInfo->pGroupBy;
struct ExprList_item *pTerm =
pGB->a;
n = pGB->nExpr;
for (j = 0; j < n; j++, pTerm++)
{
Expr *pE = pTerm->pExpr;
if(pE->op == TK_COLUMN
&& pE->iTable ==
pExpr->iTable
&& pE->iColumn ==
pExpr->iColumn)
{
pCol->iSorterColumn
= j;
break;
}
}
}
if(pCol->iSorterColumn < 0)
{
pCol->iSorterColumn =
pAggInfo->nSortingColumn++;
}
}
/* There is now an entry for pExpr in pAggInfo->aCol[] (either
** because it was there before or because we just created it).
** Convert the pExpr to be a TK_AGG_COLUMN referring to that
** pAggInfo->aCol[] entry.
*/
pExpr->pAggInfo = pAggInfo;
pExpr->op = TK_AGG_COLUMN;
pExpr->iAgg = k;
break;
} /* endif pExpr->iTable==pItem->iCursor */
} /* end loop over pSrcList */
}
return 1;
}
case TK_AGG_FUNCTION:
{
/* The pNC->nDepth==0 test causes aggregate functions in subqueries
** to be ignored */
if(pNC->nDepth == 0)
{
/* Check to see if pExpr is a duplicate of another aggregate
** function that is already in the pAggInfo structure
*/
struct AggInfo_func *pItem = pAggInfo->aFunc;
for (i = 0; i < pAggInfo->nFunc; i++, pItem++)
{
if(sqlite3ExprCompare(pItem->pExpr, pExpr))
{
break;
}
}
if(i >= pAggInfo->nFunc)
{
/* pExpr is original. Make a new entry in pAggInfo->aFunc[]
*/
u8 enc = ENC(pParse->db);
i = addAggInfoFunc(pParse->db, pAggInfo);
if(i >= 0)
{
pItem = &pAggInfo->aFunc[i];
pItem->pExpr = pExpr;
pItem->iMem = ++pParse->nMem;
pItem->pFunc = sqlite3FindFunction(pParse->db,
(char *) pExpr->
token.z,
pExpr->token.n,
pExpr->
pList ? pExpr->
pList->nExpr : 0,
enc, 0);
if(pExpr->flags & EP_Distinct)
{
pItem->iDistinct = pParse->nTab++;
}
else
{
pItem->iDistinct = -1;
}
}
}
/* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
*/
pExpr->iAgg = i;
pExpr->pAggInfo = pAggInfo;
return 1;
}
}
}
/* Recursively walk subqueries looking for TK_COLUMN nodes that need
** to be changed to TK_AGG_COLUMN. But increment nDepth so that
** TK_AGG_FUNCTION nodes in subqueries will be unchanged.
*/
if(pExpr->pSelect)
{
pNC->nDepth++;
walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC);
pNC->nDepth--;
}
return 0;
}
/*
** Analyze the given expression looking for aggregate functions and
** for variables that need to be added to the pParse->aAgg[] array.
** Make additional entries to the pParse->aAgg[] array as necessary.
**
** This routine should only be called after the expression has been
** analyzed by sqlite3ExprResolveNames().
*/
SQLITE_PRIVATE void
sqlite3ExprAnalyzeAggregates(NameContext * pNC, Expr * pExpr)
{
walkExprTree(pExpr, analyzeAggregate, pNC);
}
/*
** Call sqlite3ExprAnalyzeAggregates() for every expression in an
** expression list. Return the number of errors.
**
** If an error is found, the analysis is cut short.
*/
SQLITE_PRIVATE void
sqlite3ExprAnalyzeAggList(NameContext * pNC, ExprList * pList)
{
struct ExprList_item *pItem;
int i;
if(pList)
{
for (pItem = pList->a, i = 0; i < pList->nExpr; i++, pItem++)
{
sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
}
}
}
/*
** Allocate or deallocate temporary use registers during code generation.
*/
SQLITE_PRIVATE int
sqlite3GetTempReg(Parse * pParse)
{
int i, r;
if(pParse->nTempReg == 0)
{
return ++pParse->nMem;
}
for (i = 0; i < pParse->nTempReg; i++)
{
r = pParse->aTempReg[i];
if(usedAsColumnCache(pParse, r, r))
continue;
}
if(i >= pParse->nTempReg)
{
return ++pParse->nMem;
}
while (i < pParse->nTempReg - 1)
{
pParse->aTempReg[i] = pParse->aTempReg[i + 1];
}
pParse->nTempReg--;
return r;
}
SQLITE_PRIVATE void
sqlite3ReleaseTempReg(Parse * pParse, int iReg)
{
if(iReg && pParse->nTempReg < ArraySize(pParse->aTempReg))
{
pParse->aTempReg[pParse->nTempReg++] = iReg;
}
}
/*
** Allocate or deallocate a block of nReg consecutive registers
*/
SQLITE_PRIVATE int
sqlite3GetTempRange(Parse * pParse, int nReg)
{
int i, n;
i = pParse->iRangeReg;
n = pParse->nRangeReg;
if(nReg <= n && !usedAsColumnCache(pParse, i, i + n - 1))
{
pParse->iRangeReg += nReg;
pParse->nRangeReg -= nReg;
}
else
{
i = pParse->nMem + 1;
pParse->nMem += nReg;
}
return i;
}
SQLITE_PRIVATE void
sqlite3ReleaseTempRange(Parse * pParse, int iReg, int nReg)
{
if(nReg > pParse->nRangeReg)
{
pParse->nRangeReg = nReg;
pParse->iRangeReg = iReg;
}
}
/************** End of expr.c ************************************************/
/************** Begin file alter.c *******************************************/
/*
** 2005 February 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that used to generate VDBE code
** that implements the ALTER TABLE command.
**
*/
/*
** The code in this file only exists if we are not omitting the
** ALTER TABLE logic from the build.
*/
#ifndef SQLITE_OMIT_ALTERTABLE
/*
** This function is used by SQL generated to implement the
** ALTER TABLE command. The first argument is the text of a CREATE TABLE or
** CREATE INDEX command. The second is a table name. The table name in
** the CREATE TABLE or CREATE INDEX statement is replaced with the third
** argument and the result returned. Examples:
**
** sqlite_rename_table('CREATE TABLE abc(a, b, c)', 'def')
** -> 'CREATE TABLE def(a, b, c)'
**
** sqlite_rename_table('CREATE INDEX i ON abc(a)', 'def')
** -> 'CREATE INDEX i ON def(a, b, c)'
*/
static void
renameTableFunc(sqlite3_context * context, int argc, sqlite3_value ** argv)
{
unsigned char const *zSql = sqlite3_value_text(argv[0]);
unsigned char const *zTableName = sqlite3_value_text(argv[1]);
int token;
Token tname;
unsigned char const *zCsr = zSql;
int len = 0;
char *zRet;
sqlite3 *db = sqlite3_context_db_handle(context);
/* The principle used to locate the table name in the CREATE TABLE
** statement is that the table name is the first non-space token that
** is immediately followed by a left parenthesis - TK_LP - or "USING" TK_USING.
*/
if(zSql)
{
do
{
if(!*zCsr)
{
/* Ran out of input before finding an opening bracket. Return NULL. */
return;
}
/* Store the token that zCsr points to in tname. */
tname.z = zCsr;
tname.n = len;
/* Advance zCsr to the next token. Store that token type in 'token',
** and its length in 'len' (to be used next iteration of this loop).
*/
do
{
zCsr += len;
len = sqlite3GetToken(zCsr, &token);
}
while (token == TK_SPACE || token == TK_COMMENT);
assert(len > 0);
}
while (token != TK_LP && token != TK_USING);
zRet = sqlite3MPrintf(db, "%.*s\"%w\"%s", tname.z - zSql, zSql,
zTableName, tname.z + tname.n);
sqlite3_result_text(context, zRet, -1, sqlite3_free);
}
}
#ifndef SQLITE_OMIT_TRIGGER
/* This function is used by SQL generated to implement the
** ALTER TABLE command. The first argument is the text of a CREATE TRIGGER
** statement. The second is a table name. The table name in the CREATE
** TRIGGER statement is replaced with the third argument and the result
** returned. This is analagous to renameTableFunc() above, except for CREATE
** TRIGGER, not CREATE INDEX and CREATE TABLE.
*/
static void
renameTriggerFunc(sqlite3_context * context, int argc, sqlite3_value ** argv)
{
unsigned char const *zSql = sqlite3_value_text(argv[0]);
unsigned char const *zTableName = sqlite3_value_text(argv[1]);
int token;
Token tname;
int dist = 3;
unsigned char const *zCsr = zSql;
int len = 0;
char *zRet;
sqlite3 *db = sqlite3_context_db_handle(context);
/* The principle used to locate the table name in the CREATE TRIGGER
** statement is that the table name is the first token that is immediatedly
** preceded by either TK_ON or TK_DOT and immediatedly followed by one
** of TK_WHEN, TK_BEGIN or TK_FOR.
*/
if(zSql)
{
do
{
if(!*zCsr)
{
/* Ran out of input before finding the table name. Return NULL. */
return;
}
/* Store the token that zCsr points to in tname. */
tname.z = zCsr;
tname.n = len;
/* Advance zCsr to the next token. Store that token type in 'token',
** and its length in 'len' (to be used next iteration of this loop).
*/
do
{
zCsr += len;
len = sqlite3GetToken(zCsr, &token);
}
while (token == TK_SPACE);
assert(len > 0);
/* Variable 'dist' stores the number of tokens read since the most
** recent TK_DOT or TK_ON. This means that when a WHEN, FOR or BEGIN
** token is read and 'dist' equals 2, the condition stated above
** to be met.
**
** Note that ON cannot be a database, table or column name, so
** there is no need to worry about syntax like
** "CREATE TRIGGER ... ON ON.ON BEGIN ..." etc.
*/
dist++;
if(token == TK_DOT || token == TK_ON)
{
dist = 0;
}
}
while (dist != 2 || (token != TK_WHEN && token != TK_FOR && token != TK_BEGIN));
/* Variable tname now contains the token that is the old table-name
** in the CREATE TRIGGER statement.
*/
zRet = sqlite3MPrintf(db, "%.*s\"%w\"%s", tname.z - zSql, zSql,
zTableName, tname.z + tname.n);
sqlite3_result_text(context, zRet, -1, sqlite3_free);
}
}
#endif /* !SQLITE_OMIT_TRIGGER */
/*
** Register built-in functions used to help implement ALTER TABLE
*/
SQLITE_PRIVATE void
sqlite3AlterFunctions(sqlite3 * db)
{
static const struct
{
char *zName;
signed char nArg;
void (*xFunc) (sqlite3_context *, int, sqlite3_value **);
} aFuncs[] =
{
{
"sqlite_rename_table", 2, renameTableFunc},
#ifndef SQLITE_OMIT_TRIGGER
{
"sqlite_rename_trigger", 2, renameTriggerFunc},
#endif
};
int i;
for (i = 0; i < sizeof(aFuncs) / sizeof(aFuncs[0]); i++)
{
sqlite3CreateFunc(db, aFuncs[i].zName, aFuncs[i].nArg,
SQLITE_UTF8, 0, aFuncs[i].xFunc, 0, 0);
}
}
/*
** Generate the text of a WHERE expression which can be used to select all
** temporary triggers on table pTab from the sqlite_temp_master table. If
** table pTab has no temporary triggers, or is itself stored in the
** temporary database, NULL is returned.
*/
static char *
whereTempTriggers(Parse * pParse, Table * pTab)
{
Trigger *pTrig;
char *zWhere = 0;
char *tmp = 0;
const Schema *pTempSchema = pParse->db->aDb[1].pSchema; /* Temp db schema */
/* If the table is not located in the temp-db (in which case NULL is
** returned, loop through the tables list of triggers. For each trigger
** that is not part of the temp-db schema, add a clause to the WHERE
** expression being built up in zWhere.
*/
if(pTab->pSchema != pTempSchema)
{
sqlite3 *db = pParse->db;
for (pTrig = pTab->pTrigger; pTrig; pTrig = pTrig->pNext)
{
if(pTrig->pSchema == pTempSchema)
{
if(!zWhere)
{
zWhere = sqlite3MPrintf(db, "name=%Q", pTrig->name);
}
else
{
tmp = zWhere;
zWhere = sqlite3MPrintf(db, "%s OR name=%Q", zWhere,
pTrig->name);
sqlite3_free(tmp);
}
}
}
}
return zWhere;
}
/*
** Generate code to drop and reload the internal representation of table
** pTab from the database, including triggers and temporary triggers.
** Argument zName is the name of the table in the database schema at
** the time the generated code is executed. This can be different from
** pTab->zName if this function is being called to code part of an
** "ALTER TABLE RENAME TO" statement.
*/
static void
reloadTableSchema(Parse * pParse, Table * pTab, const char *zName)
{
Vdbe *v;
char *zWhere;
int iDb; /* Index of database containing pTab */
#ifndef SQLITE_OMIT_TRIGGER
Trigger *pTrig;
#endif
v = sqlite3GetVdbe(pParse);
if(!v)
return;
assert(sqlite3BtreeHoldsAllMutexes(pParse->db));
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
assert(iDb >= 0);
#ifndef SQLITE_OMIT_TRIGGER
/* Drop any table triggers from the internal schema. */
for (pTrig = pTab->pTrigger; pTrig; pTrig = pTrig->pNext)
{
int iTrigDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema);
assert(iTrigDb == iDb || iTrigDb == 1);
sqlite3VdbeAddOp4(v, OP_DropTrigger, iTrigDb, 0, 0, pTrig->name, 0);
}
#endif
/* Drop the table and index from the internal schema */
sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
/* Reload the table, index and permanent trigger schemas. */
zWhere = sqlite3MPrintf(pParse->db, "tbl_name=%Q", zName);
if(!zWhere)
return;
sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
#ifndef SQLITE_OMIT_TRIGGER
/* Now, if the table is not stored in the temp database, reload any temp
** triggers. Don't use IN(...) in case SQLITE_OMIT_SUBQUERY is defined.
*/
if((zWhere = whereTempTriggers(pParse, pTab)) != 0)
{
sqlite3VdbeAddOp4(v, OP_ParseSchema, 1, 0, 0, zWhere, P4_DYNAMIC);
}
#endif
}
/*
** Generate code to implement the "ALTER TABLE xxx RENAME TO yyy"
** command.
*/
SQLITE_PRIVATE void
sqlite3AlterRenameTable(Parse * pParse, /* Parser context. */
SrcList * pSrc, /* The table to rename. */
Token * pName /* The new table name. */
)
{
int iDb; /* Database that contains the table */
char *zDb; /* Name of database iDb */
Table *pTab; /* Table being renamed */
char *zName = 0; /* NULL-terminated version of pName */
sqlite3 *db = pParse->db; /* Database connection */
int nTabName; /* Number of UTF-8 characters in zTabName */
const char *zTabName; /* Original name of the table */
Vdbe *v;
#ifndef SQLITE_OMIT_TRIGGER
char *zWhere = 0; /* Where clause to locate temp triggers */
#endif
int isVirtualRename = 0; /* True if this is a v-table with an xRename() */
if(db->mallocFailed)
goto exit_rename_table;
assert(pSrc->nSrc == 1);
assert(sqlite3BtreeHoldsAllMutexes(pParse->db));
pTab = sqlite3LocateTable(pParse, 0, pSrc->a[0].zName, pSrc->a[0].zDatabase);
if(!pTab)
goto exit_rename_table;
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
zDb = db->aDb[iDb].zName;
/* Get a NULL terminated version of the new table name. */
zName = sqlite3NameFromToken(db, pName);
if(!zName)
goto exit_rename_table;
/* Check that a table or index named 'zName' does not already exist
** in database iDb. If so, this is an error.
*/
if(sqlite3FindTable(db, zName, zDb) || sqlite3FindIndex(db, zName, zDb))
{
sqlite3ErrorMsg(pParse,
"there is already another table or index with this name: %s",
zName);
goto exit_rename_table;
}
/* Make sure it is not a system table being altered, or a reserved name
** that the table is being renamed to.
*/
if(strlen(pTab->zName) > 6 && 0 == sqlite3StrNICmp(pTab->zName, "sqlite_", 7))
{
sqlite3ErrorMsg(pParse, "table %s may not be altered", pTab->zName);
goto exit_rename_table;
}
if(SQLITE_OK != sqlite3CheckObjectName(pParse, zName))
{
goto exit_rename_table;
}
#ifndef SQLITE_OMIT_VIEW
if(pTab->pSelect)
{
sqlite3ErrorMsg(pParse, "view %s may not be altered", pTab->zName);
goto exit_rename_table;
}
#endif
#ifndef SQLITE_OMIT_AUTHORIZATION
/* Invoke the authorization callback. */
if(sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, 0))
{
goto exit_rename_table;
}
#endif
#ifndef SQLITE_OMIT_VIRTUALTABLE
if(sqlite3ViewGetColumnNames(pParse, pTab))
{
goto exit_rename_table;
}
if(IsVirtual(pTab) && pTab->pMod->pModule->xRename)
{
isVirtualRename = 1;
}
#endif
/* Begin a transaction and code the VerifyCookie for database iDb.
** Then modify the schema cookie (since the ALTER TABLE modifies the
** schema). Open a statement transaction if the table is a virtual
** table.
*/
v = sqlite3GetVdbe(pParse);
if(v == 0)
{
goto exit_rename_table;
}
sqlite3BeginWriteOperation(pParse, isVirtualRename, iDb);
sqlite3ChangeCookie(pParse, iDb);
/* If this is a virtual table, invoke the xRename() function if
** one is defined. The xRename() callback will modify the names
** of any resources used by the v-table implementation (including other
** SQLite tables) that are identified by the name of the virtual table.
*/
#ifndef SQLITE_OMIT_VIRTUALTABLE
if(isVirtualRename)
{
int i = ++pParse->nMem;
sqlite3VdbeAddOp4(v, OP_String8, 0, i, 0, zName, 0);
sqlite3VdbeAddOp4(v, OP_VRename, i, 0, 0, (const char *) pTab->pVtab, P4_VTAB);
}
#endif
/* figure out how many UTF-8 characters are in zName */
zTabName = pTab->zName;
nTabName = sqlite3Utf8CharLen(zTabName, -1);
/* Modify the sqlite_master table to use the new table name. */
sqlite3NestedParse(pParse, "UPDATE %Q.%s SET "
#ifdef SQLITE_OMIT_TRIGGER
"sql = sqlite_rename_table(sql, %Q), "
#else
"sql = CASE "
"WHEN type = 'trigger' THEN sqlite_rename_trigger(sql, %Q)"
"ELSE sqlite_rename_table(sql, %Q) END, "
#endif
"tbl_name = %Q, "
"name = CASE "
"WHEN type='table' THEN %Q "
"WHEN name LIKE 'sqlite_autoindex%%' AND type='index' THEN "
"'sqlite_autoindex_' || %Q || substr(name,%d+18) "
"ELSE name END "
"WHERE tbl_name=%Q AND "
"(type='table' OR type='index' OR type='trigger');",
zDb, SCHEMA_TABLE(iDb), zName, zName, zName,
#ifndef SQLITE_OMIT_TRIGGER
zName,
#endif
zName, nTabName, zTabName);
#ifndef SQLITE_OMIT_AUTOINCREMENT
/* If the sqlite_sequence table exists in this database, then update
** it with the new table name.
*/
if(sqlite3FindTable(db, "sqlite_sequence", zDb))
{
sqlite3NestedParse(pParse,
"UPDATE \"%w\".sqlite_sequence set name = %Q WHERE name = %Q",
zDb, zName, pTab->zName);
}
#endif
#ifndef SQLITE_OMIT_TRIGGER
/* If there are TEMP triggers on this table, modify the sqlite_temp_master
** table. Don't do this if the table being ALTERed is itself located in
** the temp database.
*/
if((zWhere = whereTempTriggers(pParse, pTab)) != 0)
{
sqlite3NestedParse(pParse,
"UPDATE sqlite_temp_master SET "
"sql = sqlite_rename_trigger(sql, %Q), "
"tbl_name = %Q " "WHERE %s;", zName, zName, zWhere);
sqlite3_free(zWhere);
}
#endif
/* Drop and reload the internal table schema. */
reloadTableSchema(pParse, pTab, zName);
exit_rename_table:
sqlite3SrcListDelete(pSrc);
sqlite3_free(zName);
}
/*
** This function is called after an "ALTER TABLE ... ADD" statement
** has been parsed. Argument pColDef contains the text of the new
** column definition.
**
** The Table structure pParse->pNewTable was extended to include
** the new column during parsing.
*/
SQLITE_PRIVATE void
sqlite3AlterFinishAddColumn(Parse * pParse, Token * pColDef)
{
Table *pNew; /* Copy of pParse->pNewTable */
Table *pTab; /* Table being altered */
int iDb; /* Database number */
const char *zDb; /* Database name */
const char *zTab; /* Table name */
char *zCol; /* Null-terminated column definition */
Column *pCol; /* The new column */
Expr *pDflt; /* Default value for the new column */
sqlite3 *db; /* The database connection; */
if(pParse->nErr)
return;
pNew = pParse->pNewTable;
assert(pNew);
db = pParse->db;
assert(sqlite3BtreeHoldsAllMutexes(db));
iDb = sqlite3SchemaToIndex(db, pNew->pSchema);
zDb = db->aDb[iDb].zName;
zTab = pNew->zName;
pCol = &pNew->aCol[pNew->nCol - 1];
pDflt = pCol->pDflt;
pTab = sqlite3FindTable(db, zTab, zDb);
assert(pTab);
#ifndef SQLITE_OMIT_AUTHORIZATION
/* Invoke the authorization callback. */
if(sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, 0))
{
return;
}
#endif
/* If the default value for the new column was specified with a
** literal NULL, then set pDflt to 0. This simplifies checking
** for an SQL NULL default below.
*/
if(pDflt && pDflt->op == TK_NULL)
{
pDflt = 0;
}
/* Check that the new column is not specified as PRIMARY KEY or UNIQUE.
** If there is a NOT NULL constraint, then the default value for the
** column must not be NULL.
*/
if(pCol->isPrimKey)
{
sqlite3ErrorMsg(pParse, "Cannot add a PRIMARY KEY column");
return;
}
if(pNew->pIndex)
{
sqlite3ErrorMsg(pParse, "Cannot add a UNIQUE column");
return;
}
if(pCol->notNull && !pDflt)
{
sqlite3ErrorMsg(pParse, "Cannot add a NOT NULL column with default value NULL");
return;
}
/* Ensure the default expression is something that sqlite3ValueFromExpr()
** can handle (i.e. not CURRENT_TIME etc.)
*/
if(pDflt)
{
sqlite3_value *pVal;
if(sqlite3ValueFromExpr(db, pDflt, SQLITE_UTF8, SQLITE_AFF_NONE, &pVal))
{
db->mallocFailed = 1;
return;
}
if(!pVal)
{
sqlite3ErrorMsg(pParse, "Cannot add a column with non-constant default");
return;
}
sqlite3ValueFree(pVal);
}
/* Modify the CREATE TABLE statement. */
zCol = sqlite3DbStrNDup(db, (char *) pColDef->z, pColDef->n);
if(zCol)
{
char *zEnd = &zCol[pColDef->n - 1];
while ((zEnd > zCol && *zEnd == ';') || isspace(*(unsigned char *) zEnd))
{
*zEnd-- = '\0';
}
sqlite3NestedParse(pParse,
"UPDATE \"%w\".%s SET "
"sql = substr(sql,1,%d) || ', ' || %Q || substr(sql,%d) "
"WHERE type = 'table' AND name = %Q",
zDb, SCHEMA_TABLE(iDb), pNew->addColOffset, zCol,
pNew->addColOffset + 1, zTab);
sqlite3_free(zCol);
}
/* If the default value of the new column is NULL, then set the file
** format to 2. If the default value of the new column is not NULL,
** the file format becomes 3.
*/
sqlite3MinimumFileFormat(pParse, iDb, pDflt ? 3 : 2);
/* Reload the schema of the modified table. */
reloadTableSchema(pParse, pTab, pTab->zName);
}
/*
** This function is called by the parser after the table-name in
** an "ALTER TABLE <table-name> ADD" statement is parsed. Argument
** pSrc is the full-name of the table being altered.
**
** This routine makes a (partial) copy of the Table structure
** for the table being altered and sets Parse.pNewTable to point
** to it. Routines called by the parser as the column definition
** is parsed (i.e. sqlite3AddColumn()) add the new Column data to
** the copy. The copy of the Table structure is deleted by tokenize.c
** after parsing is finished.
**
** Routine sqlite3AlterFinishAddColumn() will be called to complete
** coding the "ALTER TABLE ... ADD" statement.
*/
SQLITE_PRIVATE void
sqlite3AlterBeginAddColumn(Parse * pParse, SrcList * pSrc)
{
Table *pNew;
Table *pTab;
Vdbe *v;
int iDb;
int i;
int nAlloc;
sqlite3 *db = pParse->db;
/* Look up the table being altered. */
assert(pParse->pNewTable == 0);
assert(sqlite3BtreeHoldsAllMutexes(db));
if(db->mallocFailed)
goto exit_begin_add_column;
pTab = sqlite3LocateTable(pParse, 0, pSrc->a[0].zName, pSrc->a[0].zDatabase);
if(!pTab)
goto exit_begin_add_column;
#ifndef SQLITE_OMIT_VIRTUALTABLE
if(IsVirtual(pTab))
{
sqlite3ErrorMsg(pParse, "virtual tables may not be altered");
goto exit_begin_add_column;
}
#endif
/* Make sure this is not an attempt to ALTER a view. */
if(pTab->pSelect)
{
sqlite3ErrorMsg(pParse, "Cannot add a column to a view");
goto exit_begin_add_column;
}
assert(pTab->addColOffset > 0);
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
/* Put a copy of the Table struct in Parse.pNewTable for the
** sqlite3AddColumn() function and friends to modify.
*/
pNew = (Table *) sqlite3DbMallocZero(db, sizeof(Table));
if(!pNew)
goto exit_begin_add_column;
pParse->pNewTable = pNew;
pNew->nRef = 1;
pNew->nCol = pTab->nCol;
assert(pNew->nCol > 0);
nAlloc = (((pNew->nCol - 1) / 8) * 8) + 8;
assert(nAlloc >= pNew->nCol && nAlloc % 8 == 0 && nAlloc - pNew->nCol < 8);
pNew->aCol = (Column *) sqlite3DbMallocZero(db, sizeof(Column) * nAlloc);
pNew->zName = sqlite3DbStrDup(db, pTab->zName);
if(!pNew->aCol || !pNew->zName)
{
db->mallocFailed = 1;
goto exit_begin_add_column;
}
memcpy(pNew->aCol, pTab->aCol, sizeof(Column) * pNew->nCol);
for (i = 0; i < pNew->nCol; i++)
{
Column *pCol = &pNew->aCol[i];
pCol->zName = sqlite3DbStrDup(db, pCol->zName);
pCol->zColl = 0;
pCol->zType = 0;
pCol->pDflt = 0;
}
pNew->pSchema = db->aDb[iDb].pSchema;
pNew->addColOffset = pTab->addColOffset;
pNew->nRef = 1;
/* Begin a transaction and increment the schema cookie. */
sqlite3BeginWriteOperation(pParse, 0, iDb);
v = sqlite3GetVdbe(pParse);
if(!v)
goto exit_begin_add_column;
sqlite3ChangeCookie(pParse, iDb);
exit_begin_add_column:
sqlite3SrcListDelete(pSrc);
return;
}
#endif /* SQLITE_ALTER_TABLE */
/************** End of alter.c ***********************************************/
/************** Begin file analyze.c *****************************************/
/*
** 2005 July 8
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code associated with the ANALYZE command.
**
*/
#ifndef SQLITE_OMIT_ANALYZE
/*
** This routine generates code that opens the sqlite_stat1 table on cursor
** iStatCur.
**
** If the sqlite_stat1 tables does not previously exist, it is created.
** If it does previously exist, all entires associated with table zWhere
** are removed. If zWhere==0 then all entries are removed.
*/
static void
openStatTable(Parse * pParse, /* Parsing context */
int iDb, /* The database we are looking in */
int iStatCur, /* Open the sqlite_stat1 table on this cursor */
const char *zWhere /* Delete entries associated with this table */
)
{
sqlite3 *db = pParse->db;
Db *pDb;
int iRootPage;
int createStat1 = 0;
Table *pStat;
Vdbe *v = sqlite3GetVdbe(pParse);
if(v == 0)
return;
assert(sqlite3BtreeHoldsAllMutexes(db));
assert(sqlite3VdbeDb(v) == db);
pDb = &db->aDb[iDb];
if((pStat = sqlite3FindTable(db, "sqlite_stat1", pDb->zName)) == 0)
{
/* The sqlite_stat1 tables does not exist. Create it.
** Note that a side-effect of the CREATE TABLE statement is to leave
** the rootpage of the new table in register pParse->regRoot. This is
** important because the OpenWrite opcode below will be needing it. */
sqlite3NestedParse(pParse,
"CREATE TABLE %Q.sqlite_stat1(tbl,idx,stat)", pDb->zName);
iRootPage = pParse->regRoot;
createStat1 = 1; /* Cause rootpage to be taken from top of stack */
}
else if(zWhere)
{
/* The sqlite_stat1 table exists. Delete all entries associated with
** the table zWhere. */
sqlite3NestedParse(pParse,
"DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q", pDb->zName, zWhere);
iRootPage = pStat->tnum;
}
else
{
/* The sqlite_stat1 table already exists. Delete all rows. */
iRootPage = pStat->tnum;
sqlite3VdbeAddOp2(v, OP_Clear, pStat->tnum, iDb);
}
/* Open the sqlite_stat1 table for writing. Unless it was created
** by this vdbe program, lock it for writing at the shared-cache level.
** If this vdbe did create the sqlite_stat1 table, then it must have
** already obtained a schema-lock, making the write-lock redundant.
*/
if(!createStat1)
{
sqlite3TableLock(pParse, iDb, iRootPage, 1, "sqlite_stat1");
}
sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, 3);
sqlite3VdbeAddOp3(v, OP_OpenWrite, iStatCur, iRootPage, iDb);
sqlite3VdbeChangeP5(v, createStat1);
}
/*
** Generate code to do an analysis of all indices associated with
** a single table.
*/
static void
analyzeOneTable(Parse * pParse, /* Parser context */
Table * pTab, /* Table whose indices are to be analyzed */
int iStatCur, /* Cursor that writes to the sqlite_stat1 table */
int iMem /* Available memory locations begin here */
)
{
Index *pIdx; /* An index to being analyzed */
int iIdxCur; /* Cursor number for index being analyzed */
int nCol; /* Number of columns in the index */
Vdbe *v; /* The virtual machine being built up */
int i; /* Loop counter */
int topOfLoop; /* The top of the loop */
int endOfLoop; /* The end of the loop */
int addr; /* The address of an instruction */
int iDb; /* Index of database containing pTab */
v = sqlite3GetVdbe(pParse);
if(v == 0 || pTab == 0 || pTab->pIndex == 0)
{
/* Do no analysis for tables that have no indices */
return;
}
assert(sqlite3BtreeHoldsAllMutexes(pParse->db));
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
assert(iDb >= 0);
#ifndef SQLITE_OMIT_AUTHORIZATION
if(sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0, pParse->db->aDb[iDb].zName))
{
return;
}
#endif
/* Establish a read-lock on the table at the shared-cache level. */
sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
iIdxCur = pParse->nTab;
for (pIdx = pTab->pIndex; pIdx; pIdx = pIdx->pNext)
{
KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
int regFields; /* Register block for building records */
int regRec; /* Register holding completed record */
int regTemp; /* Temporary use register */
int regCol; /* Content of a column from the table being analyzed */
int regRowid; /* Rowid for the inserted record */
int regF2;
/* Open a cursor to the index to be analyzed
*/
assert(iDb == sqlite3SchemaToIndex(pParse->db, pIdx->pSchema));
nCol = pIdx->nColumn;
sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, nCol + 1);
sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb,
(char *) pKey, P4_KEYINFO_HANDOFF);
VdbeComment((v, "%s", pIdx->zName));
regFields = iMem + nCol * 2;
regTemp = regRowid = regCol = regFields + 3;
regRec = regCol + 1;
if(regRec > pParse->nMem)
{
pParse->nMem = regRec;
}
/* Memory cells are used as follows:
**
** mem[iMem]: The total number of rows in the table.
** mem[iMem+1]: Number of distinct values in column 1
** ...
** mem[iMem+nCol]: Number of distinct values in column N
** mem[iMem+nCol+1] Last observed value of column 1
** ...
** mem[iMem+nCol+nCol]: Last observed value of column N
**
** Cells iMem through iMem+nCol are initialized to 0. The others
** are initialized to NULL.
*/
for (i = 0; i <= nCol; i++)
{
sqlite3VdbeAddOp2(v, OP_Integer, 0, iMem + i);
}
for (i = 0; i < nCol; i++)
{
sqlite3VdbeAddOp2(v, OP_Null, 0, iMem + nCol + i + 1);
}
/* Do the analysis.
*/
endOfLoop = sqlite3VdbeMakeLabel(v);
sqlite3VdbeAddOp2(v, OP_Rewind, iIdxCur, endOfLoop);
topOfLoop = sqlite3VdbeCurrentAddr(v);
sqlite3VdbeAddOp2(v, OP_AddImm, iMem, 1);
for (i = 0; i < nCol; i++)
{
sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regCol);
sqlite3VdbeAddOp3(v, OP_Ne, regCol, 0, iMem + nCol + i + 1);
/**** TODO: add collating sequence *****/
sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
}
sqlite3VdbeAddOp2(v, OP_Goto, 0, endOfLoop);
for (i = 0; i < nCol; i++)
{
sqlite3VdbeJumpHere(v, topOfLoop + 2 * (i + 1));
sqlite3VdbeAddOp2(v, OP_AddImm, iMem + i + 1, 1);
sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, iMem + nCol + i + 1);
}
sqlite3VdbeResolveLabel(v, endOfLoop);
sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, topOfLoop);
sqlite3VdbeAddOp1(v, OP_Close, iIdxCur);
/* Store the results.
**
** The result is a single row of the sqlite_stat1 table. The first
** two columns are the names of the table and index. The third column
** is a string composed of a list of integer statistics about the
** index. The first integer in the list is the total number of entires
** in the index. There is one additional integer in the list for each
** column of the table. This additional integer is a guess of how many
** rows of the table the index will select. If D is the count of distinct
** values and K is the total number of rows, then the integer is computed
** as:
**
** I = (K+D-1)/D
**
** If K==0 then no entry is made into the sqlite_stat1 table.
** If K>0 then it is always the case the D>0 so division by zero
** is never possible.
*/
addr = sqlite3VdbeAddOp1(v, OP_IfNot, iMem);
sqlite3VdbeAddOp4(v, OP_String8, 0, regFields, 0, pTab->zName, 0);
sqlite3VdbeAddOp4(v, OP_String8, 0, regFields + 1, 0, pIdx->zName, 0);
regF2 = regFields + 2;
sqlite3VdbeAddOp2(v, OP_SCopy, iMem, regF2);
for (i = 0; i < nCol; i++)
{
sqlite3VdbeAddOp4(v, OP_String8, 0, regTemp, 0, " ", 0);
sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regF2, regF2);
sqlite3VdbeAddOp3(v, OP_Add, iMem, iMem + i + 1, regTemp);
sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1);
sqlite3VdbeAddOp3(v, OP_Divide, iMem + i + 1, regTemp, regTemp);
sqlite3VdbeAddOp1(v, OP_ToInt, regTemp);
sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regF2, regF2);
}
sqlite3VdbeAddOp4(v, OP_MakeRecord, regFields, 3, regRec, "aaa", 0);
sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regRowid);
sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regRowid);
sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
sqlite3VdbeJumpHere(v, addr);
}
}
/*
** Generate code that will cause the most recent index analysis to
** be laoded into internal hash tables where is can be used.
*/
static void
loadAnalysis(Parse * pParse, int iDb)
{
Vdbe *v = sqlite3GetVdbe(pParse);
if(v)
{
sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb);
}
}
/*
** Generate code that will do an analysis of an entire database
*/
static void
analyzeDatabase(Parse * pParse, int iDb)
{
sqlite3 *db = pParse->db;
Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */
HashElem *k;
int iStatCur;
int iMem;
sqlite3BeginWriteOperation(pParse, 0, iDb);
iStatCur = pParse->nTab++;
openStatTable(pParse, iDb, iStatCur, 0);
iMem = pParse->nMem + 1;
for (k = sqliteHashFirst(&pSchema->tblHash); k; k = sqliteHashNext(k))
{
Table *pTab = (Table *) sqliteHashData(k);
analyzeOneTable(pParse, pTab, iStatCur, iMem);
}
loadAnalysis(pParse, iDb);
}
/*
** Generate code that will do an analysis of a single table in
** a database.
*/
static void
analyzeTable(Parse * pParse, Table * pTab)
{
int iDb;
int iStatCur;
assert(pTab != 0);
assert(sqlite3BtreeHoldsAllMutexes(pParse->db));
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
sqlite3BeginWriteOperation(pParse, 0, iDb);
iStatCur = pParse->nTab++;
openStatTable(pParse, iDb, iStatCur, pTab->zName);
analyzeOneTable(pParse, pTab, iStatCur, pParse->nMem + 1);
loadAnalysis(pParse, iDb);
}
/*
** Generate code for the ANALYZE command. The parser calls this routine
** when it recognizes an ANALYZE command.
**
** ANALYZE -- 1
** ANALYZE <database> -- 2
** ANALYZE ?<database>.?<tablename> -- 3
**
** Form 1 causes all indices in all attached databases to be analyzed.
** Form 2 analyzes all indices the single database named.
** Form 3 analyzes all indices associated with the named table.
*/
SQLITE_PRIVATE void
sqlite3Analyze(Parse * pParse, Token * pName1, Token * pName2)
{
sqlite3 *db = pParse->db;
int iDb;
int i;
char *z, *zDb;
Table *pTab;
Token *pTableName;
/* Read the database schema. If an error occurs, leave an error message
** and code in pParse and return NULL. */
assert(sqlite3BtreeHoldsAllMutexes(pParse->db));
if(SQLITE_OK != sqlite3ReadSchema(pParse))
{
return;
}
if(pName1 == 0)
{
/* Form 1: Analyze everything */
for (i = 0; i < db->nDb; i++)
{
if(i == 1)
continue; /* Do not analyze the TEMP database */
analyzeDatabase(pParse, i);
}
}
else if(pName2 == 0 || pName2->n == 0)
{
/* Form 2: Analyze the database or table named */
iDb = sqlite3FindDb(db, pName1);
if(iDb >= 0)
{
analyzeDatabase(pParse, iDb);
}
else
{
z = sqlite3NameFromToken(db, pName1);
if(z)
{
pTab = sqlite3LocateTable(pParse, 0, z, 0);
sqlite3_free(z);
if(pTab)
{
analyzeTable(pParse, pTab);
}
}
}
}
else
{
/* Form 3: Analyze the fully qualified table name */
iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName);
if(iDb >= 0)
{
zDb = db->aDb[iDb].zName;
z = sqlite3NameFromToken(db, pTableName);
if(z)
{
pTab = sqlite3LocateTable(pParse, 0, z, zDb);
sqlite3_free(z);
if(pTab)
{
analyzeTable(pParse, pTab);
}
}
}
}
}
/*
** Used to pass information from the analyzer reader through to the
** callback routine.
*/
typedef struct analysisInfo analysisInfo;
struct analysisInfo
{
sqlite3 *db;
const char *zDatabase;
};
/*
** This callback is invoked once for each index when reading the
** sqlite_stat1 table.
**
** argv[0] = name of the index
** argv[1] = results of analysis - on integer for each column
*/
static int
analysisLoader(void *pData, int argc, char **argv, char **azNotUsed)
{
analysisInfo *pInfo = (analysisInfo *) pData;
Index *pIndex;
int i, c;
unsigned int v;
const char *z;
assert(argc == 2);
if(argv == 0 || argv[0] == 0 || argv[1] == 0)
{
return 0;
}
pIndex = sqlite3FindIndex(pInfo->db, argv[0], pInfo->zDatabase);
if(pIndex == 0)
{
return 0;
}
z = argv[1];
for (i = 0; *z && i <= pIndex->nColumn; i++)
{
v = 0;
while ((c = z[0]) >= '0' && c <= '9')
{
v = v * 10 + c - '0';
z++;
}
pIndex->aiRowEst[i] = v;
if(*z == ' ')
z++;
}
return 0;
}
/*
** Load the content of the sqlite_stat1 table into the index hash tables.
*/
SQLITE_PRIVATE int
sqlite3AnalysisLoad(sqlite3 * db, int iDb)
{
analysisInfo sInfo;
HashElem *i;
char *zSql;
int rc;
assert(iDb >= 0 && iDb < db->nDb);
assert(db->aDb[iDb].pBt != 0);
assert(sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt));
/* Clear any prior statistics */
for (i = sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash); i; i = sqliteHashNext(i))
{
Index *pIdx = sqliteHashData(i);
sqlite3DefaultRowEst(pIdx);
}
/* Check to make sure the sqlite_stat1 table existss */
sInfo.db = db;
sInfo.zDatabase = db->aDb[iDb].zName;
if(sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase) == 0)
{
return SQLITE_ERROR;
}
/* Load new statistics out of the sqlite_stat1 table */
zSql = sqlite3MPrintf(db, "SELECT idx, stat FROM %Q.sqlite_stat1", sInfo.zDatabase);
(void) sqlite3SafetyOff(db);
rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
(void) sqlite3SafetyOn(db);
sqlite3_free(zSql);
return rc;
}
#endif /* SQLITE_OMIT_ANALYZE */
/************** End of analyze.c *********************************************/
/************** Begin file attach.c ******************************************/
/*
** 2003 April 6
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code used to implement the ATTACH and DETACH commands.
**
*/
#ifndef SQLITE_OMIT_ATTACH
/*
** Resolve an expression that was part of an ATTACH or DETACH statement. This
** is slightly different from resolving a normal SQL expression, because simple
** identifiers are treated as strings, not possible column names or aliases.
**
** i.e. if the parser sees:
**
** ATTACH DATABASE abc AS def
**
** it treats the two expressions as literal strings 'abc' and 'def' instead of
** looking for columns of the same name.
**
** This only applies to the root node of pExpr, so the statement:
**
** ATTACH DATABASE abc||def AS 'db2'
**
** will fail because neither abc or def can be resolved.
*/
static int
resolveAttachExpr(NameContext * pName, Expr * pExpr)
{
int rc = SQLITE_OK;
if(pExpr)
{
if(pExpr->op != TK_ID)
{
rc = sqlite3ExprResolveNames(pName, pExpr);
if(rc == SQLITE_OK && !sqlite3ExprIsConstant(pExpr))
{
sqlite3ErrorMsg(pName->pParse, "invalid name: \"%T\"",
&pExpr->span);
return SQLITE_ERROR;
}
}
else
{
pExpr->op = TK_STRING;
}
}
return rc;
}
/*
** An SQL user-function registered to do the work of an ATTACH statement. The
** three arguments to the function come directly from an attach statement:
**
** ATTACH DATABASE x AS y KEY z
**
** SELECT sqlite_attach(x, y, z)
**
** If the optional "KEY z" syntax is omitted, an SQL NULL is passed as the
** third argument.
*/
static void
attachFunc(sqlite3_context * context, int argc, sqlite3_value ** argv)
{
int i;
int rc = 0;
sqlite3 *db = sqlite3_context_db_handle(context);
const char *zName;
const char *zFile;
Db *aNew;
char *zErrDyn = 0;
char zErr[128];
zFile = (const char *) sqlite3_value_text(argv[0]);
zName = (const char *) sqlite3_value_text(argv[1]);
if(zFile == 0)
zFile = "";
if(zName == 0)
zName = "";
/* Check for the following errors:
**
** * Too many attached databases,
** * Transaction currently open
** * Specified database name already being used.
*/
if(db->nDb >= db->aLimit[SQLITE_LIMIT_ATTACHED] + 2)
{
sqlite3_snprintf(sizeof(zErr), zErr, "too many attached databases - max %d",
db->aLimit[SQLITE_LIMIT_ATTACHED]);
goto attach_error;
}
if(!db->autoCommit)
{
sqlite3_snprintf(sizeof(zErr), zErr, "cannot ATTACH database within transaction");
goto attach_error;
}
for (i = 0; i < db->nDb; i++)
{
char *z = db->aDb[i].zName;
if(z && zName && sqlite3StrICmp(z, zName) == 0)
{
sqlite3_snprintf(sizeof(zErr), zErr,
"database %s is already in use", zName);
goto attach_error;
}
}
/* Allocate the new entry in the db->aDb[] array and initialise the schema
** hash tables.
*/
if(db->aDb == db->aDbStatic)
{
aNew = sqlite3_malloc(sizeof(db->aDb[0]) * 3);
if(aNew == 0)
{
db->mallocFailed = 1;
return;
}
memcpy(aNew, db->aDb, sizeof(db->aDb[0]) * 2);
}
else
{
aNew = sqlite3_realloc(db->aDb, sizeof(db->aDb[0]) * (db->nDb + 1));
if(aNew == 0)
{
db->mallocFailed = 1;
return;
}
}
db->aDb = aNew;
aNew = &db->aDb[db->nDb++];
memset(aNew, 0, sizeof(*aNew));
/* Open the database file. If the btree is successfully opened, use
** it to obtain the database schema. At this point the schema may
** or may not be initialised.
*/
rc = sqlite3BtreeFactory(db, zFile, 0, SQLITE_DEFAULT_CACHE_SIZE,
db->openFlags | SQLITE_OPEN_MAIN_DB, &aNew->pBt);
if(rc == SQLITE_OK)
{
Pager *pPager;
aNew->pSchema = sqlite3SchemaGet(db, aNew->pBt);
if(!aNew->pSchema)
{
rc = SQLITE_NOMEM;
}
else if(aNew->pSchema->file_format && aNew->pSchema->enc != ENC(db))
{
sqlite3_snprintf(sizeof(zErr), zErr,
"attached databases must use the same text encoding as main database");
goto attach_error;
}
pPager = sqlite3BtreePager(aNew->pBt);
sqlite3PagerLockingMode(pPager, db->dfltLockMode);
sqlite3PagerJournalMode(pPager, db->dfltJournalMode);
}
aNew->zName = sqlite3DbStrDup(db, zName);
aNew->safety_level = 3;
#if SQLITE_HAS_CODEC
{
extern int sqlite3CodecAttach(sqlite3 *, int, const void *, int);
extern void sqlite3CodecGetKey(sqlite3 *, int, void **, int *);
int nKey;
char *zKey;
int t = sqlite3_value_type(argv[2]);
switch (t)
{
case SQLITE_INTEGER:
case SQLITE_FLOAT:
zErrDyn = sqlite3DbStrDup(db, "Invalid key value");
rc = SQLITE_ERROR;
break;
case SQLITE_TEXT:
case SQLITE_BLOB:
nKey = sqlite3_value_bytes(argv[2]);
zKey = (char *) sqlite3_value_blob(argv[2]);
sqlite3CodecAttach(db, db->nDb - 1, zKey, nKey);
break;
case SQLITE_NULL:
/* No key specified. Use the key from the main database */
sqlite3CodecGetKey(db, 0, (void **) &zKey, &nKey);
sqlite3CodecAttach(db, db->nDb - 1, zKey, nKey);
break;
}
}
#endif
/* If the file was opened successfully, read the schema for the new database.
** If this fails, or if opening the file failed, then close the file and
** remove the entry from the db->aDb[] array. i.e. put everything back the way
** we found it.
*/
if(rc == SQLITE_OK)
{
(void) sqlite3SafetyOn(db);
sqlite3BtreeEnterAll(db);
rc = sqlite3Init(db, &zErrDyn);
sqlite3BtreeLeaveAll(db);
(void) sqlite3SafetyOff(db);
}
if(rc)
{
int iDb = db->nDb - 1;
assert(iDb >= 2);
if(db->aDb[iDb].pBt)
{
sqlite3BtreeClose(db->aDb[iDb].pBt);
db->aDb[iDb].pBt = 0;
db->aDb[iDb].pSchema = 0;
}
sqlite3ResetInternalSchema(db, 0);
db->nDb = iDb;
if(rc == SQLITE_NOMEM || rc == SQLITE_IOERR_NOMEM)
{
db->mallocFailed = 1;
sqlite3_snprintf(sizeof(zErr), zErr, "out of memory");
}
else
{
sqlite3_snprintf(sizeof(zErr), zErr, "unable to open database: %s", zFile);
}
goto attach_error;
}
return;
attach_error:
/* Return an error if we get here */
if(zErrDyn)
{
sqlite3_result_error(context, zErrDyn, -1);
sqlite3_free(zErrDyn);
}
else
{
zErr[sizeof(zErr) - 1] = 0;
sqlite3_result_error(context, zErr, -1);
}
if(rc)
sqlite3_result_error_code(context, rc);
}
/*
** An SQL user-function registered to do the work of an DETACH statement. The
** three arguments to the function come directly from a detach statement:
**
** DETACH DATABASE x
**
** SELECT sqlite_detach(x)
*/
static void
detachFunc(sqlite3_context * context, int argc, sqlite3_value ** argv)
{
const char *zName = (const char *) sqlite3_value_text(argv[0]);
sqlite3 *db = sqlite3_context_db_handle(context);
int i;
Db *pDb = 0;
char zErr[128];
if(zName == 0)
zName = "";
for (i = 0; i < db->nDb; i++)
{
pDb = &db->aDb[i];
if(pDb->pBt == 0)
continue;
if(sqlite3StrICmp(pDb->zName, zName) == 0)
break;
}
if(i >= db->nDb)
{
sqlite3_snprintf(sizeof(zErr), zErr, "no such database: %s", zName);
goto detach_error;
}
if(i < 2)
{
sqlite3_snprintf(sizeof(zErr), zErr, "cannot detach database %s", zName);
goto detach_error;
}
if(!db->autoCommit)
{
sqlite3_snprintf(sizeof(zErr), zErr, "cannot DETACH database within transaction");
goto detach_error;
}
if(sqlite3BtreeIsInReadTrans(pDb->pBt))
{
sqlite3_snprintf(sizeof(zErr), zErr, "database %s is locked", zName);
goto detach_error;
}
sqlite3BtreeClose(pDb->pBt);
pDb->pBt = 0;
pDb->pSchema = 0;
sqlite3ResetInternalSchema(db, 0);
return;
detach_error:
sqlite3_result_error(context, zErr, -1);
}
/*
** This procedure generates VDBE code for a single invocation of either the
** sqlite_detach() or sqlite_attach() SQL user functions.
*/
static void
codeAttach(Parse * pParse, /* The parser context */
int type, /* Either SQLITE_ATTACH or SQLITE_DETACH */
const char *zFunc, /* Either "sqlite_attach" or "sqlite_detach */
int nFunc, /* Number of args to pass to zFunc */
Expr * pAuthArg, /* Expression to pass to authorization callback */
Expr * pFilename, /* Name of database file */
Expr * pDbname, /* Name of the database to use internally */
Expr * pKey /* Database key for encryption extension */
)
{
int rc;
NameContext sName;
Vdbe *v;
FuncDef *pFunc;
sqlite3 *db = pParse->db;
int regArgs;
#ifndef SQLITE_OMIT_AUTHORIZATION
assert(db->mallocFailed || pAuthArg);
if(pAuthArg)
{
char *zAuthArg = sqlite3NameFromToken(db, &pAuthArg->span);
if(!zAuthArg)
{
goto attach_end;
}
rc = sqlite3AuthCheck(pParse, type, zAuthArg, 0, 0);
sqlite3_free(zAuthArg);
if(rc != SQLITE_OK)
{
goto attach_end;
}
}
#endif /* SQLITE_OMIT_AUTHORIZATION */
memset(&sName, 0, sizeof(NameContext));
sName.pParse = pParse;
if(SQLITE_OK != (rc = resolveAttachExpr(&sName, pFilename)) ||
SQLITE_OK != (rc = resolveAttachExpr(&sName, pDbname)) ||
SQLITE_OK != (rc = resolveAttachExpr(&sName, pKey)))
{
pParse->nErr++;
goto attach_end;
}
v = sqlite3GetVdbe(pParse);
regArgs = sqlite3GetTempRange(pParse, 4);
sqlite3ExprCode(pParse, pFilename, regArgs);
sqlite3ExprCode(pParse, pDbname, regArgs + 1);
sqlite3ExprCode(pParse, pKey, regArgs + 2);
assert(v || db->mallocFailed);
if(v)
{
sqlite3VdbeAddOp3(v, OP_Function, 0, regArgs + 3 - nFunc, regArgs + 3);
sqlite3VdbeChangeP5(v, nFunc);
pFunc = sqlite3FindFunction(db, zFunc, strlen(zFunc), nFunc, SQLITE_UTF8, 0);
sqlite3VdbeChangeP4(v, -1, (char *) pFunc, P4_FUNCDEF);
/* Code an OP_Expire. For an ATTACH statement, set P1 to true (expire this
** statement only). For DETACH, set it to false (expire all existing
** statements).
*/
sqlite3VdbeAddOp1(v, OP_Expire, (type == SQLITE_ATTACH));
}
attach_end:
sqlite3ExprDelete(pFilename);
sqlite3ExprDelete(pDbname);
sqlite3ExprDelete(pKey);
}
/*
** Called by the parser to compile a DETACH statement.
**
** DETACH pDbname
*/
SQLITE_PRIVATE void
sqlite3Detach(Parse * pParse, Expr * pDbname)
{
codeAttach(pParse, SQLITE_DETACH, "sqlite_detach", 1, pDbname, 0, 0, pDbname);
}
/*
** Called by the parser to compile an ATTACH statement.
**
** ATTACH p AS pDbname KEY pKey
*/
SQLITE_PRIVATE void
sqlite3Attach(Parse * pParse, Expr * p, Expr * pDbname, Expr * pKey)
{
codeAttach(pParse, SQLITE_ATTACH, "sqlite_attach", 3, p, p, pDbname, pKey);
}
#endif /* SQLITE_OMIT_ATTACH */
/*
** Register the functions sqlite_attach and sqlite_detach.
*/
SQLITE_PRIVATE void
sqlite3AttachFunctions(sqlite3 * db)
{
#ifndef SQLITE_OMIT_ATTACH
static const int enc = SQLITE_UTF8;
sqlite3CreateFunc(db, "sqlite_attach", 3, enc, 0, attachFunc, 0, 0);
sqlite3CreateFunc(db, "sqlite_detach", 1, enc, 0, detachFunc, 0, 0);
#endif
}
/*
** Initialize a DbFixer structure. This routine must be called prior
** to passing the structure to one of the sqliteFixAAAA() routines below.
**
** The return value indicates whether or not fixation is required. TRUE
** means we do need to fix the database references, FALSE means we do not.
*/
SQLITE_PRIVATE int
sqlite3FixInit(DbFixer * pFix, /* The fixer to be initialized */
Parse * pParse, /* Error messages will be written here */
int iDb, /* This is the database that must be used */
const char *zType, /* "view", "trigger", or "index" */
const Token * pName /* Name of the view, trigger, or index */
)
{
sqlite3 *db;
if(iDb < 0 || iDb == 1)
return 0;
db = pParse->db;
assert(db->nDb > iDb);
pFix->pParse = pParse;
pFix->zDb = db->aDb[iDb].zName;
pFix->zType = zType;
pFix->pName = pName;
return 1;
}
/*
** The following set of routines walk through the parse tree and assign
** a specific database to all table references where the database name
** was left unspecified in the original SQL statement. The pFix structure
** must have been initialized by a prior call to sqlite3FixInit().
**
** These routines are used to make sure that an index, trigger, or
** view in one database does not refer to objects in a different database.
** (Exception: indices, triggers, and views in the TEMP database are
** allowed to refer to anything.) If a reference is explicitly made
** to an object in a different database, an error message is added to
** pParse->zErrMsg and these routines return non-zero. If everything
** checks out, these routines return 0.
*/
SQLITE_PRIVATE int
sqlite3FixSrcList(DbFixer * pFix, /* Context of the fixation */
SrcList * pList /* The Source list to check and modify */
)
{
int i;
const char *zDb;
struct SrcList_item *pItem;
if(pList == 0)
return 0;
zDb = pFix->zDb;
for (i = 0, pItem = pList->a; i < pList->nSrc; i++, pItem++)
{
if(pItem->zDatabase == 0)
{
pItem->zDatabase = sqlite3DbStrDup(pFix->pParse->db, zDb);
}
else if(sqlite3StrICmp(pItem->zDatabase, zDb) != 0)
{
sqlite3ErrorMsg(pFix->pParse,
"%s %T cannot reference objects in database %s",
pFix->zType, pFix->pName, pItem->zDatabase);
return 1;
}
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER)
if(sqlite3FixSelect(pFix, pItem->pSelect))
return 1;
if(sqlite3FixExpr(pFix, pItem->pOn))
return 1;
#endif
}
return 0;
}
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER)
SQLITE_PRIVATE int
sqlite3FixSelect(DbFixer * pFix, /* Context of the fixation */
Select * pSelect /* The SELECT statement to be fixed to one database */
)
{
while (pSelect)
{
if(sqlite3FixExprList(pFix, pSelect->pEList))
{
return 1;
}
if(sqlite3FixSrcList(pFix, pSelect->pSrc))
{
return 1;
}
if(sqlite3FixExpr(pFix, pSelect->pWhere))
{
return 1;
}
if(sqlite3FixExpr(pFix, pSelect->pHaving))
{
return 1;
}
pSelect = pSelect->pPrior;
}
return 0;
}
SQLITE_PRIVATE int
sqlite3FixExpr(DbFixer * pFix, /* Context of the fixation */
Expr * pExpr /* The expression to be fixed to one database */
)
{
while (pExpr)
{
if(sqlite3FixSelect(pFix, pExpr->pSelect))
{
return 1;
}
if(sqlite3FixExprList(pFix, pExpr->pList))
{
return 1;
}
if(sqlite3FixExpr(pFix, pExpr->pRight))
{
return 1;
}
pExpr = pExpr->pLeft;
}
return 0;
}
SQLITE_PRIVATE int
sqlite3FixExprList(DbFixer * pFix, /* Context of the fixation */
ExprList * pList /* The expression to be fixed to one database */
)
{
int i;
struct ExprList_item *pItem;
if(pList == 0)
return 0;
for (i = 0, pItem = pList->a; i < pList->nExpr; i++, pItem++)
{
if(sqlite3FixExpr(pFix, pItem->pExpr))
{
return 1;
}
}
return 0;
}
#endif
#ifndef SQLITE_OMIT_TRIGGER
SQLITE_PRIVATE int
sqlite3FixTriggerStep(DbFixer * pFix, /* Context of the fixation */
TriggerStep * pStep /* The trigger step be fixed to one database */
)
{
while (pStep)
{
if(sqlite3FixSelect(pFix, pStep->pSelect))
{
return 1;
}
if(sqlite3FixExpr(pFix, pStep->pWhere))
{
return 1;
}
if(sqlite3FixExprList(pFix, pStep->pExprList))
{
return 1;
}
pStep = pStep->pNext;
}
return 0;
}
#endif
/************** End of attach.c **********************************************/
/************** Begin file auth.c ********************************************/
/*
** 2003 January 11
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code used to implement the sqlite3_set_authorizer()
** API. This facility is an optional feature of the library. Embedded
** systems that do not need this facility may omit it by recompiling
** the library with -DSQLITE_OMIT_AUTHORIZATION=1
**
*/
/*
** All of the code in this file may be omitted by defining a single
** macro.
*/
#ifndef SQLITE_OMIT_AUTHORIZATION
/*
** Set or clear the access authorization function.
**
** The access authorization function is be called during the compilation
** phase to verify that the user has read and/or write access permission on
** various fields of the database. The first argument to the auth function
** is a copy of the 3rd argument to this routine. The second argument
** to the auth function is one of these constants:
**
** SQLITE_CREATE_INDEX
** SQLITE_CREATE_TABLE
** SQLITE_CREATE_TEMP_INDEX
** SQLITE_CREATE_TEMP_TABLE
** SQLITE_CREATE_TEMP_TRIGGER
** SQLITE_CREATE_TEMP_VIEW
** SQLITE_CREATE_TRIGGER
** SQLITE_CREATE_VIEW
** SQLITE_DELETE
** SQLITE_DROP_INDEX
** SQLITE_DROP_TABLE
** SQLITE_DROP_TEMP_INDEX
** SQLITE_DROP_TEMP_TABLE
** SQLITE_DROP_TEMP_TRIGGER
** SQLITE_DROP_TEMP_VIEW
** SQLITE_DROP_TRIGGER
** SQLITE_DROP_VIEW
** SQLITE_INSERT
** SQLITE_PRAGMA
** SQLITE_READ
** SQLITE_SELECT
** SQLITE_TRANSACTION
** SQLITE_UPDATE
**
** The third and fourth arguments to the auth function are the name of
** the table and the column that are being accessed. The auth function
** should return either SQLITE_OK, SQLITE_DENY, or SQLITE_IGNORE. If
** SQLITE_OK is returned, it means that access is allowed. SQLITE_DENY
** means that the SQL statement will never-run - the sqlite3_exec() call
** will return with an error. SQLITE_IGNORE means that the SQL statement
** should run but attempts to read the specified column will return NULL
** and attempts to write the column will be ignored.
**
** Setting the auth function to NULL disables this hook. The default
** setting of the auth function is NULL.
*/
SQLITE_API int
sqlite3_set_authorizer(sqlite3 * db,
int (*xAuth) (void *, int, const char *, const char *, const char *,
const char *), void *pArg)
{
sqlite3_mutex_enter(db->mutex);
db->xAuth = xAuth;
db->pAuthArg = pArg;
sqlite3ExpirePreparedStatements(db);
sqlite3_mutex_leave(db->mutex);
return SQLITE_OK;
}
/*
** Write an error message into pParse->zErrMsg that explains that the
** user-supplied authorization function returned an illegal value.
*/
static void
sqliteAuthBadReturnCode(Parse * pParse, int rc)
{
sqlite3ErrorMsg(pParse, "illegal return value (%d) from the "
"authorization function - should be SQLITE_OK, SQLITE_IGNORE, "
"or SQLITE_DENY", rc);
pParse->rc = SQLITE_ERROR;
}
/*
** The pExpr should be a TK_COLUMN expression. The table referred to
** is in pTabList or else it is the NEW or OLD table of a trigger.
** Check to see if it is OK to read this particular column.
**
** If the auth function returns SQLITE_IGNORE, change the TK_COLUMN
** instruction into a TK_NULL. If the auth function returns SQLITE_DENY,
** then generate an error.
*/
SQLITE_PRIVATE void
sqlite3AuthRead(Parse * pParse, /* The parser context */
Expr * pExpr, /* The expression to check authorization on */
Schema * pSchema, /* The schema of the expression */
SrcList * pTabList /* All table that pExpr might refer to */
)
{
sqlite3 *db = pParse->db;
int rc;
Table *pTab = 0; /* The table being read */
const char *zCol; /* Name of the column of the table */
int iSrc; /* Index in pTabList->a[] of table being read */
const char *zDBase; /* Name of database being accessed */
TriggerStack *pStack; /* The stack of current triggers */
int iDb; /* The index of the database the expression refers to */
if(db->xAuth == 0)
return;
if(pExpr->op != TK_COLUMN)
return;
iDb = sqlite3SchemaToIndex(pParse->db, pSchema);
if(iDb < 0)
{
/* An attempt to read a column out of a subquery or other
** temporary table. */
return;
}
for (iSrc = 0; pTabList && iSrc < pTabList->nSrc; iSrc++)
{
if(pExpr->iTable == pTabList->a[iSrc].iCursor)
break;
}
if(iSrc >= 0 && pTabList && iSrc < pTabList->nSrc)
{
pTab = pTabList->a[iSrc].pTab;
}
else if((pStack = pParse->trigStack) != 0)
{
/* This must be an attempt to read the NEW or OLD pseudo-tables
** of a trigger.
*/
assert(pExpr->iTable == pStack->newIdx || pExpr->iTable == pStack->oldIdx);
pTab = pStack->pTab;
}
if(pTab == 0)
return;
if(pExpr->iColumn >= 0)
{
assert(pExpr->iColumn < pTab->nCol);
zCol = pTab->aCol[pExpr->iColumn].zName;
}
else if(pTab->iPKey >= 0)
{
assert(pTab->iPKey < pTab->nCol);
zCol = pTab->aCol[pTab->iPKey].zName;
}
else
{
zCol = "ROWID";
}
assert(iDb >= 0 && iDb < db->nDb);
zDBase = db->aDb[iDb].zName;
rc = db->xAuth(db->pAuthArg, SQLITE_READ, pTab->zName, zCol, zDBase, pParse->zAuthContext);
if(rc == SQLITE_IGNORE)
{
pExpr->op = TK_NULL;
}
else if(rc == SQLITE_DENY)
{
if(db->nDb > 2 || iDb != 0)
{
sqlite3ErrorMsg(pParse, "access to %s.%s.%s is prohibited",
zDBase, pTab->zName, zCol);
}
else
{
sqlite3ErrorMsg(pParse, "access to %s.%s is prohibited", pTab->zName, zCol);
}
pParse->rc = SQLITE_AUTH;
}
else if(rc != SQLITE_OK)
{
sqliteAuthBadReturnCode(pParse, rc);
}
}
/*
** Do an authorization check using the code and arguments given. Return
** either SQLITE_OK (zero) or SQLITE_IGNORE or SQLITE_DENY. If SQLITE_DENY
** is returned, then the error count and error message in pParse are
** modified appropriately.
*/
SQLITE_PRIVATE int
sqlite3AuthCheck(Parse * pParse, int code, const char *zArg1, const char *zArg2, const char *zArg3)
{
sqlite3 *db = pParse->db;
int rc;
/* Don't do any authorization checks if the database is initialising
** or if the parser is being invoked from within sqlite3_declare_vtab.
*/
if(db->init.busy || IN_DECLARE_VTAB)
{
return SQLITE_OK;
}
if(db->xAuth == 0)
{
return SQLITE_OK;
}
rc = db->xAuth(db->pAuthArg, code, zArg1, zArg2, zArg3, pParse->zAuthContext);
if(rc == SQLITE_DENY)
{
sqlite3ErrorMsg(pParse, "not authorized");
pParse->rc = SQLITE_AUTH;
}
else if(rc != SQLITE_OK && rc != SQLITE_IGNORE)
{
rc = SQLITE_DENY;
sqliteAuthBadReturnCode(pParse, rc);
}
return rc;
}
/*
** Push an authorization context. After this routine is called, the
** zArg3 argument to authorization callbacks will be zContext until
** popped. Or if pParse==0, this routine is a no-op.
*/
SQLITE_PRIVATE void
sqlite3AuthContextPush(Parse * pParse, AuthContext * pContext, const char *zContext)
{
pContext->pParse = pParse;
if(pParse)
{
pContext->zAuthContext = pParse->zAuthContext;
pParse->zAuthContext = zContext;
}
}
/*
** Pop an authorization context that was previously pushed
** by sqlite3AuthContextPush
*/
SQLITE_PRIVATE void
sqlite3AuthContextPop(AuthContext * pContext)
{
if(pContext->pParse)
{
pContext->pParse->zAuthContext = pContext->zAuthContext;
pContext->pParse = 0;
}
}
#endif /* SQLITE_OMIT_AUTHORIZATION */
/************** End of auth.c ************************************************/
/************** Begin file build.c *******************************************/
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the SQLite parser
** when syntax rules are reduced. The routines in this file handle the
** following kinds of SQL syntax:
**
** CREATE TABLE
** DROP TABLE
** CREATE INDEX
** DROP INDEX
** creating ID lists
** BEGIN TRANSACTION
** COMMIT
** ROLLBACK
**
*/
/*
** This routine is called when a new SQL statement is beginning to
** be parsed. Initialize the pParse structure as needed.
*/
SQLITE_PRIVATE void
sqlite3BeginParse(Parse * pParse, int explainFlag)
{
pParse->explain = explainFlag;
pParse->nVar = 0;
}
#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** The TableLock structure is only used by the sqlite3TableLock() and
** codeTableLocks() functions.
*/
struct TableLock
{
int iDb; /* The database containing the table to be locked */
int iTab; /* The root page of the table to be locked */
u8 isWriteLock; /* True for write lock. False for a read lock */
const char *zName; /* Name of the table */
};
/*
** Record the fact that we want to lock a table at run-time.
**
** The table to be locked has root page iTab and is found in database iDb.
** A read or a write lock can be taken depending on isWritelock.
**
** This routine just records the fact that the lock is desired. The
** code to make the lock occur is generated by a later call to
** codeTableLocks() which occurs during sqlite3FinishCoding().
*/
SQLITE_PRIVATE void
sqlite3TableLock(Parse * pParse, /* Parsing context */
int iDb, /* Index of the database containing the table to lock */
int iTab, /* Root page number of the table to be locked */
u8 isWriteLock, /* True for a write lock */
const char *zName /* Name of the table to be locked */
)
{
int i;
int nBytes;
TableLock *p;
if(iDb < 0)
{
return;
}
for (i = 0; i < pParse->nTableLock; i++)
{
p = &pParse->aTableLock[i];
if(p->iDb == iDb && p->iTab == iTab)
{
p->isWriteLock = (p->isWriteLock || isWriteLock);
return;
}
}
nBytes = sizeof(TableLock) * (pParse->nTableLock + 1);
pParse->aTableLock = sqlite3DbReallocOrFree(pParse->db, pParse->aTableLock, nBytes);
if(pParse->aTableLock)
{
p = &pParse->aTableLock[pParse->nTableLock++];
p->iDb = iDb;
p->iTab = iTab;
p->isWriteLock = isWriteLock;
p->zName = zName;
}
else
{
pParse->nTableLock = 0;
pParse->db->mallocFailed = 1;
}
}
/*
** Code an OP_TableLock instruction for each table locked by the
** statement (configured by calls to sqlite3TableLock()).
*/
static void
codeTableLocks(Parse * pParse)
{
int i;
Vdbe *pVdbe;
if(0 == (pVdbe = sqlite3GetVdbe(pParse)))
{
return;
}
for (i = 0; i < pParse->nTableLock; i++)
{
TableLock *p = &pParse->aTableLock[i];
int p1 = p->iDb;
sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
p->zName, P4_STATIC);
}
}
#else
#define codeTableLocks(x)
#endif
/*
** This routine is called after a single SQL statement has been
** parsed and a VDBE program to execute that statement has been
** prepared. This routine puts the finishing touches on the
** VDBE program and resets the pParse structure for the next
** parse.
**
** Note that if an error occurred, it might be the case that
** no VDBE code was generated.
*/
SQLITE_PRIVATE void
sqlite3FinishCoding(Parse * pParse)
{
sqlite3 *db;
Vdbe *v;
db = pParse->db;
if(db->mallocFailed)
return;
if(pParse->nested)
return;
if(pParse->nErr)
return;
if(!pParse->pVdbe)
{
if(pParse->rc == SQLITE_OK && pParse->nErr)
{
pParse->rc = SQLITE_ERROR;
return;
}
}
/* Begin by generating some termination code at the end of the
** vdbe program
*/
v = sqlite3GetVdbe(pParse);
if(v)
{
sqlite3VdbeAddOp0(v, OP_Halt);
/* The cookie mask contains one bit for each database file open.
** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
** set for each database that is used. Generate code to start a
** transaction on each used database and to verify the schema cookie
** on each used database.
*/
if(pParse->cookieGoto > 0)
{
u32 mask;
int iDb;
sqlite3VdbeJumpHere(v, pParse->cookieGoto - 1);
for (iDb = 0, mask = 1; iDb < db->nDb; mask <<= 1, iDb++)
{
if((mask & pParse->cookieMask) == 0)
continue;
sqlite3VdbeUsesBtree(v, iDb);
sqlite3VdbeAddOp2(v, OP_Transaction, iDb,
(mask & pParse->writeMask) != 0);
sqlite3VdbeAddOp2(v, OP_VerifyCookie, iDb,
pParse->cookieValue[iDb]);
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
{
int i;
for (i = 0; i < pParse->nVtabLock; i++)
{
char *vtab = (char *) pParse->apVtabLock[i]->pVtab;
sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
}
pParse->nVtabLock = 0;
}
#endif
/* Once all the cookies have been verified and transactions opened,
** obtain the required table-locks. This is a no-op unless the
** shared-cache feature is enabled.
*/
codeTableLocks(pParse);
sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->cookieGoto);
}
#ifndef SQLITE_OMIT_TRACE
if(!db->init.busy)
{
/* Change the P4 argument of the first opcode (which will always be
** an OP_Trace) to be the complete text of the current SQL statement.
*/
VdbeOp *pOp = sqlite3VdbeGetOp(v, 0);
if(pOp && pOp->opcode == OP_Trace)
{
sqlite3VdbeChangeP4(v, 0, pParse->zSql,
pParse->zTail - pParse->zSql);
}
}
#endif /* SQLITE_OMIT_TRACE */
}
/* Get the VDBE program ready for execution
*/
if(v && pParse->nErr == 0 && !db->mallocFailed)
{
#ifdef SQLITE_DEBUG
FILE *trace = (db->flags & SQLITE_VdbeTrace) != 0 ? stdout : 0;
sqlite3VdbeTrace(v, trace);
#endif
assert(pParse->disableColCache == 0); /* Disables and re-enables match */
sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem + 3,
pParse->nTab + 3, pParse->explain);
pParse->rc = SQLITE_DONE;
pParse->colNamesSet = 0;
}
else if(pParse->rc == SQLITE_OK)
{
pParse->rc = SQLITE_ERROR;
}
pParse->nTab = 0;
pParse->nMem = 0;
pParse->nSet = 0;
pParse->nVar = 0;
pParse->cookieMask = 0;
pParse->cookieGoto = 0;
}
/*
** Run the parser and code generator recursively in order to generate
** code for the SQL statement given onto the end of the pParse context
** currently under construction. When the parser is run recursively
** this way, the final OP_Halt is not appended and other initialization
** and finalization steps are omitted because those are handling by the
** outermost parser.
**
** Not everything is nestable. This facility is designed to permit
** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use
** care if you decide to try to use this routine for some other purposes.
*/
SQLITE_PRIVATE void
sqlite3NestedParse(Parse * pParse, const char *zFormat, ...)
{
va_list ap;
char *zSql;
# define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar))
char saveBuf[SAVE_SZ];
if(pParse->nErr)
return;
assert(pParse->nested < 10); /* Nesting should only be of limited depth */
va_start(ap, zFormat);
zSql = sqlite3VMPrintf(pParse->db, zFormat, ap);
va_end(ap);
if(zSql == 0)
{
pParse->db->mallocFailed = 1;
return; /* A malloc must have failed */
}
pParse->nested++;
memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
memset(&pParse->nVar, 0, SAVE_SZ);
sqlite3RunParser(pParse, zSql, 0);
sqlite3_free(zSql);
memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
pParse->nested--;
}
/*
** Locate the in-memory structure that describes a particular database
** table given the name of that table and (optionally) the name of the
** database containing the table. Return NULL if not found.
**
** If zDatabase is 0, all databases are searched for the table and the
** first matching table is returned. (No checking for duplicate table
** names is done.) The search order is TEMP first, then MAIN, then any
** auxiliary databases added using the ATTACH command.
**
** See also sqlite3LocateTable().
*/
SQLITE_PRIVATE Table *
sqlite3FindTable(sqlite3 * db, const char *zName, const char *zDatabase)
{
Table *p = 0;
int i;
assert(zName != 0);
for (i = OMIT_TEMPDB; i < db->nDb; i++)
{
int j = (i < 2) ? i ^ 1 : i; /* Search TEMP before MAIN */
if(zDatabase != 0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName))
continue;
p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, strlen(zName) + 1);
if(p)
break;
}
return p;
}
/*
** Locate the in-memory structure that describes a particular database
** table given the name of that table and (optionally) the name of the
** database containing the table. Return NULL if not found. Also leave an
** error message in pParse->zErrMsg.
**
** The difference between this routine and sqlite3FindTable() is that this
** routine leaves an error message in pParse->zErrMsg where
** sqlite3FindTable() does not.
*/
SQLITE_PRIVATE Table *
sqlite3LocateTable(Parse * pParse, /* context in which to report errors */
int isView, /* True if looking for a VIEW rather than a TABLE */
const char *zName, /* Name of the table we are looking for */
const char *zDbase /* Name of the database. Might be NULL */
)
{
Table *p;
/* Read the database schema. If an error occurs, leave an error message
** and code in pParse and return NULL. */
if(SQLITE_OK != sqlite3ReadSchema(pParse))
{
return 0;
}
p = sqlite3FindTable(pParse->db, zName, zDbase);
if(p == 0)
{
const char *zMsg = isView ? "no such view" : "no such table";
if(zDbase)
{
sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
}
else
{
sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
}
pParse->checkSchema = 1;
}
return p;
}
/*
** Locate the in-memory structure that describes
** a particular index given the name of that index
** and the name of the database that contains the index.
** Return NULL if not found.
**
** If zDatabase is 0, all databases are searched for the
** table and the first matching index is returned. (No checking
** for duplicate index names is done.) The search order is
** TEMP first, then MAIN, then any auxiliary databases added
** using the ATTACH command.
*/
SQLITE_PRIVATE Index *
sqlite3FindIndex(sqlite3 * db, const char *zName, const char *zDb)
{
Index *p = 0;
int i;
for (i = OMIT_TEMPDB; i < db->nDb; i++)
{
int j = (i < 2) ? i ^ 1 : i; /* Search TEMP before MAIN */
Schema *pSchema = db->aDb[j].pSchema;
if(zDb && sqlite3StrICmp(zDb, db->aDb[j].zName))
continue;
assert(pSchema || (j == 1 && !db->aDb[1].pBt));
if(pSchema)
{
p = sqlite3HashFind(&pSchema->idxHash, zName, strlen(zName) + 1);
}
if(p)
break;
}
return p;
}
/*
** Reclaim the memory used by an index
*/
static void
freeIndex(Index * p)
{
sqlite3_free(p->zColAff);
sqlite3_free(p);
}
/*
** Remove the given index from the index hash table, and free
** its memory structures.
**
** The index is removed from the database hash tables but
** it is not unlinked from the Table that it indexes.
** Unlinking from the Table must be done by the calling function.
*/
static void
sqliteDeleteIndex(Index * p)
{
Index *pOld;
const char *zName = p->zName;
pOld = sqlite3HashInsert(&p->pSchema->idxHash, zName, strlen(zName) + 1, 0);
assert(pOld == 0 || pOld == p);
freeIndex(p);
}
/*
** For the index called zIdxName which is found in the database iDb,
** unlike that index from its Table then remove the index from
** the index hash table and free all memory structures associated
** with the index.
*/
SQLITE_PRIVATE void
sqlite3UnlinkAndDeleteIndex(sqlite3 * db, int iDb, const char *zIdxName)
{
Index *pIndex;
int len;
Hash *pHash = &db->aDb[iDb].pSchema->idxHash;
len = strlen(zIdxName);
pIndex = sqlite3HashInsert(pHash, zIdxName, len + 1, 0);
if(pIndex)
{
if(pIndex->pTable->pIndex == pIndex)
{
pIndex->pTable->pIndex = pIndex->pNext;
}
else
{
Index *p;
for (p = pIndex->pTable->pIndex; p && p->pNext != pIndex; p = p->pNext)
{
}
if(p && p->pNext == pIndex)
{
p->pNext = pIndex->pNext;
}
}
freeIndex(pIndex);
}
db->flags |= SQLITE_InternChanges;
}
/*
** Erase all schema information from the in-memory hash tables of
** a single database. This routine is called to reclaim memory
** before the database closes. It is also called during a rollback
** if there were schema changes during the transaction or if a
** schema-cookie mismatch occurs.
**
** If iDb<=0 then reset the internal schema tables for all database
** files. If iDb>=2 then reset the internal schema for only the
** single file indicated.
*/
SQLITE_PRIVATE void
sqlite3ResetInternalSchema(sqlite3 * db, int iDb)
{
int i, j;
assert(iDb >= 0 && iDb < db->nDb);
if(iDb == 0)
{
sqlite3BtreeEnterAll(db);
}
for (i = iDb; i < db->nDb; i++)
{
Db *pDb = &db->aDb[i];
if(pDb->pSchema)
{
assert(i == 1 || (pDb->pBt && sqlite3BtreeHoldsMutex(pDb->pBt)));
sqlite3SchemaFree(pDb->pSchema);
}
if(iDb > 0)
return;
}
assert(iDb == 0);
db->flags &= ~SQLITE_InternChanges;
sqlite3BtreeLeaveAll(db);
/* If one or more of the auxiliary database files has been closed,
** then remove them from the auxiliary database list. We take the
** opportunity to do this here since we have just deleted all of the
** schema hash tables and therefore do not have to make any changes
** to any of those tables.
*/
for (i = 0; i < db->nDb; i++)
{
struct Db *pDb = &db->aDb[i];
if(pDb->pBt == 0)
{
if(pDb->pAux && pDb->xFreeAux)
pDb->xFreeAux(pDb->pAux);
pDb->pAux = 0;
}
}
for (i = j = 2; i < db->nDb; i++)
{
struct Db *pDb = &db->aDb[i];
if(pDb->pBt == 0)
{
sqlite3_free(pDb->zName);
pDb->zName = 0;
continue;
}
if(j < i)
{
db->aDb[j] = db->aDb[i];
}
j++;
}
memset(&db->aDb[j], 0, (db->nDb - j) * sizeof(db->aDb[j]));
db->nDb = j;
if(db->nDb <= 2 && db->aDb != db->aDbStatic)
{
memcpy(db->aDbStatic, db->aDb, 2 * sizeof(db->aDb[0]));
sqlite3_free(db->aDb);
db->aDb = db->aDbStatic;
}
}
/*
** This routine is called when a commit occurs.
*/
SQLITE_PRIVATE void
sqlite3CommitInternalChanges(sqlite3 * db)
{
db->flags &= ~SQLITE_InternChanges;
}
/*
** Clear the column names from a table or view.
*/
static void
sqliteResetColumnNames(Table * pTable)
{
int i;
Column *pCol;
assert(pTable != 0);
if((pCol = pTable->aCol) != 0)
{
for (i = 0; i < pTable->nCol; i++, pCol++)
{
sqlite3_free(pCol->zName);
sqlite3ExprDelete(pCol->pDflt);
sqlite3_free(pCol->zType);
sqlite3_free(pCol->zColl);
}
sqlite3_free(pTable->aCol);
}
pTable->aCol = 0;
pTable->nCol = 0;
}
/*
** Remove the memory data structures associated with the given
** Table. No changes are made to disk by this routine.
**
** This routine just deletes the data structure. It does not unlink
** the table data structure from the hash table. Nor does it remove
** foreign keys from the sqlite.aFKey hash table. But it does destroy
** memory structures of the indices and foreign keys associated with
** the table.
*/
SQLITE_PRIVATE void
sqlite3DeleteTable(Table * pTable)
{
Index *pIndex, *pNext;
FKey *pFKey, *pNextFKey;
if(pTable == 0)
return;
/* Do not delete the table until the reference count reaches zero. */
pTable->nRef--;
if(pTable->nRef > 0)
{
return;
}
assert(pTable->nRef == 0);
/* Delete all indices associated with this table
*/
for (pIndex = pTable->pIndex; pIndex; pIndex = pNext)
{
pNext = pIndex->pNext;
assert(pIndex->pSchema == pTable->pSchema);
sqliteDeleteIndex(pIndex);
}
#ifndef SQLITE_OMIT_FOREIGN_KEY
/* Delete all foreign keys associated with this table. The keys
** should have already been unlinked from the pSchema->aFKey hash table
*/
for (pFKey = pTable->pFKey; pFKey; pFKey = pNextFKey)
{
pNextFKey = pFKey->pNextFrom;
assert(sqlite3HashFind(&pTable->pSchema->aFKey,
pFKey->zTo, strlen(pFKey->zTo) + 1) != pFKey);
sqlite3_free(pFKey);
}
#endif
/* Delete the Table structure itself.
*/
sqliteResetColumnNames(pTable);
sqlite3_free(pTable->zName);
sqlite3_free(pTable->zColAff);
sqlite3SelectDelete(pTable->pSelect);
#ifndef SQLITE_OMIT_CHECK
sqlite3ExprDelete(pTable->pCheck);
#endif
sqlite3VtabClear(pTable);
sqlite3_free(pTable);
}
/*
** Unlink the given table from the hash tables and the delete the
** table structure with all its indices and foreign keys.
*/
SQLITE_PRIVATE void
sqlite3UnlinkAndDeleteTable(sqlite3 * db, int iDb, const char *zTabName)
{
Table *p;
FKey *pF1, *pF2;
Db *pDb;
assert(db != 0);
assert(iDb >= 0 && iDb < db->nDb);
assert(zTabName && zTabName[0]);
pDb = &db->aDb[iDb];
p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, strlen(zTabName) + 1, 0);
if(p)
{
#ifndef SQLITE_OMIT_FOREIGN_KEY
for (pF1 = p->pFKey; pF1; pF1 = pF1->pNextFrom)
{
int nTo = strlen(pF1->zTo) + 1;
pF2 = sqlite3HashFind(&pDb->pSchema->aFKey, pF1->zTo, nTo);
if(pF2 == pF1)
{
sqlite3HashInsert(&pDb->pSchema->aFKey, pF1->zTo, nTo,
pF1->pNextTo);
}
else
{
while (pF2 && pF2->pNextTo != pF1)
{
pF2 = pF2->pNextTo;
}
if(pF2)
{
pF2->pNextTo = pF1->pNextTo;
}
}
}
#endif
sqlite3DeleteTable(p);
}
db->flags |= SQLITE_InternChanges;
}
/*
** Given a token, return a string that consists of the text of that
** token with any quotations removed. Space to hold the returned string
** is obtained from sqliteMalloc() and must be freed by the calling
** function.
**
** Tokens are often just pointers into the original SQL text and so
** are not \000 terminated and are not persistent. The returned string
** is \000 terminated and is persistent.
*/
SQLITE_PRIVATE char *
sqlite3NameFromToken(sqlite3 * db, Token * pName)
{
char *zName;
if(pName)
{
zName = sqlite3DbStrNDup(db, (char *) pName->z, pName->n);
sqlite3Dequote(zName);
}
else
{
zName = 0;
}
return zName;
}
/*
** Open the sqlite_master table stored in database number iDb for
** writing. The table is opened using cursor 0.
*/
SQLITE_PRIVATE void
sqlite3OpenMasterTable(Parse * p, int iDb)
{
Vdbe *v = sqlite3GetVdbe(p);
sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, 5); /* sqlite_master has 5 columns */
sqlite3VdbeAddOp3(v, OP_OpenWrite, 0, MASTER_ROOT, iDb);
}
/*
** The token *pName contains the name of a database (either "main" or
** "temp" or the name of an attached db). This routine returns the
** index of the named database in db->aDb[], or -1 if the named db
** does not exist.
*/
SQLITE_PRIVATE int
sqlite3FindDb(sqlite3 * db, Token * pName)
{
int i = -1; /* Database number */
int n; /* Number of characters in the name */
Db *pDb; /* A database whose name space is being searched */
char *zName; /* Name we are searching for */
zName = sqlite3NameFromToken(db, pName);
if(zName)
{
n = strlen(zName);
for (i = (db->nDb - 1), pDb = &db->aDb[i]; i >= 0; i--, pDb--)
{
if((!OMIT_TEMPDB || i != 1) && n == strlen(pDb->zName) &&
0 == sqlite3StrICmp(pDb->zName, zName))
{
break;
}
}
sqlite3_free(zName);
}
return i;
}
/* The table or view or trigger name is passed to this routine via tokens
** pName1 and pName2. If the table name was fully qualified, for example:
**
** CREATE TABLE xxx.yyy (...);
**
** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
** the table name is not fully qualified, i.e.:
**
** CREATE TABLE yyy(...);
**
** Then pName1 is set to "yyy" and pName2 is "".
**
** This routine sets the *ppUnqual pointer to point at the token (pName1 or
** pName2) that stores the unqualified table name. The index of the
** database "xxx" is returned.
*/
SQLITE_PRIVATE int
sqlite3TwoPartName(Parse * pParse, /* Parsing and code generating context */
Token * pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */
Token * pName2, /* The "yyy" in the name "xxx.yyy" */
Token ** pUnqual /* Write the unqualified object name here */
)
{
int iDb; /* Database holding the object */
sqlite3 *db = pParse->db;
if(pName2 && pName2->n > 0)
{
assert(!db->init.busy);
*pUnqual = pName2;
iDb = sqlite3FindDb(db, pName1);
if(iDb < 0)
{
sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
pParse->nErr++;
return -1;
}
}
else
{
assert(db->init.iDb == 0 || db->init.busy);
iDb = db->init.iDb;
*pUnqual = pName1;
}
return iDb;
}
/*
** This routine is used to check if the UTF-8 string zName is a legal
** unqualified name for a new schema object (table, index, view or
** trigger). All names are legal except those that begin with the string
** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
** is reserved for internal use.
*/
SQLITE_PRIVATE int
sqlite3CheckObjectName(Parse * pParse, const char *zName)
{
if(!pParse->db->init.busy && pParse->nested == 0
&& (pParse->db->flags & SQLITE_WriteSchema) == 0
&& 0 == sqlite3StrNICmp(zName, "sqlite_", 7))
{
sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
return SQLITE_ERROR;
}
return SQLITE_OK;
}
/*
** Begin constructing a new table representation in memory. This is
** the first of several action routines that get called in response
** to a CREATE TABLE statement. In particular, this routine is called
** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
** flag is true if the table should be stored in the auxiliary database
** file instead of in the main database file. This is normally the case
** when the "TEMP" or "TEMPORARY" keyword occurs in between
** CREATE and TABLE.
**
** The new table record is initialized and put in pParse->pNewTable.
** As more of the CREATE TABLE statement is parsed, additional action
** routines will be called to add more information to this record.
** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
** is called to complete the construction of the new table record.
*/
SQLITE_PRIVATE void
sqlite3StartTable(Parse * pParse, /* Parser context */
Token * pName1, /* First part of the name of the table or view */
Token * pName2, /* Second part of the name of the table or view */
int isTemp, /* True if this is a TEMP table */
int isView, /* True if this is a VIEW */
int isVirtual, /* True if this is a VIRTUAL table */
int noErr /* Do nothing if table already exists */
)
{
Table *pTable;
char *zName = 0; /* The name of the new table */
sqlite3 *db = pParse->db;
Vdbe *v;
int iDb; /* Database number to create the table in */
Token *pName; /* Unqualified name of the table to create */
/* The table or view name to create is passed to this routine via tokens
** pName1 and pName2. If the table name was fully qualified, for example:
**
** CREATE TABLE xxx.yyy (...);
**
** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
** the table name is not fully qualified, i.e.:
**
** CREATE TABLE yyy(...);
**
** Then pName1 is set to "yyy" and pName2 is "".
**
** The call below sets the pName pointer to point at the token (pName1 or
** pName2) that stores the unqualified table name. The variable iDb is
** set to the index of the database that the table or view is to be
** created in.
*/
iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
if(iDb < 0)
return;
if(!OMIT_TEMPDB && isTemp && iDb > 1)
{
/* If creating a temp table, the name may not be qualified */
sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
return;
}
if(!OMIT_TEMPDB && isTemp)
iDb = 1;
pParse->sNameToken = *pName;
zName = sqlite3NameFromToken(db, pName);
if(zName == 0)
return;
if(SQLITE_OK != sqlite3CheckObjectName(pParse, zName))
{
goto begin_table_error;
}
if(db->init.iDb == 1)
isTemp = 1;
#ifndef SQLITE_OMIT_AUTHORIZATION
assert((isTemp & 1) == isTemp);
{
int code;
char *zDb = db->aDb[iDb].zName;
if(sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb))
{
goto begin_table_error;
}
if(isView)
{
if(!OMIT_TEMPDB && isTemp)
{
code = SQLITE_CREATE_TEMP_VIEW;
}
else
{
code = SQLITE_CREATE_VIEW;
}
}
else
{
if(!OMIT_TEMPDB && isTemp)
{
code = SQLITE_CREATE_TEMP_TABLE;
}
else
{
code = SQLITE_CREATE_TABLE;
}
}
if(!isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb))
{
goto begin_table_error;
}
}
#endif
/* Make sure the new table name does not collide with an existing
** index or table name in the same database. Issue an error message if
** it does. The exception is if the statement being parsed was passed
** to an sqlite3_declare_vtab() call. In that case only the column names
** and types will be used, so there is no need to test for namespace
** collisions.
*/
if(!IN_DECLARE_VTAB)
{
if(SQLITE_OK != sqlite3ReadSchema(pParse))
{
goto begin_table_error;
}
pTable = sqlite3FindTable(db, zName, db->aDb[iDb].zName);
if(pTable)
{
if(!noErr)
{
sqlite3ErrorMsg(pParse, "table %T already exists", pName);
}
goto begin_table_error;
}
if(sqlite3FindIndex(db, zName, 0) != 0 && (iDb == 0 || !db->init.busy))
{
sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
goto begin_table_error;
}
}
pTable = sqlite3DbMallocZero(db, sizeof(Table));
if(pTable == 0)
{
db->mallocFailed = 1;
pParse->rc = SQLITE_NOMEM;
pParse->nErr++;
goto begin_table_error;
}
pTable->zName = zName;
pTable->iPKey = -1;
pTable->pSchema = db->aDb[iDb].pSchema;
pTable->nRef = 1;
if(pParse->pNewTable)
sqlite3DeleteTable(pParse->pNewTable);
pParse->pNewTable = pTable;
/* If this is the magic sqlite_sequence table used by autoincrement,
** then record a pointer to this table in the main database structure
** so that INSERT can find the table easily.
*/
#ifndef SQLITE_OMIT_AUTOINCREMENT
if(!pParse->nested && strcmp(zName, "sqlite_sequence") == 0)
{
pTable->pSchema->pSeqTab = pTable;
}
#endif
/* Begin generating the code that will insert the table record into
** the SQLITE_MASTER table. Note in particular that we must go ahead
** and allocate the record number for the table entry now. Before any
** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
** indices to be created and the table record must come before the
** indices. Hence, the record number for the table must be allocated
** now.
*/
if(!db->init.busy && (v = sqlite3GetVdbe(pParse)) != 0)
{
int j1;
int fileFormat;
int reg1, reg2, reg3;
sqlite3BeginWriteOperation(pParse, 0, iDb);
#ifndef SQLITE_OMIT_VIRTUALTABLE
if(isVirtual)
{
sqlite3VdbeAddOp0(v, OP_VBegin);
}
#endif
/* If the file format and encoding in the database have not been set,
** set them now.
*/
reg1 = pParse->regRowid = ++pParse->nMem;
reg2 = pParse->regRoot = ++pParse->nMem;
reg3 = ++pParse->nMem;
sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, 1); /* file_format */
sqlite3VdbeUsesBtree(v, iDb);
j1 = sqlite3VdbeAddOp1(v, OP_If, reg3);
fileFormat = (db->flags & SQLITE_LegacyFileFmt) != 0 ? 1 : SQLITE_MAX_FILE_FORMAT;
sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3);
sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 1, reg3);
sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3);
sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 4, reg3);
sqlite3VdbeJumpHere(v, j1);
/* This just creates a place-holder record in the sqlite_master table.
** The record created does not contain anything yet. It will be replaced
** by the real entry in code generated at sqlite3EndTable().
**
** The rowid for the new entry is left on the top of the stack.
** The rowid value is needed by the code that sqlite3EndTable will
** generate.
*/
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
if(isView || isVirtual)
{
sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
}
else
#endif
{
sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
}
sqlite3OpenMasterTable(pParse, iDb);
sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
sqlite3VdbeAddOp2(v, OP_Null, 0, reg3);
sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
sqlite3VdbeAddOp0(v, OP_Close);
}
/* Normal (non-error) return. */
return;
/* If an error occurs, we jump here */
begin_table_error:
sqlite3_free(zName);
return;
}
/*
** This macro is used to compare two strings in a case-insensitive manner.
** It is slightly faster than calling sqlite3StrICmp() directly, but
** produces larger code.
**
** WARNING: This macro is not compatible with the strcmp() family. It
** returns true if the two strings are equal, otherwise false.
*/
#define STRICMP(x, y) (\
sqlite3UpperToLower[*(unsigned char *)(x)]== \
sqlite3UpperToLower[*(unsigned char *)(y)] \
&& sqlite3StrICmp((x)+1,(y)+1)==0 )
/*
** Add a new column to the table currently being constructed.
**
** The parser calls this routine once for each column declaration
** in a CREATE TABLE statement. sqlite3StartTable() gets called
** first to get things going. Then this routine is called for each
** column.
*/
SQLITE_PRIVATE void
sqlite3AddColumn(Parse * pParse, Token * pName)
{
Table *p;
int i;
char *z;
Column *pCol;
sqlite3 *db = pParse->db;
if((p = pParse->pNewTable) == 0)
return;
#if SQLITE_MAX_COLUMN
if(p->nCol + 1 > db->aLimit[SQLITE_LIMIT_COLUMN])
{
sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
return;
}
#endif
z = sqlite3NameFromToken(pParse->db, pName);
if(z == 0)
return;
for (i = 0; i < p->nCol; i++)
{
if(STRICMP(z, p->aCol[i].zName))
{
sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
sqlite3_free(z);
return;
}
}
if((p->nCol & 0x7) == 0)
{
Column *aNew;
aNew = sqlite3DbRealloc(pParse->db, p->aCol, (p->nCol + 8) * sizeof(p->aCol[0]));
if(aNew == 0)
{
sqlite3_free(z);
return;
}
p->aCol = aNew;
}
pCol = &p->aCol[p->nCol];
memset(pCol, 0, sizeof(p->aCol[0]));
pCol->zName = z;
/* If there is no type specified, columns have the default affinity
** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will
** be called next to set pCol->affinity correctly.
*/
pCol->affinity = SQLITE_AFF_NONE;
p->nCol++;
}
/*
** This routine is called by the parser while in the middle of
** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
** been seen on a column. This routine sets the notNull flag on
** the column currently under construction.
*/
SQLITE_PRIVATE void
sqlite3AddNotNull(Parse * pParse, int onError)
{
Table *p;
int i;
if((p = pParse->pNewTable) == 0)
return;
i = p->nCol - 1;
if(i >= 0)
p->aCol[i].notNull = onError;
}
/*
** Scan the column type name zType (length nType) and return the
** associated affinity type.
**
** This routine does a case-independent search of zType for the
** substrings in the following table. If one of the substrings is
** found, the corresponding affinity is returned. If zType contains
** more than one of the substrings, entries toward the top of
** the table take priority. For example, if zType is 'BLOBINT',
** SQLITE_AFF_INTEGER is returned.
**
** Substring | Affinity
** --------------------------------
** 'INT' | SQLITE_AFF_INTEGER
** 'CHAR' | SQLITE_AFF_TEXT
** 'CLOB' | SQLITE_AFF_TEXT
** 'TEXT' | SQLITE_AFF_TEXT
** 'BLOB' | SQLITE_AFF_NONE
** 'REAL' | SQLITE_AFF_REAL
** 'FLOA' | SQLITE_AFF_REAL
** 'DOUB' | SQLITE_AFF_REAL
**
** If none of the substrings in the above table are found,
** SQLITE_AFF_NUMERIC is returned.
*/
SQLITE_PRIVATE char
sqlite3AffinityType(const Token * pType)
{
u32 h = 0;
char aff = SQLITE_AFF_NUMERIC;
const unsigned char *zIn = pType->z;
const unsigned char *zEnd = &pType->z[pType->n];
while (zIn != zEnd)
{
h = (h << 8) + sqlite3UpperToLower[*zIn];
zIn++;
if(h == (('c' << 24) + ('h' << 16) + ('a' << 8) + 'r'))
{ /* CHAR */
aff = SQLITE_AFF_TEXT;
}
else if(h == (('c' << 24) + ('l' << 16) + ('o' << 8) + 'b'))
{ /* CLOB */
aff = SQLITE_AFF_TEXT;
}
else if(h == (('t' << 24) + ('e' << 16) + ('x' << 8) + 't'))
{ /* TEXT */
aff = SQLITE_AFF_TEXT;
}
else if(h == (('b' << 24) + ('l' << 16) + ('o' << 8) + 'b') /* BLOB */
&& (aff == SQLITE_AFF_NUMERIC || aff == SQLITE_AFF_REAL))
{
aff = SQLITE_AFF_NONE;
#ifndef SQLITE_OMIT_FLOATING_POINT
}
else if(h == (('r' << 24) + ('e' << 16) + ('a' << 8) + 'l') /* REAL */
&& aff == SQLITE_AFF_NUMERIC)
{
aff = SQLITE_AFF_REAL;
}
else if(h == (('f' << 24) + ('l' << 16) + ('o' << 8) + 'a') /* FLOA */
&& aff == SQLITE_AFF_NUMERIC)
{
aff = SQLITE_AFF_REAL;
}
else if(h == (('d' << 24) + ('o' << 16) + ('u' << 8) + 'b') /* DOUB */
&& aff == SQLITE_AFF_NUMERIC)
{
aff = SQLITE_AFF_REAL;
#endif
}
else if((h & 0x00FFFFFF) == (('i' << 16) + ('n' << 8) + 't'))
{ /* INT */
aff = SQLITE_AFF_INTEGER;
break;
}
}
return aff;
}
/*
** This routine is called by the parser while in the middle of
** parsing a CREATE TABLE statement. The pFirst token is the first
** token in the sequence of tokens that describe the type of the
** column currently under construction. pLast is the last token
** in the sequence. Use this information to construct a string
** that contains the typename of the column and store that string
** in zType.
*/
SQLITE_PRIVATE void
sqlite3AddColumnType(Parse * pParse, Token * pType)
{
Table *p;
int i;
Column *pCol;
if((p = pParse->pNewTable) == 0)
return;
i = p->nCol - 1;
if(i < 0)
return;
pCol = &p->aCol[i];
sqlite3_free(pCol->zType);
pCol->zType = sqlite3NameFromToken(pParse->db, pType);
pCol->affinity = sqlite3AffinityType(pType);
}
/*
** The expression is the default value for the most recently added column
** of the table currently under construction.
**
** Default value expressions must be constant. Raise an exception if this
** is not the case.
**
** This routine is called by the parser while in the middle of
** parsing a CREATE TABLE statement.
*/
SQLITE_PRIVATE void
sqlite3AddDefaultValue(Parse * pParse, Expr * pExpr)
{
Table *p;
Column *pCol;
if((p = pParse->pNewTable) != 0)
{
pCol = &(p->aCol[p->nCol - 1]);
if(!sqlite3ExprIsConstantOrFunction(pExpr))
{
sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
pCol->zName);
}
else
{
Expr *pCopy;
sqlite3 *db = pParse->db;
sqlite3ExprDelete(pCol->pDflt);
pCol->pDflt = pCopy = sqlite3ExprDup(db, pExpr);
if(pCopy)
{
sqlite3TokenCopy(db, &pCopy->span, &pExpr->span);
}
}
}
sqlite3ExprDelete(pExpr);
}
/*
** Designate the PRIMARY KEY for the table. pList is a list of names
** of columns that form the primary key. If pList is NULL, then the
** most recently added column of the table is the primary key.
**
** A table can have at most one primary key. If the table already has
** a primary key (and this is the second primary key) then create an
** error.
**
** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
** then we will try to use that column as the rowid. Set the Table.iPKey
** field of the table under construction to be the index of the
** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
** no INTEGER PRIMARY KEY.
**
** If the key is not an INTEGER PRIMARY KEY, then create a unique
** index for the key. No index is created for INTEGER PRIMARY KEYs.
*/
SQLITE_PRIVATE void
sqlite3AddPrimaryKey(Parse * pParse, /* Parsing context */
ExprList * pList, /* List of field names to be indexed */
int onError, /* What to do with a uniqueness conflict */
int autoInc, /* True if the AUTOINCREMENT keyword is present */
int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */
)
{
Table *pTab = pParse->pNewTable;
char *zType = 0;
int iCol = -1, i;
if(pTab == 0 || IN_DECLARE_VTAB)
goto primary_key_exit;
if(pTab->hasPrimKey)
{
sqlite3ErrorMsg(pParse, "table \"%s\" has more than one primary key", pTab->zName);
goto primary_key_exit;
}
pTab->hasPrimKey = 1;
if(pList == 0)
{
iCol = pTab->nCol - 1;
pTab->aCol[iCol].isPrimKey = 1;
}
else
{
for (i = 0; i < pList->nExpr; i++)
{
for (iCol = 0; iCol < pTab->nCol; iCol++)
{
if(sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName) == 0)
{
break;
}
}
if(iCol < pTab->nCol)
{
pTab->aCol[iCol].isPrimKey = 1;
}
}
if(pList->nExpr > 1)
iCol = -1;
}
if(iCol >= 0 && iCol < pTab->nCol)
{
zType = pTab->aCol[iCol].zType;
}
if(zType && sqlite3StrICmp(zType, "INTEGER") == 0 && sortOrder == SQLITE_SO_ASC)
{
pTab->iPKey = iCol;
pTab->keyConf = onError;
pTab->autoInc = autoInc;
}
else if(autoInc)
{
#ifndef SQLITE_OMIT_AUTOINCREMENT
sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
"INTEGER PRIMARY KEY");
#endif
}
else
{
sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0);
pList = 0;
}
primary_key_exit:
sqlite3ExprListDelete(pList);
return;
}
/*
** Add a new CHECK constraint to the table currently under construction.
*/
SQLITE_PRIVATE void
sqlite3AddCheckConstraint(Parse * pParse, /* Parsing context */
Expr * pCheckExpr /* The check expression */
)
{
#ifndef SQLITE_OMIT_CHECK
Table *pTab = pParse->pNewTable;
sqlite3 *db = pParse->db;
if(pTab && !IN_DECLARE_VTAB)
{
/* The CHECK expression must be duplicated so that tokens refer
** to malloced space and not the (ephemeral) text of the CREATE TABLE
** statement */
pTab->pCheck = sqlite3ExprAnd(db, pTab->pCheck, sqlite3ExprDup(db, pCheckExpr));
}
#endif
sqlite3ExprDelete(pCheckExpr);
}
/*
** Set the collation function of the most recently parsed table column
** to the CollSeq given.
*/
SQLITE_PRIVATE void
sqlite3AddCollateType(Parse * pParse, Token * pToken)
{
Table *p;
int i;
char *zColl; /* Dequoted name of collation sequence */
if((p = pParse->pNewTable) == 0)
return;
i = p->nCol - 1;
zColl = sqlite3NameFromToken(pParse->db, pToken);
if(!zColl)
return;
if(sqlite3LocateCollSeq(pParse, zColl, -1))
{
Index *pIdx;
p->aCol[i].zColl = zColl;
/* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
** then an index may have been created on this column before the
** collation type was added. Correct this if it is the case.
*/
for (pIdx = p->pIndex; pIdx; pIdx = pIdx->pNext)
{
assert(pIdx->nColumn == 1);
if(pIdx->aiColumn[0] == i)
{
pIdx->azColl[0] = p->aCol[i].zColl;
}
}
}
else
{
sqlite3_free(zColl);
}
}
/*
** This function returns the collation sequence for database native text
** encoding identified by the string zName, length nName.
**
** If the requested collation sequence is not available, or not available
** in the database native encoding, the collation factory is invoked to
** request it. If the collation factory does not supply such a sequence,
** and the sequence is available in another text encoding, then that is
** returned instead.
**
** If no versions of the requested collations sequence are available, or
** another error occurs, NULL is returned and an error message written into
** pParse.
**
** This routine is a wrapper around sqlite3FindCollSeq(). This routine
** invokes the collation factory if the named collation cannot be found
** and generates an error message.
*/
SQLITE_PRIVATE CollSeq *
sqlite3LocateCollSeq(Parse * pParse, const char *zName, int nName)
{
sqlite3 *db = pParse->db;
u8 enc = ENC(db);
u8 initbusy = db->init.busy;
CollSeq *pColl;
pColl = sqlite3FindCollSeq(db, enc, zName, nName, initbusy);
if(!initbusy && (!pColl || !pColl->xCmp))
{
pColl = sqlite3GetCollSeq(db, pColl, zName, nName);
if(!pColl)
{
if(nName < 0)
{
nName = strlen(zName);
}
sqlite3ErrorMsg(pParse, "no such collation sequence: %.*s", nName, zName);
pColl = 0;
}
}
return pColl;
}
/*
** Generate code that will increment the schema cookie.
**
** The schema cookie is used to determine when the schema for the
** database changes. After each schema change, the cookie value
** changes. When a process first reads the schema it records the
** cookie. Thereafter, whenever it goes to access the database,
** it checks the cookie to make sure the schema has not changed
** since it was last read.
**
** This plan is not completely bullet-proof. It is possible for
** the schema to change multiple times and for the cookie to be
** set back to prior value. But schema changes are infrequent
** and the probability of hitting the same cookie value is only
** 1 chance in 2^32. So we're safe enough.
*/
SQLITE_PRIVATE void
sqlite3ChangeCookie(Parse * pParse, int iDb)
{
int r1 = sqlite3GetTempReg(pParse);
sqlite3 *db = pParse->db;
Vdbe *v = pParse->pVdbe;
sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie + 1, r1);
sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 0, r1);
sqlite3ReleaseTempReg(pParse, r1);
}
/*
** Measure the number of characters needed to output the given
** identifier. The number returned includes any quotes used
** but does not include the null terminator.
**
** The estimate is conservative. It might be larger that what is
** really needed.
*/
static int
identLength(const char *z)
{
int n;
for (n = 0; *z; n++, z++)
{
if(*z == '"')
{
n++;
}
}
return n + 2;
}
/*
** Write an identifier onto the end of the given string. Add
** quote characters as needed.
*/
static void
identPut(char *z, int *pIdx, char *zSignedIdent)
{
unsigned char *zIdent = (unsigned char *) zSignedIdent;
int i, j, needQuote;
i = *pIdx;
for (j = 0; zIdent[j]; j++)
{
if(!isalnum(zIdent[j]) && zIdent[j] != '_')
break;
}
needQuote = zIdent[j] != 0 || isdigit(zIdent[0]) || sqlite3KeywordCode(zIdent, j) != TK_ID;
if(needQuote)
z[i++] = '"';
for (j = 0; zIdent[j]; j++)
{
z[i++] = zIdent[j];
if(zIdent[j] == '"')
z[i++] = '"';
}
if(needQuote)
z[i++] = '"';
z[i] = 0;
*pIdx = i;
}
/*
** Generate a CREATE TABLE statement appropriate for the given
** table. Memory to hold the text of the statement is obtained
** from sqliteMalloc() and must be freed by the calling function.
*/
static char *
createTableStmt(sqlite3 * db, Table * p, int isTemp)
{
int i, k, n;
char *zStmt;
char *zSep, *zSep2, *zEnd, *z;
Column *pCol;
n = 0;
for (pCol = p->aCol, i = 0; i < p->nCol; i++, pCol++)
{
n += identLength(pCol->zName);
z = pCol->zType;
if(z)
{
n += (strlen(z) + 1);
}
}
n += identLength(p->zName);
if(n < 50)
{
zSep = "";
zSep2 = ",";
zEnd = ")";
}
else
{
zSep = "\n ";
zSep2 = ",\n ";
zEnd = "\n)";
}
n += 35 + 6 * p->nCol;
zStmt = sqlite3_malloc(n);
if(zStmt == 0)
{
db->mallocFailed = 1;
return 0;
}
sqlite3_snprintf(n, zStmt, !OMIT_TEMPDB && isTemp ? "CREATE TEMP TABLE " : "CREATE TABLE ");
k = strlen(zStmt);
identPut(zStmt, &k, p->zName);
zStmt[k++] = '(';
for (pCol = p->aCol, i = 0; i < p->nCol; i++, pCol++)
{
sqlite3_snprintf(n - k, &zStmt[k], zSep);
k += strlen(&zStmt[k]);
zSep = zSep2;
identPut(zStmt, &k, pCol->zName);
if((z = pCol->zType) != 0)
{
zStmt[k++] = ' ';
assert(strlen(z) + k + 1 <= n);
sqlite3_snprintf(n - k, &zStmt[k], "%s", z);
k += strlen(z);
}
}
sqlite3_snprintf(n - k, &zStmt[k], "%s", zEnd);
return zStmt;
}
/*
** This routine is called to report the final ")" that terminates
** a CREATE TABLE statement.
**
** The table structure that other action routines have been building
** is added to the internal hash tables, assuming no errors have
** occurred.
**
** An entry for the table is made in the master table on disk, unless
** this is a temporary table or db->init.busy==1. When db->init.busy==1
** it means we are reading the sqlite_master table because we just
** connected to the database or because the sqlite_master table has
** recently changed, so the entry for this table already exists in
** the sqlite_master table. We do not want to create it again.
**
** If the pSelect argument is not NULL, it means that this routine
** was called to create a table generated from a
** "CREATE TABLE ... AS SELECT ..." statement. The column names of
** the new table will match the result set of the SELECT.
*/
SQLITE_PRIVATE void
sqlite3EndTable(Parse * pParse, /* Parse context */
Token * pCons, /* The ',' token after the last column defn. */
Token * pEnd, /* The final ')' token in the CREATE TABLE */
Select * pSelect /* Select from a "CREATE ... AS SELECT" */
)
{
Table *p;
sqlite3 *db = pParse->db;
int iDb;
if((pEnd == 0 && pSelect == 0) || pParse->nErr || db->mallocFailed)
{
return;
}
p = pParse->pNewTable;
if(p == 0)
return;
assert(!db->init.busy || !pSelect);
iDb = sqlite3SchemaToIndex(db, p->pSchema);
#ifndef SQLITE_OMIT_CHECK
/* Resolve names in all CHECK constraint expressions.
*/
if(p->pCheck)
{
SrcList sSrc; /* Fake SrcList for pParse->pNewTable */
NameContext sNC; /* Name context for pParse->pNewTable */
memset(&sNC, 0, sizeof(sNC));
memset(&sSrc, 0, sizeof(sSrc));
sSrc.nSrc = 1;
sSrc.a[0].zName = p->zName;
sSrc.a[0].pTab = p;
sSrc.a[0].iCursor = -1;
sNC.pParse = pParse;
sNC.pSrcList = &sSrc;
sNC.isCheck = 1;
if(sqlite3ExprResolveNames(&sNC, p->pCheck))
{
return;
}
}
#endif /* !defined(SQLITE_OMIT_CHECK) */
/* If the db->init.busy is 1 it means we are reading the SQL off the
** "sqlite_master" or "sqlite_temp_master" table on the disk.
** So do not write to the disk again. Extract the root page number
** for the table from the db->init.newTnum field. (The page number
** should have been put there by the sqliteOpenCb routine.)
*/
if(db->init.busy)
{
p->tnum = db->init.newTnum;
}
/* If not initializing, then create a record for the new table
** in the SQLITE_MASTER table of the database. The record number
** for the new table entry should already be on the stack.
**
** If this is a TEMPORARY table, write the entry into the auxiliary
** file instead of into the main database file.
*/
if(!db->init.busy)
{
int n;
Vdbe *v;
char *zType; /* "view" or "table" */
char *zType2; /* "VIEW" or "TABLE" */
char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */
v = sqlite3GetVdbe(pParse);
if(v == 0)
return;
sqlite3VdbeAddOp1(v, OP_Close, 0);
/* Create the rootpage for the new table and push it onto the stack.
** A view has no rootpage, so just push a zero onto the stack for
** views. Initialize zType at the same time.
*/
if(p->pSelect == 0)
{
/* A regular table */
zType = "table";
zType2 = "TABLE";
#ifndef SQLITE_OMIT_VIEW
}
else
{
/* A view */
zType = "view";
zType2 = "VIEW";
#endif
}
/* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
** statement to populate the new table. The root-page number for the
** new table is on the top of the vdbe stack.
**
** Once the SELECT has been coded by sqlite3Select(), it is in a
** suitable state to query for the column names and types to be used
** by the new table.
**
** A shared-cache write-lock is not required to write to the new table,
** as a schema-lock must have already been obtained to create it. Since
** a schema-lock excludes all other database users, the write-lock would
** be redundant.
*/
if(pSelect)
{
SelectDest dest;
Table *pSelTab;
sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
sqlite3VdbeChangeP5(v, 1);
pParse->nTab = 2;
sqlite3SelectDestInit(&dest, SRT_Table, 1);
sqlite3Select(pParse, pSelect, &dest, 0, 0, 0, 0);
sqlite3VdbeAddOp1(v, OP_Close, 1);
if(pParse->nErr == 0)
{
pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSelect);
if(pSelTab == 0)
return;
assert(p->aCol == 0);
p->nCol = pSelTab->nCol;
p->aCol = pSelTab->aCol;
pSelTab->nCol = 0;
pSelTab->aCol = 0;
sqlite3DeleteTable(pSelTab);
}
}
/* Compute the complete text of the CREATE statement */
if(pSelect)
{
zStmt = createTableStmt(db, p, p->pSchema == db->aDb[1].pSchema);
}
else
{
n = pEnd->z - pParse->sNameToken.z + 1;
zStmt = sqlite3MPrintf(db,
"CREATE %s %.*s", zType2, n, pParse->sNameToken.z);
}
/* A slot for the record has already been allocated in the
** SQLITE_MASTER table. We just need to update that slot with all
** the information we've collected. The rowid for the preallocated
** slot is the 2nd item on the stack. The top of the stack is the
** root page for the new table (or a 0 if this is a view).
*/
sqlite3NestedParse(pParse,
"UPDATE %Q.%s "
"SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
"WHERE rowid=#%d",
db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
zType,
p->zName, p->zName, pParse->regRoot, zStmt, pParse->regRowid);
sqlite3_free(zStmt);
sqlite3ChangeCookie(pParse, iDb);
#ifndef SQLITE_OMIT_AUTOINCREMENT
/* Check to see if we need to create an sqlite_sequence table for
** keeping track of autoincrement keys.
*/
if(p->autoInc)
{
Db *pDb = &db->aDb[iDb];
if(pDb->pSchema->pSeqTab == 0)
{
sqlite3NestedParse(pParse,
"CREATE TABLE %Q.sqlite_sequence(name,seq)",
pDb->zName);
}
}
#endif
/* Reparse everything to update our internal data structures */
sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
sqlite3MPrintf(db, "tbl_name='%q'", p->zName), P4_DYNAMIC);
}
/* Add the table to the in-memory representation of the database.
*/
if(db->init.busy && pParse->nErr == 0)
{
Table *pOld;
FKey *pFKey;
Schema *pSchema = p->pSchema;
pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, strlen(p->zName) + 1, p);
if(pOld)
{
assert(p == pOld); /* Malloc must have failed inside HashInsert() */
db->mallocFailed = 1;
return;
}
#ifndef SQLITE_OMIT_FOREIGN_KEY
for (pFKey = p->pFKey; pFKey; pFKey = pFKey->pNextFrom)
{
void *data;
int nTo = strlen(pFKey->zTo) + 1;
pFKey->pNextTo = sqlite3HashFind(&pSchema->aFKey, pFKey->zTo, nTo);
data = sqlite3HashInsert(&pSchema->aFKey, pFKey->zTo, nTo, pFKey);
if(data == (void *) pFKey)
{
db->mallocFailed = 1;
}
}
#endif
pParse->pNewTable = 0;
db->nTable++;
db->flags |= SQLITE_InternChanges;
#ifndef SQLITE_OMIT_ALTERTABLE
if(!p->pSelect)
{
const char *zName = (const char *) pParse->sNameToken.z;
int nName;
assert(!pSelect && pCons && pEnd);
if(pCons->z == 0)
{
pCons = pEnd;
}
nName = (const char *) pCons->z - zName;
p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
}
#endif
}
}
#ifndef SQLITE_OMIT_VIEW
/*
** The parser calls this routine in order to create a new VIEW
*/
SQLITE_PRIVATE void
sqlite3CreateView(Parse * pParse, /* The parsing context */
Token * pBegin, /* The CREATE token that begins the statement */
Token * pName1, /* The token that holds the name of the view */
Token * pName2, /* The token that holds the name of the view */
Select * pSelect, /* A SELECT statement that will become the new view */
int isTemp, /* TRUE for a TEMPORARY view */
int noErr /* Suppress error messages if VIEW already exists */
)
{
Table *p;
int n;
const unsigned char *z;
Token sEnd;
DbFixer sFix;
Token *pName;
int iDb;
sqlite3 *db = pParse->db;
if(pParse->nVar > 0)
{
sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
sqlite3SelectDelete(pSelect);
return;
}
sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
p = pParse->pNewTable;
if(p == 0 || pParse->nErr)
{
sqlite3SelectDelete(pSelect);
return;
}
sqlite3TwoPartName(pParse, pName1, pName2, &pName);
iDb = sqlite3SchemaToIndex(db, p->pSchema);
if(sqlite3FixInit(&sFix, pParse, iDb, "view", pName) && sqlite3FixSelect(&sFix, pSelect))
{
sqlite3SelectDelete(pSelect);
return;
}
/* Make a copy of the entire SELECT statement that defines the view.
** This will force all the Expr.token.z values to be dynamically
** allocated rather than point to the input string - which means that
** they will persist after the current sqlite3_exec() call returns.
*/
p->pSelect = sqlite3SelectDup(db, pSelect);
sqlite3SelectDelete(pSelect);
if(db->mallocFailed)
{
return;
}
if(!db->init.busy)
{
sqlite3ViewGetColumnNames(pParse, p);
}
/* Locate the end of the CREATE VIEW statement. Make sEnd point to
** the end.
*/
sEnd = pParse->sLastToken;
if(sEnd.z[0] != 0 && sEnd.z[0] != ';')
{
sEnd.z += sEnd.n;
}
sEnd.n = 0;
n = sEnd.z - pBegin->z;
z = (const unsigned char *) pBegin->z;
while (n > 0 && (z[n - 1] == ';' || isspace(z[n - 1])))
{
n--;
}
sEnd.z = &z[n - 1];
sEnd.n = 1;
/* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
sqlite3EndTable(pParse, 0, &sEnd, 0);
return;
}
#endif /* SQLITE_OMIT_VIEW */
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
/*
** The Table structure pTable is really a VIEW. Fill in the names of
** the columns of the view in the pTable structure. Return the number
** of errors. If an error is seen leave an error message in pParse->zErrMsg.
*/
SQLITE_PRIVATE int
sqlite3ViewGetColumnNames(Parse * pParse, Table * pTable)
{
Table *pSelTab; /* A fake table from which we get the result set */
Select *pSel; /* Copy of the SELECT that implements the view */
int nErr = 0; /* Number of errors encountered */
int n; /* Temporarily holds the number of cursors assigned */
sqlite3 *db = pParse->db; /* Database connection for malloc errors */
int (*xAuth) (void *, int, const char *, const char *, const char *, const char *);
assert(pTable);
#ifndef SQLITE_OMIT_VIRTUALTABLE
if(sqlite3VtabCallConnect(pParse, pTable))
{
return SQLITE_ERROR;
}
if(IsVirtual(pTable))
return 0;
#endif
#ifndef SQLITE_OMIT_VIEW
/* A positive nCol means the columns names for this view are
** already known.
*/
if(pTable->nCol > 0)
return 0;
/* A negative nCol is a special marker meaning that we are currently
** trying to compute the column names. If we enter this routine with
** a negative nCol, it means two or more views form a loop, like this:
**
** CREATE VIEW one AS SELECT * FROM two;
** CREATE VIEW two AS SELECT * FROM one;
**
** Actually, this error is caught previously and so the following test
** should always fail. But we will leave it in place just to be safe.
*/
if(pTable->nCol < 0)
{
sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
return 1;
}
assert(pTable->nCol >= 0);
/* If we get this far, it means we need to compute the table names.
** Note that the call to sqlite3ResultSetOfSelect() will expand any
** "*" elements in the results set of the view and will assign cursors
** to the elements of the FROM clause. But we do not want these changes
** to be permanent. So the computation is done on a copy of the SELECT
** statement that defines the view.
*/
assert(pTable->pSelect);
pSel = sqlite3SelectDup(db, pTable->pSelect);
if(pSel)
{
n = pParse->nTab;
sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
pTable->nCol = -1;
#ifndef SQLITE_OMIT_AUTHORIZATION
xAuth = db->xAuth;
db->xAuth = 0;
pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSel);
db->xAuth = xAuth;
#else
pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSel);
#endif
pParse->nTab = n;
if(pSelTab)
{
assert(pTable->aCol == 0);
pTable->nCol = pSelTab->nCol;
pTable->aCol = pSelTab->aCol;
pSelTab->nCol = 0;
pSelTab->aCol = 0;
sqlite3DeleteTable(pSelTab);
pTable->pSchema->flags |= DB_UnresetViews;
}
else
{
pTable->nCol = 0;
nErr++;
}
sqlite3SelectDelete(pSel);
}
else
{
nErr++;
}
#endif /* SQLITE_OMIT_VIEW */
return nErr;
}
#endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
#ifndef SQLITE_OMIT_VIEW
/*
** Clear the column names from every VIEW in database idx.
*/
static void
sqliteViewResetAll(sqlite3 * db, int idx)
{
HashElem *i;
if(!DbHasProperty(db, idx, DB_UnresetViews))
return;
for (i = sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i; i = sqliteHashNext(i))
{
Table *pTab = sqliteHashData(i);
if(pTab->pSelect)
{
sqliteResetColumnNames(pTab);
}
}
DbClearProperty(db, idx, DB_UnresetViews);
}
#else
# define sqliteViewResetAll(A,B)
#endif /* SQLITE_OMIT_VIEW */
/*
** This function is called by the VDBE to adjust the internal schema
** used by SQLite when the btree layer moves a table root page. The
** root-page of a table or index in database iDb has changed from iFrom
** to iTo.
**
** Ticket #1728: The symbol table might still contain information
** on tables and/or indices that are the process of being deleted.
** If you are unlucky, one of those deleted indices or tables might
** have the same rootpage number as the real table or index that is
** being moved. So we cannot stop searching after the first match
** because the first match might be for one of the deleted indices
** or tables and not the table/index that is actually being moved.
** We must continue looping until all tables and indices with
** rootpage==iFrom have been converted to have a rootpage of iTo
** in order to be certain that we got the right one.
*/
#ifndef SQLITE_OMIT_AUTOVACUUM
SQLITE_PRIVATE void
sqlite3RootPageMoved(Db * pDb, int iFrom, int iTo)
{
HashElem *pElem;
Hash *pHash;
pHash = &pDb->pSchema->tblHash;
for (pElem = sqliteHashFirst(pHash); pElem; pElem = sqliteHashNext(pElem))
{
Table *pTab = sqliteHashData(pElem);
if(pTab->tnum == iFrom)
{
pTab->tnum = iTo;
}
}
pHash = &pDb->pSchema->idxHash;
for (pElem = sqliteHashFirst(pHash); pElem; pElem = sqliteHashNext(pElem))
{
Index *pIdx = sqliteHashData(pElem);
if(pIdx->tnum == iFrom)
{
pIdx->tnum = iTo;
}
}
}
#endif
/*
** Write code to erase the table with root-page iTable from database iDb.
** Also write code to modify the sqlite_master table and internal schema
** if a root-page of another table is moved by the btree-layer whilst
** erasing iTable (this can happen with an auto-vacuum database).
*/
static void
destroyRootPage(Parse * pParse, int iTable, int iDb)
{
Vdbe *v = sqlite3GetVdbe(pParse);
int r1 = sqlite3GetTempReg(pParse);
sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
#ifndef SQLITE_OMIT_AUTOVACUUM
/* OP_Destroy stores an in integer r1. If this integer
** is non-zero, then it is the root page number of a table moved to
** location iTable. The following code modifies the sqlite_master table to
** reflect this.
**
** The "#%d" in the SQL is a special constant that means whatever value
** is on the top of the stack. See sqlite3RegisterExpr().
*/
sqlite3NestedParse(pParse,
"UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1);
#endif
sqlite3ReleaseTempReg(pParse, r1);
}
/*
** Write VDBE code to erase table pTab and all associated indices on disk.
** Code to update the sqlite_master tables and internal schema definitions
** in case a root-page belonging to another table is moved by the btree layer
** is also added (this can happen with an auto-vacuum database).
*/
static void
destroyTable(Parse * pParse, Table * pTab)
{
#ifdef SQLITE_OMIT_AUTOVACUUM
Index *pIdx;
int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
destroyRootPage(pParse, pTab->tnum, iDb);
for (pIdx = pTab->pIndex; pIdx; pIdx = pIdx->pNext)
{
destroyRootPage(pParse, pIdx->tnum, iDb);
}
#else
/* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
** is not defined), then it is important to call OP_Destroy on the
** table and index root-pages in order, starting with the numerically
** largest root-page number. This guarantees that none of the root-pages
** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
** following were coded:
**
** OP_Destroy 4 0
** ...
** OP_Destroy 5 0
**
** and root page 5 happened to be the largest root-page number in the
** database, then root page 5 would be moved to page 4 by the
** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
** a free-list page.
*/
int iTab = pTab->tnum;
int iDestroyed = 0;
while (1)
{
Index *pIdx;
int iLargest = 0;
if(iDestroyed == 0 || iTab < iDestroyed)
{
iLargest = iTab;
}
for (pIdx = pTab->pIndex; pIdx; pIdx = pIdx->pNext)
{
int iIdx = pIdx->tnum;
assert(pIdx->pSchema == pTab->pSchema);
if((iDestroyed == 0 || (iIdx < iDestroyed)) && iIdx > iLargest)
{
iLargest = iIdx;
}
}
if(iLargest == 0)
{
return;
}
else
{
int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
destroyRootPage(pParse, iLargest, iDb);
iDestroyed = iLargest;
}
}
#endif
}
/*
** This routine is called to do the work of a DROP TABLE statement.
** pName is the name of the table to be dropped.
*/
SQLITE_PRIVATE void
sqlite3DropTable(Parse * pParse, SrcList * pName, int isView, int noErr)
{
Table *pTab;
Vdbe *v;
sqlite3 *db = pParse->db;
int iDb;
if(pParse->nErr || db->mallocFailed)
{
goto exit_drop_table;
}
assert(pName->nSrc == 1);
pTab = sqlite3LocateTable(pParse, isView, pName->a[0].zName, pName->a[0].zDatabase);
if(pTab == 0)
{
if(noErr)
{
sqlite3ErrorClear(pParse);
}
goto exit_drop_table;
}
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
assert(iDb >= 0 && iDb < db->nDb);
/* If pTab is a virtual table, call ViewGetColumnNames() to ensure
** it is initialized.
*/
if(IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab))
{
goto exit_drop_table;
}
#ifndef SQLITE_OMIT_AUTHORIZATION
{
int code;
const char *zTab = SCHEMA_TABLE(iDb);
const char *zDb = db->aDb[iDb].zName;
const char *zArg2 = 0;
if(sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb))
{
goto exit_drop_table;
}
if(isView)
{
if(!OMIT_TEMPDB && iDb == 1)
{
code = SQLITE_DROP_TEMP_VIEW;
}
else
{
code = SQLITE_DROP_VIEW;
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
}
else if(IsVirtual(pTab))
{
code = SQLITE_DROP_VTABLE;
zArg2 = pTab->pMod->zName;
#endif
}
else
{
if(!OMIT_TEMPDB && iDb == 1)
{
code = SQLITE_DROP_TEMP_TABLE;
}
else
{
code = SQLITE_DROP_TABLE;
}
}
if(sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb))
{
goto exit_drop_table;
}
if(sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb))
{
goto exit_drop_table;
}
}
#endif
if(pTab->readOnly || pTab == db->aDb[iDb].pSchema->pSeqTab)
{
sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
goto exit_drop_table;
}
#ifndef SQLITE_OMIT_VIEW
/* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
** on a table.
*/
if(isView && pTab->pSelect == 0)
{
sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
goto exit_drop_table;
}
if(!isView && pTab->pSelect)
{
sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
goto exit_drop_table;
}
#endif
/* Generate code to remove the table from the master table
** on disk.
*/
v = sqlite3GetVdbe(pParse);
if(v)
{
Trigger *pTrigger;
Db *pDb = &db->aDb[iDb];
sqlite3BeginWriteOperation(pParse, 1, iDb);
#ifndef SQLITE_OMIT_VIRTUALTABLE
if(IsVirtual(pTab))
{
Vdbe *v = sqlite3GetVdbe(pParse);
if(v)
{
sqlite3VdbeAddOp0(v, OP_VBegin);
}
}
#endif
/* Drop all triggers associated with the table being dropped. Code
** is generated to remove entries from sqlite_master and/or
** sqlite_temp_master if required.
*/
pTrigger = pTab->pTrigger;
while (pTrigger)
{
assert(pTrigger->pSchema == pTab->pSchema ||
pTrigger->pSchema == db->aDb[1].pSchema);
sqlite3DropTriggerPtr(pParse, pTrigger);
pTrigger = pTrigger->pNext;
}
#ifndef SQLITE_OMIT_AUTOINCREMENT
/* Remove any entries of the sqlite_sequence table associated with
** the table being dropped. This is done before the table is dropped
** at the btree level, in case the sqlite_sequence table needs to
** move as a result of the drop (can happen in auto-vacuum mode).
*/
if(pTab->autoInc)
{
sqlite3NestedParse(pParse,
"DELETE FROM %s.sqlite_sequence WHERE name=%Q",
pDb->zName, pTab->zName);
}
#endif
/* Drop all SQLITE_MASTER table and index entries that refer to the
** table. The program name loops through the master table and deletes
** every row that refers to a table of the same name as the one being
** dropped. Triggers are handled seperately because a trigger can be
** created in the temp database that refers to a table in another
** database.
*/
sqlite3NestedParse(pParse,
"DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
/* Drop any statistics from the sqlite_stat1 table, if it exists */
if(sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName))
{
sqlite3NestedParse(pParse,
"DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q", pDb->zName,
pTab->zName);
}
if(!isView && !IsVirtual(pTab))
{
destroyTable(pParse, pTab);
}
/* Remove the table entry from SQLite's internal schema and modify
** the schema cookie.
*/
if(IsVirtual(pTab))
{
sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
}
sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
sqlite3ChangeCookie(pParse, iDb);
}
sqliteViewResetAll(db, iDb);
exit_drop_table:
sqlite3SrcListDelete(pName);
}
/*
** This routine is called to create a new foreign key on the table
** currently under construction. pFromCol determines which columns
** in the current table point to the foreign key. If pFromCol==0 then
** connect the key to the last column inserted. pTo is the name of
** the table referred to. pToCol is a list of tables in the other
** pTo table that the foreign key points to. flags contains all
** information about the conflict resolution algorithms specified
** in the ON DELETE, ON UPDATE and ON INSERT clauses.
**
** An FKey structure is created and added to the table currently
** under construction in the pParse->pNewTable field. The new FKey
** is not linked into db->aFKey at this point - that does not happen
** until sqlite3EndTable().
**
** The foreign key is set for IMMEDIATE processing. A subsequent call
** to sqlite3DeferForeignKey() might change this to DEFERRED.
*/
SQLITE_PRIVATE void
sqlite3CreateForeignKey(Parse * pParse, /* Parsing context */
ExprList * pFromCol, /* Columns in this table that point to other table */
Token * pTo, /* Name of the other table */
ExprList * pToCol, /* Columns in the other table */
int flags /* Conflict resolution algorithms. */
)
{
#ifndef SQLITE_OMIT_FOREIGN_KEY
FKey *pFKey = 0;
Table *p = pParse->pNewTable;
int nByte;
int i;
int nCol;
char *z;
assert(pTo != 0);
if(p == 0 || pParse->nErr || IN_DECLARE_VTAB)
goto fk_end;
if(pFromCol == 0)
{
int iCol = p->nCol - 1;
if(iCol < 0)
goto fk_end;
if(pToCol && pToCol->nExpr != 1)
{
sqlite3ErrorMsg(pParse, "foreign key on %s"
" should reference only one column of table %T",
p->aCol[iCol].zName, pTo);
goto fk_end;
}
nCol = 1;
}
else if(pToCol && pToCol->nExpr != pFromCol->nExpr)
{
sqlite3ErrorMsg(pParse,
"number of columns in foreign key does not match the number of "
"columns in the referenced table");
goto fk_end;
}
else
{
nCol = pFromCol->nExpr;
}
nByte = sizeof(*pFKey) + nCol * sizeof(pFKey->aCol[0]) + pTo->n + 1;
if(pToCol)
{
for (i = 0; i < pToCol->nExpr; i++)
{
nByte += strlen(pToCol->a[i].zName) + 1;
}
}
pFKey = sqlite3DbMallocZero(pParse->db, nByte);
if(pFKey == 0)
{
goto fk_end;
}
pFKey->pFrom = p;
pFKey->pNextFrom = p->pFKey;
z = (char *) &pFKey[1];
pFKey->aCol = (struct sColMap *) z;
z += sizeof(struct sColMap) * nCol;
pFKey->zTo = z;
memcpy(z, pTo->z, pTo->n);
z[pTo->n] = 0;
z += pTo->n + 1;
pFKey->pNextTo = 0;
pFKey->nCol = nCol;
if(pFromCol == 0)
{
pFKey->aCol[0].iFrom = p->nCol - 1;
}
else
{
for (i = 0; i < nCol; i++)
{
int j;
for (j = 0; j < p->nCol; j++)
{
if(sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName) == 0)
{
pFKey->aCol[i].iFrom = j;
break;
}
}
if(j >= p->nCol)
{
sqlite3ErrorMsg(pParse,
"unknown column \"%s\" in foreign key definition",
pFromCol->a[i].zName);
goto fk_end;
}
}
}
if(pToCol)
{
for (i = 0; i < nCol; i++)
{
int n = strlen(pToCol->a[i].zName);
pFKey->aCol[i].zCol = z;
memcpy(z, pToCol->a[i].zName, n);
z[n] = 0;
z += n + 1;
}
}
pFKey->isDeferred = 0;
pFKey->deleteConf = flags & 0xff;
pFKey->updateConf = (flags >> 8) & 0xff;
pFKey->insertConf = (flags >> 16) & 0xff;
/* Link the foreign key to the table as the last step.
*/
p->pFKey = pFKey;
pFKey = 0;
fk_end:
sqlite3_free(pFKey);
#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
sqlite3ExprListDelete(pFromCol);
sqlite3ExprListDelete(pToCol);
}
/*
** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
** clause is seen as part of a foreign key definition. The isDeferred
** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
** The behavior of the most recently created foreign key is adjusted
** accordingly.
*/
SQLITE_PRIVATE void
sqlite3DeferForeignKey(Parse * pParse, int isDeferred)
{
#ifndef SQLITE_OMIT_FOREIGN_KEY
Table *pTab;
FKey *pFKey;
if((pTab = pParse->pNewTable) == 0 || (pFKey = pTab->pFKey) == 0)
return;
pFKey->isDeferred = isDeferred;
#endif
}
/*
** Generate code that will erase and refill index *pIdx. This is
** used to initialize a newly created index or to recompute the
** content of an index in response to a REINDEX command.
**
** if memRootPage is not negative, it means that the index is newly
** created. The register specified by memRootPage contains the
** root page number of the index. If memRootPage is negative, then
** the index already exists and must be cleared before being refilled and
** the root page number of the index is taken from pIndex->tnum.
*/
static void
sqlite3RefillIndex(Parse * pParse, Index * pIndex, int memRootPage)
{
Table *pTab = pIndex->pTable; /* The table that is indexed */
int iTab = pParse->nTab; /* Btree cursor used for pTab */
int iIdx = pParse->nTab + 1; /* Btree cursor used for pIndex */
int addr1; /* Address of top of loop */
int tnum; /* Root page of index */
Vdbe *v; /* Generate code into this virtual machine */
KeyInfo *pKey; /* KeyInfo for index */
int regIdxKey; /* Registers containing the index key */
int regRecord; /* Register holding assemblied index record */
sqlite3 *db = pParse->db; /* The database connection */
int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
#ifndef SQLITE_OMIT_AUTHORIZATION
if(sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, db->aDb[iDb].zName))
{
return;
}
#endif
/* Require a write-lock on the table to perform this operation */
sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
v = sqlite3GetVdbe(pParse);
if(v == 0)
return;
if(memRootPage >= 0)
{
tnum = memRootPage;
}
else
{
tnum = pIndex->tnum;
sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
}
pKey = sqlite3IndexKeyinfo(pParse, pIndex);
sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, (char *) pKey, P4_KEYINFO_HANDOFF);
if(memRootPage >= 0)
{
sqlite3VdbeChangeP5(v, 1);
}
sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
regRecord = sqlite3GetTempReg(pParse);
regIdxKey = sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1);
if(pIndex->onError != OE_None)
{
int j1, j2;
int regRowid;
regRowid = regIdxKey + pIndex->nColumn;
j1 = sqlite3VdbeAddOp3(v, OP_IsNull, regIdxKey, 0, pIndex->nColumn);
j2 = sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx,
0, regRowid, (char *)((long)regRecord), P4_INT32);
sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, OE_Abort, 0,
"indexed columns are not unique", P4_STATIC);
sqlite3VdbeJumpHere(v, j1);
sqlite3VdbeJumpHere(v, j2);
}
sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
sqlite3ReleaseTempReg(pParse, regRecord);
sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1 + 1);
sqlite3VdbeJumpHere(v, addr1);
sqlite3VdbeAddOp1(v, OP_Close, iTab);
sqlite3VdbeAddOp1(v, OP_Close, iIdx);
}
/*
** Create a new index for an SQL table. pName1.pName2 is the name of the index
** and pTblList is the name of the table that is to be indexed. Both will
** be NULL for a primary key or an index that is created to satisfy a
** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
** as the table to be indexed. pParse->pNewTable is a table that is
** currently being constructed by a CREATE TABLE statement.
**
** pList is a list of columns to be indexed. pList will be NULL if this
** is a primary key or unique-constraint on the most recent column added
** to the table currently under construction.
*/
SQLITE_PRIVATE void
sqlite3CreateIndex(Parse * pParse, /* All information about this parse */
Token * pName1, /* First part of index name. May be NULL */
Token * pName2, /* Second part of index name. May be NULL */
SrcList * pTblName, /* Table to index. Use pParse->pNewTable if 0 */
ExprList * pList, /* A list of columns to be indexed */
int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
Token * pStart, /* The CREATE token that begins this statement */
Token * pEnd, /* The ")" that closes the CREATE INDEX statement */
int sortOrder, /* Sort order of primary key when pList==NULL */
int ifNotExist /* Omit error if index already exists */
)
{
Table *pTab = 0; /* Table to be indexed */
Index *pIndex = 0; /* The index to be created */
char *zName = 0; /* Name of the index */
int nName; /* Number of characters in zName */
int i, j;
Token nullId; /* Fake token for an empty ID list */
DbFixer sFix; /* For assigning database names to pTable */
int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */
sqlite3 *db = pParse->db;
Db *pDb; /* The specific table containing the indexed database */
int iDb; /* Index of the database that is being written */
Token *pName = 0; /* Unqualified name of the index to create */
struct ExprList_item *pListItem; /* For looping over pList */
int nCol;
int nExtra = 0;
char *zExtra;
if(pParse->nErr || db->mallocFailed || IN_DECLARE_VTAB)
{
goto exit_create_index;
}
/*
** Find the table that is to be indexed. Return early if not found.
*/
if(pTblName != 0)
{
/* Use the two-part index name to determine the database
** to search for the table. 'Fix' the table name to this db
** before looking up the table.
*/
assert(pName1 && pName2);
iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
if(iDb < 0)
goto exit_create_index;
#ifndef SQLITE_OMIT_TEMPDB
/* If the index name was unqualified, check if the the table
** is a temp table. If so, set the database to 1. Do not do this
** if initialising a database schema.
*/
if(!db->init.busy)
{
pTab = sqlite3SrcListLookup(pParse, pTblName);
if(pName2 && pName2->n == 0 && pTab && pTab->pSchema == db->aDb[1].pSchema)
{
iDb = 1;
}
}
#endif
if(sqlite3FixInit(&sFix, pParse, iDb, "index", pName) &&
sqlite3FixSrcList(&sFix, pTblName))
{
/* Because the parser constructs pTblName from a single identifier,
** sqlite3FixSrcList can never fail. */
assert(0);
}
pTab = sqlite3LocateTable(pParse, 0, pTblName->a[0].zName,
pTblName->a[0].zDatabase);
if(!pTab)
goto exit_create_index;
assert(db->aDb[iDb].pSchema == pTab->pSchema);
}
else
{
assert(pName == 0);
pTab = pParse->pNewTable;
if(!pTab)
goto exit_create_index;
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
}
pDb = &db->aDb[iDb];
if(pTab == 0 || pParse->nErr)
goto exit_create_index;
if(pTab->readOnly)
{
sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
goto exit_create_index;
}
#ifndef SQLITE_OMIT_VIEW
if(pTab->pSelect)
{
sqlite3ErrorMsg(pParse, "views may not be indexed");
goto exit_create_index;
}
#endif
#ifndef SQLITE_OMIT_VIRTUALTABLE
if(IsVirtual(pTab))
{
sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
goto exit_create_index;
}
#endif
/*
** Find the name of the index. Make sure there is not already another
** index or table with the same name.
**
** Exception: If we are reading the names of permanent indices from the
** sqlite_master table (because some other process changed the schema) and
** one of the index names collides with the name of a temporary table or
** index, then we will continue to process this index.
**
** If pName==0 it means that we are
** dealing with a primary key or UNIQUE constraint. We have to invent our
** own name.
*/
if(pName)
{
zName = sqlite3NameFromToken(db, pName);
if(SQLITE_OK != sqlite3ReadSchema(pParse))
goto exit_create_index;
if(zName == 0)
goto exit_create_index;
if(SQLITE_OK != sqlite3CheckObjectName(pParse, zName))
{
goto exit_create_index;
}
if(!db->init.busy)
{
if(SQLITE_OK != sqlite3ReadSchema(pParse))
goto exit_create_index;
if(sqlite3FindTable(db, zName, 0) != 0)
{
sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
goto exit_create_index;
}
}
if(sqlite3FindIndex(db, zName, pDb->zName) != 0)
{
if(!ifNotExist)
{
sqlite3ErrorMsg(pParse, "index %s already exists", zName);
}
goto exit_create_index;
}
}
else
{
char zBuf[30];
int n;
Index *pLoop;
for (pLoop = pTab->pIndex, n = 1; pLoop; pLoop = pLoop->pNext, n++)
{
}
sqlite3_snprintf(sizeof(zBuf), zBuf, "_%d", n);
zName = 0;
sqlite3SetString(&zName, "sqlite_autoindex_", pTab->zName, zBuf, (char *) 0);
if(zName == 0)
{
db->mallocFailed = 1;
goto exit_create_index;
}
}
/* Check for authorization to create an index.
*/
#ifndef SQLITE_OMIT_AUTHORIZATION
{
const char *zDb = pDb->zName;
if(sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb))
{
goto exit_create_index;
}
i = SQLITE_CREATE_INDEX;
if(!OMIT_TEMPDB && iDb == 1)
i = SQLITE_CREATE_TEMP_INDEX;
if(sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb))
{
goto exit_create_index;
}
}
#endif
/* If pList==0, it means this routine was called to make a primary
** key out of the last column added to the table under construction.
** So create a fake list to simulate this.
*/
if(pList == 0)
{
nullId.z = (u8 *) pTab->aCol[pTab->nCol - 1].zName;
nullId.n = strlen((char *) nullId.z);
pList = sqlite3ExprListAppend(pParse, 0, 0, &nullId);
if(pList == 0)
goto exit_create_index;
pList->a[0].sortOrder = sortOrder;
}
/* Figure out how many bytes of space are required to store explicitly
** specified collation sequence names.
*/
for (i = 0; i < pList->nExpr; i++)
{
Expr *pExpr = pList->a[i].pExpr;
if(pExpr)
{
nExtra += (1 + strlen(pExpr->pColl->zName));
}
}
/*
** Allocate the index structure.
*/
nName = strlen(zName);
nCol = pList->nExpr;
pIndex = sqlite3DbMallocZero(db, sizeof(Index) + /* Index structure */
sizeof(int) * nCol + /* Index.aiColumn */
sizeof(int) * (nCol + 1) + /* Index.aiRowEst */
sizeof(char *) * nCol + /* Index.azColl */
sizeof(u8) * nCol + /* Index.aSortOrder */
nName + 1 + /* Index.zName */
nExtra /* Collation sequence names */
);
if(db->mallocFailed)
{
goto exit_create_index;
}
pIndex->azColl = (char **) (&pIndex[1]);
pIndex->aiColumn = (int *) (&pIndex->azColl[nCol]);
pIndex->aiRowEst = (unsigned *) (&pIndex->aiColumn[nCol]);
pIndex->aSortOrder = (u8 *) (&pIndex->aiRowEst[nCol + 1]);
pIndex->zName = (char *) (&pIndex->aSortOrder[nCol]);
zExtra = (char *) (&pIndex->zName[nName + 1]);
memcpy(pIndex->zName, zName, nName + 1);
pIndex->pTable = pTab;
pIndex->nColumn = pList->nExpr;
pIndex->onError = onError;
pIndex->autoIndex = pName == 0;
pIndex->pSchema = db->aDb[iDb].pSchema;
/* Check to see if we should honor DESC requests on index columns
*/
if(pDb->pSchema->file_format >= 4)
{
sortOrderMask = -1; /* Honor DESC */
}
else
{
sortOrderMask = 0; /* Ignore DESC */
}
/* Scan the names of the columns of the table to be indexed and
** load the column indices into the Index structure. Report an error
** if any column is not found.
*/
for (i = 0, pListItem = pList->a; i < pList->nExpr; i++, pListItem++)
{
const char *zColName = pListItem->zName;
Column *pTabCol;
int requestedSortOrder;
char *zColl; /* Collation sequence name */
for (j = 0, pTabCol = pTab->aCol; j < pTab->nCol; j++, pTabCol++)
{
if(sqlite3StrICmp(zColName, pTabCol->zName) == 0)
break;
}
if(j >= pTab->nCol)
{
sqlite3ErrorMsg(pParse, "table %s has no column named %s",
pTab->zName, zColName);
goto exit_create_index;
}
/* TODO: Add a test to make sure that the same column is not named
** more than once within the same index. Only the first instance of
** the column will ever be used by the optimizer. Note that using the
** same column more than once cannot be an error because that would
** break backwards compatibility - it needs to be a warning.
*/
pIndex->aiColumn[i] = j;
if(pListItem->pExpr)
{
assert(pListItem->pExpr->pColl);
zColl = zExtra;
sqlite3_snprintf(nExtra, zExtra, "%s", pListItem->pExpr->pColl->zName);
zExtra += (strlen(zColl) + 1);
}
else
{
zColl = pTab->aCol[j].zColl;
if(!zColl)
{
zColl = db->pDfltColl->zName;
}
}
if(!db->init.busy && !sqlite3LocateCollSeq(pParse, zColl, -1))
{
goto exit_create_index;
}
pIndex->azColl[i] = zColl;
requestedSortOrder = pListItem->sortOrder & sortOrderMask;
pIndex->aSortOrder[i] = requestedSortOrder;
}
sqlite3DefaultRowEst(pIndex);
if(pTab == pParse->pNewTable)
{
/* This routine has been called to create an automatic index as a
** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
** a PRIMARY KEY or UNIQUE clause following the column definitions.
** i.e. one of:
**
** CREATE TABLE t(x PRIMARY KEY, y);
** CREATE TABLE t(x, y, UNIQUE(x, y));
**
** Either way, check to see if the table already has such an index. If
** so, don't bother creating this one. This only applies to
** automatically created indices. Users can do as they wish with
** explicit indices.
*/
Index *pIdx;
for (pIdx = pTab->pIndex; pIdx; pIdx = pIdx->pNext)
{
int k;
assert(pIdx->onError != OE_None);
assert(pIdx->autoIndex);
assert(pIndex->onError != OE_None);
if(pIdx->nColumn != pIndex->nColumn)
continue;
for (k = 0; k < pIdx->nColumn; k++)
{
const char *z1 = pIdx->azColl[k];
const char *z2 = pIndex->azColl[k];
if(pIdx->aiColumn[k] != pIndex->aiColumn[k])
break;
if(pIdx->aSortOrder[k] != pIndex->aSortOrder[k])
break;
if(z1 != z2 && sqlite3StrICmp(z1, z2))
break;
}
if(k == pIdx->nColumn)
{
if(pIdx->onError != pIndex->onError)
{
/* This constraint creates the same index as a previous
** constraint specified somewhere in the CREATE TABLE statement.
** However the ON CONFLICT clauses are different. If both this
** constraint and the previous equivalent constraint have explicit
** ON CONFLICT clauses this is an error. Otherwise, use the
** explicitly specified behaviour for the index.
*/
if(!
(pIdx->onError == OE_Default
|| pIndex->onError == OE_Default))
{
sqlite3ErrorMsg(pParse,
"conflicting ON CONFLICT clauses specified",
0);
}
if(pIdx->onError == OE_Default)
{
pIdx->onError = pIndex->onError;
}
}
goto exit_create_index;
}
}
}
/* Link the new Index structure to its table and to the other
** in-memory database structures.
*/
if(db->init.busy)
{
Index *p;
p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
pIndex->zName, strlen(pIndex->zName) + 1, pIndex);
if(p)
{
assert(p == pIndex); /* Malloc must have failed */
db->mallocFailed = 1;
goto exit_create_index;
}
db->flags |= SQLITE_InternChanges;
if(pTblName != 0)
{
pIndex->tnum = db->init.newTnum;
}
}
/* If the db->init.busy is 0 then create the index on disk. This
** involves writing the index into the master table and filling in the
** index with the current table contents.
**
** The db->init.busy is 0 when the user first enters a CREATE INDEX
** command. db->init.busy is 1 when a database is opened and
** CREATE INDEX statements are read out of the master table. In
** the latter case the index already exists on disk, which is why
** we don't want to recreate it.
**
** If pTblName==0 it means this index is generated as a primary key
** or UNIQUE constraint of a CREATE TABLE statement. Since the table
** has just been created, it contains no data and the index initialization
** step can be skipped.
*/
else if(db->init.busy == 0)
{
Vdbe *v;
char *zStmt;
int iMem = ++pParse->nMem;
v = sqlite3GetVdbe(pParse);
if(v == 0)
goto exit_create_index;
/* Create the rootpage for the index
*/
sqlite3BeginWriteOperation(pParse, 1, iDb);
sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);
/* Gather the complete text of the CREATE INDEX statement into
** the zStmt variable
*/
if(pStart && pEnd)
{
/* A named index with an explicit CREATE INDEX statement */
zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
onError == OE_None ? "" : " UNIQUE",
pEnd->z - pName->z + 1, pName->z);
}
else
{
/* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
/* zStmt = sqlite3MPrintf(""); */
zStmt = 0;
}
/* Add an entry in sqlite_master for this index
*/
sqlite3NestedParse(pParse,
"INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
pIndex->zName, pTab->zName, iMem, zStmt);
sqlite3_free(zStmt);
/* Fill the index with data and reparse the schema. Code an OP_Expire
** to invalidate all pre-compiled statements.
*/
if(pTblName)
{
sqlite3RefillIndex(pParse, pIndex, iMem);
sqlite3ChangeCookie(pParse, iDb);
sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
sqlite3MPrintf(db, "name='%q'", pIndex->zName),
P4_DYNAMIC);
sqlite3VdbeAddOp1(v, OP_Expire, 0);
}
}
/* When adding an index to the list of indices for a table, make
** sure all indices labeled OE_Replace come after all those labeled
** OE_Ignore. This is necessary for the correct operation of UPDATE
** and INSERT.
*/
if(db->init.busy || pTblName == 0)
{
if(onError != OE_Replace || pTab->pIndex == 0
|| pTab->pIndex->onError == OE_Replace)
{
pIndex->pNext = pTab->pIndex;
pTab->pIndex = pIndex;
}
else
{
Index *pOther = pTab->pIndex;
while (pOther->pNext && pOther->pNext->onError != OE_Replace)
{
pOther = pOther->pNext;
}
pIndex->pNext = pOther->pNext;
pOther->pNext = pIndex;
}
pIndex = 0;
}
/* Clean up before exiting */
exit_create_index:
if(pIndex)
{
freeIndex(pIndex);
}
sqlite3ExprListDelete(pList);
sqlite3SrcListDelete(pTblName);
sqlite3_free(zName);
return;
}
/*
** Generate code to make sure the file format number is at least minFormat.
** The generated code will increase the file format number if necessary.
*/
SQLITE_PRIVATE void
sqlite3MinimumFileFormat(Parse * pParse, int iDb, int minFormat)
{
Vdbe *v;
v = sqlite3GetVdbe(pParse);
if(v)
{
int r1 = sqlite3GetTempReg(pParse);
int r2 = sqlite3GetTempReg(pParse);
int j1;
sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, r1, 1);
sqlite3VdbeUsesBtree(v, iDb);
sqlite3VdbeAddOp2(v, OP_Integer, minFormat, r2);
j1 = sqlite3VdbeAddOp3(v, OP_Ge, r2, 0, r1);
sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 1, r2);
sqlite3VdbeJumpHere(v, j1);
sqlite3ReleaseTempReg(pParse, r1);
sqlite3ReleaseTempReg(pParse, r2);
}
}
/*
** Fill the Index.aiRowEst[] array with default information - information
** to be used when we have not run the ANALYZE command.
**
** aiRowEst[0] is suppose to contain the number of elements in the index.
** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the
** number of rows in the table that match any particular value of the
** first column of the index. aiRowEst[2] is an estimate of the number
** of rows that match any particular combiniation of the first 2 columns
** of the index. And so forth. It must always be the case that
*
** aiRowEst[N]<=aiRowEst[N-1]
** aiRowEst[N]>=1
**
** Apart from that, we have little to go on besides intuition as to
** how aiRowEst[] should be initialized. The numbers generated here
** are based on typical values found in actual indices.
*/
SQLITE_PRIVATE void
sqlite3DefaultRowEst(Index * pIdx)
{
unsigned *a = pIdx->aiRowEst;
int i;
assert(a != 0);
a[0] = 1000000;
for (i = pIdx->nColumn; i >= 5; i--)
{
a[i] = 5;
}
while (i >= 1)
{
a[i] = 11 - i;
i--;
}
if(pIdx->onError != OE_None)
{
a[pIdx->nColumn] = 1;
}
}
/*
** This routine will drop an existing named index. This routine
** implements the DROP INDEX statement.
*/
SQLITE_PRIVATE void
sqlite3DropIndex(Parse * pParse, SrcList * pName, int ifExists)
{
Index *pIndex;
Vdbe *v;
sqlite3 *db = pParse->db;
int iDb;
if(pParse->nErr || db->mallocFailed)
{
goto exit_drop_index;
}
assert(pName->nSrc == 1);
if(SQLITE_OK != sqlite3ReadSchema(pParse))
{
goto exit_drop_index;
}
pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
if(pIndex == 0)
{
if(!ifExists)
{
sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
}
pParse->checkSchema = 1;
goto exit_drop_index;
}
if(pIndex->autoIndex)
{
sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
"or PRIMARY KEY constraint cannot be dropped", 0);
goto exit_drop_index;
}
iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
#ifndef SQLITE_OMIT_AUTHORIZATION
{
int code = SQLITE_DROP_INDEX;
Table *pTab = pIndex->pTable;
const char *zDb = db->aDb[iDb].zName;
const char *zTab = SCHEMA_TABLE(iDb);
if(sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb))
{
goto exit_drop_index;
}
if(!OMIT_TEMPDB && iDb)
code = SQLITE_DROP_TEMP_INDEX;
if(sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb))
{
goto exit_drop_index;
}
}
#endif
/* Generate code to remove the index and from the master table */
v = sqlite3GetVdbe(pParse);
if(v)
{
sqlite3BeginWriteOperation(pParse, 1, iDb);
sqlite3NestedParse(pParse,
"DELETE FROM %Q.%s WHERE name=%Q",
db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pIndex->zName);
if(sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName))
{
sqlite3NestedParse(pParse,
"DELETE FROM %Q.sqlite_stat1 WHERE idx=%Q",
db->aDb[iDb].zName, pIndex->zName);
}
sqlite3ChangeCookie(pParse, iDb);
destroyRootPage(pParse, pIndex->tnum, iDb);
sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
}
exit_drop_index:
sqlite3SrcListDelete(pName);
}
/*
** pArray is a pointer to an array of objects. Each object in the
** array is szEntry bytes in size. This routine allocates a new
** object on the end of the array.
**
** *pnEntry is the number of entries already in use. *pnAlloc is
** the previously allocated size of the array. initSize is the
** suggested initial array size allocation.
**
** The index of the new entry is returned in *pIdx.
**
** This routine returns a pointer to the array of objects. This
** might be the same as the pArray parameter or it might be a different
** pointer if the array was resized.
*/
SQLITE_PRIVATE void *
sqlite3ArrayAllocate(sqlite3 * db, /* Connection to notify of malloc failures */
void *pArray, /* Array of objects. Might be reallocated */
int szEntry, /* Size of each object in the array */
int initSize, /* Suggested initial allocation, in elements */
int *pnEntry, /* Number of objects currently in use */
int *pnAlloc, /* Current size of the allocation, in elements */
int *pIdx /* Write the index of a new slot here */
)
{
char *z;
if(*pnEntry >= *pnAlloc)
{
void *pNew;
int newSize;
newSize = (*pnAlloc) * 2 + initSize;
pNew = sqlite3DbRealloc(db, pArray, newSize * szEntry);
if(pNew == 0)
{
*pIdx = -1;
return pArray;
}
*pnAlloc = newSize;
pArray = pNew;
}
z = (char *) pArray;
memset(&z[*pnEntry * szEntry], 0, szEntry);
*pIdx = *pnEntry;
++*pnEntry;
return pArray;
}
/*
** Append a new element to the given IdList. Create a new IdList if
** need be.
**
** A new IdList is returned, or NULL if malloc() fails.
*/
SQLITE_PRIVATE IdList *
sqlite3IdListAppend(sqlite3 * db, IdList * pList, Token * pToken)
{
int i;
if(pList == 0)
{
pList = sqlite3DbMallocZero(db, sizeof(IdList));
if(pList == 0)
return 0;
pList->nAlloc = 0;
}
pList->a = sqlite3ArrayAllocate(db,
pList->a,
sizeof(pList->a[0]), 5, &pList->nId, &pList->nAlloc, &i);
if(i < 0)
{
sqlite3IdListDelete(pList);
return 0;
}
pList->a[i].zName = sqlite3NameFromToken(db, pToken);
return pList;
}
/*
** Delete an IdList.
*/
SQLITE_PRIVATE void
sqlite3IdListDelete(IdList * pList)
{
int i;
if(pList == 0)
return;
for (i = 0; i < pList->nId; i++)
{
sqlite3_free(pList->a[i].zName);
}
sqlite3_free(pList->a);
sqlite3_free(pList);
}
/*
** Return the index in pList of the identifier named zId. Return -1
** if not found.
*/
SQLITE_PRIVATE int
sqlite3IdListIndex(IdList * pList, const char *zName)
{
int i;
if(pList == 0)
return -1;
for (i = 0; i < pList->nId; i++)
{
if(sqlite3StrICmp(pList->a[i].zName, zName) == 0)
return i;
}
return -1;
}
/*
** Append a new table name to the given SrcList. Create a new SrcList if
** need be. A new entry is created in the SrcList even if pToken is NULL.
**
** A new SrcList is returned, or NULL if malloc() fails.
**
** If pDatabase is not null, it means that the table has an optional
** database name prefix. Like this: "database.table". The pDatabase
** points to the table name and the pTable points to the database name.
** The SrcList.a[].zName field is filled with the table name which might
** come from pTable (if pDatabase is NULL) or from pDatabase.
** SrcList.a[].zDatabase is filled with the database name from pTable,
** or with NULL if no database is specified.
**
** In other words, if call like this:
**
** sqlite3SrcListAppend(D,A,B,0);
**
** Then B is a table name and the database name is unspecified. If called
** like this:
**
** sqlite3SrcListAppend(D,A,B,C);
**
** Then C is the table name and B is the database name.
*/
SQLITE_PRIVATE SrcList *
sqlite3SrcListAppend(sqlite3 * db, /* Connection to notify of malloc failures */
SrcList * pList, /* Append to this SrcList. NULL creates a new SrcList */
Token * pTable, /* Table to append */
Token * pDatabase /* Database of the table */
)
{
struct SrcList_item *pItem;
if(pList == 0)
{
pList = sqlite3DbMallocZero(db, sizeof(SrcList));
if(pList == 0)
return 0;
pList->nAlloc = 1;
}
if(pList->nSrc >= pList->nAlloc)
{
SrcList *pNew;
pList->nAlloc *= 2;
pNew = sqlite3DbRealloc(db, pList,
sizeof(*pList) + (pList->nAlloc - 1) * sizeof(pList->a[0]));
if(pNew == 0)
{
sqlite3SrcListDelete(pList);
return 0;
}
pList = pNew;
}
pItem = &pList->a[pList->nSrc];
memset(pItem, 0, sizeof(pList->a[0]));
if(pDatabase && pDatabase->z == 0)
{
pDatabase = 0;
}
if(pDatabase && pTable)
{
Token *pTemp = pDatabase;
pDatabase = pTable;
pTable = pTemp;
}
pItem->zName = sqlite3NameFromToken(db, pTable);
pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);
pItem->iCursor = -1;
pItem->isPopulated = 0;
pList->nSrc++;
return pList;
}
/*
** Assign cursors to all tables in a SrcList
*/
SQLITE_PRIVATE void
sqlite3SrcListAssignCursors(Parse * pParse, SrcList * pList)
{
int i;
struct SrcList_item *pItem;
assert(pList || pParse->db->mallocFailed);
if(pList)
{
for (i = 0, pItem = pList->a; i < pList->nSrc; i++, pItem++)
{
if(pItem->iCursor >= 0)
break;
pItem->iCursor = pParse->nTab++;
if(pItem->pSelect)
{
sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
}
}
}
}
/*
** Delete an entire SrcList including all its substructure.
*/
SQLITE_PRIVATE void
sqlite3SrcListDelete(SrcList * pList)
{
int i;
struct SrcList_item *pItem;
if(pList == 0)
return;
for (pItem = pList->a, i = 0; i < pList->nSrc; i++, pItem++)
{
sqlite3_free(pItem->zDatabase);
sqlite3_free(pItem->zName);
sqlite3_free(pItem->zAlias);
sqlite3DeleteTable(pItem->pTab);
sqlite3SelectDelete(pItem->pSelect);
sqlite3ExprDelete(pItem->pOn);
sqlite3IdListDelete(pItem->pUsing);
}
sqlite3_free(pList);
}
/*
** This routine is called by the parser to add a new term to the
** end of a growing FROM clause. The "p" parameter is the part of
** the FROM clause that has already been constructed. "p" is NULL
** if this is the first term of the FROM clause. pTable and pDatabase
** are the name of the table and database named in the FROM clause term.
** pDatabase is NULL if the database name qualifier is missing - the
** usual case. If the term has a alias, then pAlias points to the
** alias token. If the term is a subquery, then pSubquery is the
** SELECT statement that the subquery encodes. The pTable and
** pDatabase parameters are NULL for subqueries. The pOn and pUsing
** parameters are the content of the ON and USING clauses.
**
** Return a new SrcList which encodes is the FROM with the new
** term added.
*/
SQLITE_PRIVATE SrcList *
sqlite3SrcListAppendFromTerm(Parse * pParse, /* Parsing context */
SrcList * p, /* The left part of the FROM clause already seen */
Token * pTable, /* Name of the table to add to the FROM clause */
Token * pDatabase, /* Name of the database containing pTable */
Token * pAlias, /* The right-hand side of the AS subexpression */
Select * pSubquery, /* A subquery used in place of a table name */
Expr * pOn, /* The ON clause of a join */
IdList * pUsing /* The USING clause of a join */
)
{
struct SrcList_item *pItem;
sqlite3 *db = pParse->db;
p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
if(p == 0 || p->nSrc == 0)
{
sqlite3ExprDelete(pOn);
sqlite3IdListDelete(pUsing);
sqlite3SelectDelete(pSubquery);
return p;
}
pItem = &p->a[p->nSrc - 1];
if(pAlias && pAlias->n)
{
pItem->zAlias = sqlite3NameFromToken(db, pAlias);
}
pItem->pSelect = pSubquery;
pItem->pOn = pOn;
pItem->pUsing = pUsing;
return p;
}
/*
** When building up a FROM clause in the parser, the join operator
** is initially attached to the left operand. But the code generator
** expects the join operator to be on the right operand. This routine
** Shifts all join operators from left to right for an entire FROM
** clause.
**
** Example: Suppose the join is like this:
**
** A natural cross join B
**
** The operator is "natural cross join". The A and B operands are stored
** in p->a[0] and p->a[1], respectively. The parser initially stores the
** operator with A. This routine shifts that operator over to B.
*/
SQLITE_PRIVATE void
sqlite3SrcListShiftJoinType(SrcList * p)
{
if(p && p->a)
{
int i;
for (i = p->nSrc - 1; i > 0; i--)
{
p->a[i].jointype = p->a[i - 1].jointype;
}
p->a[0].jointype = 0;
}
}
/*
** Begin a transaction
*/
SQLITE_PRIVATE void
sqlite3BeginTransaction(Parse * pParse, int type)
{
sqlite3 *db;
Vdbe *v;
int i;
if(pParse == 0 || (db = pParse->db) == 0 || db->aDb[0].pBt == 0)
return;
if(pParse->nErr || db->mallocFailed)
return;
if(sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0))
return;
v = sqlite3GetVdbe(pParse);
if(!v)
return;
if(type != TK_DEFERRED)
{
for (i = 0; i < db->nDb; i++)
{
sqlite3VdbeAddOp2(v, OP_Transaction, i, (type == TK_EXCLUSIVE) + 1);
sqlite3VdbeUsesBtree(v, i);
}
}
sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0);
}
/*
** Commit a transaction
*/
SQLITE_PRIVATE void
sqlite3CommitTransaction(Parse * pParse)
{
sqlite3 *db;
Vdbe *v;
if(pParse == 0 || (db = pParse->db) == 0 || db->aDb[0].pBt == 0)
return;
if(pParse->nErr || db->mallocFailed)
return;
if(sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0))
return;
v = sqlite3GetVdbe(pParse);
if(v)
{
sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0);
}
}
/*
** Rollback a transaction
*/
SQLITE_PRIVATE void
sqlite3RollbackTransaction(Parse * pParse)
{
sqlite3 *db;
Vdbe *v;
if(pParse == 0 || (db = pParse->db) == 0 || db->aDb[0].pBt == 0)
return;
if(pParse->nErr || db->mallocFailed)
return;
if(sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0))
return;
v = sqlite3GetVdbe(pParse);
if(v)
{
sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1);
}
}
/*
** Make sure the TEMP database is open and available for use. Return
** the number of errors. Leave any error messages in the pParse structure.
*/
SQLITE_PRIVATE int
sqlite3OpenTempDatabase(Parse * pParse)
{
sqlite3 *db = pParse->db;
if(db->aDb[1].pBt == 0 && !pParse->explain)
{
int rc;
static const int flags =
SQLITE_OPEN_READWRITE |
SQLITE_OPEN_CREATE |
SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE | SQLITE_OPEN_TEMP_DB;
rc = sqlite3BtreeFactory(db, 0, 0, SQLITE_DEFAULT_CACHE_SIZE, flags,
&db->aDb[1].pBt);
if(rc != SQLITE_OK)
{
sqlite3ErrorMsg(pParse, "unable to open a temporary database "
"file for storing temporary tables");
pParse->rc = rc;
return 1;
}
assert((db->flags & SQLITE_InTrans) == 0 || db->autoCommit);
assert(db->aDb[1].pSchema);
sqlite3PagerJournalMode(sqlite3BtreePager(db->aDb[1].pBt), db->dfltJournalMode);
}
return 0;
}
/*
** Generate VDBE code that will verify the schema cookie and start
** a read-transaction for all named database files.
**
** It is important that all schema cookies be verified and all
** read transactions be started before anything else happens in
** the VDBE program. But this routine can be called after much other
** code has been generated. So here is what we do:
**
** The first time this routine is called, we code an OP_Goto that
** will jump to a subroutine at the end of the program. Then we
** record every database that needs its schema verified in the
** pParse->cookieMask field. Later, after all other code has been
** generated, the subroutine that does the cookie verifications and
** starts the transactions will be coded and the OP_Goto P2 value
** will be made to point to that subroutine. The generation of the
** cookie verification subroutine code happens in sqlite3FinishCoding().
**
** If iDb<0 then code the OP_Goto only - don't set flag to verify the
** schema on any databases. This can be used to position the OP_Goto
** early in the code, before we know if any database tables will be used.
*/
SQLITE_PRIVATE void
sqlite3CodeVerifySchema(Parse * pParse, int iDb)
{
sqlite3 *db;
Vdbe *v;
int mask;
v = sqlite3GetVdbe(pParse);
if(v == 0)
return; /* This only happens if there was a prior error */
db = pParse->db;
if(pParse->cookieGoto == 0)
{
pParse->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0) + 1;
}
if(iDb >= 0)
{
assert(iDb < db->nDb);
assert(db->aDb[iDb].pBt != 0 || iDb == 1);
assert(iDb < SQLITE_MAX_ATTACHED + 2);
mask = 1 << iDb;
if((pParse->cookieMask & mask) == 0)
{
pParse->cookieMask |= mask;
pParse->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
if(!OMIT_TEMPDB && iDb == 1)
{
sqlite3OpenTempDatabase(pParse);
}
}
}
}
/*
** Generate VDBE code that prepares for doing an operation that
** might change the database.
**
** This routine starts a new transaction if we are not already within
** a transaction. If we are already within a transaction, then a checkpoint
** is set if the setStatement parameter is true. A checkpoint should
** be set for operations that might fail (due to a constraint) part of
** the way through and which will need to undo some writes without having to
** rollback the whole transaction. For operations where all constraints
** can be checked before any changes are made to the database, it is never
** necessary to undo a write and the checkpoint should not be set.
**
** Only database iDb and the temp database are made writable by this call.
** If iDb==0, then the main and temp databases are made writable. If
** iDb==1 then only the temp database is made writable. If iDb>1 then the
** specified auxiliary database and the temp database are made writable.
*/
SQLITE_PRIVATE void
sqlite3BeginWriteOperation(Parse * pParse, int setStatement, int iDb)
{
Vdbe *v = sqlite3GetVdbe(pParse);
if(v == 0)
return;
sqlite3CodeVerifySchema(pParse, iDb);
pParse->writeMask |= 1 << iDb;
if(setStatement && pParse->nested == 0)
{
sqlite3VdbeAddOp1(v, OP_Statement, iDb);
}
if((OMIT_TEMPDB || iDb != 1) && pParse->db->aDb[1].pBt != 0)
{
sqlite3BeginWriteOperation(pParse, setStatement, 1);
}
}
/*
** Check to see if pIndex uses the collating sequence pColl. Return
** true if it does and false if it does not.
*/
#ifndef SQLITE_OMIT_REINDEX
static int
collationMatch(const char *zColl, Index * pIndex)
{
int i;
for (i = 0; i < pIndex->nColumn; i++)
{
const char *z = pIndex->azColl[i];
if(z == zColl || (z && zColl && 0 == sqlite3StrICmp(z, zColl)))
{
return 1;
}
}
return 0;
}
#endif
/*
** Recompute all indices of pTab that use the collating sequence pColl.
** If pColl==0 then recompute all indices of pTab.
*/
#ifndef SQLITE_OMIT_REINDEX
static void
reindexTable(Parse * pParse, Table * pTab, char const *zColl)
{
Index *pIndex; /* An index associated with pTab */
for (pIndex = pTab->pIndex; pIndex; pIndex = pIndex->pNext)
{
if(zColl == 0 || collationMatch(zColl, pIndex))
{
int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
sqlite3BeginWriteOperation(pParse, 0, iDb);
sqlite3RefillIndex(pParse, pIndex, -1);
}
}
}
#endif
/*
** Recompute all indices of all tables in all databases where the
** indices use the collating sequence pColl. If pColl==0 then recompute
** all indices everywhere.
*/
#ifndef SQLITE_OMIT_REINDEX
static void
reindexDatabases(Parse * pParse, char const *zColl)
{
Db *pDb; /* A single database */
int iDb; /* The database index number */
sqlite3 *db = pParse->db; /* The database connection */
HashElem *k; /* For looping over tables in pDb */
Table *pTab; /* A table in the database */
for (iDb = 0, pDb = db->aDb; iDb < db->nDb; iDb++, pDb++)
{
assert(pDb != 0);
for (k = sqliteHashFirst(&pDb->pSchema->tblHash); k; k = sqliteHashNext(k))
{
pTab = (Table *) sqliteHashData(k);
reindexTable(pParse, pTab, zColl);
}
}
}
#endif
/*
** Generate code for the REINDEX command.
**
** REINDEX -- 1
** REINDEX <collation> -- 2
** REINDEX ?<database>.?<tablename> -- 3
** REINDEX ?<database>.?<indexname> -- 4
**
** Form 1 causes all indices in all attached databases to be rebuilt.
** Form 2 rebuilds all indices in all databases that use the named
** collating function. Forms 3 and 4 rebuild the named index or all
** indices associated with the named table.
*/
#ifndef SQLITE_OMIT_REINDEX
SQLITE_PRIVATE void
sqlite3Reindex(Parse * pParse, Token * pName1, Token * pName2)
{
CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */
char *z; /* Name of a table or index */
const char *zDb; /* Name of the database */
Table *pTab; /* A table in the database */
Index *pIndex; /* An index associated with pTab */
int iDb; /* The database index number */
sqlite3 *db = pParse->db; /* The database connection */
Token *pObjName; /* Name of the table or index to be reindexed */
/* Read the database schema. If an error occurs, leave an error message
** and code in pParse and return NULL. */
if(SQLITE_OK != sqlite3ReadSchema(pParse))
{
return;
}
if(pName1 == 0 || pName1->z == 0)
{
reindexDatabases(pParse, 0);
return;
}
else if(pName2 == 0 || pName2->z == 0)
{
char *zColl;
assert(pName1->z);
zColl = sqlite3NameFromToken(pParse->db, pName1);
if(!zColl)
return;
pColl = sqlite3FindCollSeq(db, ENC(db), zColl, -1, 0);
if(pColl)
{
if(zColl)
{
reindexDatabases(pParse, zColl);
sqlite3_free(zColl);
}
return;
}
sqlite3_free(zColl);
}
iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
if(iDb < 0)
return;
z = sqlite3NameFromToken(db, pObjName);
if(z == 0)
return;
zDb = db->aDb[iDb].zName;
pTab = sqlite3FindTable(db, z, zDb);
if(pTab)
{
reindexTable(pParse, pTab, 0);
sqlite3_free(z);
return;
}
pIndex = sqlite3FindIndex(db, z, zDb);
sqlite3_free(z);
if(pIndex)
{
sqlite3BeginWriteOperation(pParse, 0, iDb);
sqlite3RefillIndex(pParse, pIndex, -1);
return;
}
sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
}
#endif
/*
** Return a dynamicly allocated KeyInfo structure that can be used
** with OP_OpenRead or OP_OpenWrite to access database index pIdx.
**
** If successful, a pointer to the new structure is returned. In this case
** the caller is responsible for calling sqlite3_free() on the returned
** pointer. If an error occurs (out of memory or missing collation
** sequence), NULL is returned and the state of pParse updated to reflect
** the error.
*/
SQLITE_PRIVATE KeyInfo *
sqlite3IndexKeyinfo(Parse * pParse, Index * pIdx)
{
int i;
int nCol = pIdx->nColumn;
int nBytes = sizeof(KeyInfo) + (nCol - 1) * sizeof(CollSeq *) + nCol;
KeyInfo *pKey = (KeyInfo *) sqlite3DbMallocZero(pParse->db, nBytes);
if(pKey)
{
pKey->db = pParse->db;
pKey->aSortOrder = (u8 *) & (pKey->aColl[nCol]);
assert(&pKey->aSortOrder[nCol] == &(((u8 *) pKey)[nBytes]));
for (i = 0; i < nCol; i++)
{
char *zColl = pIdx->azColl[i];
assert(zColl);
pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl, -1);
pKey->aSortOrder[i] = pIdx->aSortOrder[i];
}
pKey->nField = nCol;
}
if(pParse->nErr)
{
sqlite3_free(pKey);
pKey = 0;
}
return pKey;
}
/************** End of build.c ***********************************************/
/************** Begin file callback.c ****************************************/
/*
** 2005 May 23
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains functions used to access the internal hash tables
** of user defined functions and collation sequences.
**
*/
/*
** Invoke the 'collation needed' callback to request a collation sequence
** in the database text encoding of name zName, length nName.
** If the collation sequence
*/
static void
callCollNeeded(sqlite3 * db, const char *zName, int nName)
{
assert(!db->xCollNeeded || !db->xCollNeeded16);
if(nName < 0)
nName = strlen(zName);
if(db->xCollNeeded)
{
char *zExternal = sqlite3DbStrNDup(db, zName, nName);
if(!zExternal)
return;
db->xCollNeeded(db->pCollNeededArg, db, (int) ENC(db), zExternal);
sqlite3_free(zExternal);
}
#ifndef SQLITE_OMIT_UTF16
if(db->xCollNeeded16)
{
char const *zExternal;
sqlite3_value *pTmp = sqlite3ValueNew(db);
sqlite3ValueSetStr(pTmp, nName, zName, SQLITE_UTF8, SQLITE_STATIC);
zExternal = sqlite3ValueText(pTmp, SQLITE_UTF16NATIVE);
if(zExternal)
{
db->xCollNeeded16(db->pCollNeededArg, db, (int) ENC(db), zExternal);
}
sqlite3ValueFree(pTmp);
}
#endif
}
/*
** This routine is called if the collation factory fails to deliver a
** collation function in the best encoding but there may be other versions
** of this collation function (for other text encodings) available. Use one
** of these instead if they exist. Avoid a UTF-8 <-> UTF-16 conversion if
** possible.
*/
static int
synthCollSeq(sqlite3 * db, CollSeq * pColl)
{
CollSeq *pColl2;
char *z = pColl->zName;
int n = strlen(z);
int i;
static const u8 aEnc[] = { SQLITE_UTF16BE, SQLITE_UTF16LE, SQLITE_UTF8 };
for (i = 0; i < 3; i++)
{
pColl2 = sqlite3FindCollSeq(db, aEnc[i], z, n, 0);
if(pColl2->xCmp != 0)
{
memcpy(pColl, pColl2, sizeof(CollSeq));
pColl->xDel = 0; /* Do not copy the destructor */
return SQLITE_OK;
}
}
return SQLITE_ERROR;
}
/*
** This function is responsible for invoking the collation factory callback
** or substituting a collation sequence of a different encoding when the
** requested collation sequence is not available in the database native
** encoding.
**
** If it is not NULL, then pColl must point to the database native encoding
** collation sequence with name zName, length nName.
**
** The return value is either the collation sequence to be used in database
** db for collation type name zName, length nName, or NULL, if no collation
** sequence can be found.
*/
SQLITE_PRIVATE CollSeq *
sqlite3GetCollSeq(sqlite3 * db, CollSeq * pColl, const char *zName, int nName)
{
CollSeq *p;
p = pColl;
if(!p)
{
p = sqlite3FindCollSeq(db, ENC(db), zName, nName, 0);
}
if(!p || !p->xCmp)
{
/* No collation sequence of this type for this encoding is registered.
** Call the collation factory to see if it can supply us with one.
*/
callCollNeeded(db, zName, nName);
p = sqlite3FindCollSeq(db, ENC(db), zName, nName, 0);
}
if(p && !p->xCmp && synthCollSeq(db, p))
{
p = 0;
}
assert(!p || p->xCmp);
return p;
}
/*
** This routine is called on a collation sequence before it is used to
** check that it is defined. An undefined collation sequence exists when
** a database is loaded that contains references to collation sequences
** that have not been defined by sqlite3_create_collation() etc.
**
** If required, this routine calls the 'collation needed' callback to
** request a definition of the collating sequence. If this doesn't work,
** an equivalent collating sequence that uses a text encoding different
** from the main database is substituted, if one is available.
*/
SQLITE_PRIVATE int
sqlite3CheckCollSeq(Parse * pParse, CollSeq * pColl)
{
if(pColl)
{
const char *zName = pColl->zName;
CollSeq *p = sqlite3GetCollSeq(pParse->db, pColl, zName, -1);
if(!p)
{
if(pParse->nErr == 0)
{
sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName);
}
pParse->nErr++;
return SQLITE_ERROR;
}
assert(p == pColl);
}
return SQLITE_OK;
}
/*
** Locate and return an entry from the db.aCollSeq hash table. If the entry
** specified by zName and nName is not found and parameter 'create' is
** true, then create a new entry. Otherwise return NULL.
**
** Each pointer stored in the sqlite3.aCollSeq hash table contains an
** array of three CollSeq structures. The first is the collation sequence
** prefferred for UTF-8, the second UTF-16le, and the third UTF-16be.
**
** Stored immediately after the three collation sequences is a copy of
** the collation sequence name. A pointer to this string is stored in
** each collation sequence structure.
*/
static CollSeq *
findCollSeqEntry(sqlite3 * db, const char *zName, int nName, int create)
{
CollSeq *pColl;
if(nName < 0)
nName = strlen(zName);
pColl = sqlite3HashFind(&db->aCollSeq, zName, nName);
if(0 == pColl && create)
{
pColl = sqlite3DbMallocZero(db, 3 * sizeof(*pColl) + nName + 1);
if(pColl)
{
CollSeq *pDel = 0;
pColl[0].zName = (char *) &pColl[3];
pColl[0].enc = SQLITE_UTF8;
pColl[1].zName = (char *) &pColl[3];
pColl[1].enc = SQLITE_UTF16LE;
pColl[2].zName = (char *) &pColl[3];
pColl[2].enc = SQLITE_UTF16BE;
memcpy(pColl[0].zName, zName, nName);
pColl[0].zName[nName] = 0;
pDel = sqlite3HashInsert(&db->aCollSeq, pColl[0].zName, nName, pColl);
/* If a malloc() failure occured in sqlite3HashInsert(), it will
** return the pColl pointer to be deleted (because it wasn't added
** to the hash table).
*/
assert(pDel == 0 || pDel == pColl);
if(pDel != 0)
{
db->mallocFailed = 1;
sqlite3_free(pDel);
pColl = 0;
}
}
}
return pColl;
}
/*
** Parameter zName points to a UTF-8 encoded string nName bytes long.
** Return the CollSeq* pointer for the collation sequence named zName
** for the encoding 'enc' from the database 'db'.
**
** If the entry specified is not found and 'create' is true, then create a
** new entry. Otherwise return NULL.
**
** A separate function sqlite3LocateCollSeq() is a wrapper around
** this routine. sqlite3LocateCollSeq() invokes the collation factory
** if necessary and generates an error message if the collating sequence
** cannot be found.
*/
SQLITE_PRIVATE CollSeq *
sqlite3FindCollSeq(sqlite3 * db, u8 enc, const char *zName, int nName, int create)
{
CollSeq *pColl;
if(zName)
{
pColl = findCollSeqEntry(db, zName, nName, create);
}
else
{
pColl = db->pDfltColl;
}
assert(SQLITE_UTF8 == 1 && SQLITE_UTF16LE == 2 && SQLITE_UTF16BE == 3);
assert(enc >= SQLITE_UTF8 && enc <= SQLITE_UTF16BE);
if(pColl)
pColl += enc - 1;
return pColl;
}
/*
** Locate a user function given a name, a number of arguments and a flag
** indicating whether the function prefers UTF-16 over UTF-8. Return a
** pointer to the FuncDef structure that defines that function, or return
** NULL if the function does not exist.
**
** If the createFlag argument is true, then a new (blank) FuncDef
** structure is created and liked into the "db" structure if a
** no matching function previously existed. When createFlag is true
** and the nArg parameter is -1, then only a function that accepts
** any number of arguments will be returned.
**
** If createFlag is false and nArg is -1, then the first valid
** function found is returned. A function is valid if either xFunc
** or xStep is non-zero.
**
** If createFlag is false, then a function with the required name and
** number of arguments may be returned even if the eTextRep flag does not
** match that requested.
*/
SQLITE_PRIVATE FuncDef *
sqlite3FindFunction(sqlite3 * db, /* An open database */
const char *zName, /* Name of the function. Not null-terminated */
int nName, /* Number of characters in the name */
int nArg, /* Number of arguments. -1 means any number */
u8 enc, /* Preferred text encoding */
int createFlag /* Create new entry if true and does not otherwise exist */
)
{
FuncDef *p; /* Iterator variable */
FuncDef *pFirst; /* First function with this name */
FuncDef *pBest = 0; /* Best match found so far */
int bestmatch = 0;
assert(enc == SQLITE_UTF8 || enc == SQLITE_UTF16LE || enc == SQLITE_UTF16BE);
if(nArg < -1)
nArg = -1;
pFirst = (FuncDef *) sqlite3HashFind(&db->aFunc, zName, nName);
for (p = pFirst; p; p = p->pNext)
{
/* During the search for the best function definition, bestmatch is set
** as follows to indicate the quality of the match with the definition
** pointed to by pBest:
**
** 0: pBest is NULL. No match has been found.
** 1: A variable arguments function that prefers UTF-8 when a UTF-16
** encoding is requested, or vice versa.
** 2: A variable arguments function that uses UTF-16BE when UTF-16LE is
** requested, or vice versa.
** 3: A variable arguments function using the same text encoding.
** 4: A function with the exact number of arguments requested that
** prefers UTF-8 when a UTF-16 encoding is requested, or vice versa.
** 5: A function with the exact number of arguments requested that
** prefers UTF-16LE when UTF-16BE is requested, or vice versa.
** 6: An exact match.
**
** A larger value of 'matchqual' indicates a more desirable match.
*/
if(p->nArg == -1 || p->nArg == nArg || nArg == -1)
{
int match = 1; /* Quality of this match */
if(p->nArg == nArg || nArg == -1)
{
match = 4;
}
if(enc == p->iPrefEnc)
{
match += 2;
}
else if((enc == SQLITE_UTF16LE && p->iPrefEnc == SQLITE_UTF16BE) ||
(enc == SQLITE_UTF16BE && p->iPrefEnc == SQLITE_UTF16LE))
{
match += 1;
}
if(match > bestmatch)
{
pBest = p;
bestmatch = match;
}
}
}
/* If the createFlag parameter is true, and the seach did not reveal an
** exact match for the name, number of arguments and encoding, then add a
** new entry to the hash table and return it.
*/
if(createFlag && bestmatch < 6 &&
(pBest = sqlite3DbMallocZero(db, sizeof(*pBest) + nName)) != 0)
{
pBest->nArg = nArg;
pBest->pNext = pFirst;
pBest->iPrefEnc = enc;
memcpy(pBest->zName, zName, nName);
pBest->zName[nName] = 0;
if(pBest == sqlite3HashInsert(&db->aFunc, pBest->zName, nName, (void *) pBest))
{
db->mallocFailed = 1;
sqlite3_free(pBest);
return 0;
}
}
if(pBest && (pBest->xStep || pBest->xFunc || createFlag))
{
return pBest;
}
return 0;
}
/*
** Free all resources held by the schema structure. The void* argument points
** at a Schema struct. This function does not call sqlite3_free() on the
** pointer itself, it just cleans up subsiduary resources (i.e. the contents
** of the schema hash tables).
*/
SQLITE_PRIVATE void
sqlite3SchemaFree(void *p)
{
Hash temp1;
Hash temp2;
HashElem *pElem;
Schema *pSchema = (Schema *) p;
temp1 = pSchema->tblHash;
temp2 = pSchema->trigHash;
sqlite3HashInit(&pSchema->trigHash, SQLITE_HASH_STRING, 0);
sqlite3HashClear(&pSchema->aFKey);
sqlite3HashClear(&pSchema->idxHash);
for (pElem = sqliteHashFirst(&temp2); pElem; pElem = sqliteHashNext(pElem))
{
sqlite3DeleteTrigger((Trigger *) sqliteHashData(pElem));
}
sqlite3HashClear(&temp2);
sqlite3HashInit(&pSchema->tblHash, SQLITE_HASH_STRING, 0);
for (pElem = sqliteHashFirst(&temp1); pElem; pElem = sqliteHashNext(pElem))
{
Table *pTab = sqliteHashData(pElem);
sqlite3DeleteTable(pTab);
}
sqlite3HashClear(&temp1);
pSchema->pSeqTab = 0;
pSchema->flags &= ~DB_SchemaLoaded;
}
/*
** Find and return the schema associated with a BTree. Create
** a new one if necessary.
*/
SQLITE_PRIVATE Schema *
sqlite3SchemaGet(sqlite3 * db, Btree * pBt)
{
Schema *p;
if(pBt)
{
p = (Schema *) sqlite3BtreeSchema(pBt, sizeof(Schema), sqlite3SchemaFree);
}
else
{
p = (Schema *) sqlite3MallocZero(sizeof(Schema));
}
if(!p)
{
db->mallocFailed = 1;
}
else if(0 == p->file_format)
{
sqlite3HashInit(&p->tblHash, SQLITE_HASH_STRING, 0);
sqlite3HashInit(&p->idxHash, SQLITE_HASH_STRING, 0);
sqlite3HashInit(&p->trigHash, SQLITE_HASH_STRING, 0);
sqlite3HashInit(&p->aFKey, SQLITE_HASH_STRING, 1);
p->enc = SQLITE_UTF8;
}
return p;
}
/************** End of callback.c ********************************************/
/************** Begin file delete.c ******************************************/
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** in order to generate code for DELETE FROM statements.
**
*/
/*
** Look up every table that is named in pSrc. If any table is not found,
** add an error message to pParse->zErrMsg and return NULL. If all tables
** are found, return a pointer to the last table.
*/
SQLITE_PRIVATE Table *
sqlite3SrcListLookup(Parse * pParse, SrcList * pSrc)
{
Table *pTab = 0;
int i;
struct SrcList_item *pItem;
for (i = 0, pItem = pSrc->a; i < pSrc->nSrc; i++, pItem++)
{
pTab = sqlite3LocateTable(pParse, 0, pItem->zName, pItem->zDatabase);
sqlite3DeleteTable(pItem->pTab);
pItem->pTab = pTab;
if(pTab)
{
pTab->nRef++;
}
}
return pTab;
}
/*
** Check to make sure the given table is writable. If it is not
** writable, generate an error message and return 1. If it is
** writable return 0;
*/
SQLITE_PRIVATE int
sqlite3IsReadOnly(Parse * pParse, Table * pTab, int viewOk)
{
if((pTab->readOnly && (pParse->db->flags & SQLITE_WriteSchema) == 0 && pParse->nested == 0)
#ifndef SQLITE_OMIT_VIRTUALTABLE
|| (pTab->pMod && pTab->pMod->pModule->xUpdate == 0)
#endif
)
{
sqlite3ErrorMsg(pParse, "table %s may not be modified", pTab->zName);
return 1;
}
#ifndef SQLITE_OMIT_VIEW
if(!viewOk && pTab->pSelect)
{
sqlite3ErrorMsg(pParse, "cannot modify %s because it is a view", pTab->zName);
return 1;
}
#endif
return 0;
}
/*
** Generate code that will open a table for reading.
*/
SQLITE_PRIVATE void
sqlite3OpenTable(Parse * p, /* Generate code into this VDBE */
int iCur, /* The cursor number of the table */
int iDb, /* The database index in sqlite3.aDb[] */
Table * pTab, /* The table to be opened */
int opcode /* OP_OpenRead or OP_OpenWrite */
)
{
Vdbe *v;
if(IsVirtual(pTab))
return;
v = sqlite3GetVdbe(p);
assert(opcode == OP_OpenWrite || opcode == OP_OpenRead);
sqlite3TableLock(p, iDb, pTab->tnum, (opcode == OP_OpenWrite), pTab->zName);
sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pTab->nCol);
sqlite3VdbeAddOp3(v, opcode, iCur, pTab->tnum, iDb);
VdbeComment((v, "%s", pTab->zName));
}
#if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
/*
** Evaluate a view and store its result in an ephemeral table. The
** pWhere argument is an optional WHERE clause that restricts the
** set of rows in the view that are to be added to the ephemeral table.
*/
SQLITE_PRIVATE void
sqlite3MaterializeView(Parse * pParse, /* Parsing context */
Select * pView, /* View definition */
Expr * pWhere, /* Optional WHERE clause to be added */
int iCur /* Cursor number for ephemerial table */
)
{
SelectDest dest;
Select *pDup;
sqlite3 *db = pParse->db;
pDup = sqlite3SelectDup(db, pView);
if(pWhere)
{
SrcList *pFrom;
pWhere = sqlite3ExprDup(db, pWhere);
pFrom = sqlite3SrcListAppendFromTerm(pParse, 0, 0, 0, 0, pDup, 0, 0);
pDup = sqlite3SelectNew(pParse, 0, pFrom, pWhere, 0, 0, 0, 0, 0, 0);
}
sqlite3SelectDestInit(&dest, SRT_EphemTab, iCur);
sqlite3Select(pParse, pDup, &dest, 0, 0, 0, 0);
sqlite3SelectDelete(pDup);
}
#endif /* !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) */
/*
** Generate code for a DELETE FROM statement.
**
** DELETE FROM table_wxyz WHERE a<5 AND b NOT NULL;
** \________/ \________________/
** pTabList pWhere
*/
SQLITE_PRIVATE void
sqlite3DeleteFrom(Parse * pParse, /* The parser context */
SrcList * pTabList, /* The table from which we should delete things */
Expr * pWhere /* The WHERE clause. May be null */
)
{
Vdbe *v; /* The virtual database engine */
Table *pTab; /* The table from which records will be deleted */
const char *zDb; /* Name of database holding pTab */
int end, addr = 0; /* A couple addresses of generated code */
int i; /* Loop counter */
WhereInfo *pWInfo; /* Information about the WHERE clause */
Index *pIdx; /* For looping over indices of the table */
int iCur; /* VDBE Cursor number for pTab */
sqlite3 *db; /* Main database structure */
AuthContext sContext; /* Authorization context */
int oldIdx = -1; /* Cursor for the OLD table of AFTER triggers */
NameContext sNC; /* Name context to resolve expressions in */
int iDb; /* Database number */
int memCnt = 0; /* Memory cell used for change counting */
#ifndef SQLITE_OMIT_TRIGGER
int isView; /* True if attempting to delete from a view */
int triggers_exist = 0; /* True if any triggers exist */
#endif
int iBeginAfterTrigger; /* Address of after trigger program */
int iEndAfterTrigger; /* Exit of after trigger program */
int iBeginBeforeTrigger; /* Address of before trigger program */
int iEndBeforeTrigger; /* Exit of before trigger program */
u32 old_col_mask = 0; /* Mask of OLD.* columns in use */
sContext.pParse = 0;
db = pParse->db;
if(pParse->nErr || db->mallocFailed)
{
goto delete_from_cleanup;
}
assert(pTabList->nSrc == 1);
/* Locate the table which we want to delete. This table has to be
** put in an SrcList structure because some of the subroutines we
** will be calling are designed to work with multiple tables and expect
** an SrcList* parameter instead of just a Table* parameter.
*/
pTab = sqlite3SrcListLookup(pParse, pTabList);
if(pTab == 0)
goto delete_from_cleanup;
/* Figure out if we have any triggers and if the table being
** deleted from is a view
*/
#ifndef SQLITE_OMIT_TRIGGER
triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0);
isView = pTab->pSelect != 0;
#else
# define triggers_exist 0
# define isView 0
#endif
#ifdef SQLITE_OMIT_VIEW
# undef isView
# define isView 0
#endif
if(sqlite3IsReadOnly(pParse, pTab, triggers_exist))
{
goto delete_from_cleanup;
}
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
assert(iDb < db->nDb);
zDb = db->aDb[iDb].zName;
if(sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb))
{
goto delete_from_cleanup;
}
/* If pTab is really a view, make sure it has been initialized.
*/
if(sqlite3ViewGetColumnNames(pParse, pTab))
{
goto delete_from_cleanup;
}
/* Allocate a cursor used to store the old.* data for a trigger.
*/
if(triggers_exist)
{
oldIdx = pParse->nTab++;
}
/* Assign cursor number to the table and all its indices.
*/
assert(pTabList->nSrc == 1);
iCur = pTabList->a[0].iCursor = pParse->nTab++;
for (pIdx = pTab->pIndex; pIdx; pIdx = pIdx->pNext)
{
pParse->nTab++;
}
/* Start the view context
*/
if(isView)
{
sqlite3AuthContextPush(pParse, &sContext, pTab->zName);
}
/* Begin generating code.
*/
v = sqlite3GetVdbe(pParse);
if(v == 0)
{
goto delete_from_cleanup;
}
if(pParse->nested == 0)
sqlite3VdbeCountChanges(v);
sqlite3BeginWriteOperation(pParse, triggers_exist, iDb);
if(triggers_exist)
{
int orconf = ((pParse->trigStack) ? pParse->trigStack->orconf : OE_Default);
int iGoto = sqlite3VdbeAddOp0(v, OP_Goto);
addr = sqlite3VdbeMakeLabel(v);
iBeginBeforeTrigger = sqlite3VdbeCurrentAddr(v);
(void) sqlite3CodeRowTrigger(pParse, TK_DELETE, 0, TRIGGER_BEFORE, pTab,
-1, oldIdx, orconf, addr, &old_col_mask, 0);
iEndBeforeTrigger = sqlite3VdbeAddOp0(v, OP_Goto);
iBeginAfterTrigger = sqlite3VdbeCurrentAddr(v);
(void) sqlite3CodeRowTrigger(pParse, TK_DELETE, 0, TRIGGER_AFTER, pTab, -1,
oldIdx, orconf, addr, &old_col_mask, 0);
iEndAfterTrigger = sqlite3VdbeAddOp0(v, OP_Goto);
sqlite3VdbeJumpHere(v, iGoto);
}
/* If we are trying to delete from a view, realize that view into
** a ephemeral table.
*/
if(isView)
{
sqlite3MaterializeView(pParse, pTab->pSelect, pWhere, iCur);
}
/* Resolve the column names in the WHERE clause.
*/
memset(&sNC, 0, sizeof(sNC));
sNC.pParse = pParse;
sNC.pSrcList = pTabList;
if(sqlite3ExprResolveNames(&sNC, pWhere))
{
goto delete_from_cleanup;
}
/* Initialize the counter of the number of rows deleted, if
** we are counting rows.
*/
if(db->flags & SQLITE_CountRows)
{
memCnt = ++pParse->nMem;
sqlite3VdbeAddOp2(v, OP_Integer, 0, memCnt);
}
/* Special case: A DELETE without a WHERE clause deletes everything.
** It is easier just to erase the whole table. Note, however, that
** this means that the row change count will be incorrect.
*/
if(pWhere == 0 && !triggers_exist && !IsVirtual(pTab))
{
if(db->flags & SQLITE_CountRows)
{
/* If counting rows deleted, just count the total number of
** entries in the table. */
int addr2;
if(!isView)
{
sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
}
sqlite3VdbeAddOp2(v, OP_Rewind, iCur, sqlite3VdbeCurrentAddr(v) + 2);
addr2 = sqlite3VdbeAddOp2(v, OP_AddImm, memCnt, 1);
sqlite3VdbeAddOp2(v, OP_Next, iCur, addr2);
sqlite3VdbeAddOp1(v, OP_Close, iCur);
}
if(!isView)
{
sqlite3VdbeAddOp2(v, OP_Clear, pTab->tnum, iDb);
if(!pParse->nested)
{
sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC);
}
for (pIdx = pTab->pIndex; pIdx; pIdx = pIdx->pNext)
{
assert(pIdx->pSchema == pTab->pSchema);
sqlite3VdbeAddOp2(v, OP_Clear, pIdx->tnum, iDb);
}
}
}
/* The usual case: There is a WHERE clause so we have to scan through
** the table and pick which records to delete.
*/
else
{
int iRowid = ++pParse->nMem; /* Used for storing rowid values. */
/* Begin the database scan
*/
pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0, 0);
if(pWInfo == 0)
goto delete_from_cleanup;
/* Remember the rowid of every item to be deleted.
*/
sqlite3VdbeAddOp2(v, IsVirtual(pTab) ? OP_VRowid : OP_Rowid, iCur, iRowid);
sqlite3VdbeAddOp1(v, OP_FifoWrite, iRowid);
if(db->flags & SQLITE_CountRows)
{
sqlite3VdbeAddOp2(v, OP_AddImm, memCnt, 1);
}
/* End the database scan loop.
*/
sqlite3WhereEnd(pWInfo);
/* Open the pseudo-table used to store OLD if there are triggers.
*/
if(triggers_exist)
{
sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pTab->nCol);
sqlite3VdbeAddOp1(v, OP_OpenPseudo, oldIdx);
}
/* Delete every item whose key was written to the list during the
** database scan. We have to delete items after the scan is complete
** because deleting an item can change the scan order.
*/
end = sqlite3VdbeMakeLabel(v);
if(!isView)
{
/* Open cursors for the table we are deleting from and
** all its indices.
*/
sqlite3OpenTableAndIndices(pParse, pTab, iCur, OP_OpenWrite);
}
/* This is the beginning of the delete loop. If a trigger encounters
** an IGNORE constraint, it jumps back to here.
*/
if(triggers_exist)
{
sqlite3VdbeResolveLabel(v, addr);
}
addr = sqlite3VdbeAddOp2(v, OP_FifoRead, iRowid, end);
if(triggers_exist)
{
int iData = ++pParse->nMem; /* For storing row data of OLD table */
/* If the record is no longer present in the table, jump to the
** next iteration of the loop through the contents of the fifo.
*/
sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addr, iRowid);
/* Populate the OLD.* pseudo-table */
if(old_col_mask)
{
sqlite3VdbeAddOp2(v, OP_RowData, iCur, iData);
}
else
{
sqlite3VdbeAddOp2(v, OP_Null, 0, iData);
}
sqlite3VdbeAddOp3(v, OP_Insert, oldIdx, iData, iRowid);
/* Jump back and run the BEFORE triggers */
sqlite3VdbeAddOp2(v, OP_Goto, 0, iBeginBeforeTrigger);
sqlite3VdbeJumpHere(v, iEndBeforeTrigger);
}
if(!isView)
{
/* Delete the row */
#ifndef SQLITE_OMIT_VIRTUALTABLE
if(IsVirtual(pTab))
{
const char *pVtab = (const char *) pTab->pVtab;
sqlite3VtabMakeWritable(pParse, pTab);
sqlite3VdbeAddOp4(v, OP_VUpdate, 0, 1, iRowid, pVtab, P4_VTAB);
}
else
#endif
{
sqlite3GenerateRowDelete(pParse, pTab, iCur, iRowid,
pParse->nested == 0);
}
}
/* If there are row triggers, close all cursors then invoke
** the AFTER triggers
*/
if(triggers_exist)
{
/* Jump back and run the AFTER triggers */
sqlite3VdbeAddOp2(v, OP_Goto, 0, iBeginAfterTrigger);
sqlite3VdbeJumpHere(v, iEndAfterTrigger);
}
/* End of the delete loop */
sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
sqlite3VdbeResolveLabel(v, end);
/* Close the cursors after the loop if there are no row triggers */
if(!isView && !IsVirtual(pTab))
{
for (i = 1, pIdx = pTab->pIndex; pIdx; i++, pIdx = pIdx->pNext)
{
sqlite3VdbeAddOp2(v, OP_Close, iCur + i, pIdx->tnum);
}
sqlite3VdbeAddOp1(v, OP_Close, iCur);
}
}
/*
** Return the number of rows that were deleted. If this routine is
** generating code because of a call to sqlite3NestedParse(), do not
** invoke the callback function.
*/
if(db->flags & SQLITE_CountRows && pParse->nested == 0 && !pParse->trigStack)
{
sqlite3VdbeAddOp2(v, OP_ResultRow, memCnt, 1);
sqlite3VdbeSetNumCols(v, 1);
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows deleted", P4_STATIC);
}
delete_from_cleanup:
sqlite3AuthContextPop(&sContext);
sqlite3SrcListDelete(pTabList);
sqlite3ExprDelete(pWhere);
return;
}
/*
** This routine generates VDBE code that causes a single row of a
** single table to be deleted.
**
** The VDBE must be in a particular state when this routine is called.
** These are the requirements:
**
** 1. A read/write cursor pointing to pTab, the table containing the row
** to be deleted, must be opened as cursor number "base".
**
** 2. Read/write cursors for all indices of pTab must be open as
** cursor number base+i for the i-th index.
**
** 3. The record number of the row to be deleted must be stored in
** memory cell iRowid.
**
** This routine pops the top of the stack to remove the record number
** and then generates code to remove both the table record and all index
** entries that point to that record.
*/
SQLITE_PRIVATE void
sqlite3GenerateRowDelete(Parse * pParse, /* Parsing context */
Table * pTab, /* Table containing the row to be deleted */
int iCur, /* Cursor number for the table */
int iRowid, /* Memory cell that contains the rowid to delete */
int count /* Increment the row change counter */
)
{
int addr;
Vdbe *v;
v = pParse->pVdbe;
addr = sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowid);
sqlite3GenerateRowIndexDelete(pParse, pTab, iCur, 0);
sqlite3VdbeAddOp2(v, OP_Delete, iCur, (count ? OPFLAG_NCHANGE : 0));
if(count)
{
sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC);
}
sqlite3VdbeJumpHere(v, addr);
}
/*
** This routine generates VDBE code that causes the deletion of all
** index entries associated with a single row of a single table.
**
** The VDBE must be in a particular state when this routine is called.
** These are the requirements:
**
** 1. A read/write cursor pointing to pTab, the table containing the row
** to be deleted, must be opened as cursor number "iCur".
**
** 2. Read/write cursors for all indices of pTab must be open as
** cursor number iCur+i for the i-th index.
**
** 3. The "iCur" cursor must be pointing to the row that is to be
** deleted.
*/
SQLITE_PRIVATE void
sqlite3GenerateRowIndexDelete(Parse * pParse, /* Parsing and code generating context */
Table * pTab, /* Table containing the row to be deleted */
int iCur, /* Cursor number for the table */
int *aRegIdx /* Only delete if aRegIdx!=0 && aRegIdx[i]>0 */
)
{
int i;
Index *pIdx;
int r1;
for (i = 1, pIdx = pTab->pIndex; pIdx; i++, pIdx = pIdx->pNext)
{
if(aRegIdx != 0 && aRegIdx[i - 1] == 0)
continue;
r1 = sqlite3GenerateIndexKey(pParse, pIdx, iCur, 0, 0);
sqlite3VdbeAddOp3(pParse->pVdbe, OP_IdxDelete, iCur + i, r1, pIdx->nColumn + 1);
}
}
/*
** Generate code that will assemble an index key and put it in register
** regOut. The key with be for index pIdx which is an index on pTab.
** iCur is the index of a cursor open on the pTab table and pointing to
** the entry that needs indexing.
**
** Return a register number which is the first in a block of
** registers that holds the elements of the index key. The
** block of registers has already been deallocated by the time
** this routine returns.
*/
SQLITE_PRIVATE int
sqlite3GenerateIndexKey(Parse * pParse, /* Parsing context */
Index * pIdx, /* The index for which to generate a key */
int iCur, /* Cursor number for the pIdx->pTable table */
int regOut, /* Write the new index key to this register */
int doMakeRec /* Run the OP_MakeRecord instruction if true */
)
{
Vdbe *v = pParse->pVdbe;
int j;
Table *pTab = pIdx->pTable;
int regBase;
int nCol;
nCol = pIdx->nColumn;
regBase = sqlite3GetTempRange(pParse, nCol + 1);
sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regBase + nCol);
for (j = 0; j < nCol; j++)
{
int idx = pIdx->aiColumn[j];
if(idx == pTab->iPKey)
{
sqlite3VdbeAddOp2(v, OP_SCopy, regBase + nCol, regBase + j);
}
else
{
sqlite3VdbeAddOp3(v, OP_Column, iCur, idx, regBase + j);
sqlite3ColumnDefault(v, pTab, idx);
}
}
if(doMakeRec)
{
sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol + 1, regOut);
sqlite3IndexAffinityStr(v, pIdx);
sqlite3ExprCacheAffinityChange(pParse, regBase, nCol + 1);
}
sqlite3ReleaseTempRange(pParse, regBase, nCol + 1);
return regBase;
}
/* Make sure "isView" gets undefined in case this file becomes part of
** the amalgamation - so that subsequent files do not see isView as a
** macro. */
#undef isView
/************** End of delete.c **********************************************/
/************** Begin file func.c ********************************************/
/*
** 2002 February 23
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains the C functions that implement various SQL
** functions of SQLite.
**
** There is only one exported symbol in this file - the function
** sqliteRegisterBuildinFunctions() found at the bottom of the file.
** All other code has file scope.
**
*/
/*
** Return the collating function associated with a function.
*/
static CollSeq *
sqlite3GetFuncCollSeq(sqlite3_context * context)
{
return context->pColl;
}
/*
** Implementation of the non-aggregate min() and max() functions
*/
static void
minmaxFunc(sqlite3_context * context, int argc, sqlite3_value ** argv)
{
int i;
int mask; /* 0 for min() or 0xffffffff for max() */
int iBest;
CollSeq *pColl;
if(argc == 0)
return;
mask = sqlite3_user_data(context) == 0 ? 0 : -1;
pColl = sqlite3GetFuncCollSeq(context);
assert(pColl);
assert(mask == -1 || mask == 0);
iBest = 0;
if(sqlite3_value_type(argv[0]) == SQLITE_NULL)
return;
for (i = 1; i < argc; i++)
{
if(sqlite3_value_type(argv[i]) == SQLITE_NULL)
return;
if((sqlite3MemCompare(argv[iBest], argv[i], pColl) ^ mask) >= 0)
{
iBest = i;
}
}
sqlite3_result_value(context, argv[iBest]);
}
/*
** Return the type of the argument.
*/
static void
typeofFunc(sqlite3_context * context, int argc, sqlite3_value ** argv)
{
const char *z = 0;
switch (sqlite3_value_type(argv[0]))
{
case SQLITE_NULL:
z = "null";
break;
case SQLITE_INTEGER:
z = "integer";
break;
case SQLITE_TEXT:
z = "text";
break;
case SQLITE_FLOAT:
z = "real";
break;
case SQLITE_BLOB:
z = "blob";
break;
}
sqlite3_result_text(context, z, -1, SQLITE_STATIC);
}
/*
** Implementation of the length() function
*/
static void
lengthFunc(sqlite3_context * context, int argc, sqlite3_value ** argv)
{
int len;
assert(argc == 1);
switch (sqlite3_value_type(argv[0]))
{
case SQLITE_BLOB:
case SQLITE_INTEGER:
case SQLITE_FLOAT:
{
sqlite3_result_int(context, sqlite3_value_bytes(argv[0]));
break;
}
case SQLITE_TEXT:
{
const unsigned char *z = sqlite3_value_text(argv[0]);
if(z == 0)
return;
len = 0;
while (*z)
{
len++;
SQLITE_SKIP_UTF8(z);
}
sqlite3_result_int(context, len);
break;
}
default:
{
sqlite3_result_null(context);
break;
}
}
}
/*
** Implementation of the abs() function
*/
static void
absFunc(sqlite3_context * context, int argc, sqlite3_value ** argv)
{
assert(argc == 1);
switch (sqlite3_value_type(argv[0]))
{
case SQLITE_INTEGER:
{
i64 iVal = sqlite3_value_int64(argv[0]);
if(iVal < 0)
{
if((iVal << 1) == 0)
{
sqlite3_result_error(context, "integer overflow", -1);
return;
}
iVal = -iVal;
}
sqlite3_result_int64(context, iVal);
break;
}
case SQLITE_NULL:
{
sqlite3_result_null(context);
break;
}
default:
{
double rVal = sqlite3_value_double(argv[0]);
if(rVal < 0)
rVal = -rVal;
sqlite3_result_double(context, rVal);
break;
}
}
}
/*
** Implementation of the substr() function.
**
** substr(x,p1,p2) returns p2 characters of x[] beginning with p1.
** p1 is 1-indexed. So substr(x,1,1) returns the first character
** of x. If x is text, then we actually count UTF-8 characters.
** If x is a blob, then we count bytes.
**
** If p1 is negative, then we begin abs(p1) from the end of x[].
*/
static void
substrFunc(sqlite3_context * context, int argc, sqlite3_value ** argv)
{
const unsigned char *z;
const unsigned char *z2;
int len;
int p0type;
i64 p1, p2;
assert(argc == 3 || argc == 2);
p0type = sqlite3_value_type(argv[0]);
if(p0type == SQLITE_BLOB)
{
len = sqlite3_value_bytes(argv[0]);
z = sqlite3_value_blob(argv[0]);
if(z == 0)
return;
assert(len == sqlite3_value_bytes(argv[0]));
}
else
{
z = sqlite3_value_text(argv[0]);
if(z == 0)
return;
len = 0;
for (z2 = z; *z2; len++)
{
SQLITE_SKIP_UTF8(z2);
}
}
p1 = sqlite3_value_int(argv[1]);
if(argc == 3)
{
p2 = sqlite3_value_int(argv[2]);
}
else
{
p2 = sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH];
}
if(p1 < 0)
{
p1 += len;
if(p1 < 0)
{
p2 += p1;
p1 = 0;
}
}
else if(p1 > 0)
{
p1--;
}
if(p1 + p2 > len)
{
p2 = len - p1;
}
if(p0type != SQLITE_BLOB)
{
while (*z && p1)
{
SQLITE_SKIP_UTF8(z);
p1--;
}
for (z2 = z; *z2 && p2; p2--)
{
SQLITE_SKIP_UTF8(z2);
}
sqlite3_result_text(context, (char *) z, z2 - z, SQLITE_TRANSIENT);
}
else
{
if(p2 < 0)
p2 = 0;
sqlite3_result_blob(context, (char *) &z[p1], p2, SQLITE_TRANSIENT);
}
}
/*
** Implementation of the round() function
*/
static void
roundFunc(sqlite3_context * context, int argc, sqlite3_value ** argv)
{
int n = 0;
double r;
char zBuf[500]; /* larger than the %f representation of the largest double */
assert(argc == 1 || argc == 2);
if(argc == 2)
{
if(SQLITE_NULL == sqlite3_value_type(argv[1]))
return;
n = sqlite3_value_int(argv[1]);
if(n > 30)
n = 30;
if(n < 0)
n = 0;
}
if(sqlite3_value_type(argv[0]) == SQLITE_NULL)
return;
r = sqlite3_value_double(argv[0]);
sqlite3_snprintf(sizeof(zBuf), zBuf, "%.*f", n, r);
sqlite3AtoF(zBuf, &r);
sqlite3_result_double(context, r);
}
/*
** Allocate nByte bytes of space using sqlite3_malloc(). If the
** allocation fails, call sqlite3_result_error_nomem() to notify
** the database handle that malloc() has failed.
*/
static void *
contextMalloc(sqlite3_context * context, i64 nByte)
{
char *z;
if(nByte > sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH])
{
sqlite3_result_error_toobig(context);
z = 0;
}
else
{
z = sqlite3_malloc(nByte);
if(!z && nByte > 0)
{
sqlite3_result_error_nomem(context);
}
}
return z;
}
/*
** Implementation of the upper() and lower() SQL functions.
*/
static void
upperFunc(sqlite3_context * context, int argc, sqlite3_value ** argv)
{
char *z1;
const char *z2;
int i, n;
if(argc < 1 || SQLITE_NULL == sqlite3_value_type(argv[0]))
return;
z2 = (char *) sqlite3_value_text(argv[0]);
n = sqlite3_value_bytes(argv[0]);
/* Verify that the call to _bytes() does not invalidate the _text() pointer */
assert(z2 == (char *) sqlite3_value_text(argv[0]));
if(z2)
{
z1 = contextMalloc(context, ((i64) n) + 1);
if(z1)
{
memcpy(z1, z2, n + 1);
for (i = 0; z1[i]; i++)
{
z1[i] = toupper(z1[i]);
}
sqlite3_result_text(context, z1, -1, sqlite3_free);
}
}
}
static void
lowerFunc(sqlite3_context * context, int argc, sqlite3_value ** argv)
{
char *z1;
const char *z2;
int i, n;
if(argc < 1 || SQLITE_NULL == sqlite3_value_type(argv[0]))
return;
z2 = (char *) sqlite3_value_text(argv[0]);
n = sqlite3_value_bytes(argv[0]);
/* Verify that the call to _bytes() does not invalidate the _text() pointer */
assert(z2 == (char *) sqlite3_value_text(argv[0]));
if(z2)
{
z1 = contextMalloc(context, ((i64) n) + 1);
if(z1)
{
memcpy(z1, z2, n + 1);
for (i = 0; z1[i]; i++)
{
z1[i] = tolower(z1[i]);
}
sqlite3_result_text(context, z1, -1, sqlite3_free);
}
}
}
/*
** Implementation of the IFNULL(), NVL(), and COALESCE() functions.
** All three do the same thing. They return the first non-NULL
** argument.
*/
static void
ifnullFunc(sqlite3_context * context, int argc, sqlite3_value ** argv)
{
int i;
for (i = 0; i < argc; i++)
{
if(SQLITE_NULL != sqlite3_value_type(argv[i]))
{
sqlite3_result_value(context, argv[i]);
break;
}
}
}
/*
** Implementation of random(). Return a random integer.
*/
static void
randomFunc(sqlite3_context * context, int argc, sqlite3_value ** argv)
{
sqlite_int64 r;
sqlite3_randomness(sizeof(r), &r);
if((r << 1) == 0)
r = 0; /* Prevent 0x8000.... as the result so that we */
/* can always do abs() of the result */
sqlite3_result_int64(context, r);
}
/*
** Implementation of randomblob(N). Return a random blob
** that is N bytes long.
*/
static void
randomBlob(sqlite3_context * context, int argc, sqlite3_value ** argv)
{
int n;
unsigned char *p;
assert(argc == 1);
n = sqlite3_value_int(argv[0]);
if(n < 1)
{
n = 1;
}
p = contextMalloc(context, n);
if(p)
{
sqlite3_randomness(n, p);
sqlite3_result_blob(context, (char *) p, n, sqlite3_free);
}
}
/*
** Implementation of the last_insert_rowid() SQL function. The return
** value is the same as the sqlite3_last_insert_rowid() API function.
*/
static void
last_insert_rowid(sqlite3_context * context, int arg, sqlite3_value ** argv)
{
sqlite3 *db = sqlite3_context_db_handle(context);
sqlite3_result_int64(context, sqlite3_last_insert_rowid(db));
}
/*
** Implementation of the changes() SQL function. The return value is the
** same as the sqlite3_changes() API function.
*/
static void
changes(sqlite3_context * context, int arg, sqlite3_value ** argv)
{
sqlite3 *db = sqlite3_context_db_handle(context);
sqlite3_result_int(context, sqlite3_changes(db));
}
/*
** Implementation of the total_changes() SQL function. The return value is
** the same as the sqlite3_total_changes() API function.
*/
static void
total_changes(sqlite3_context * context, int arg, sqlite3_value ** argv)
{
sqlite3 *db = sqlite3_context_db_handle(context);
sqlite3_result_int(context, sqlite3_total_changes(db));
}
/*
** A structure defining how to do GLOB-style comparisons.
*/
struct compareInfo
{
u8 matchAll;
u8 matchOne;
u8 matchSet;
u8 noCase;
};
/*
** For LIKE and GLOB matching on EBCDIC machines, assume that every
** character is exactly one byte in size. Also, all characters are
** able to participate in upper-case-to-lower-case mappings in EBCDIC
** whereas only characters less than 0x80 do in ASCII.
*/
#if defined(SQLITE_EBCDIC)
# define sqlite3Utf8Read(A,B,C) (*(A++))
# define GlogUpperToLower(A) A = sqlite3UpperToLower[A]
#else
# define GlogUpperToLower(A) if( A<0x80 ){ A = sqlite3UpperToLower[A]; }
#endif
static const struct compareInfo globInfo = { '*', '?', '[', 0 };
/* The correct SQL-92 behavior is for the LIKE operator to ignore
** case. Thus 'a' LIKE 'A' would be true. */
static const struct compareInfo likeInfoNorm = { '%', '_', 0, 1 };
/* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator
** is case sensitive causing 'a' LIKE 'A' to be false */
static const struct compareInfo likeInfoAlt = { '%', '_', 0, 0 };
/*
** Compare two UTF-8 strings for equality where the first string can
** potentially be a "glob" expression. Return true (1) if they
** are the same and false (0) if they are different.
**
** Globbing rules:
**
** '*' Matches any sequence of zero or more characters.
**
** '?' Matches exactly one character.
**
** [...] Matches one character from the enclosed list of
** characters.
**
** [^...] Matches one character not in the enclosed list.
**
** With the [...] and [^...] matching, a ']' character can be included
** in the list by making it the first character after '[' or '^'. A
** range of characters can be specified using '-'. Example:
** "[a-z]" matches any single lower-case letter. To match a '-', make
** it the last character in the list.
**
** This routine is usually quick, but can be N**2 in the worst case.
**
** Hints: to match '*' or '?', put them in "[]". Like this:
**
** abc[*]xyz Matches "abc*xyz" only
*/
static int
patternCompare(const u8 * zPattern, /* The glob pattern */
const u8 * zString, /* The string to compare against the glob */
const struct compareInfo *pInfo, /* Information about how to do the compare */
const int esc /* The escape character */
)
{
int c, c2;
int invert;
int seen;
u8 matchOne = pInfo->matchOne;
u8 matchAll = pInfo->matchAll;
u8 matchSet = pInfo->matchSet;
u8 noCase = pInfo->noCase;
int prevEscape = 0; /* True if the previous character was 'escape' */
while ((c = sqlite3Utf8Read(zPattern, 0, &zPattern)) != 0)
{
if(!prevEscape && c == matchAll)
{
while ((c = sqlite3Utf8Read(zPattern, 0, &zPattern)) == matchAll
|| c == matchOne)
{
if(c == matchOne && sqlite3Utf8Read(zString, 0, &zString) == 0)
{
return 0;
}
}
if(c == 0)
{
return 1;
}
else if(c == esc)
{
c = sqlite3Utf8Read(zPattern, 0, &zPattern);
if(c == 0)
{
return 0;
}
}
else if(c == matchSet)
{
assert(esc == 0); /* This is GLOB, not LIKE */
assert(matchSet < 0x80); /* '[' is a single-byte character */
while (*zString
&& patternCompare(&zPattern[-1], zString, pInfo, esc) == 0)
{
SQLITE_SKIP_UTF8(zString);
}
return *zString != 0;
}
while ((c2 = sqlite3Utf8Read(zString, 0, &zString)) != 0)
{
if(noCase)
{
GlogUpperToLower(c2);
GlogUpperToLower(c);
while (c2 != 0 && c2 != c)
{
c2 = sqlite3Utf8Read(zString, 0, &zString);
GlogUpperToLower(c2);
}
}
else
{
while (c2 != 0 && c2 != c)
{
c2 = sqlite3Utf8Read(zString, 0, &zString);
}
}
if(c2 == 0)
return 0;
if(patternCompare(zPattern, zString, pInfo, esc))
return 1;
}
return 0;
}
else if(!prevEscape && c == matchOne)
{
if(sqlite3Utf8Read(zString, 0, &zString) == 0)
{
return 0;
}
}
else if(c == matchSet)
{
int prior_c = 0;
assert(esc == 0); /* This only occurs for GLOB, not LIKE */
seen = 0;
invert = 0;
c = sqlite3Utf8Read(zString, 0, &zString);
if(c == 0)
return 0;
c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
if(c2 == '^')
{
invert = 1;
c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
}
if(c2 == ']')
{
if(c == ']')
seen = 1;
c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
}
while (c2 && c2 != ']')
{
if(c2 == '-' && zPattern[0] != ']' && zPattern[0] != 0
&& prior_c > 0)
{
c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
if(c >= prior_c && c <= c2)
seen = 1;
prior_c = 0;
}
else
{
if(c == c2)
{
seen = 1;
}
prior_c = c2;
}
c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
}
if(c2 == 0 || (seen ^ invert) == 0)
{
return 0;
}
}
else if(esc == c && !prevEscape)
{
prevEscape = 1;
}
else
{
c2 = sqlite3Utf8Read(zString, 0, &zString);
if(noCase)
{
GlogUpperToLower(c);
GlogUpperToLower(c2);
}
if(c != c2)
{
return 0;
}
prevEscape = 0;
}
}
return *zString == 0;
}
/*
** Count the number of times that the LIKE operator (or GLOB which is
** just a variation of LIKE) gets called. This is used for testing
** only.
*/
#ifdef SQLITE_TEST
SQLITE_API int sqlite3_like_count = 0;
#endif
/*
** Implementation of the like() SQL function. This function implements
** the build-in LIKE operator. The first argument to the function is the
** pattern and the second argument is the string. So, the SQL statements:
**
** A LIKE B
**
** is implemented as like(B,A).
**
** This same function (with a different compareInfo structure) computes
** the GLOB operator.
*/
static void
likeFunc(sqlite3_context * context, int argc, sqlite3_value ** argv)
{
const unsigned char *zA, *zB;
int escape = 0;
sqlite3 *db = sqlite3_context_db_handle(context);
zB = sqlite3_value_text(argv[0]);
zA = sqlite3_value_text(argv[1]);
/* Limit the length of the LIKE or GLOB pattern to avoid problems
** of deep recursion and N*N behavior in patternCompare().
*/
if(sqlite3_value_bytes(argv[0]) > db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH])
{
sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1);
return;
}
assert(zB == sqlite3_value_text(argv[0])); /* Encoding did not change */
if(argc == 3)
{
/* The escape character string must consist of a single UTF-8 character.
** Otherwise, return an error.
*/
const unsigned char *zEsc = sqlite3_value_text(argv[2]);
if(zEsc == 0)
return;
if(sqlite3Utf8CharLen((char *) zEsc, -1) != 1)
{
sqlite3_result_error(context,
"ESCAPE expression must be a single character", -1);
return;
}
escape = sqlite3Utf8Read(zEsc, 0, &zEsc);
}
if(zA && zB)
{
struct compareInfo *pInfo = sqlite3_user_data(context);
#ifdef SQLITE_TEST
sqlite3_like_count++;
#endif
sqlite3_result_int(context, patternCompare(zB, zA, pInfo, escape));
}
}
/*
** Implementation of the NULLIF(x,y) function. The result is the first
** argument if the arguments are different. The result is NULL if the
** arguments are equal to each other.
*/
static void
nullifFunc(sqlite3_context * context, int argc, sqlite3_value ** argv)
{
CollSeq *pColl = sqlite3GetFuncCollSeq(context);
if(sqlite3MemCompare(argv[0], argv[1], pColl) != 0)
{
sqlite3_result_value(context, argv[0]);
}
}
/*
** Implementation of the VERSION(*) function. The result is the version
** of the SQLite library that is running.
*/
static void
versionFunc(sqlite3_context * context, int argc, sqlite3_value ** argv)
{
sqlite3_result_text(context, sqlite3_version, -1, SQLITE_STATIC);
}
/* Array for converting from half-bytes (nybbles) into ASCII hex
** digits. */
static const char hexdigits[] = {
'0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'A', 'B', 'C', 'D', 'E', 'F'
};
/*
** EXPERIMENTAL - This is not an official function. The interface may
** change. This function may disappear. Do not write code that depends
** on this function.
**
** Implementation of the QUOTE() function. This function takes a single
** argument. If the argument is numeric, the return value is the same as
** the argument. If the argument is NULL, the return value is the string
** "NULL". Otherwise, the argument is enclosed in single quotes with
** single-quote escapes.
*/
static void
quoteFunc(sqlite3_context * context, int argc, sqlite3_value ** argv)
{
if(argc < 1)
return;
switch (sqlite3_value_type(argv[0]))
{
case SQLITE_NULL:
{
sqlite3_result_text(context, "NULL", 4, SQLITE_STATIC);
break;
}
case SQLITE_INTEGER:
case SQLITE_FLOAT:
{
sqlite3_result_value(context, argv[0]);
break;
}
case SQLITE_BLOB:
{
char *zText = 0;
char const *zBlob = sqlite3_value_blob(argv[0]);
int nBlob = sqlite3_value_bytes(argv[0]);
assert(zBlob == sqlite3_value_blob(argv[0])); /* No encoding change */
zText = (char *) contextMalloc(context, (2 * (i64) nBlob) + 4);
if(zText)
{
int i;
for (i = 0; i < nBlob; i++)
{
zText[(i * 2) + 2] = hexdigits[(zBlob[i] >> 4) & 0x0F];
zText[(i * 2) + 3] = hexdigits[(zBlob[i]) & 0x0F];
}
zText[(nBlob * 2) + 2] = '\'';
zText[(nBlob * 2) + 3] = '\0';
zText[0] = 'X';
zText[1] = '\'';
sqlite3_result_text(context, zText, -1, SQLITE_TRANSIENT);
sqlite3_free(zText);
}
break;
}
case SQLITE_TEXT:
{
int i, j;
u64 n;
const unsigned char *zArg = sqlite3_value_text(argv[0]);
char *z;
if(zArg == 0)
return;
for (i = 0, n = 0; zArg[i]; i++)
{
if(zArg[i] == '\'')
n++;
}
z = contextMalloc(context, ((i64) i) + ((i64) n) + 3);
if(z)
{
z[0] = '\'';
for (i = 0, j = 1; zArg[i]; i++)
{
z[j++] = zArg[i];
if(zArg[i] == '\'')
{
z[j++] = '\'';
}
}
z[j++] = '\'';
z[j] = 0;
sqlite3_result_text(context, z, j, sqlite3_free);
}
}
}
}
/*
** The hex() function. Interpret the argument as a blob. Return
** a hexadecimal rendering as text.
*/
static void
hexFunc(sqlite3_context * context, int argc, sqlite3_value ** argv)
{
int i, n;
const unsigned char *pBlob;
char *zHex, *z;
assert(argc == 1);
pBlob = sqlite3_value_blob(argv[0]);
n = sqlite3_value_bytes(argv[0]);
assert(pBlob == sqlite3_value_blob(argv[0])); /* No encoding change */
z = zHex = contextMalloc(context, ((i64) n) * 2 + 1);
if(zHex)
{
for (i = 0; i < n; i++, pBlob++)
{
unsigned char c = *pBlob;
*(z++) = hexdigits[(c >> 4) & 0xf];
*(z++) = hexdigits[c & 0xf];
}
*z = 0;
sqlite3_result_text(context, zHex, n * 2, sqlite3_free);
}
}
/*
** The zeroblob(N) function returns a zero-filled blob of size N bytes.
*/
static void
zeroblobFunc(sqlite3_context * context, int argc, sqlite3_value ** argv)
{
i64 n;
assert(argc == 1);
n = sqlite3_value_int64(argv[0]);
if(n > SQLITE_MAX_LENGTH)
{
sqlite3_result_error_toobig(context);
}
else
{
sqlite3_result_zeroblob(context, n);
}
}
/*
** The replace() function. Three arguments are all strings: call
** them A, B, and C. The result is also a string which is derived
** from A by replacing every occurance of B with C. The match
** must be exact. Collating sequences are not used.
*/
static void
replaceFunc(sqlite3_context * context, int argc, sqlite3_value ** argv)
{
const unsigned char *zStr; /* The input string A */
const unsigned char *zPattern; /* The pattern string B */
const unsigned char *zRep; /* The replacement string C */
unsigned char *zOut; /* The output */
int nStr; /* Size of zStr */
int nPattern; /* Size of zPattern */
int nRep; /* Size of zRep */
i64 nOut; /* Maximum size of zOut */
int loopLimit; /* Last zStr[] that might match zPattern[] */
int i, j; /* Loop counters */
assert(argc == 3);
zStr = sqlite3_value_text(argv[0]);
if(zStr == 0)
return;
nStr = sqlite3_value_bytes(argv[0]);
assert(zStr == sqlite3_value_text(argv[0])); /* No encoding change */
zPattern = sqlite3_value_text(argv[1]);
if(zPattern == 0 || zPattern[0] == 0)
return;
nPattern = sqlite3_value_bytes(argv[1]);
assert(zPattern == sqlite3_value_text(argv[1])); /* No encoding change */
zRep = sqlite3_value_text(argv[2]);
if(zRep == 0)
return;
nRep = sqlite3_value_bytes(argv[2]);
assert(zRep == sqlite3_value_text(argv[2]));
nOut = nStr + 1;
assert(nOut < SQLITE_MAX_LENGTH);
zOut = contextMalloc(context, (i64) nOut);
if(zOut == 0)
{
return;
}
loopLimit = nStr - nPattern;
for (i = j = 0; i <= loopLimit; i++)
{
if(zStr[i] != zPattern[0] || memcmp(&zStr[i], zPattern, nPattern))
{
zOut[j++] = zStr[i];
}
else
{
u8 *zOld;
sqlite3 *db = sqlite3_context_db_handle(context);
nOut += nRep - nPattern;
if(nOut >= db->aLimit[SQLITE_LIMIT_LENGTH])
{
sqlite3_result_error_toobig(context);
sqlite3_free(zOut);
return;
}
zOld = zOut;
zOut = sqlite3_realloc(zOut, (int) nOut);
if(zOut == 0)
{
sqlite3_result_error_nomem(context);
sqlite3_free(zOld);
return;
}
memcpy(&zOut[j], zRep, nRep);
j += nRep;
i += nPattern - 1;
}
}
assert(j + nStr - i + 1 == nOut);
memcpy(&zOut[j], &zStr[i], nStr - i);
j += nStr - i;
assert(j <= nOut);
zOut[j] = 0;
sqlite3_result_text(context, (char *) zOut, j, sqlite3_free);
}
/*
** Implementation of the TRIM(), LTRIM(), and RTRIM() functions.
** The userdata is 0x1 for left trim, 0x2 for right trim, 0x3 for both.
*/
static void
trimFunc(sqlite3_context * context, int argc, sqlite3_value ** argv)
{
const unsigned char *zIn; /* Input string */
const unsigned char *zCharSet; /* Set of characters to trim */
int nIn; /* Number of bytes in input */
int flags; /* 1: trimleft 2: trimright 3: trim */
int i; /* Loop counter */
unsigned char *aLen; /* Length of each character in zCharSet */
unsigned char **azChar; /* Individual characters in zCharSet */
int nChar; /* Number of characters in zCharSet */
if(sqlite3_value_type(argv[0]) == SQLITE_NULL)
{
return;
}
zIn = sqlite3_value_text(argv[0]);
if(zIn == 0)
return;
nIn = sqlite3_value_bytes(argv[0]);
assert(zIn == sqlite3_value_text(argv[0]));
if(argc == 1)
{
static const unsigned char lenOne[] = { 1 };
static const unsigned char *azOne[] = { (u8 *) " " };
nChar = 1;
aLen = (u8 *) lenOne;
azChar = (unsigned char **) azOne;
zCharSet = 0;
}
else if((zCharSet = sqlite3_value_text(argv[1])) == 0)
{
return;
}
else
{
const unsigned char *z;
for (z = zCharSet, nChar = 0; *z; nChar++)
{
SQLITE_SKIP_UTF8(z);
}
if(nChar > 0)
{
azChar = contextMalloc(context, ((i64) nChar) * (sizeof(char *) + 1));
if(azChar == 0)
{
return;
}
aLen = (unsigned char *) &azChar[nChar];
for (z = zCharSet, nChar = 0; *z; nChar++)
{
azChar[nChar] = (unsigned char *) z;
SQLITE_SKIP_UTF8(z);
aLen[nChar] = z - azChar[nChar];
}
}
}
if(nChar > 0)
{
flags = (long int) sqlite3_user_data(context);
if(flags & 1)
{
while (nIn > 0)
{
int len;
for (i = 0; i < nChar; i++)
{
len = aLen[i];
if(memcmp(zIn, azChar[i], len) == 0)
break;
}
if(i >= nChar)
break;
zIn += len;
nIn -= len;
}
}
if(flags & 2)
{
while (nIn > 0)
{
int len;
for (i = 0; i < nChar; i++)
{
len = aLen[i];
if(len <= nIn
&& memcmp(&zIn[nIn - len], azChar[i], len) == 0)
break;
}
if(i >= nChar)
break;
nIn -= len;
}
}
if(zCharSet)
{
sqlite3_free(azChar);
}
}
sqlite3_result_text(context, (char *) zIn, nIn, SQLITE_TRANSIENT);
}
#ifdef SQLITE_SOUNDEX
/*
** Compute the soundex encoding of a word.
*/
static void
soundexFunc(sqlite3_context * context, int argc, sqlite3_value ** argv)
{
char zResult[8];
const u8 *zIn;
int i, j;
static const unsigned char iCode[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
};
assert(argc == 1);
zIn = (u8 *) sqlite3_value_text(argv[0]);
if(zIn == 0)
zIn = (u8 *) "";
for (i = 0; zIn[i] && !isalpha(zIn[i]); i++)
{
}
if(zIn[i])
{
u8 prevcode = iCode[zIn[i] & 0x7f];
zResult[0] = toupper(zIn[i]);
for (j = 1; j < 4 && zIn[i]; i++)
{
int code = iCode[zIn[i] & 0x7f];
if(code > 0)
{
if(code != prevcode)
{
prevcode = code;
zResult[j++] = code + '0';
}
}
else
{
prevcode = 0;
}
}
while (j < 4)
{
zResult[j++] = '0';
}
zResult[j] = 0;
sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT);
}
else
{
sqlite3_result_text(context, "?000", 4, SQLITE_STATIC);
}
}
#endif
#ifndef SQLITE_OMIT_LOAD_EXTENSION
/*
** A function that loads a shared-library extension then returns NULL.
*/
static void
loadExt(sqlite3_context * context, int argc, sqlite3_value ** argv)
{
const char *zFile = (const char *) sqlite3_value_text(argv[0]);
const char *zProc;
sqlite3 *db = sqlite3_context_db_handle(context);
char *zErrMsg = 0;
if(argc == 2)
{
zProc = (const char *) sqlite3_value_text(argv[1]);
}
else
{
zProc = 0;
}
if(zFile && sqlite3_load_extension(db, zFile, zProc, &zErrMsg))
{
sqlite3_result_error(context, zErrMsg, -1);
sqlite3_free(zErrMsg);
}
}
#endif
/*
** An instance of the following structure holds the context of a
** sum() or avg() aggregate computation.
*/
typedef struct SumCtx SumCtx;
struct SumCtx
{
double rSum; /* Floating point sum */
i64 iSum; /* Integer sum */
i64 cnt; /* Number of elements summed */
u8 overflow; /* True if integer overflow seen */
u8 approx; /* True if non-integer value was input to the sum */
};
/*
** Routines used to compute the sum, average, and total.
**
** The SUM() function follows the (broken) SQL standard which means
** that it returns NULL if it sums over no inputs. TOTAL returns
** 0.0 in that case. In addition, TOTAL always returns a float where
** SUM might return an integer if it never encounters a floating point
** value. TOTAL never fails, but SUM might through an exception if
** it overflows an integer.
*/
static void
sumStep(sqlite3_context * context, int argc, sqlite3_value ** argv)
{
SumCtx *p;
int type;
assert(argc == 1);
p = sqlite3_aggregate_context(context, sizeof(*p));
type = sqlite3_value_numeric_type(argv[0]);
if(p && type != SQLITE_NULL)
{
p->cnt++;
if(type == SQLITE_INTEGER)
{
i64 v = sqlite3_value_int64(argv[0]);
p->rSum += v;
if((p->approx | p->overflow) == 0)
{
i64 iNewSum = p->iSum + v;
int s1 = p->iSum >> (sizeof(i64) * 8 - 1);
int s2 = v >> (sizeof(i64) * 8 - 1);
int s3 = iNewSum >> (sizeof(i64) * 8 - 1);
p->overflow = (s1 & s2 & ~s3) | (~s1 & ~s2 & s3);
p->iSum = iNewSum;
}
}
else
{
p->rSum += sqlite3_value_double(argv[0]);
p->approx = 1;
}
}
}
static void
sumFinalize(sqlite3_context * context)
{
SumCtx *p;
p = sqlite3_aggregate_context(context, 0);
if(p && p->cnt > 0)
{
if(p->overflow)
{
sqlite3_result_error(context, "integer overflow", -1);
}
else if(p->approx)
{
sqlite3_result_double(context, p->rSum);
}
else
{
sqlite3_result_int64(context, p->iSum);
}
}
}
static void
avgFinalize(sqlite3_context * context)
{
SumCtx *p;
p = sqlite3_aggregate_context(context, 0);
if(p && p->cnt > 0)
{
sqlite3_result_double(context, p->rSum / (double) p->cnt);
}
}
static void
totalFinalize(sqlite3_context * context)
{
SumCtx *p;
p = sqlite3_aggregate_context(context, 0);
sqlite3_result_double(context, p ? p->rSum : 0.0);
}
/*
** The following structure keeps track of state information for the
** count() aggregate function.
*/
typedef struct CountCtx CountCtx;
struct CountCtx
{
i64 n;
};
/*
** Routines to implement the count() aggregate function.
*/
static void
countStep(sqlite3_context * context, int argc, sqlite3_value ** argv)
{
CountCtx *p;
p = sqlite3_aggregate_context(context, sizeof(*p));
if((argc == 0 || SQLITE_NULL != sqlite3_value_type(argv[0])) && p)
{
p->n++;
}
}
static void
countFinalize(sqlite3_context * context)
{
CountCtx *p;
p = sqlite3_aggregate_context(context, 0);
sqlite3_result_int64(context, p ? p->n : 0);
}
/*
** Routines to implement min() and max() aggregate functions.
*/
static void
minmaxStep(sqlite3_context * context, int argc, sqlite3_value ** argv)
{
Mem *pArg = (Mem *) argv[0];
Mem *pBest;
if(sqlite3_value_type(argv[0]) == SQLITE_NULL)
return;
pBest = (Mem *) sqlite3_aggregate_context(context, sizeof(*pBest));
if(!pBest)
return;
if(pBest->flags)
{
int max;
int cmp;
CollSeq *pColl = sqlite3GetFuncCollSeq(context);
/* This step function is used for both the min() and max() aggregates,
** the only difference between the two being that the sense of the
** comparison is inverted. For the max() aggregate, the
** sqlite3_user_data() function returns (void *)-1. For min() it
** returns (void *)db, where db is the sqlite3* database pointer.
** Therefore the next statement sets variable 'max' to 1 for the max()
** aggregate, or 0 for min().
*/
max = sqlite3_user_data(context) != 0;
cmp = sqlite3MemCompare(pBest, pArg, pColl);
if((max && cmp < 0) || (!max && cmp > 0))
{
sqlite3VdbeMemCopy(pBest, pArg);
}
}
else
{
sqlite3VdbeMemCopy(pBest, pArg);
}
}
static void
minMaxFinalize(sqlite3_context * context)
{
sqlite3_value *pRes;
pRes = (sqlite3_value *) sqlite3_aggregate_context(context, 0);
if(pRes)
{
if(pRes->flags)
{
sqlite3_result_value(context, pRes);
}
sqlite3VdbeMemRelease(pRes);
}
}
/*
** group_concat(EXPR, ?SEPARATOR?)
*/
static void
groupConcatStep(sqlite3_context * context, int argc, sqlite3_value ** argv)
{
const char *zVal;
StrAccum *pAccum;
const char *zSep;
int nVal, nSep;
if(sqlite3_value_type(argv[0]) == SQLITE_NULL)
return;
pAccum = (StrAccum *) sqlite3_aggregate_context(context, sizeof(*pAccum));
if(pAccum)
{
sqlite3 *db = sqlite3_context_db_handle(context);
pAccum->useMalloc = 1;
pAccum->mxAlloc = db->aLimit[SQLITE_LIMIT_LENGTH];
if(pAccum->nChar)
{
if(argc == 2)
{
zSep = (char *) sqlite3_value_text(argv[1]);
nSep = sqlite3_value_bytes(argv[1]);
}
else
{
zSep = ",";
nSep = 1;
}
sqlite3StrAccumAppend(pAccum, zSep, nSep);
}
zVal = (char *) sqlite3_value_text(argv[0]);
nVal = sqlite3_value_bytes(argv[0]);
sqlite3StrAccumAppend(pAccum, zVal, nVal);
}
}
static void
groupConcatFinalize(sqlite3_context * context)
{
StrAccum *pAccum;
pAccum = sqlite3_aggregate_context(context, 0);
if(pAccum)
{
if(pAccum->tooBig)
{
sqlite3_result_error_toobig(context);
}
else if(pAccum->mallocFailed)
{
sqlite3_result_error_nomem(context);
}
else
{
sqlite3_result_text(context, sqlite3StrAccumFinish(pAccum), -1,
sqlite3_free);
}
}
}
/*
** This function registered all of the above C functions as SQL
** functions. This should be the only routine in this file with
** external linkage.
*/
SQLITE_PRIVATE void
sqlite3RegisterBuiltinFunctions(sqlite3 * db)
{
static const struct
{
char *zName;
signed char nArg;
u8 argType; /* 1: 0, 2: 1, 3: 2,... N: N-1. */
u8 eTextRep; /* 1: UTF-16. 0: UTF-8 */
u8 needCollSeq;
void (*xFunc) (sqlite3_context *, int, sqlite3_value **);
} aFuncs[] =
{
{
"min", -1, 0, SQLITE_UTF8, 1, minmaxFunc},
{
"min", 0, 0, SQLITE_UTF8, 1, 0},
{
"max", -1, 1, SQLITE_UTF8, 1, minmaxFunc},
{
"max", 0, 1, SQLITE_UTF8, 1, 0},
{
"typeof", 1, 0, SQLITE_UTF8, 0, typeofFunc},
{
"length", 1, 0, SQLITE_UTF8, 0, lengthFunc},
{
"substr", 2, 0, SQLITE_UTF8, 0, substrFunc},
{
"substr", 3, 0, SQLITE_UTF8, 0, substrFunc},
{
"abs", 1, 0, SQLITE_UTF8, 0, absFunc},
{
"round", 1, 0, SQLITE_UTF8, 0, roundFunc},
{
"round", 2, 0, SQLITE_UTF8, 0, roundFunc},
{
"upper", 1, 0, SQLITE_UTF8, 0, upperFunc},
{
"lower", 1, 0, SQLITE_UTF8, 0, lowerFunc},
{
"coalesce", -1, 0, SQLITE_UTF8, 0, ifnullFunc},
{
"coalesce", 0, 0, SQLITE_UTF8, 0, 0},
{
"coalesce", 1, 0, SQLITE_UTF8, 0, 0},
{
"hex", 1, 0, SQLITE_UTF8, 0, hexFunc},
{
"ifnull", 2, 0, SQLITE_UTF8, 1, ifnullFunc},
{
"random", -1, 0, SQLITE_UTF8, 0, randomFunc},
{
"randomblob", 1, 0, SQLITE_UTF8, 0, randomBlob},
{
"nullif", 2, 0, SQLITE_UTF8, 1, nullifFunc},
{
"sqlite_version", 0, 0, SQLITE_UTF8, 0, versionFunc},
{
"quote", 1, 0, SQLITE_UTF8, 0, quoteFunc},
{
"last_insert_rowid", 0, 0, SQLITE_UTF8, 0, last_insert_rowid},
{
"changes", 0, 0, SQLITE_UTF8, 0, changes},
{
"total_changes", 0, 0, SQLITE_UTF8, 0, total_changes},
{
"replace", 3, 0, SQLITE_UTF8, 0, replaceFunc},
{
"ltrim", 1, 1, SQLITE_UTF8, 0, trimFunc},
{
"ltrim", 2, 1, SQLITE_UTF8, 0, trimFunc},
{
"rtrim", 1, 2, SQLITE_UTF8, 0, trimFunc},
{
"rtrim", 2, 2, SQLITE_UTF8, 0, trimFunc},
{
"trim", 1, 3, SQLITE_UTF8, 0, trimFunc},
{
"trim", 2, 3, SQLITE_UTF8, 0, trimFunc},
{
"zeroblob", 1, 0, SQLITE_UTF8, 0, zeroblobFunc},
#ifdef SQLITE_SOUNDEX
{
"soundex", 1, 0, SQLITE_UTF8, 0, soundexFunc},
#endif
#ifndef SQLITE_OMIT_LOAD_EXTENSION
{
"load_extension", 1, 0, SQLITE_UTF8, 0, loadExt},
{
"load_extension", 2, 0, SQLITE_UTF8, 0, loadExt},
#endif
};
static const struct
{
char *zName;
signed char nArg;
u8 argType;
u8 needCollSeq;
void (*xStep) (sqlite3_context *, int, sqlite3_value **);
void (*xFinalize) (sqlite3_context *);
} aAggs[] =
{
{
"min", 1, 0, 1, minmaxStep, minMaxFinalize},
{
"max", 1, 1, 1, minmaxStep, minMaxFinalize},
{
"sum", 1, 0, 0, sumStep, sumFinalize},
{
"total", 1, 0, 0, sumStep, totalFinalize},
{
"avg", 1, 0, 0, sumStep, avgFinalize},
{
"count", 0, 0, 0, countStep, countFinalize},
{
"count", 1, 0, 0, countStep, countFinalize},
{
"group_concat", 1, 0, 0, groupConcatStep, groupConcatFinalize},
{
"group_concat", 2, 0, 0, groupConcatStep, groupConcatFinalize},};
int i;
for (i = 0; i < sizeof(aFuncs) / sizeof(aFuncs[0]); i++)
{
void *pArg;
u8 argType = aFuncs[i].argType;
pArg = (void *) (long int) argType;
sqlite3CreateFunc(db, aFuncs[i].zName, aFuncs[i].nArg,
aFuncs[i].eTextRep, pArg, aFuncs[i].xFunc, 0, 0);
if(aFuncs[i].needCollSeq)
{
FuncDef *pFunc = sqlite3FindFunction(db, aFuncs[i].zName,
strlen(aFuncs[i].zName),
aFuncs[i].nArg, aFuncs[i].eTextRep, 0);
if(pFunc && aFuncs[i].needCollSeq)
{
pFunc->needCollSeq = 1;
}
}
}
#ifndef SQLITE_OMIT_ALTERTABLE
sqlite3AlterFunctions(db);
#endif
#ifndef SQLITE_OMIT_PARSER
sqlite3AttachFunctions(db);
#endif
for (i = 0; i < sizeof(aAggs) / sizeof(aAggs[0]); i++)
{
void *pArg = (void *) (long int) aAggs[i].argType;
sqlite3CreateFunc(db, aAggs[i].zName, aAggs[i].nArg, SQLITE_UTF8,
pArg, 0, aAggs[i].xStep, aAggs[i].xFinalize);
if(aAggs[i].needCollSeq)
{
FuncDef *pFunc = sqlite3FindFunction(db, aAggs[i].zName,
strlen(aAggs[i].zName), aAggs[i].nArg,
SQLITE_UTF8, 0);
if(pFunc && aAggs[i].needCollSeq)
{
pFunc->needCollSeq = 1;
}
}
}
sqlite3RegisterDateTimeFunctions(db);
if(!db->mallocFailed)
{
int rc = sqlite3_overload_function(db, "MATCH", 2);
assert(rc == SQLITE_NOMEM || rc == SQLITE_OK);
if(rc == SQLITE_NOMEM)
{
db->mallocFailed = 1;
}
}
#ifdef SQLITE_SSE
(void) sqlite3SseFunctions(db);
#endif
#ifdef SQLITE_CASE_SENSITIVE_LIKE
sqlite3RegisterLikeFunctions(db, 1);
#else
sqlite3RegisterLikeFunctions(db, 0);
#endif
}
/*
** Set the LIKEOPT flag on the 2-argument function with the given name.
*/
static void
setLikeOptFlag(sqlite3 * db, const char *zName, int flagVal)
{
FuncDef *pDef;
pDef = sqlite3FindFunction(db, zName, strlen(zName), 2, SQLITE_UTF8, 0);
if(pDef)
{
pDef->flags = flagVal;
}
}
/*
** Register the built-in LIKE and GLOB functions. The caseSensitive
** parameter determines whether or not the LIKE operator is case
** sensitive. GLOB is always case sensitive.
*/
SQLITE_PRIVATE void
sqlite3RegisterLikeFunctions(sqlite3 * db, int caseSensitive)
{
struct compareInfo *pInfo;
if(caseSensitive)
{
pInfo = (struct compareInfo *) &likeInfoAlt;
}
else
{
pInfo = (struct compareInfo *) &likeInfoNorm;
}
sqlite3CreateFunc(db, "like", 2, SQLITE_UTF8, pInfo, likeFunc, 0, 0);
sqlite3CreateFunc(db, "like", 3, SQLITE_UTF8, pInfo, likeFunc, 0, 0);
sqlite3CreateFunc(db, "glob", 2, SQLITE_UTF8,
(struct compareInfo *) &globInfo, likeFunc, 0, 0);
setLikeOptFlag(db, "glob", SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE);
setLikeOptFlag(db, "like",
caseSensitive ? (SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE) : SQLITE_FUNC_LIKE);
}
/*
** pExpr points to an expression which implements a function. If
** it is appropriate to apply the LIKE optimization to that function
** then set aWc[0] through aWc[2] to the wildcard characters and
** return TRUE. If the function is not a LIKE-style function then
** return FALSE.
*/
SQLITE_PRIVATE int
sqlite3IsLikeFunction(sqlite3 * db, Expr * pExpr, int *pIsNocase, char *aWc)
{
FuncDef *pDef;
if(pExpr->op != TK_FUNCTION || !pExpr->pList)
{
return 0;
}
if(pExpr->pList->nExpr != 2)
{
return 0;
}
pDef = sqlite3FindFunction(db, (char *) pExpr->token.z, pExpr->token.n, 2, SQLITE_UTF8, 0);
if(pDef == 0 || (pDef->flags & SQLITE_FUNC_LIKE) == 0)
{
return 0;
}
/* The memcpy() statement assumes that the wildcard characters are
** the first three statements in the compareInfo structure. The
** asserts() that follow verify that assumption
*/
memcpy(aWc, pDef->pUserData, 3);
assert((char *) &likeInfoAlt == (char *) &likeInfoAlt.matchAll);
assert(&((char *) &likeInfoAlt)[1] == (char *) &likeInfoAlt.matchOne);
assert(&((char *) &likeInfoAlt)[2] == (char *) &likeInfoAlt.matchSet);
*pIsNocase = (pDef->flags & SQLITE_FUNC_CASE) == 0;
return 1;
}
/************** End of func.c ************************************************/
/************** Begin file insert.c ******************************************/
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle INSERT statements in SQLite.
**
*/
/*
** Set P4 of the most recently inserted opcode to a column affinity
** string for index pIdx. A column affinity string has one character
** for each column in the table, according to the affinity of the column:
**
** Character Column affinity
** ------------------------------
** 'a' TEXT
** 'b' NONE
** 'c' NUMERIC
** 'd' INTEGER
** 'e' REAL
**
** An extra 'b' is appended to the end of the string to cover the
** rowid that appears as the last column in every index.
*/
SQLITE_PRIVATE void
sqlite3IndexAffinityStr(Vdbe * v, Index * pIdx)
{
if(!pIdx->zColAff)
{
/* The first time a column affinity string for a particular index is
** required, it is allocated and populated here. It is then stored as
** a member of the Index structure for subsequent use.
**
** The column affinity string will eventually be deleted by
** sqliteDeleteIndex() when the Index structure itself is cleaned
** up.
*/
int n;
Table *pTab = pIdx->pTable;
sqlite3 *db = sqlite3VdbeDb(v);
pIdx->zColAff = (char *) sqlite3DbMallocRaw(db, pIdx->nColumn + 2);
if(!pIdx->zColAff)
{
return;
}
for (n = 0; n < pIdx->nColumn; n++)
{
pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity;
}
pIdx->zColAff[n++] = SQLITE_AFF_NONE;
pIdx->zColAff[n] = 0;
}
sqlite3VdbeChangeP4(v, -1, pIdx->zColAff, 0);
}
/*
** Set P4 of the most recently inserted opcode to a column affinity
** string for table pTab. A column affinity string has one character
** for each column indexed by the index, according to the affinity of the
** column:
**
** Character Column affinity
** ------------------------------
** 'a' TEXT
** 'b' NONE
** 'c' NUMERIC
** 'd' INTEGER
** 'e' REAL
*/
SQLITE_PRIVATE void
sqlite3TableAffinityStr(Vdbe * v, Table * pTab)
{
/* The first time a column affinity string for a particular table
** is required, it is allocated and populated here. It is then
** stored as a member of the Table structure for subsequent use.
**
** The column affinity string will eventually be deleted by
** sqlite3DeleteTable() when the Table structure itself is cleaned up.
*/
if(!pTab->zColAff)
{
char *zColAff;
int i;
sqlite3 *db = sqlite3VdbeDb(v);
zColAff = (char *) sqlite3DbMallocRaw(db, pTab->nCol + 1);
if(!zColAff)
{
return;
}
for (i = 0; i < pTab->nCol; i++)
{
zColAff[i] = pTab->aCol[i].affinity;
}
zColAff[pTab->nCol] = '\0';
pTab->zColAff = zColAff;
}
sqlite3VdbeChangeP4(v, -1, pTab->zColAff, 0);
}
/*
** Return non-zero if the table pTab in database iDb or any of its indices
** have been opened at any point in the VDBE program beginning at location
** iStartAddr throught the end of the program. This is used to see if
** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can
** run without using temporary table for the results of the SELECT.
*/
static int
readsTable(Vdbe * v, int iStartAddr, int iDb, Table * pTab)
{
int i;
int iEnd = sqlite3VdbeCurrentAddr(v);
for (i = iStartAddr; i < iEnd; i++)
{
VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
assert(pOp != 0);
if(pOp->opcode == OP_OpenRead && pOp->p3 == iDb)
{
Index *pIndex;
int tnum = pOp->p2;
if(tnum == pTab->tnum)
{
return 1;
}
for (pIndex = pTab->pIndex; pIndex; pIndex = pIndex->pNext)
{
if(tnum == pIndex->tnum)
{
return 1;
}
}
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
if(pOp->opcode == OP_VOpen && pOp->p4.pVtab == pTab->pVtab)
{
assert(pOp->p4.pVtab != 0);
assert(pOp->p4type == P4_VTAB);
return 1;
}
#endif
}
return 0;
}
#ifndef SQLITE_OMIT_AUTOINCREMENT
/*
** Write out code to initialize the autoincrement logic. This code
** looks up the current autoincrement value in the sqlite_sequence
** table and stores that value in a register. Code generated by
** autoIncStep() will keep that register holding the largest
** rowid value. Code generated by autoIncEnd() will write the new
** largest value of the counter back into the sqlite_sequence table.
**
** This routine returns the index of the mem[] cell that contains
** the maximum rowid counter.
**
** Three consecutive registers are allocated by this routine. The
** first two hold the name of the target table and the maximum rowid
** inserted into the target table, respectively.
** The third holds the rowid in sqlite_sequence where we will
** write back the revised maximum rowid. This routine returns the
** index of the second of these three registers.
*/
static int
autoIncBegin(Parse * pParse, /* Parsing context */
int iDb, /* Index of the database holding pTab */
Table * pTab /* The table we are writing to */
)
{
int memId = 0; /* Register holding maximum rowid */
if(pTab->autoInc)
{
Vdbe *v = pParse->pVdbe;
Db *pDb = &pParse->db->aDb[iDb];
int iCur = pParse->nTab;
int addr; /* Address of the top of the loop */
assert(v);
pParse->nMem++; /* Holds name of table */
memId = ++pParse->nMem;
pParse->nMem++;
sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
addr = sqlite3VdbeCurrentAddr(v);
sqlite3VdbeAddOp4(v, OP_String8, 0, memId - 1, 0, pTab->zName, 0);
sqlite3VdbeAddOp2(v, OP_Rewind, iCur, addr + 8);
sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, memId);
sqlite3VdbeAddOp3(v, OP_Ne, memId - 1, addr + 7, memId);
sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
sqlite3VdbeAddOp2(v, OP_Rowid, iCur, memId + 1);
sqlite3VdbeAddOp3(v, OP_Column, iCur, 1, memId);
sqlite3VdbeAddOp2(v, OP_Goto, 0, addr + 8);
sqlite3VdbeAddOp2(v, OP_Next, iCur, addr + 2);
sqlite3VdbeAddOp2(v, OP_Close, iCur, 0);
}
return memId;
}
/*
** Update the maximum rowid for an autoincrement calculation.
**
** This routine should be called when the top of the stack holds a
** new rowid that is about to be inserted. If that new rowid is
** larger than the maximum rowid in the memId memory cell, then the
** memory cell is updated. The stack is unchanged.
*/
static void
autoIncStep(Parse * pParse, int memId, int regRowid)
{
if(memId > 0)
{
sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
}
}
/*
** After doing one or more inserts, the maximum rowid is stored
** in reg[memId]. Generate code to write this value back into the
** the sqlite_sequence table.
*/
static void
autoIncEnd(Parse * pParse, /* The parsing context */
int iDb, /* Index of the database holding pTab */
Table * pTab, /* Table we are inserting into */
int memId /* Memory cell holding the maximum rowid */
)
{
if(pTab->autoInc)
{
int iCur = pParse->nTab;
Vdbe *v = pParse->pVdbe;
Db *pDb = &pParse->db->aDb[iDb];
int j1;
int iRec = ++pParse->nMem; /* Memory cell used for record */
assert(v);
sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId + 1);
sqlite3VdbeAddOp2(v, OP_NewRowid, iCur, memId + 1);
sqlite3VdbeJumpHere(v, j1);
sqlite3VdbeAddOp3(v, OP_MakeRecord, memId - 1, 2, iRec);
sqlite3VdbeAddOp3(v, OP_Insert, iCur, iRec, memId + 1);
sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
sqlite3VdbeAddOp1(v, OP_Close, iCur);
}
}
#else
/*
** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
** above are all no-ops
*/
# define autoIncBegin(A,B,C) (0)
# define autoIncStep(A,B,C)
# define autoIncEnd(A,B,C,D)
#endif /* SQLITE_OMIT_AUTOINCREMENT */
/* Forward declaration */
static int xferOptimization(Parse * pParse, /* Parser context */
Table * pDest, /* The table we are inserting into */
Select * pSelect, /* A SELECT statement to use as the data source */
int onError, /* How to handle constraint errors */
int iDbDest /* The database of pDest */
);
/*
** This routine is call to handle SQL of the following forms:
**
** insert into TABLE (IDLIST) values(EXPRLIST)
** insert into TABLE (IDLIST) select
**
** The IDLIST following the table name is always optional. If omitted,
** then a list of all columns for the table is substituted. The IDLIST
** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted.
**
** The pList parameter holds EXPRLIST in the first form of the INSERT
** statement above, and pSelect is NULL. For the second form, pList is
** NULL and pSelect is a pointer to the select statement used to generate
** data for the insert.
**
** The code generated follows one of four templates. For a simple
** select with data coming from a VALUES clause, the code executes
** once straight down through. The template looks like this:
**
** open write cursor to <table> and its indices
** puts VALUES clause expressions onto the stack
** write the resulting record into <table>
** cleanup
**
** The three remaining templates assume the statement is of the form
**
** INSERT INTO <table> SELECT ...
**
** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
** in other words if the SELECT pulls all columns from a single table
** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
** if <table2> and <table1> are distinct tables but have identical
** schemas, including all the same indices, then a special optimization
** is invoked that copies raw records from <table2> over to <table1>.
** See the xferOptimization() function for the implementation of this
** template. This is the second template.
**
** open a write cursor to <table>
** open read cursor on <table2>
** transfer all records in <table2> over to <table>
** close cursors
** foreach index on <table>
** open a write cursor on the <table> index
** open a read cursor on the corresponding <table2> index
** transfer all records from the read to the write cursors
** close cursors
** end foreach
**
** The third template is for when the second template does not apply
** and the SELECT clause does not read from <table> at any time.
** The generated code follows this template:
**
** goto B
** A: setup for the SELECT
** loop over the rows in the SELECT
** gosub C
** end loop
** cleanup after the SELECT
** goto D
** B: open write cursor to <table> and its indices
** goto A
** C: insert the select result into <table>
** return
** D: cleanup
**
** The fourth template is used if the insert statement takes its
** values from a SELECT but the data is being inserted into a table
** that is also read as part of the SELECT. In the third form,
** we have to use a intermediate table to store the results of
** the select. The template is like this:
**
** goto B
** A: setup for the SELECT
** loop over the tables in the SELECT
** gosub C
** end loop
** cleanup after the SELECT
** goto D
** C: insert the select result into the intermediate table
** return
** B: open a cursor to an intermediate table
** goto A
** D: open write cursor to <table> and its indices
** loop over the intermediate table
** transfer values form intermediate table into <table>
** end the loop
** cleanup
*/
SQLITE_PRIVATE void
sqlite3Insert(Parse * pParse, /* Parser context */
SrcList * pTabList, /* Name of table into which we are inserting */
ExprList * pList, /* List of values to be inserted */
Select * pSelect, /* A SELECT statement to use as the data source */
IdList * pColumn, /* Column names corresponding to IDLIST. */
int onError /* How to handle constraint errors */
)
{
sqlite3 *db; /* The main database structure */
Table *pTab; /* The table to insert into. aka TABLE */
char *zTab; /* Name of the table into which we are inserting */
const char *zDb; /* Name of the database holding this table */
int i, j, idx; /* Loop counters */
Vdbe *v; /* Generate code into this virtual machine */
Index *pIdx; /* For looping over indices of the table */
int nColumn; /* Number of columns in the data */
int nHidden = 0; /* Number of hidden columns if TABLE is virtual */
int baseCur = 0; /* VDBE Cursor number for pTab */
int keyColumn = -1; /* Column that is the INTEGER PRIMARY KEY */
int endOfLoop; /* Label for the end of the insertion loop */
int useTempTable = 0; /* Store SELECT results in intermediate table */
int srcTab = 0; /* Data comes from this temporary cursor if >=0 */
int iCont = 0, iBreak = 0; /* Beginning and end of the loop over srcTab */
int iSelectLoop = 0; /* Address of code that implements the SELECT */
int iCleanup = 0; /* Address of the cleanup code */
int iInsertBlock = 0; /* Address of the subroutine used to insert data */
int newIdx = -1; /* Cursor for the NEW pseudo-table */
int iDb; /* Index of database holding TABLE */
Db *pDb; /* The database containing table being inserted into */
int appendFlag = 0; /* True if the insert is likely to be an append */
/* Register allocations */
int regFromSelect; /* Base register for data coming from SELECT */
int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */
int regRowCount = 0; /* Memory cell used for the row counter */
int regIns; /* Block of regs holding rowid+data being inserted */
int regRowid; /* registers holding insert rowid */
int regData; /* register holding first column to insert */
int regRecord; /* Holds the assemblied row record */
int *aRegIdx = 0; /* One register allocated to each index */
#ifndef SQLITE_OMIT_TRIGGER
int isView; /* True if attempting to insert into a view */
int triggers_exist = 0; /* True if there are FOR EACH ROW triggers */
#endif
db = pParse->db;
if(pParse->nErr || db->mallocFailed)
{
goto insert_cleanup;
}
/* Locate the table into which we will be inserting new information.
*/
assert(pTabList->nSrc == 1);
zTab = pTabList->a[0].zName;
if(zTab == 0)
goto insert_cleanup;
pTab = sqlite3SrcListLookup(pParse, pTabList);
if(pTab == 0)
{
goto insert_cleanup;
}
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
assert(iDb < db->nDb);
pDb = &db->aDb[iDb];
zDb = pDb->zName;
if(sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb))
{
goto insert_cleanup;
}
/* Figure out if we have any triggers and if the table being
** inserted into is a view
*/
#ifndef SQLITE_OMIT_TRIGGER
triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0);
isView = pTab->pSelect != 0;
#else
# define triggers_exist 0
# define isView 0
#endif
#ifdef SQLITE_OMIT_VIEW
# undef isView
# define isView 0
#endif
/* Ensure that:
* (a) the table is not read-only,
* (b) that if it is a view then ON INSERT triggers exist
*/
if(sqlite3IsReadOnly(pParse, pTab, triggers_exist))
{
goto insert_cleanup;
}
assert(pTab != 0);
/* If pTab is really a view, make sure it has been initialized.
** ViewGetColumnNames() is a no-op if pTab is not a view (or virtual
** module table).
*/
if(sqlite3ViewGetColumnNames(pParse, pTab))
{
goto insert_cleanup;
}
/* Allocate a VDBE
*/
v = sqlite3GetVdbe(pParse);
if(v == 0)
goto insert_cleanup;
if(pParse->nested == 0)
sqlite3VdbeCountChanges(v);
sqlite3BeginWriteOperation(pParse, pSelect || triggers_exist, iDb);
/* if there are row triggers, allocate a temp table for new.* references. */
if(triggers_exist)
{
newIdx = pParse->nTab++;
}
#ifndef SQLITE_OMIT_XFER_OPT
/* If the statement is of the form
**
** INSERT INTO <table1> SELECT * FROM <table2>;
**
** Then special optimizations can be applied that make the transfer
** very fast and which reduce fragmentation of indices.
*/
if(pColumn == 0 && xferOptimization(pParse, pTab, pSelect, onError, iDb))
{
assert(!triggers_exist);
assert(pList == 0);
goto insert_cleanup;
}
#endif /* SQLITE_OMIT_XFER_OPT */
/* If this is an AUTOINCREMENT table, look up the sequence number in the
** sqlite_sequence table and store it in memory cell regAutoinc.
*/
regAutoinc = autoIncBegin(pParse, iDb, pTab);
/* Figure out how many columns of data are supplied. If the data
** is coming from a SELECT statement, then this step also generates
** all the code to implement the SELECT statement and invoke a subroutine
** to process each row of the result. (Template 2.) If the SELECT
** statement uses the the table that is being inserted into, then the
** subroutine is also coded here. That subroutine stores the SELECT
** results in a temporary table. (Template 3.)
*/
if(pSelect)
{
/* Data is coming from a SELECT. Generate code to implement that SELECT
*/
SelectDest dest;
int rc, iInitCode;
iInitCode = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
iSelectLoop = sqlite3VdbeCurrentAddr(v);
iInsertBlock = sqlite3VdbeMakeLabel(v);
sqlite3SelectDestInit(&dest, SRT_Subroutine, iInsertBlock);
/* Resolve the expressions in the SELECT statement and execute it. */
rc = sqlite3Select(pParse, pSelect, &dest, 0, 0, 0, 0);
if(rc || pParse->nErr || db->mallocFailed)
{
goto insert_cleanup;
}
regFromSelect = dest.iMem;
iCleanup = sqlite3VdbeMakeLabel(v);
sqlite3VdbeAddOp2(v, OP_Goto, 0, iCleanup);
assert(pSelect->pEList);
nColumn = pSelect->pEList->nExpr;
/* Set useTempTable to TRUE if the result of the SELECT statement
** should be written into a temporary table. Set to FALSE if each
** row of the SELECT can be written directly into the result table.
**
** A temp table must be used if the table being updated is also one
** of the tables being read by the SELECT statement. Also use a
** temp table in the case of row triggers.
*/
if(triggers_exist || readsTable(v, iSelectLoop, iDb, pTab))
{
useTempTable = 1;
}
if(useTempTable)
{
/* Generate the subroutine that SELECT calls to process each row of
** the result. Store the result in a temporary table
*/
int regRec, regRowid;
srcTab = pParse->nTab++;
regRec = sqlite3GetTempReg(pParse);
regRowid = sqlite3GetTempReg(pParse);
sqlite3VdbeResolveLabel(v, iInsertBlock);
sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regRowid);
sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regRowid);
sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
sqlite3ReleaseTempReg(pParse, regRec);
sqlite3ReleaseTempReg(pParse, regRowid);
/* The following code runs first because the GOTO at the very top
** of the program jumps to it. Create the temporary table, then jump
** back up and execute the SELECT code above.
*/
sqlite3VdbeJumpHere(v, iInitCode);
sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
sqlite3VdbeAddOp2(v, OP_Goto, 0, iSelectLoop);
sqlite3VdbeResolveLabel(v, iCleanup);
}
else
{
sqlite3VdbeJumpHere(v, iInitCode);
}
}
else
{
/* This is the case if the data for the INSERT is coming from a VALUES
** clause
*/
NameContext sNC;
memset(&sNC, 0, sizeof(sNC));
sNC.pParse = pParse;
srcTab = -1;
assert(useTempTable == 0);
nColumn = pList ? pList->nExpr : 0;
for (i = 0; i < nColumn; i++)
{
if(sqlite3ExprResolveNames(&sNC, pList->a[i].pExpr))
{
goto insert_cleanup;
}
}
}
/* Make sure the number of columns in the source data matches the number
** of columns to be inserted into the table.
*/
if(IsVirtual(pTab))
{
for (i = 0; i < pTab->nCol; i++)
{
nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
}
}
if(pColumn == 0 && nColumn && nColumn != (pTab->nCol - nHidden))
{
sqlite3ErrorMsg(pParse,
"table %S has %d columns but %d values were supplied",
pTabList, 0, pTab->nCol, nColumn);
goto insert_cleanup;
}
if(pColumn != 0 && nColumn != pColumn->nId)
{
sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
goto insert_cleanup;
}
/* If the INSERT statement included an IDLIST term, then make sure
** all elements of the IDLIST really are columns of the table and
** remember the column indices.
**
** If the table has an INTEGER PRIMARY KEY column and that column
** is named in the IDLIST, then record in the keyColumn variable
** the index into IDLIST of the primary key column. keyColumn is
** the index of the primary key as it appears in IDLIST, not as
** is appears in the original table. (The index of the primary
** key in the original table is pTab->iPKey.)
*/
if(pColumn)
{
for (i = 0; i < pColumn->nId; i++)
{
pColumn->a[i].idx = -1;
}
for (i = 0; i < pColumn->nId; i++)
{
for (j = 0; j < pTab->nCol; j++)
{
if(sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName) == 0)
{
pColumn->a[i].idx = j;
if(j == pTab->iPKey)
{
keyColumn = i;
}
break;
}
}
if(j >= pTab->nCol)
{
if(sqlite3IsRowid(pColumn->a[i].zName))
{
keyColumn = i;
}
else
{
sqlite3ErrorMsg(pParse, "table %S has no column named %s",
pTabList, 0, pColumn->a[i].zName);
pParse->nErr++;
goto insert_cleanup;
}
}
}
}
/* If there is no IDLIST term but the table has an integer primary
** key, the set the keyColumn variable to the primary key column index
** in the original table definition.
*/
if(pColumn == 0 && nColumn > 0)
{
keyColumn = pTab->iPKey;
}
/* Open the temp table for FOR EACH ROW triggers
*/
if(triggers_exist)
{
sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pTab->nCol);
sqlite3VdbeAddOp2(v, OP_OpenPseudo, newIdx, 0);
}
/* Initialize the count of rows to be inserted
*/
if(db->flags & SQLITE_CountRows)
{
regRowCount = ++pParse->nMem;
sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
}
/* If this is not a view, open the table and and all indices */
if(!isView)
{
int nIdx;
int i;
baseCur = pParse->nTab;
nIdx = sqlite3OpenTableAndIndices(pParse, pTab, baseCur, OP_OpenWrite);
aRegIdx = sqlite3DbMallocRaw(db, sizeof(int) * (nIdx + 1));
if(aRegIdx == 0)
{
goto insert_cleanup;
}
for (i = 0; i < nIdx; i++)
{
aRegIdx[i] = ++pParse->nMem;
}
}
/* If the data source is a temporary table, then we have to create
** a loop because there might be multiple rows of data. If the data
** source is a subroutine call from the SELECT statement, then we need
** to launch the SELECT statement processing.
*/
if(useTempTable)
{
iBreak = sqlite3VdbeMakeLabel(v);
sqlite3VdbeAddOp2(v, OP_Rewind, srcTab, iBreak);
iCont = sqlite3VdbeCurrentAddr(v);
}
else if(pSelect)
{
sqlite3VdbeAddOp2(v, OP_Goto, 0, iSelectLoop);
sqlite3VdbeResolveLabel(v, iInsertBlock);
}
/* Allocate registers for holding the rowid of the new row,
** the content of the new row, and the assemblied row record.
*/
regRecord = ++pParse->nMem;
regRowid = regIns = pParse->nMem + 1;
pParse->nMem += pTab->nCol + 1;
if(IsVirtual(pTab))
{
regRowid++;
pParse->nMem++;
}
regData = regRowid + 1;
/* Run the BEFORE and INSTEAD OF triggers, if there are any
*/
endOfLoop = sqlite3VdbeMakeLabel(v);
if(triggers_exist & TRIGGER_BEFORE)
{
int regRowid;
int regCols;
int regRec;
/* build the NEW.* reference row. Note that if there is an INTEGER
** PRIMARY KEY into which a NULL is being inserted, that NULL will be
** translated into a unique ID for the row. But on a BEFORE trigger,
** we do not know what the unique ID will be (because the insert has
** not happened yet) so we substitute a rowid of -1
*/
regRowid = sqlite3GetTempReg(pParse);
if(keyColumn < 0)
{
sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid);
}
else if(useTempTable)
{
sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid);
}
else
{
int j1;
assert(pSelect == 0); /* Otherwise useTempTable is true */
sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid);
j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid);
sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid);
sqlite3VdbeJumpHere(v, j1);
sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid);
}
/* Cannot have triggers on a virtual table. If it were possible,
** this block would have to account for hidden column.
*/
assert(!IsVirtual(pTab));
/* Create the new column data
*/
regCols = sqlite3GetTempRange(pParse, pTab->nCol);
for (i = 0; i < pTab->nCol; i++)
{
if(pColumn == 0)
{
j = i;
}
else
{
for (j = 0; j < pColumn->nId; j++)
{
if(pColumn->a[j].idx == i)
break;
}
}
if(pColumn && j >= pColumn->nId)
{
sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols + i);
}
else if(useTempTable)
{
sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols + i);
}
else
{
assert(pSelect == 0); /* Otherwise useTempTable is true */
sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols + i);
}
}
regRec = sqlite3GetTempReg(pParse);
sqlite3VdbeAddOp3(v, OP_MakeRecord, regCols, pTab->nCol, regRec);
/* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
** do not attempt any conversions before assembling the record.
** If this is a real table, attempt conversions as required by the
** table column affinities.
*/
if(!isView)
{
sqlite3TableAffinityStr(v, pTab);
}
sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRec, regRowid);
sqlite3ReleaseTempReg(pParse, regRec);
sqlite3ReleaseTempReg(pParse, regRowid);
sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol);
/* Fire BEFORE or INSTEAD OF triggers */
if(sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_BEFORE, pTab,
newIdx, -1, onError, endOfLoop, 0, 0))
{
goto insert_cleanup;
}
}
/* Push the record number for the new entry onto the stack. The
** record number is a randomly generate integer created by NewRowid
** except when the table has an INTEGER PRIMARY KEY column, in which
** case the record number is the same as that column.
*/
if(!isView)
{
if(IsVirtual(pTab))
{
/* The row that the VUpdate opcode will delete: none */
sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
}
if(keyColumn >= 0)
{
if(useTempTable)
{
sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid);
}
else if(pSelect)
{
sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect + keyColumn, regRowid);
}
else
{
VdbeOp *pOp;
sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid);
pOp = sqlite3VdbeGetOp(v, sqlite3VdbeCurrentAddr(v) - 1);
if(pOp && pOp->opcode == OP_Null)
{
appendFlag = 1;
pOp->opcode = OP_NewRowid;
pOp->p1 = baseCur;
pOp->p2 = regRowid;
pOp->p3 = regAutoinc;
}
}
/* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
** to generate a unique primary key value.
*/
if(!appendFlag)
{
int j1;
j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid);
sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc);
sqlite3VdbeJumpHere(v, j1);
sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid);
}
}
else if(IsVirtual(pTab))
{
sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
}
else
{
sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc);
appendFlag = 1;
}
autoIncStep(pParse, regAutoinc, regRowid);
/* Push onto the stack, data for all columns of the new entry, beginning
** with the first column.
*/
nHidden = 0;
for (i = 0; i < pTab->nCol; i++)
{
int iRegStore = regRowid + 1 + i;
if(i == pTab->iPKey)
{
/* The value of the INTEGER PRIMARY KEY column is always a NULL.
** Whenever this column is read, the record number will be substituted
** in its place. So will fill this column with a NULL to avoid
** taking up data space with information that will never be used. */
sqlite3VdbeAddOp2(v, OP_Null, 0, iRegStore);
continue;
}
if(pColumn == 0)
{
if(IsHiddenColumn(&pTab->aCol[i]))
{
assert(IsVirtual(pTab));
j = -1;
nHidden++;
}
else
{
j = i - nHidden;
}
}
else
{
for (j = 0; j < pColumn->nId; j++)
{
if(pColumn->a[j].idx == i)
break;
}
}
if(j < 0 || nColumn == 0 || (pColumn && j >= pColumn->nId))
{
sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, iRegStore);
}
else if(useTempTable)
{
sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore);
}
else if(pSelect)
{
sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect + j, iRegStore);
}
else
{
sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore);
}
}
/* Generate code to check constraints and generate index keys and
** do the insertion.
*/
#ifndef SQLITE_OMIT_VIRTUALTABLE
if(IsVirtual(pTab))
{
sqlite3VtabMakeWritable(pParse, pTab);
sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol + 2, regIns,
(const char *) pTab->pVtab, P4_VTAB);
}
else
#endif
{
sqlite3GenerateConstraintChecks(pParse,
pTab,
baseCur,
regIns,
aRegIdx,
keyColumn >= 0, 0, onError, endOfLoop);
sqlite3CompleteInsertion(pParse,
pTab,
baseCur,
regIns,
aRegIdx,
0,
0,
(triggers_exist & TRIGGER_AFTER) !=
0 ? newIdx : -1, appendFlag);
}
}
/* Update the count of rows that are inserted
*/
if((db->flags & SQLITE_CountRows) != 0)
{
sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
}
if(triggers_exist)
{
/* Code AFTER triggers */
if(sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_AFTER, pTab,
newIdx, -1, onError, endOfLoop, 0, 0))
{
goto insert_cleanup;
}
}
/* The bottom of the loop, if the data source is a SELECT statement
*/
sqlite3VdbeResolveLabel(v, endOfLoop);
if(useTempTable)
{
sqlite3VdbeAddOp2(v, OP_Next, srcTab, iCont);
sqlite3VdbeResolveLabel(v, iBreak);
sqlite3VdbeAddOp2(v, OP_Close, srcTab, 0);
}
else if(pSelect)
{
sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
sqlite3VdbeResolveLabel(v, iCleanup);
}
if(!IsVirtual(pTab) && !isView)
{
/* Close all tables opened */
sqlite3VdbeAddOp2(v, OP_Close, baseCur, 0);
for (idx = 1, pIdx = pTab->pIndex; pIdx; pIdx = pIdx->pNext, idx++)
{
sqlite3VdbeAddOp2(v, OP_Close, idx + baseCur, 0);
}
}
/* Update the sqlite_sequence table by storing the content of the
** counter value in memory regAutoinc back into the sqlite_sequence
** table.
*/
autoIncEnd(pParse, iDb, pTab, regAutoinc);
/*
** Return the number of rows inserted. If this routine is
** generating code because of a call to sqlite3NestedParse(), do not
** invoke the callback function.
*/
if(db->flags & SQLITE_CountRows && pParse->nested == 0 && !pParse->trigStack)
{
sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
sqlite3VdbeSetNumCols(v, 1);
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", P4_STATIC);
}
insert_cleanup:
sqlite3SrcListDelete(pTabList);
sqlite3ExprListDelete(pList);
sqlite3SelectDelete(pSelect);
sqlite3IdListDelete(pColumn);
sqlite3_free(aRegIdx);
}
/*
** Generate code to do constraint checks prior to an INSERT or an UPDATE.
**
** The input is a range of consecutive registers as follows:
**
** 1. The rowid of the row to be updated before the update. This
** value is omitted unless we are doing an UPDATE that involves a
** change to the record number or writing to a virtual table.
**
** 2. The rowid of the row after the update.
**
** 3. The data in the first column of the entry after the update.
**
** i. Data from middle columns...
**
** N. The data in the last column of the entry after the update.
**
** The regRowid parameter is the index of the register containing (2).
**
** The old rowid shown as entry (1) above is omitted unless both isUpdate
** and rowidChng are 1. isUpdate is true for UPDATEs and false for
** INSERTs. RowidChng means that the new rowid is explicitly specified by
** the update or insert statement. If rowidChng is false, it means that
** the rowid is computed automatically in an insert or that the rowid value
** is not modified by the update.
**
** The code generated by this routine store new index entries into
** registers identified by aRegIdx[]. No index entry is created for
** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is
** the same as the order of indices on the linked list of indices
** attached to the table.
**
** This routine also generates code to check constraints. NOT NULL,
** CHECK, and UNIQUE constraints are all checked. If a constraint fails,
** then the appropriate action is performed. There are five possible
** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
**
** Constraint type Action What Happens
** --------------- ---------- ----------------------------------------
** any ROLLBACK The current transaction is rolled back and
** sqlite3_exec() returns immediately with a
** return code of SQLITE_CONSTRAINT.
**
** any ABORT Back out changes from the current command
** only (do not do a complete rollback) then
** cause sqlite3_exec() to return immediately
** with SQLITE_CONSTRAINT.
**
** any FAIL Sqlite_exec() returns immediately with a
** return code of SQLITE_CONSTRAINT. The
** transaction is not rolled back and any
** prior changes are retained.
**
** any IGNORE The record number and data is popped from
** the stack and there is an immediate jump
** to label ignoreDest.
**
** NOT NULL REPLACE The NULL value is replace by the default
** value for that column. If the default value
** is NULL, the action is the same as ABORT.
**
** UNIQUE REPLACE The other row that conflicts with the row
** being inserted is removed.
**
** CHECK REPLACE Illegal. The results in an exception.
**
** Which action to take is determined by the overrideError parameter.
** Or if overrideError==OE_Default, then the pParse->onError parameter
** is used. Or if pParse->onError==OE_Default then the onError value
** for the constraint is used.
**
** The calling routine must open a read/write cursor for pTab with
** cursor number "baseCur". All indices of pTab must also have open
** read/write cursors with cursor number baseCur+i for the i-th cursor.
** Except, if there is no possibility of a REPLACE action then
** cursors do not need to be open for indices where aRegIdx[i]==0.
*/
SQLITE_PRIVATE void
sqlite3GenerateConstraintChecks(Parse * pParse, /* The parser context */
Table * pTab, /* the table into which we are inserting */
int baseCur, /* Index of a read/write cursor pointing at pTab */
int regRowid, /* Index of the range of input registers */
int *aRegIdx, /* Register used by each index. 0 for unused indices */
int rowidChng, /* True if the rowid might collide with existing entry */
int isUpdate, /* True for UPDATE, False for INSERT */
int overrideError, /* Override onError to this if not OE_Default */
int ignoreDest /* Jump to this label on an OE_Ignore resolution */
)
{
int i;
Vdbe *v;
int nCol;
int onError;
int j1, j2, j3; /* Addresses of jump instructions */
int regData; /* Register containing first data column */
int iCur;
Index *pIdx;
int seenReplace = 0;
int hasTwoRowids = (isUpdate && rowidChng);
v = sqlite3GetVdbe(pParse);
assert(v != 0);
assert(pTab->pSelect == 0); /* This table is not a VIEW */
nCol = pTab->nCol;
regData = regRowid + 1;
/* Test all NOT NULL constraints.
*/
for (i = 0; i < nCol; i++)
{
if(i == pTab->iPKey)
{
continue;
}
onError = pTab->aCol[i].notNull;
if(onError == OE_None)
continue;
if(overrideError != OE_Default)
{
onError = overrideError;
}
else if(onError == OE_Default)
{
onError = OE_Abort;
}
if(onError == OE_Replace && pTab->aCol[i].pDflt == 0)
{
onError = OE_Abort;
}
j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regData + i);
assert(onError == OE_Rollback || onError == OE_Abort || onError == OE_Fail
|| onError == OE_Ignore || onError == OE_Replace);
switch (onError)
{
case OE_Rollback:
case OE_Abort:
case OE_Fail:
{
char *zMsg = 0;
sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_CONSTRAINT, onError);
sqlite3SetString(&zMsg, pTab->zName, ".", pTab->aCol[i].zName,
" may not be NULL", (char *) 0);
sqlite3VdbeChangeP4(v, -1, zMsg, P4_DYNAMIC);
break;
}
case OE_Ignore:
{
sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
break;
}
case OE_Replace:
{
sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regData + i);
break;
}
}
sqlite3VdbeJumpHere(v, j1);
}
/* Test all CHECK constraints
*/
#ifndef SQLITE_OMIT_CHECK
if(pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks) == 0)
{
int allOk = sqlite3VdbeMakeLabel(v);
pParse->ckBase = regData;
sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, SQLITE_JUMPIFNULL);
onError = overrideError != OE_Default ? overrideError : OE_Abort;
if(onError == OE_Ignore)
{
sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
}
else
{
sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_CONSTRAINT, onError);
}
sqlite3VdbeResolveLabel(v, allOk);
}
#endif /* !defined(SQLITE_OMIT_CHECK) */
/* If we have an INTEGER PRIMARY KEY, make sure the primary key
** of the new record does not previously exist. Except, if this
** is an UPDATE and the primary key is not changing, that is OK.
*/
if(rowidChng)
{
onError = pTab->keyConf;
if(overrideError != OE_Default)
{
onError = overrideError;
}
else if(onError == OE_Default)
{
onError = OE_Abort;
}
if(onError != OE_Replace || pTab->pIndex)
{
if(isUpdate)
{
j2 = sqlite3VdbeAddOp3(v, OP_Eq, regRowid, 0, regRowid - 1);
}
j3 = sqlite3VdbeAddOp3(v, OP_NotExists, baseCur, 0, regRowid);
switch (onError)
{
default:
{
onError = OE_Abort;
/* Fall thru into the next case */
}
case OE_Rollback:
case OE_Abort:
case OE_Fail:
{
sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0,
"PRIMARY KEY must be unique", P4_STATIC);
break;
}
case OE_Replace:
{
sqlite3GenerateRowIndexDelete(pParse, pTab, baseCur, 0);
seenReplace = 1;
break;
}
case OE_Ignore:
{
assert(seenReplace == 0);
sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
break;
}
}
sqlite3VdbeJumpHere(v, j3);
if(isUpdate)
{
sqlite3VdbeJumpHere(v, j2);
}
}
}
/* Test all UNIQUE constraints by creating entries for each UNIQUE
** index and making sure that duplicate entries do not already exist.
** Add the new records to the indices as we go.
*/
for (iCur = 0, pIdx = pTab->pIndex; pIdx; pIdx = pIdx->pNext, iCur++)
{
int regIdx;
int regR;
if(aRegIdx[iCur] == 0)
continue; /* Skip unused indices */
/* Create a key for accessing the index entry */
regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn + 1);
for (i = 0; i < pIdx->nColumn; i++)
{
int idx = pIdx->aiColumn[i];
if(idx == pTab->iPKey)
{
sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx + i);
}
else
{
sqlite3VdbeAddOp2(v, OP_SCopy, regData + idx, regIdx + i);
}
}
sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx + i);
sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn + 1, aRegIdx[iCur]);
sqlite3IndexAffinityStr(v, pIdx);
sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn + 1);
sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn + 1);
/* Find out what action to take in case there is an indexing conflict */
onError = pIdx->onError;
if(onError == OE_None)
continue; /* pIdx is not a UNIQUE index */
if(overrideError != OE_Default)
{
onError = overrideError;
}
else if(onError == OE_Default)
{
onError = OE_Abort;
}
if(seenReplace)
{
if(onError == OE_Ignore)
onError = OE_Replace;
else if(onError == OE_Fail)
onError = OE_Abort;
}
/* Check to see if the new index entry will be unique */
j2 = sqlite3VdbeAddOp3(v, OP_IsNull, regIdx, 0, pIdx->nColumn);
regR = sqlite3GetTempReg(pParse);
sqlite3VdbeAddOp2(v, OP_SCopy, regRowid - hasTwoRowids, regR);
j3 = sqlite3VdbeAddOp4(v, OP_IsUnique, baseCur + iCur + 1, 0,
regR, (char *) (long)aRegIdx[iCur], P4_INT32);
/* Generate code that executes if the new index entry is not unique */
assert(onError == OE_Rollback || onError == OE_Abort || onError == OE_Fail
|| onError == OE_Ignore || onError == OE_Replace);
switch (onError)
{
case OE_Rollback:
case OE_Abort:
case OE_Fail:
{
int j, n1, n2;
char zErrMsg[200];
sqlite3_snprintf(sizeof(zErrMsg), zErrMsg,
pIdx->nColumn > 1 ? "columns " : "column ");
n1 = strlen(zErrMsg);
for (j = 0; j < pIdx->nColumn && n1 < sizeof(zErrMsg) - 30; j++)
{
char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
n2 = strlen(zCol);
if(j > 0)
{
sqlite3_snprintf(sizeof(zErrMsg) - n1, &zErrMsg[n1],
", ");
n1 += 2;
}
if(n1 + n2 > sizeof(zErrMsg) - 30)
{
sqlite3_snprintf(sizeof(zErrMsg) - n1, &zErrMsg[n1],
"...");
n1 += 3;
break;
}
else
{
sqlite3_snprintf(sizeof(zErrMsg) - n1, &zErrMsg[n1],
"%s", zCol);
n1 += n2;
}
}
sqlite3_snprintf(sizeof(zErrMsg) - n1, &zErrMsg[n1],
pIdx->nColumn >
1 ? " are not unique" : " is not unique");
sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0,
zErrMsg, 0);
break;
}
case OE_Ignore:
{
assert(seenReplace == 0);
sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
break;
}
case OE_Replace:
{
sqlite3GenerateRowDelete(pParse, pTab, baseCur, regR, 0);
seenReplace = 1;
break;
}
}
sqlite3VdbeJumpHere(v, j2);
sqlite3VdbeJumpHere(v, j3);
sqlite3ReleaseTempReg(pParse, regR);
}
}
/*
** This routine generates code to finish the INSERT or UPDATE operation
** that was started by a prior call to sqlite3GenerateConstraintChecks.
** A consecutive range of registers starting at regRowid contains the
** rowid and the content to be inserted.
**
** The arguments to this routine should be the same as the first six
** arguments to sqlite3GenerateConstraintChecks.
*/
SQLITE_PRIVATE void
sqlite3CompleteInsertion(Parse * pParse, /* The parser context */
Table * pTab, /* the table into which we are inserting */
int baseCur, /* Index of a read/write cursor pointing at pTab */
int regRowid, /* Range of content */
int *aRegIdx, /* Register used by each index. 0 for unused indices */
int rowidChng, /* True if the record number will change */
int isUpdate, /* True for UPDATE, False for INSERT */
int newIdx, /* Index of NEW table for triggers. -1 if none */
int appendBias /* True if this is likely to be an append */
)
{
int i;
Vdbe *v;
int nIdx;
Index *pIdx;
int pik_flags;
int regData;
int regRec;
v = sqlite3GetVdbe(pParse);
assert(v != 0);
assert(pTab->pSelect == 0); /* This table is not a VIEW */
for (nIdx = 0, pIdx = pTab->pIndex; pIdx; pIdx = pIdx->pNext, nIdx++)
{
}
for (i = nIdx - 1; i >= 0; i--)
{
if(aRegIdx[i] == 0)
continue;
sqlite3VdbeAddOp2(v, OP_IdxInsert, baseCur + i + 1, aRegIdx[i]);
}
regData = regRowid + 1;
regRec = sqlite3GetTempReg(pParse);
sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec);
sqlite3TableAffinityStr(v, pTab);
sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol);
#ifndef SQLITE_OMIT_TRIGGER
if(newIdx >= 0)
{
sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRec, regRowid);
}
#endif
if(pParse->nested)
{
pik_flags = 0;
}
else
{
pik_flags = OPFLAG_NCHANGE;
pik_flags |= (isUpdate ? OPFLAG_ISUPDATE : OPFLAG_LASTROWID);
}
if(appendBias)
{
pik_flags |= OPFLAG_APPEND;
}
sqlite3VdbeAddOp3(v, OP_Insert, baseCur, regRec, regRowid);
if(!pParse->nested)
{
sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC);
}
sqlite3VdbeChangeP5(v, pik_flags);
}
/*
** Generate code that will open cursors for a table and for all
** indices of that table. The "baseCur" parameter is the cursor number used
** for the table. Indices are opened on subsequent cursors.
**
** Return the number of indices on the table.
*/
SQLITE_PRIVATE int
sqlite3OpenTableAndIndices(Parse * pParse, /* Parsing context */
Table * pTab, /* Table to be opened */
int baseCur, /* Cursor number assigned to the table */
int op /* OP_OpenRead or OP_OpenWrite */
)
{
int i;
int iDb;
Index *pIdx;
Vdbe *v;
if(IsVirtual(pTab))
return 0;
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
v = sqlite3GetVdbe(pParse);
assert(v != 0);
sqlite3OpenTable(pParse, baseCur, iDb, pTab, op);
for (i = 1, pIdx = pTab->pIndex; pIdx; pIdx = pIdx->pNext, i++)
{
KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
assert(pIdx->pSchema == pTab->pSchema);
sqlite3VdbeAddOp4(v, op, i + baseCur, pIdx->tnum, iDb,
(char *) pKey, P4_KEYINFO_HANDOFF);
VdbeComment((v, "%s", pIdx->zName));
}
if(pParse->nTab <= baseCur + i)
{
pParse->nTab = baseCur + i;
}
return i - 1;
}
#ifdef SQLITE_TEST
/*
** The following global variable is incremented whenever the
** transfer optimization is used. This is used for testing
** purposes only - to make sure the transfer optimization really
** is happening when it is suppose to.
*/
SQLITE_API int sqlite3_xferopt_count;
#endif /* SQLITE_TEST */
#ifndef SQLITE_OMIT_XFER_OPT
/*
** Check to collation names to see if they are compatible.
*/
static int
xferCompatibleCollation(const char *z1, const char *z2)
{
if(z1 == 0)
{
return z2 == 0;
}
if(z2 == 0)
{
return 0;
}
return sqlite3StrICmp(z1, z2) == 0;
}
/*
** Check to see if index pSrc is compatible as a source of data
** for index pDest in an insert transfer optimization. The rules
** for a compatible index:
**
** * The index is over the same set of columns
** * The same DESC and ASC markings occurs on all columns
** * The same onError processing (OE_Abort, OE_Ignore, etc)
** * The same collating sequence on each column
*/
static int
xferCompatibleIndex(Index * pDest, Index * pSrc)
{
int i;
assert(pDest && pSrc);
assert(pDest->pTable != pSrc->pTable);
if(pDest->nColumn != pSrc->nColumn)
{
return 0; /* Different number of columns */
}
if(pDest->onError != pSrc->onError)
{
return 0; /* Different conflict resolution strategies */
}
for (i = 0; i < pSrc->nColumn; i++)
{
if(pSrc->aiColumn[i] != pDest->aiColumn[i])
{
return 0; /* Different columns indexed */
}
if(pSrc->aSortOrder[i] != pDest->aSortOrder[i])
{
return 0; /* Different sort orders */
}
if(pSrc->azColl[i] != pDest->azColl[i])
{
return 0; /* Different collating sequences */
}
}
/* If no test above fails then the indices must be compatible */
return 1;
}
/*
** Attempt the transfer optimization on INSERTs of the form
**
** INSERT INTO tab1 SELECT * FROM tab2;
**
** This optimization is only attempted if
**
** (1) tab1 and tab2 have identical schemas including all the
** same indices and constraints
**
** (2) tab1 and tab2 are different tables
**
** (3) There must be no triggers on tab1
**
** (4) The result set of the SELECT statement is "*"
**
** (5) The SELECT statement has no WHERE, HAVING, ORDER BY, GROUP BY,
** or LIMIT clause.
**
** (6) The SELECT statement is a simple (not a compound) select that
** contains only tab2 in its FROM clause
**
** This method for implementing the INSERT transfers raw records from
** tab2 over to tab1. The columns are not decoded. Raw records from
** the indices of tab2 are transfered to tab1 as well. In so doing,
** the resulting tab1 has much less fragmentation.
**
** This routine returns TRUE if the optimization is attempted. If any
** of the conditions above fail so that the optimization should not
** be attempted, then this routine returns FALSE.
*/
static int
xferOptimization(Parse * pParse, /* Parser context */
Table * pDest, /* The table we are inserting into */
Select * pSelect, /* A SELECT statement to use as the data source */
int onError, /* How to handle constraint errors */
int iDbDest /* The database of pDest */
)
{
ExprList *pEList; /* The result set of the SELECT */
Table *pSrc; /* The table in the FROM clause of SELECT */
Index *pSrcIdx, *pDestIdx; /* Source and destination indices */
struct SrcList_item *pItem; /* An element of pSelect->pSrc */
int i; /* Loop counter */
int iDbSrc; /* The database of pSrc */
int iSrc, iDest; /* Cursors from source and destination */
int addr1, addr2; /* Loop addresses */
int emptyDestTest; /* Address of test for empty pDest */
int emptySrcTest; /* Address of test for empty pSrc */
Vdbe *v; /* The VDBE we are building */
KeyInfo *pKey; /* Key information for an index */
int regAutoinc; /* Memory register used by AUTOINC */
int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */
int regData, regRowid; /* Registers holding data and rowid */
if(pSelect == 0)
{
return 0; /* Must be of the form INSERT INTO ... SELECT ... */
}
if(pDest->pTrigger)
{
return 0; /* tab1 must not have triggers */
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
if(pDest->isVirtual)
{
return 0; /* tab1 must not be a virtual table */
}
#endif
if(onError == OE_Default)
{
onError = OE_Abort;
}
if(onError != OE_Abort && onError != OE_Rollback)
{
return 0; /* Cannot do OR REPLACE or OR IGNORE or OR FAIL */
}
assert(pSelect->pSrc); /* allocated even if there is no FROM clause */
if(pSelect->pSrc->nSrc != 1)
{
return 0; /* FROM clause must have exactly one term */
}
if(pSelect->pSrc->a[0].pSelect)
{
return 0; /* FROM clause cannot contain a subquery */
}
if(pSelect->pWhere)
{
return 0; /* SELECT may not have a WHERE clause */
}
if(pSelect->pOrderBy)
{
return 0; /* SELECT may not have an ORDER BY clause */
}
/* Do not need to test for a HAVING clause. If HAVING is present but
** there is no ORDER BY, we will get an error. */
if(pSelect->pGroupBy)
{
return 0; /* SELECT may not have a GROUP BY clause */
}
if(pSelect->pLimit)
{
return 0; /* SELECT may not have a LIMIT clause */
}
assert(pSelect->pOffset == 0); /* Must be so if pLimit==0 */
if(pSelect->pPrior)
{
return 0; /* SELECT may not be a compound query */
}
if(pSelect->isDistinct)
{
return 0; /* SELECT may not be DISTINCT */
}
pEList = pSelect->pEList;
assert(pEList != 0);
if(pEList->nExpr != 1)
{
return 0; /* The result set must have exactly one column */
}
assert(pEList->a[0].pExpr);
if(pEList->a[0].pExpr->op != TK_ALL)
{
return 0; /* The result set must be the special operator "*" */
}
/* At this point we have established that the statement is of the
** correct syntactic form to participate in this optimization. Now
** we have to check the semantics.
*/
pItem = pSelect->pSrc->a;
pSrc = sqlite3LocateTable(pParse, 0, pItem->zName, pItem->zDatabase);
if(pSrc == 0)
{
return 0; /* FROM clause does not contain a real table */
}
if(pSrc == pDest)
{
return 0; /* tab1 and tab2 may not be the same table */
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
if(pSrc->isVirtual)
{
return 0; /* tab2 must not be a virtual table */
}
#endif
if(pSrc->pSelect)
{
return 0; /* tab2 may not be a view */
}
if(pDest->nCol != pSrc->nCol)
{
return 0; /* Number of columns must be the same in tab1 and tab2 */
}
if(pDest->iPKey != pSrc->iPKey)
{
return 0; /* Both tables must have the same INTEGER PRIMARY KEY */
}
for (i = 0; i < pDest->nCol; i++)
{
if(pDest->aCol[i].affinity != pSrc->aCol[i].affinity)
{
return 0; /* Affinity must be the same on all columns */
}
if(!xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl))
{
return 0; /* Collating sequence must be the same on all columns */
}
if(pDest->aCol[i].notNull && !pSrc->aCol[i].notNull)
{
return 0; /* tab2 must be NOT NULL if tab1 is */
}
}
for (pDestIdx = pDest->pIndex; pDestIdx; pDestIdx = pDestIdx->pNext)
{
if(pDestIdx->onError != OE_None)
{
destHasUniqueIdx = 1;
}
for (pSrcIdx = pSrc->pIndex; pSrcIdx; pSrcIdx = pSrcIdx->pNext)
{
if(xferCompatibleIndex(pDestIdx, pSrcIdx))
break;
}
if(pSrcIdx == 0)
{
return 0; /* pDestIdx has no corresponding index in pSrc */
}
}
#ifndef SQLITE_OMIT_CHECK
if(pDest->pCheck && !sqlite3ExprCompare(pSrc->pCheck, pDest->pCheck))
{
return 0; /* Tables have different CHECK constraints. Ticket #2252 */
}
#endif
/* If we get this far, it means either:
**
** * We can always do the transfer if the table contains an
** an integer primary key
**
** * We can conditionally do the transfer if the destination
** table is empty.
*/
#ifdef SQLITE_TEST
sqlite3_xferopt_count++;
#endif
iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema);
v = sqlite3GetVdbe(pParse);
sqlite3CodeVerifySchema(pParse, iDbSrc);
iSrc = pParse->nTab++;
iDest = pParse->nTab++;
regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
if((pDest->iPKey < 0 && pDest->pIndex != 0) || destHasUniqueIdx)
{
/* If tables do not have an INTEGER PRIMARY KEY and there
** are indices to be copied and the destination is not empty,
** we have to disallow the transfer optimization because the
** the rowids might change which will mess up indexing.
**
** Or if the destination has a UNIQUE index and is not empty,
** we also disallow the transfer optimization because we cannot
** insure that all entries in the union of DEST and SRC will be
** unique.
*/
addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0);
emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
sqlite3VdbeJumpHere(v, addr1);
}
else
{
emptyDestTest = 0;
}
sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
regData = sqlite3GetTempReg(pParse);
regRowid = sqlite3GetTempReg(pParse);
if(pDest->iPKey >= 0)
{
addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0,
"PRIMARY KEY must be unique", P4_STATIC);
sqlite3VdbeJumpHere(v, addr2);
autoIncStep(pParse, regAutoinc, regRowid);
}
else if(pDest->pIndex == 0)
{
addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
}
else
{
addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
assert(pDest->autoInc == 0);
}
sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData);
sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid);
sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE | OPFLAG_LASTROWID | OPFLAG_APPEND);
sqlite3VdbeChangeP4(v, -1, pDest->zName, 0);
sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1);
autoIncEnd(pParse, iDbDest, pDest, regAutoinc);
for (pDestIdx = pDest->pIndex; pDestIdx; pDestIdx = pDestIdx->pNext)
{
for (pSrcIdx = pSrc->pIndex; pSrcIdx; pSrcIdx = pSrcIdx->pNext)
{
if(xferCompatibleIndex(pDestIdx, pSrcIdx))
break;
}
assert(pSrcIdx);
sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx);
sqlite3VdbeAddOp4(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc,
(char *) pKey, P4_KEYINFO_HANDOFF);
VdbeComment((v, "%s", pSrcIdx->zName));
pKey = sqlite3IndexKeyinfo(pParse, pDestIdx);
sqlite3VdbeAddOp4(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest,
(char *) pKey, P4_KEYINFO_HANDOFF);
VdbeComment((v, "%s", pDestIdx->zName));
addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData);
sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1);
sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1 + 1);
sqlite3VdbeJumpHere(v, addr1);
}
sqlite3VdbeJumpHere(v, emptySrcTest);
sqlite3ReleaseTempReg(pParse, regRowid);
sqlite3ReleaseTempReg(pParse, regData);
sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
if(emptyDestTest)
{
sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
sqlite3VdbeJumpHere(v, emptyDestTest);
sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
return 0;
}
else
{
return 1;
}
}
#endif /* SQLITE_OMIT_XFER_OPT */
/* Make sure "isView" gets undefined in case this file becomes part of
** the amalgamation - so that subsequent files do not see isView as a
** macro. */
#undef isView
/************** End of insert.c **********************************************/
/************** Begin file legacy.c ******************************************/
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** Main file for the SQLite library. The routines in this file
** implement the programmer interface to the library. Routines in
** other files are for internal use by SQLite and should not be
** accessed by users of the library.
**
*/
/*
** Execute SQL code. Return one of the SQLITE_ success/failure
** codes. Also write an error message into memory obtained from
** malloc() and make *pzErrMsg point to that message.
**
** If the SQL is a query, then for each row in the query result
** the xCallback() function is called. pArg becomes the first
** argument to xCallback(). If xCallback=NULL then no callback
** is invoked, even for queries.
*/
SQLITE_API int
sqlite3_exec(sqlite3 * db, /* The database on which the SQL executes */
const char *zSql, /* The SQL to be executed */
sqlite3_callback xCallback, /* Invoke this callback routine */
void *pArg, /* First argument to xCallback() */
char **pzErrMsg /* Write error messages here */
)
{
int rc = SQLITE_OK;
const char *zLeftover;
sqlite3_stmt *pStmt = 0;
char **azCols = 0;
int nRetry = 0;
int nCallback;
if(zSql == 0)
return SQLITE_OK;
sqlite3_mutex_enter(db->mutex);
while ((rc == SQLITE_OK || (rc == SQLITE_SCHEMA && (++nRetry) < 2)) && zSql[0])
{
int nCol;
char **azVals = 0;
pStmt = 0;
rc = sqlite3_prepare(db, zSql, -1, &pStmt, &zLeftover);
assert(rc == SQLITE_OK || pStmt == 0);
if(rc != SQLITE_OK)
{
continue;
}
if(!pStmt)
{
/* this happens for a comment or white-space */
zSql = zLeftover;
continue;
}
nCallback = 0;
nCol = sqlite3_column_count(pStmt);
while (1)
{
int i;
rc = sqlite3_step(pStmt);
/* Invoke the callback function if required */
if(xCallback && (SQLITE_ROW == rc ||
(SQLITE_DONE == rc && !nCallback
&& db->flags & SQLITE_NullCallback)))
{
if(0 == nCallback)
{
if(azCols == 0)
{
azCols = sqlite3DbMallocZero(db,
2 * nCol *
sizeof(const char *) +
1);
if(azCols == 0)
{
goto exec_out;
}
}
for (i = 0; i < nCol; i++)
{
azCols[i] = (char *) sqlite3_column_name(pStmt, i);
if(!azCols[i])
{
db->mallocFailed = 1;
goto exec_out;
}
}
nCallback++;
}
if(rc == SQLITE_ROW)
{
azVals = &azCols[nCol];
for (i = 0; i < nCol; i++)
{
azVals[i] = (char *) sqlite3_column_text(pStmt, i);
if(!azVals[i]
&& sqlite3_column_type(pStmt, i) != SQLITE_NULL)
{
db->mallocFailed = 1;
goto exec_out;
}
}
}
if(xCallback(pArg, nCol, azVals, azCols))
{
rc = SQLITE_ABORT;
goto exec_out;
}
}
if(rc != SQLITE_ROW)
{
rc = sqlite3_finalize(pStmt);
pStmt = 0;
if(rc != SQLITE_SCHEMA)
{
nRetry = 0;
zSql = zLeftover;
while (isspace((unsigned char) zSql[0]))
zSql++;
}
break;
}
}
sqlite3_free(azCols);
azCols = 0;
}
exec_out:
if(pStmt)
sqlite3_finalize(pStmt);
if(azCols)
sqlite3_free(azCols);
rc = sqlite3ApiExit(db, rc);
if(rc != SQLITE_OK && rc == sqlite3_errcode(db) && pzErrMsg)
{
int nErrMsg = 1 + strlen(sqlite3_errmsg(db));
*pzErrMsg = sqlite3_malloc(nErrMsg);
if(*pzErrMsg)
{
memcpy(*pzErrMsg, sqlite3_errmsg(db), nErrMsg);
}
}
else if(pzErrMsg)
{
*pzErrMsg = 0;
}
assert((rc & db->errMask) == rc);
sqlite3_mutex_leave(db->mutex);
return rc;
}
/************** End of legacy.c **********************************************/
/************** Begin file loadext.c *****************************************/
/*
** 2006 June 7
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code used to dynamically load extensions into
** the SQLite library.
*/
#ifndef SQLITE_CORE
#define SQLITE_CORE 1 /* Disable the API redefinition in sqlite3ext.h */
#endif
/************** Include sqlite3ext.h in the middle of loadext.c **************/
/************** Begin file sqlite3ext.h **************************************/
/*
** 2006 June 7
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This header file defines the SQLite interface for use by
** shared libraries that want to be imported as extensions into
** an SQLite instance. Shared libraries that intend to be loaded
** as extensions by SQLite should #include this file instead of
** sqlite3.h.
**
*/
#ifndef _SQLITE3EXT_H_
#define _SQLITE3EXT_H_
typedef struct sqlite3_api_routines sqlite3_api_routines;
/*
** The following structure holds pointers to all of the SQLite API
** routines.
**
** WARNING: In order to maintain backwards compatibility, add new
** interfaces to the end of this structure only. If you insert new
** interfaces in the middle of this structure, then older different
** versions of SQLite will not be able to load each others' shared
** libraries!
*/
struct sqlite3_api_routines
{
void *(*aggregate_context) (sqlite3_context *, int nBytes);
int (*aggregate_count) (sqlite3_context *);
int (*bind_blob) (sqlite3_stmt *, int, const void *, int n, void (*)(void *));
int (*bind_double) (sqlite3_stmt *, int, double);
int (*bind_int) (sqlite3_stmt *, int, int);
int (*bind_int64) (sqlite3_stmt *, int, sqlite_int64);
int (*bind_null) (sqlite3_stmt *, int);
int (*bind_parameter_count) (sqlite3_stmt *);
int (*bind_parameter_index) (sqlite3_stmt *, const char *zName);
const char *(*bind_parameter_name) (sqlite3_stmt *, int);
int (*bind_text) (sqlite3_stmt *, int, const char *, int n, void (*)(void *));
int (*bind_text16) (sqlite3_stmt *, int, const void *, int, void (*)(void *));
int (*bind_value) (sqlite3_stmt *, int, const sqlite3_value *);
int (*busy_handler) (sqlite3 *, int (*)(void *, int), void *);
int (*busy_timeout) (sqlite3 *, int ms);
int (*changes) (sqlite3 *);
int (*close) (sqlite3 *);
int (*collation_needed) (sqlite3 *, void *,
void (*)(void *, sqlite3 *, int eTextRep, const char *));
int (*collation_needed16) (sqlite3 *, void *,
void (*)(void *, sqlite3 *, int eTextRep, const void *));
const void *(*column_blob) (sqlite3_stmt *, int iCol);
int (*column_bytes) (sqlite3_stmt *, int iCol);
int (*column_bytes16) (sqlite3_stmt *, int iCol);
int (*column_count) (sqlite3_stmt * pStmt);
const char *(*column_database_name) (sqlite3_stmt *, int);
const void *(*column_database_name16) (sqlite3_stmt *, int);
const char *(*column_decltype) (sqlite3_stmt *, int i);
const void *(*column_decltype16) (sqlite3_stmt *, int);
double (*column_double) (sqlite3_stmt *, int iCol);
int (*column_int) (sqlite3_stmt *, int iCol);
sqlite_int64(*column_int64) (sqlite3_stmt *, int iCol);
const char *(*column_name) (sqlite3_stmt *, int);
const void *(*column_name16) (sqlite3_stmt *, int);
const char *(*column_origin_name) (sqlite3_stmt *, int);
const void *(*column_origin_name16) (sqlite3_stmt *, int);
const char *(*column_table_name) (sqlite3_stmt *, int);
const void *(*column_table_name16) (sqlite3_stmt *, int);
const unsigned char *(*column_text) (sqlite3_stmt *, int iCol);
const void *(*column_text16) (sqlite3_stmt *, int iCol);
int (*column_type) (sqlite3_stmt *, int iCol);
sqlite3_value *(*column_value) (sqlite3_stmt *, int iCol);
void *(*commit_hook) (sqlite3 *, int (*)(void *), void *);
int (*complete) (const char *sql);
int (*complete16) (const void *sql);
int (*create_collation) (sqlite3 *, const char *, int, void *,
int (*)(void *, int, const void *, int, const void *));
int (*create_collation16) (sqlite3 *, const char *, int, void *,
int (*)(void *, int, const void *, int, const void *));
int (*create_function) (sqlite3 *, const char *, int, int, void *,
void (*xFunc) (sqlite3_context *, int, sqlite3_value **),
void (*xStep) (sqlite3_context *, int, sqlite3_value **),
void (*xFinal) (sqlite3_context *));
int (*create_function16) (sqlite3 *, const void *, int, int, void *,
void (*xFunc) (sqlite3_context *, int, sqlite3_value **),
void (*xStep) (sqlite3_context *, int, sqlite3_value **),
void (*xFinal) (sqlite3_context *));
int (*create_module) (sqlite3 *, const char *, const sqlite3_module *, void *);
int (*data_count) (sqlite3_stmt * pStmt);
sqlite3 *(*db_handle) (sqlite3_stmt *);
int (*declare_vtab) (sqlite3 *, const char *);
int (*enable_shared_cache) (int);
int (*errcode) (sqlite3 * db);
const char *(*errmsg) (sqlite3 *);
const void *(*errmsg16) (sqlite3 *);
int (*exec) (sqlite3 *, const char *, sqlite3_callback, void *, char **);
int (*expired) (sqlite3_stmt *);
int (*finalize) (sqlite3_stmt * pStmt);
void (*free) (void *);
void (*free_table) (char **result);
int (*get_autocommit) (sqlite3 *);
void *(*get_auxdata) (sqlite3_context *, int);
int (*get_table) (sqlite3 *, const char *, char ***, int *, int *, char **);
int (*global_recover) (void);
void (*interruptx) (sqlite3 *);
sqlite_int64(*last_insert_rowid) (sqlite3 *);
const char *(*libversion) (void);
int (*libversion_number) (void);
void *(*malloc) (int);
char *(*mprintf) (const char *, ...);
int (*open) (const char *, sqlite3 **);
int (*open16) (const void *, sqlite3 **);
int (*prepare) (sqlite3 *, const char *, int, sqlite3_stmt **, const char **);
int (*prepare16) (sqlite3 *, const void *, int, sqlite3_stmt **, const void **);
void *(*profile) (sqlite3 *, void (*)(void *, const char *, sqlite_uint64), void *);
void (*progress_handler) (sqlite3 *, int, int (*)(void *), void *);
void *(*realloc) (void *, int);
int (*reset) (sqlite3_stmt * pStmt);
void (*result_blob) (sqlite3_context *, const void *, int, void (*)(void *));
void (*result_double) (sqlite3_context *, double);
void (*result_error) (sqlite3_context *, const char *, int);
void (*result_error16) (sqlite3_context *, const void *, int);
void (*result_int) (sqlite3_context *, int);
void (*result_int64) (sqlite3_context *, sqlite_int64);
void (*result_null) (sqlite3_context *);
void (*result_text) (sqlite3_context *, const char *, int, void (*)(void *));
void (*result_text16) (sqlite3_context *, const void *, int, void (*)(void *));
void (*result_text16be) (sqlite3_context *, const void *, int, void (*)(void *));
void (*result_text16le) (sqlite3_context *, const void *, int, void (*)(void *));
void (*result_value) (sqlite3_context *, sqlite3_value *);
void *(*rollback_hook) (sqlite3 *, void (*)(void *), void *);
int (*set_authorizer) (sqlite3 *,
int (*)(void *, int, const char *, const char *, const char *,
const char *), void *);
void (*set_auxdata) (sqlite3_context *, int, void *, void (*)(void *));
char *(*snprintf) (int, char *, const char *, ...);
int (*step) (sqlite3_stmt *);
int (*table_column_metadata) (sqlite3 *, const char *, const char *, const char *,
char const **, char const **, int *, int *, int *);
void (*thread_cleanup) (void);
int (*total_changes) (sqlite3 *);
void *(*trace) (sqlite3 *, void (*xTrace) (void *, const char *), void *);
int (*transfer_bindings) (sqlite3_stmt *, sqlite3_stmt *);
void *(*update_hook) (sqlite3 *,
void (*)(void *, int, char const *, char const *, sqlite_int64),
void *);
void *(*user_data) (sqlite3_context *);
const void *(*value_blob) (sqlite3_value *);
int (*value_bytes) (sqlite3_value *);
int (*value_bytes16) (sqlite3_value *);
double (*value_double) (sqlite3_value *);
int (*value_int) (sqlite3_value *);
sqlite_int64(*value_int64) (sqlite3_value *);
int (*value_numeric_type) (sqlite3_value *);
const unsigned char *(*value_text) (sqlite3_value *);
const void *(*value_text16) (sqlite3_value *);
const void *(*value_text16be) (sqlite3_value *);
const void *(*value_text16le) (sqlite3_value *);
int (*value_type) (sqlite3_value *);
char *(*vmprintf) (const char *, va_list);
/* Added ??? */
int (*overload_function) (sqlite3 *, const char *zFuncName, int nArg);
/* Added by 3.3.13 */
int (*prepare_v2) (sqlite3 *, const char *, int, sqlite3_stmt **, const char **);
int (*prepare16_v2) (sqlite3 *, const void *, int, sqlite3_stmt **, const void **);
int (*clear_bindings) (sqlite3_stmt *);
/* Added by 3.4.1 */
int (*create_module_v2) (sqlite3 *, const char *, const sqlite3_module *, void *,
void (*xDestroy) (void *));
/* Added by 3.5.0 */
int (*bind_zeroblob) (sqlite3_stmt *, int, int);
int (*blob_bytes) (sqlite3_blob *);
int (*blob_close) (sqlite3_blob *);
int (*blob_open) (sqlite3 *, const char *, const char *, const char *, sqlite3_int64, int,
sqlite3_blob **);
int (*blob_read) (sqlite3_blob *, void *, int, int);
int (*blob_write) (sqlite3_blob *, const void *, int, int);
int (*create_collation_v2) (sqlite3 *, const char *, int, void *,
int (*)(void *, int, const void *, int, const void *),
void (*)(void *));
int (*file_control) (sqlite3 *, const char *, int, void *);
sqlite3_int64(*memory_highwater) (int);
sqlite3_int64(*memory_used) (void);
sqlite3_mutex *(*mutex_alloc) (int);
void (*mutex_enter) (sqlite3_mutex *);
void (*mutex_free) (sqlite3_mutex *);
void (*mutex_leave) (sqlite3_mutex *);
int (*mutex_try) (sqlite3_mutex *);
int (*open_v2) (const char *, sqlite3 **, int, const char *);
int (*release_memory) (int);
void (*result_error_nomem) (sqlite3_context *);
void (*result_error_toobig) (sqlite3_context *);
int (*sleep) (int);
void (*soft_heap_limit) (int);
sqlite3_vfs *(*vfs_find) (const char *);
int (*vfs_register) (sqlite3_vfs *, int);
int (*vfs_unregister) (sqlite3_vfs *);
int (*xthreadsafe) (void);
void (*result_zeroblob) (sqlite3_context *, int);
void (*result_error_code) (sqlite3_context *, int);
int (*test_control) (int, ...);
void (*randomness) (int, void *);
sqlite3 *(*context_db_handle) (sqlite3_context *);
};
/*
** The following macros redefine the API routines so that they are
** redirected throught the global sqlite3_api structure.
**
** This header file is also used by the loadext.c source file
** (part of the main SQLite library - not an extension) so that
** it can get access to the sqlite3_api_routines structure
** definition. But the main library does not want to redefine
** the API. So the redefinition macros are only valid if the
** SQLITE_CORE macros is undefined.
*/
#ifndef SQLITE_CORE
#define sqlite3_aggregate_context sqlite3_api->aggregate_context
#define sqlite3_aggregate_count sqlite3_api->aggregate_count
#define sqlite3_bind_blob sqlite3_api->bind_blob
#define sqlite3_bind_double sqlite3_api->bind_double
#define sqlite3_bind_int sqlite3_api->bind_int
#define sqlite3_bind_int64 sqlite3_api->bind_int64
#define sqlite3_bind_null sqlite3_api->bind_null
#define sqlite3_bind_parameter_count sqlite3_api->bind_parameter_count
#define sqlite3_bind_parameter_index sqlite3_api->bind_parameter_index
#define sqlite3_bind_parameter_name sqlite3_api->bind_parameter_name
#define sqlite3_bind_text sqlite3_api->bind_text
#define sqlite3_bind_text16 sqlite3_api->bind_text16
#define sqlite3_bind_value sqlite3_api->bind_value
#define sqlite3_busy_handler sqlite3_api->busy_handler
#define sqlite3_busy_timeout sqlite3_api->busy_timeout
#define sqlite3_changes sqlite3_api->changes
#define sqlite3_close sqlite3_api->close
#define sqlite3_collation_needed sqlite3_api->collation_needed
#define sqlite3_collation_needed16 sqlite3_api->collation_needed16
#define sqlite3_column_blob sqlite3_api->column_blob
#define sqlite3_column_bytes sqlite3_api->column_bytes
#define sqlite3_column_bytes16 sqlite3_api->column_bytes16
#define sqlite3_column_count sqlite3_api->column_count
#define sqlite3_column_database_name sqlite3_api->column_database_name
#define sqlite3_column_database_name16 sqlite3_api->column_database_name16
#define sqlite3_column_decltype sqlite3_api->column_decltype
#define sqlite3_column_decltype16 sqlite3_api->column_decltype16
#define sqlite3_column_double sqlite3_api->column_double
#define sqlite3_column_int sqlite3_api->column_int
#define sqlite3_column_int64 sqlite3_api->column_int64
#define sqlite3_column_name sqlite3_api->column_name
#define sqlite3_column_name16 sqlite3_api->column_name16
#define sqlite3_column_origin_name sqlite3_api->column_origin_name
#define sqlite3_column_origin_name16 sqlite3_api->column_origin_name16
#define sqlite3_column_table_name sqlite3_api->column_table_name
#define sqlite3_column_table_name16 sqlite3_api->column_table_name16
#define sqlite3_column_text sqlite3_api->column_text
#define sqlite3_column_text16 sqlite3_api->column_text16
#define sqlite3_column_type sqlite3_api->column_type
#define sqlite3_column_value sqlite3_api->column_value
#define sqlite3_commit_hook sqlite3_api->commit_hook
#define sqlite3_complete sqlite3_api->complete
#define sqlite3_complete16 sqlite3_api->complete16
#define sqlite3_create_collation sqlite3_api->create_collation
#define sqlite3_create_collation16 sqlite3_api->create_collation16
#define sqlite3_create_function sqlite3_api->create_function
#define sqlite3_create_function16 sqlite3_api->create_function16
#define sqlite3_create_module sqlite3_api->create_module
#define sqlite3_create_module_v2 sqlite3_api->create_module_v2
#define sqlite3_data_count sqlite3_api->data_count
#define sqlite3_db_handle sqlite3_api->db_handle
#define sqlite3_declare_vtab sqlite3_api->declare_vtab
#define sqlite3_enable_shared_cache sqlite3_api->enable_shared_cache
#define sqlite3_errcode sqlite3_api->errcode
#define sqlite3_errmsg sqlite3_api->errmsg
#define sqlite3_errmsg16 sqlite3_api->errmsg16
#define sqlite3_exec sqlite3_api->exec
#define sqlite3_expired sqlite3_api->expired
#define sqlite3_finalize sqlite3_api->finalize
#define sqlite3_free sqlite3_api->free
#define sqlite3_free_table sqlite3_api->free_table
#define sqlite3_get_autocommit sqlite3_api->get_autocommit
#define sqlite3_get_auxdata sqlite3_api->get_auxdata
#define sqlite3_get_table sqlite3_api->get_table
#define sqlite3_global_recover sqlite3_api->global_recover
#define sqlite3_interrupt sqlite3_api->interruptx
#define sqlite3_last_insert_rowid sqlite3_api->last_insert_rowid
#define sqlite3_libversion sqlite3_api->libversion
#define sqlite3_libversion_number sqlite3_api->libversion_number
#define sqlite3_malloc sqlite3_api->malloc
#define sqlite3_mprintf sqlite3_api->mprintf
#define sqlite3_open sqlite3_api->open
#define sqlite3_open16 sqlite3_api->open16
#define sqlite3_prepare sqlite3_api->prepare
#define sqlite3_prepare16 sqlite3_api->prepare16
#define sqlite3_prepare_v2 sqlite3_api->prepare_v2
#define sqlite3_prepare16_v2 sqlite3_api->prepare16_v2
#define sqlite3_profile sqlite3_api->profile
#define sqlite3_progress_handler sqlite3_api->progress_handler
#define sqlite3_realloc sqlite3_api->realloc
#define sqlite3_reset sqlite3_api->reset
#define sqlite3_result_blob sqlite3_api->result_blob
#define sqlite3_result_double sqlite3_api->result_double
#define sqlite3_result_error sqlite3_api->result_error
#define sqlite3_result_error16 sqlite3_api->result_error16
#define sqlite3_result_int sqlite3_api->result_int
#define sqlite3_result_int64 sqlite3_api->result_int64
#define sqlite3_result_null sqlite3_api->result_null
#define sqlite3_result_text sqlite3_api->result_text
#define sqlite3_result_text16 sqlite3_api->result_text16
#define sqlite3_result_text16be sqlite3_api->result_text16be
#define sqlite3_result_text16le sqlite3_api->result_text16le
#define sqlite3_result_value sqlite3_api->result_value
#define sqlite3_rollback_hook sqlite3_api->rollback_hook
#define sqlite3_set_authorizer sqlite3_api->set_authorizer
#define sqlite3_set_auxdata sqlite3_api->set_auxdata
#define sqlite3_snprintf sqlite3_api->snprintf
#define sqlite3_step sqlite3_api->step
#define sqlite3_table_column_metadata sqlite3_api->table_column_metadata
#define sqlite3_thread_cleanup sqlite3_api->thread_cleanup
#define sqlite3_total_changes sqlite3_api->total_changes
#define sqlite3_trace sqlite3_api->trace
#define sqlite3_transfer_bindings sqlite3_api->transfer_bindings
#define sqlite3_update_hook sqlite3_api->update_hook
#define sqlite3_user_data sqlite3_api->user_data
#define sqlite3_value_blob sqlite3_api->value_blob
#define sqlite3_value_bytes sqlite3_api->value_bytes
#define sqlite3_value_bytes16 sqlite3_api->value_bytes16
#define sqlite3_value_double sqlite3_api->value_double
#define sqlite3_value_int sqlite3_api->value_int
#define sqlite3_value_int64 sqlite3_api->value_int64
#define sqlite3_value_numeric_type sqlite3_api->value_numeric_type
#define sqlite3_value_text sqlite3_api->value_text
#define sqlite3_value_text16 sqlite3_api->value_text16
#define sqlite3_value_text16be sqlite3_api->value_text16be
#define sqlite3_value_text16le sqlite3_api->value_text16le
#define sqlite3_value_type sqlite3_api->value_type
#define sqlite3_vmprintf sqlite3_api->vmprintf
#define sqlite3_overload_function sqlite3_api->overload_function
#define sqlite3_prepare_v2 sqlite3_api->prepare_v2
#define sqlite3_prepare16_v2 sqlite3_api->prepare16_v2
#define sqlite3_clear_bindings sqlite3_api->clear_bindings
#define sqlite3_bind_zeroblob sqlite3_api->bind_zeroblob
#define sqlite3_blob_bytes sqlite3_api->blob_bytes
#define sqlite3_blob_close sqlite3_api->blob_close
#define sqlite3_blob_open sqlite3_api->blob_open
#define sqlite3_blob_read sqlite3_api->blob_read
#define sqlite3_blob_write sqlite3_api->blob_write
#define sqlite3_create_collation_v2 sqlite3_api->create_collation_v2
#define sqlite3_file_control sqlite3_api->file_control
#define sqlite3_memory_highwater sqlite3_api->memory_highwater
#define sqlite3_memory_used sqlite3_api->memory_used
#define sqlite3_mutex_alloc sqlite3_api->mutex_alloc
#define sqlite3_mutex_enter sqlite3_api->mutex_enter
#define sqlite3_mutex_free sqlite3_api->mutex_free
#define sqlite3_mutex_leave sqlite3_api->mutex_leave
#define sqlite3_mutex_try sqlite3_api->mutex_try
#define sqlite3_open_v2 sqlite3_api->open_v2
#define sqlite3_release_memory sqlite3_api->release_memory
#define sqlite3_result_error_nomem sqlite3_api->result_error_nomem
#define sqlite3_result_error_toobig sqlite3_api->result_error_toobig
#define sqlite3_sleep sqlite3_api->sleep
#define sqlite3_soft_heap_limit sqlite3_api->soft_heap_limit
#define sqlite3_vfs_find sqlite3_api->vfs_find
#define sqlite3_vfs_register sqlite3_api->vfs_register
#define sqlite3_vfs_unregister sqlite3_api->vfs_unregister
#define sqlite3_threadsafe sqlite3_api->xthreadsafe
#define sqlite3_result_zeroblob sqlite3_api->result_zeroblob
#define sqlite3_result_error_code sqlite3_api->result_error_code
#define sqlite3_test_control sqlite3_api->test_control
#define sqlite3_randomness sqlite3_api->randomness
#define sqlite3_context_db_handle sqlite3_api->context_db_handle
#endif /* SQLITE_CORE */
#define SQLITE_EXTENSION_INIT1 const sqlite3_api_routines *sqlite3_api;
#define SQLITE_EXTENSION_INIT2(v) sqlite3_api = v;
#endif /* _SQLITE3EXT_H_ */
/************** End of sqlite3ext.h ******************************************/
/************** Continuing where we left off in loadext.c ********************/
#ifndef SQLITE_OMIT_LOAD_EXTENSION
/*
** Some API routines are omitted when various features are
** excluded from a build of SQLite. Substitute a NULL pointer
** for any missing APIs.
*/
#ifndef SQLITE_ENABLE_COLUMN_METADATA
# define sqlite3_column_database_name 0
# define sqlite3_column_database_name16 0
# define sqlite3_column_table_name 0
# define sqlite3_column_table_name16 0
# define sqlite3_column_origin_name 0
# define sqlite3_column_origin_name16 0
# define sqlite3_table_column_metadata 0
#endif
#ifdef SQLITE_OMIT_AUTHORIZATION
# define sqlite3_set_authorizer 0
#endif
#ifdef SQLITE_OMIT_UTF16
# define sqlite3_bind_text16 0
# define sqlite3_collation_needed16 0
# define sqlite3_column_decltype16 0
# define sqlite3_column_name16 0
# define sqlite3_column_text16 0
# define sqlite3_complete16 0
# define sqlite3_create_collation16 0
# define sqlite3_create_function16 0
# define sqlite3_errmsg16 0
# define sqlite3_open16 0
# define sqlite3_prepare16 0
# define sqlite3_prepare16_v2 0
# define sqlite3_result_error16 0
# define sqlite3_result_text16 0
# define sqlite3_result_text16be 0
# define sqlite3_result_text16le 0
# define sqlite3_value_text16 0
# define sqlite3_value_text16be 0
# define sqlite3_value_text16le 0
# define sqlite3_column_database_name16 0
# define sqlite3_column_table_name16 0
# define sqlite3_column_origin_name16 0
#endif
#ifdef SQLITE_OMIT_COMPLETE
# define sqlite3_complete 0
# define sqlite3_complete16 0
#endif
#ifdef SQLITE_OMIT_PROGRESS_CALLBACK
# define sqlite3_progress_handler 0
#endif
#ifdef SQLITE_OMIT_VIRTUALTABLE
# define sqlite3_create_module 0
# define sqlite3_create_module_v2 0
# define sqlite3_declare_vtab 0
#endif
#ifdef SQLITE_OMIT_SHARED_CACHE
# define sqlite3_enable_shared_cache 0
#endif
#ifdef SQLITE_OMIT_TRACE
# define sqlite3_profile 0
# define sqlite3_trace 0
#endif
#ifdef SQLITE_OMIT_GET_TABLE
# define sqlite3_free_table 0
# define sqlite3_get_table 0
#endif
#ifdef SQLITE_OMIT_INCRBLOB
#define sqlite3_bind_zeroblob 0
#define sqlite3_blob_bytes 0
#define sqlite3_blob_close 0
#define sqlite3_blob_open 0
#define sqlite3_blob_read 0
#define sqlite3_blob_write 0
#endif
/*
** The following structure contains pointers to all SQLite API routines.
** A pointer to this structure is passed into extensions when they are
** loaded so that the extension can make calls back into the SQLite
** library.
**
** When adding new APIs, add them to the bottom of this structure
** in order to preserve backwards compatibility.
**
** Extensions that use newer APIs should first call the
** sqlite3_libversion_number() to make sure that the API they
** intend to use is supported by the library. Extensions should
** also check to make sure that the pointer to the function is
** not NULL before calling it.
*/
static const sqlite3_api_routines sqlite3Apis = {
sqlite3_aggregate_context,
sqlite3_aggregate_count,
sqlite3_bind_blob,
sqlite3_bind_double,
sqlite3_bind_int,
sqlite3_bind_int64,
sqlite3_bind_null,
sqlite3_bind_parameter_count,
sqlite3_bind_parameter_index,
sqlite3_bind_parameter_name,
sqlite3_bind_text,
sqlite3_bind_text16,
sqlite3_bind_value,
sqlite3_busy_handler,
sqlite3_busy_timeout,
sqlite3_changes,
sqlite3_close,
sqlite3_collation_needed,
sqlite3_collation_needed16,
sqlite3_column_blob,
sqlite3_column_bytes,
sqlite3_column_bytes16,
sqlite3_column_count,
sqlite3_column_database_name,
sqlite3_column_database_name16,
sqlite3_column_decltype,
sqlite3_column_decltype16,
sqlite3_column_double,
sqlite3_column_int,
sqlite3_column_int64,
sqlite3_column_name,
sqlite3_column_name16,
sqlite3_column_origin_name,
sqlite3_column_origin_name16,
sqlite3_column_table_name,
sqlite3_column_table_name16,
sqlite3_column_text,
sqlite3_column_text16,
sqlite3_column_type,
sqlite3_column_value,
sqlite3_commit_hook,
sqlite3_complete,
sqlite3_complete16,
sqlite3_create_collation,
sqlite3_create_collation16,
sqlite3_create_function,
sqlite3_create_function16,
sqlite3_create_module,
sqlite3_data_count,
sqlite3_db_handle,
sqlite3_declare_vtab,
sqlite3_enable_shared_cache,
sqlite3_errcode,
sqlite3_errmsg,
sqlite3_errmsg16,
sqlite3_exec,
sqlite3_expired,
sqlite3_finalize,
sqlite3_free,
sqlite3_free_table,
sqlite3_get_autocommit,
sqlite3_get_auxdata,
sqlite3_get_table,
0, /* Was sqlite3_global_recover(), but that function is deprecated */
sqlite3_interrupt,
sqlite3_last_insert_rowid,
sqlite3_libversion,
sqlite3_libversion_number,
sqlite3_malloc,
sqlite3_mprintf,
sqlite3_open,
sqlite3_open16,
sqlite3_prepare,
sqlite3_prepare16,
sqlite3_profile,
sqlite3_progress_handler,
sqlite3_realloc,
sqlite3_reset,
sqlite3_result_blob,
sqlite3_result_double,
sqlite3_result_error,
sqlite3_result_error16,
sqlite3_result_int,
sqlite3_result_int64,
sqlite3_result_null,
sqlite3_result_text,
sqlite3_result_text16,
sqlite3_result_text16be,
sqlite3_result_text16le,
sqlite3_result_value,
sqlite3_rollback_hook,
sqlite3_set_authorizer,
sqlite3_set_auxdata,
sqlite3_snprintf,
sqlite3_step,
sqlite3_table_column_metadata,
sqlite3_thread_cleanup,
sqlite3_total_changes,
sqlite3_trace,
sqlite3_transfer_bindings,
sqlite3_update_hook,
sqlite3_user_data,
sqlite3_value_blob,
sqlite3_value_bytes,
sqlite3_value_bytes16,
sqlite3_value_double,
sqlite3_value_int,
sqlite3_value_int64,
sqlite3_value_numeric_type,
sqlite3_value_text,
sqlite3_value_text16,
sqlite3_value_text16be,
sqlite3_value_text16le,
sqlite3_value_type,
sqlite3_vmprintf,
/*
** The original API set ends here. All extensions can call any
** of the APIs above provided that the pointer is not NULL. But
** before calling APIs that follow, extension should check the
** sqlite3_libversion_number() to make sure they are dealing with
** a library that is new enough to support that API.
*************************************************************************
*/
sqlite3_overload_function,
/*
** Added after 3.3.13
*/
sqlite3_prepare_v2,
sqlite3_prepare16_v2,
sqlite3_clear_bindings,
/*
** Added for 3.4.1
*/
sqlite3_create_module_v2,
/*
** Added for 3.5.0
*/
sqlite3_bind_zeroblob,
sqlite3_blob_bytes,
sqlite3_blob_close,
sqlite3_blob_open,
sqlite3_blob_read,
sqlite3_blob_write,
sqlite3_create_collation_v2,
sqlite3_file_control,
sqlite3_memory_highwater,
sqlite3_memory_used,
#ifdef SQLITE_MUTEX_NOOP
0,
0,
0,
0,
0,
#else
sqlite3_mutex_alloc,
sqlite3_mutex_enter,
sqlite3_mutex_free,
sqlite3_mutex_leave,
sqlite3_mutex_try,
#endif
sqlite3_open_v2,
sqlite3_release_memory,
sqlite3_result_error_nomem,
sqlite3_result_error_toobig,
sqlite3_sleep,
sqlite3_soft_heap_limit,
sqlite3_vfs_find,
sqlite3_vfs_register,
sqlite3_vfs_unregister,
/*
** Added for 3.5.8
*/
sqlite3_threadsafe,
sqlite3_result_zeroblob,
sqlite3_result_error_code,
sqlite3_test_control,
sqlite3_randomness,
sqlite3_context_db_handle,
};
/*
** Attempt to load an SQLite extension library contained in the file
** zFile. The entry point is zProc. zProc may be 0 in which case a
** default entry point name (sqlite3_extension_init) is used. Use
** of the default name is recommended.
**
** Return SQLITE_OK on success and SQLITE_ERROR if something goes wrong.
**
** If an error occurs and pzErrMsg is not 0, then fill *pzErrMsg with
** error message text. The calling function should free this memory
** by calling sqlite3_free().
*/
static int
sqlite3LoadExtension(sqlite3 * db, /* Load the extension into this database connection */
const char *zFile, /* Name of the shared library containing extension */
const char *zProc, /* Entry point. Use "sqlite3_extension_init" if 0 */
char **pzErrMsg /* Put error message here if not 0 */
)
{
sqlite3_vfs *pVfs = db->pVfs;
void *handle;
int (*xInit) (sqlite3 *, char **, const sqlite3_api_routines *);
char *zErrmsg = 0;
void **aHandle;
/* Ticket #1863. To avoid a creating security problems for older
** applications that relink against newer versions of SQLite, the
** ability to run load_extension is turned off by default. One
** must call sqlite3_enable_load_extension() to turn on extension
** loading. Otherwise you get the following error.
*/
if((db->flags & SQLITE_LoadExtension) == 0)
{
if(pzErrMsg)
{
*pzErrMsg = sqlite3_mprintf("not authorized");
}
return SQLITE_ERROR;
}
if(zProc == 0)
{
zProc = "sqlite3_extension_init";
}
handle = sqlite3OsDlOpen(pVfs, zFile);
if(handle == 0)
{
if(pzErrMsg)
{
char zErr[256];
zErr[sizeof(zErr) - 1] = '\0';
sqlite3_snprintf(sizeof(zErr) - 1, zErr,
"unable to open shared library [%s]", zFile);
sqlite3OsDlError(pVfs, sizeof(zErr) - 1, zErr);
*pzErrMsg = sqlite3DbStrDup(db, zErr);
}
return SQLITE_ERROR;
}
xInit = (int (*)(sqlite3 *, char **, const sqlite3_api_routines *))
sqlite3OsDlSym(pVfs, handle, zProc);
if(xInit == 0)
{
if(pzErrMsg)
{
char zErr[256];
zErr[sizeof(zErr) - 1] = '\0';
sqlite3_snprintf(sizeof(zErr) - 1, zErr,
"no entry point [%s] in shared library [%s]", zProc,
zFile);
sqlite3OsDlError(pVfs, sizeof(zErr) - 1, zErr);
*pzErrMsg = sqlite3DbStrDup(db, zErr);
sqlite3OsDlClose(pVfs, handle);
}
return SQLITE_ERROR;
}
else if(xInit(db, &zErrmsg, &sqlite3Apis))
{
if(pzErrMsg)
{
*pzErrMsg = sqlite3_mprintf("error during initialization: %s", zErrmsg);
}
sqlite3_free(zErrmsg);
sqlite3OsDlClose(pVfs, handle);
return SQLITE_ERROR;
}
/* Append the new shared library handle to the db->aExtension array. */
db->nExtension++;
aHandle = sqlite3DbMallocZero(db, sizeof(handle) * db->nExtension);
if(aHandle == 0)
{
return SQLITE_NOMEM;
}
if(db->nExtension > 0)
{
memcpy(aHandle, db->aExtension, sizeof(handle) * (db->nExtension - 1));
}
sqlite3_free(db->aExtension);
db->aExtension = aHandle;
db->aExtension[db->nExtension - 1] = handle;
return SQLITE_OK;
}
SQLITE_API int
sqlite3_load_extension(sqlite3 * db, /* Load the extension into this database connection */
const char *zFile, /* Name of the shared library containing extension */
const char *zProc, /* Entry point. Use "sqlite3_extension_init" if 0 */
char **pzErrMsg /* Put error message here if not 0 */
)
{
int rc;
sqlite3_mutex_enter(db->mutex);
rc = sqlite3LoadExtension(db, zFile, zProc, pzErrMsg);
sqlite3_mutex_leave(db->mutex);
return rc;
}
/*
** Call this routine when the database connection is closing in order
** to clean up loaded extensions
*/
SQLITE_PRIVATE void
sqlite3CloseExtensions(sqlite3 * db)
{
int i;
assert(sqlite3_mutex_held(db->mutex));
for (i = 0; i < db->nExtension; i++)
{
sqlite3OsDlClose(db->pVfs, db->aExtension[i]);
}
sqlite3_free(db->aExtension);
}
/*
** Enable or disable extension loading. Extension loading is disabled by
** default so as not to open security holes in older applications.
*/
SQLITE_API int
sqlite3_enable_load_extension(sqlite3 * db, int onoff)
{
sqlite3_mutex_enter(db->mutex);
if(onoff)
{
db->flags |= SQLITE_LoadExtension;
}
else
{
db->flags &= ~SQLITE_LoadExtension;
}
sqlite3_mutex_leave(db->mutex);
return SQLITE_OK;
}
#endif /* SQLITE_OMIT_LOAD_EXTENSION */
/*
** The auto-extension code added regardless of whether or not extension
** loading is supported. We need a dummy sqlite3Apis pointer for that
** code if regular extension loading is not available. This is that
** dummy pointer.
*/
#ifdef SQLITE_OMIT_LOAD_EXTENSION
static const sqlite3_api_routines sqlite3Apis = { 0 };
#endif
/*
** The following object holds the list of automatically loaded
** extensions.
**
** This list is shared across threads. The SQLITE_MUTEX_STATIC_MASTER
** mutex must be held while accessing this list.
*/
static struct
{
int nExt; /* Number of entries in aExt[] */
void **aExt; /* Pointers to the extension init functions */
} autoext =
{
0, 0};
/*
** Register a statically linked extension that is automatically
** loaded by every new database connection.
*/
SQLITE_API int
sqlite3_auto_extension(void *xInit)
{
int i;
int rc = SQLITE_OK;
#ifndef SQLITE_MUTEX_NOOP
sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
#endif
sqlite3_mutex_enter(mutex);
for (i = 0; i < autoext.nExt; i++)
{
if(autoext.aExt[i] == xInit)
break;
}
if(i == autoext.nExt)
{
int nByte = (autoext.nExt + 1) * sizeof(autoext.aExt[0]);
void **aNew;
aNew = sqlite3_realloc(autoext.aExt, nByte);
if(aNew == 0)
{
rc = SQLITE_NOMEM;
}
else
{
autoext.aExt = aNew;
autoext.aExt[autoext.nExt] = xInit;
autoext.nExt++;
}
}
sqlite3_mutex_leave(mutex);
assert((rc & 0xff) == rc);
return rc;
}
/*
** Reset the automatic extension loading mechanism.
*/
SQLITE_API void
sqlite3_reset_auto_extension(void)
{
#ifndef SQLITE_MUTEX_NOOP
sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
#endif
sqlite3_mutex_enter(mutex);
sqlite3_free(autoext.aExt);
autoext.aExt = 0;
autoext.nExt = 0;
sqlite3_mutex_leave(mutex);
}
/*
** Load all automatic extensions.
*/
SQLITE_PRIVATE int
sqlite3AutoLoadExtensions(sqlite3 * db)
{
int i;
int go = 1;
int rc = SQLITE_OK;
int (*xInit) (sqlite3 *, char **, const sqlite3_api_routines *);
if(autoext.nExt == 0)
{
/* Common case: early out without every having to acquire a mutex */
return SQLITE_OK;
}
for (i = 0; go; i++)
{
char *zErrmsg = 0;
#ifndef SQLITE_MUTEX_NOOP
sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
#endif
sqlite3_mutex_enter(mutex);
if(i >= autoext.nExt)
{
xInit = 0;
go = 0;
}
else
{
xInit = (int (*)(sqlite3 *, char **, const sqlite3_api_routines *))
((uintptr_t)autoext.aExt[i]);
}
sqlite3_mutex_leave(mutex);
if(xInit && xInit(db, &zErrmsg, &sqlite3Apis))
{
sqlite3Error(db, SQLITE_ERROR,
"automatic extension loading failed: %s", zErrmsg);
go = 0;
rc = SQLITE_ERROR;
sqlite3_free(zErrmsg);
}
}
return rc;
}
/************** End of loadext.c *********************************************/
/************** Begin file pragma.c ******************************************/
/*
** 2003 April 6
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code used to implement the PRAGMA command.
**
*/
/* Ignore this whole file if pragmas are disabled
*/
#if !defined(SQLITE_OMIT_PRAGMA) && !defined(SQLITE_OMIT_PARSER)
/*
** Interpret the given string as a safety level. Return 0 for OFF,
** 1 for ON or NORMAL and 2 for FULL. Return 1 for an empty or
** unrecognized string argument.
**
** Note that the values returned are one less that the values that
** should be passed into sqlite3BtreeSetSafetyLevel(). The is done
** to support legacy SQL code. The safety level used to be boolean
** and older scripts may have used numbers 0 for OFF and 1 for ON.
*/
static int
getSafetyLevel(const char *z)
{
/* 123456789 123456789 */
static const char zText[] = "onoffalseyestruefull";
static const u8 iOffset[] = { 0, 1, 2, 4, 9, 12, 16 };
static const u8 iLength[] = { 2, 2, 3, 5, 3, 4, 4 };
static const u8 iValue[] = { 1, 0, 0, 0, 1, 1, 2 };
int i, n;
if(isdigit(*z))
{
return atoi(z);
}
n = strlen(z);
for (i = 0; i < sizeof(iLength); i++)
{
if(iLength[i] == n && sqlite3StrNICmp(&zText[iOffset[i]], z, n) == 0)
{
return iValue[i];
}
}
return 1;
}
/*
** Interpret the given string as a boolean value.
*/
static int
getBoolean(const char *z)
{
return getSafetyLevel(z) & 1;
}
/*
** Interpret the given string as a locking mode value.
*/
static int
getLockingMode(const char *z)
{
if(z)
{
if(0 == sqlite3StrICmp(z, "exclusive"))
return PAGER_LOCKINGMODE_EXCLUSIVE;
if(0 == sqlite3StrICmp(z, "normal"))
return PAGER_LOCKINGMODE_NORMAL;
}
return PAGER_LOCKINGMODE_QUERY;
}
#ifndef SQLITE_OMIT_AUTOVACUUM
/*
** Interpret the given string as an auto-vacuum mode value.
**
** The following strings, "none", "full" and "incremental" are
** acceptable, as are their numeric equivalents: 0, 1 and 2 respectively.
*/
static int
getAutoVacuum(const char *z)
{
int i;
if(0 == sqlite3StrICmp(z, "none"))
return BTREE_AUTOVACUUM_NONE;
if(0 == sqlite3StrICmp(z, "full"))
return BTREE_AUTOVACUUM_FULL;
if(0 == sqlite3StrICmp(z, "incremental"))
return BTREE_AUTOVACUUM_INCR;
i = atoi(z);
return ((i >= 0 && i <= 2) ? i : 0);
}
#endif /* ifndef SQLITE_OMIT_AUTOVACUUM */
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
/*
** Interpret the given string as a temp db location. Return 1 for file
** backed temporary databases, 2 for the Red-Black tree in memory database
** and 0 to use the compile-time default.
*/
static int
getTempStore(const char *z)
{
if(z[0] >= '0' && z[0] <= '2')
{
return z[0] - '0';
}
else if(sqlite3StrICmp(z, "file") == 0)
{
return 1;
}
else if(sqlite3StrICmp(z, "memory") == 0)
{
return 2;
}
else
{
return 0;
}
}
#endif /* SQLITE_PAGER_PRAGMAS */
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
/*
** Invalidate temp storage, either when the temp storage is changed
** from default, or when 'file' and the temp_store_directory has changed
*/
static int
invalidateTempStorage(Parse * pParse)
{
sqlite3 *db = pParse->db;
if(db->aDb[1].pBt != 0)
{
if(!db->autoCommit)
{
sqlite3ErrorMsg(pParse, "temporary storage cannot be changed "
"from within a transaction");
return SQLITE_ERROR;
}
sqlite3BtreeClose(db->aDb[1].pBt);
db->aDb[1].pBt = 0;
sqlite3ResetInternalSchema(db, 0);
}
return SQLITE_OK;
}
#endif /* SQLITE_PAGER_PRAGMAS */
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
/*
** If the TEMP database is open, close it and mark the database schema
** as needing reloading. This must be done when using the TEMP_STORE
** or DEFAULT_TEMP_STORE pragmas.
*/
static int
changeTempStorage(Parse * pParse, const char *zStorageType)
{
int ts = getTempStore(zStorageType);
sqlite3 *db = pParse->db;
if(db->temp_store == ts)
return SQLITE_OK;
if(invalidateTempStorage(pParse) != SQLITE_OK)
{
return SQLITE_ERROR;
}
db->temp_store = ts;
return SQLITE_OK;
}
#endif /* SQLITE_PAGER_PRAGMAS */
/*
** Generate code to return a single integer value.
*/
static void
returnSingleInt(Parse * pParse, const char *zLabel, int value)
{
Vdbe *v = sqlite3GetVdbe(pParse);
int mem = ++pParse->nMem;
sqlite3VdbeAddOp2(v, OP_Integer, value, mem);
if(pParse->explain == 0)
{
sqlite3VdbeSetNumCols(v, 1);
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLabel, P4_STATIC);
}
sqlite3VdbeAddOp2(v, OP_ResultRow, mem, 1);
}
#ifndef SQLITE_OMIT_FLAG_PRAGMAS
/*
** Check to see if zRight and zLeft refer to a pragma that queries
** or changes one of the flags in db->flags. Return 1 if so and 0 if not.
** Also, implement the pragma.
*/
static int
flagPragma(Parse * pParse, const char *zLeft, const char *zRight)
{
static const struct sPragmaType
{
const char *zName; /* Name of the pragma */
int mask; /* Mask for the db->flags value */
} aPragma[] =
{
{
"full_column_names", SQLITE_FullColNames},
{
"short_column_names", SQLITE_ShortColNames},
{
"count_changes", SQLITE_CountRows},
{
"empty_result_callbacks", SQLITE_NullCallback},
{
"legacy_file_format", SQLITE_LegacyFileFmt},
{
"fullfsync", SQLITE_FullFSync},
#ifdef SQLITE_DEBUG
{
"sql_trace", SQLITE_SqlTrace},
{
"vdbe_listing", SQLITE_VdbeListing},
{
"vdbe_trace", SQLITE_VdbeTrace},
#endif
#ifndef SQLITE_OMIT_CHECK
{
"ignore_check_constraints", SQLITE_IgnoreChecks},
#endif
/* The following is VERY experimental */
{
"writable_schema", SQLITE_WriteSchema | SQLITE_RecoveryMode},
{
"omit_readlock", SQLITE_NoReadlock},
/* TODO: Maybe it shouldn't be possible to change the ReadUncommitted
** flag if there are any active statements. */
{
"read_uncommitted", SQLITE_ReadUncommitted},};
int i;
const struct sPragmaType *p;
for (i = 0, p = aPragma; i < sizeof(aPragma) / sizeof(aPragma[0]); i++, p++)
{
if(sqlite3StrICmp(zLeft, p->zName) == 0)
{
sqlite3 *db = pParse->db;
Vdbe *v;
v = sqlite3GetVdbe(pParse);
if(v)
{
if(zRight == 0)
{
returnSingleInt(pParse, p->zName,
(db->flags & p->mask) != 0);
}
else
{
if(getBoolean(zRight))
{
db->flags |= p->mask;
}
else
{
db->flags &= ~p->mask;
}
/* Many of the flag-pragmas modify the code generated by the SQL
** compiler (eg. count_changes). So add an opcode to expire all
** compiled SQL statements after modifying a pragma value.
*/
sqlite3VdbeAddOp2(v, OP_Expire, 0, 0);
}
}
return 1;
}
}
return 0;
}
#endif /* SQLITE_OMIT_FLAG_PRAGMAS */
/*
** Process a pragma statement.
**
** Pragmas are of this form:
**
** PRAGMA [database.]id [= value]
**
** The identifier might also be a string. The value is a string, and
** identifier, or a number. If minusFlag is true, then the value is
** a number that was preceded by a minus sign.
**
** If the left side is "database.id" then pId1 is the database name
** and pId2 is the id. If the left side is just "id" then pId1 is the
** id and pId2 is any empty string.
*/
SQLITE_PRIVATE void
sqlite3Pragma(Parse * pParse, Token * pId1, /* First part of [database.]id field */
Token * pId2, /* Second part of [database.]id field, or NULL */
Token * pValue, /* Token for <value>, or NULL */
int minusFlag /* True if a '-' sign preceded <value> */
)
{
char *zLeft = 0; /* Nul-terminated UTF-8 string <id> */
char *zRight = 0; /* Nul-terminated UTF-8 string <value>, or NULL */
const char *zDb = 0; /* The database name */
Token *pId; /* Pointer to <id> token */
int iDb; /* Database index for <database> */
sqlite3 *db = pParse->db;
Db *pDb;
Vdbe *v = pParse->pVdbe = sqlite3VdbeCreate(db);
if(v == 0)
return;
pParse->nMem = 2;
/* Interpret the [database.] part of the pragma statement. iDb is the
** index of the database this pragma is being applied to in db.aDb[]. */
iDb = sqlite3TwoPartName(pParse, pId1, pId2, &pId);
if(iDb < 0)
return;
pDb = &db->aDb[iDb];
/* If the temp database has been explicitly named as part of the
** pragma, make sure it is open.
*/
if(iDb == 1 && sqlite3OpenTempDatabase(pParse))
{
return;
}
zLeft = sqlite3NameFromToken(db, pId);
if(!zLeft)
return;
if(minusFlag)
{
zRight = sqlite3MPrintf(db, "-%T", pValue);
}
else
{
zRight = sqlite3NameFromToken(db, pValue);
}
zDb = ((iDb > 0) ? pDb->zName : 0);
if(sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb))
{
goto pragma_out;
}
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
/*
** PRAGMA [database.]default_cache_size
** PRAGMA [database.]default_cache_size=N
**
** The first form reports the current persistent setting for the
** page cache size. The value returned is the maximum number of
** pages in the page cache. The second form sets both the current
** page cache size value and the persistent page cache size value
** stored in the database file.
**
** The default cache size is stored in meta-value 2 of page 1 of the
** database file. The cache size is actually the absolute value of
** this memory location. The sign of meta-value 2 determines the
** synchronous setting. A negative value means synchronous is off
** and a positive value means synchronous is on.
*/
if(sqlite3StrICmp(zLeft, "default_cache_size") == 0)
{
static const VdbeOpList getCacheSize[] = {
{OP_ReadCookie, 0, 1, 2}, /* 0 */
{OP_IfPos, 1, 6, 0},
{OP_Integer, 0, 2, 0},
{OP_Subtract, 1, 2, 1},
{OP_IfPos, 1, 6, 0},
{OP_Integer, 0, 1, 0}, /* 5 */
{OP_ResultRow, 1, 1, 0},
};
int addr;
if(sqlite3ReadSchema(pParse))
goto pragma_out;
sqlite3VdbeUsesBtree(v, iDb);
if(!zRight)
{
sqlite3VdbeSetNumCols(v, 1);
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cache_size", P4_STATIC);
pParse->nMem += 2;
addr = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize);
sqlite3VdbeChangeP1(v, addr, iDb);
sqlite3VdbeChangeP1(v, addr + 5, SQLITE_DEFAULT_CACHE_SIZE);
}
else
{
int size = atoi(zRight);
if(size < 0)
size = -size;
sqlite3BeginWriteOperation(pParse, 0, iDb);
sqlite3VdbeAddOp2(v, OP_Integer, size, 1);
sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, 2, 2);
addr = sqlite3VdbeAddOp2(v, OP_IfPos, 2, 0);
sqlite3VdbeAddOp2(v, OP_Integer, -size, 1);
sqlite3VdbeJumpHere(v, addr);
sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 2, 1);
pDb->pSchema->cache_size = size;
sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
}
}
else
/*
** PRAGMA [database.]page_size
** PRAGMA [database.]page_size=N
**
** The first form reports the current setting for the
** database page size in bytes. The second form sets the
** database page size value. The value can only be set if
** the database has not yet been created.
*/
if(sqlite3StrICmp(zLeft, "page_size") == 0)
{
Btree *pBt = pDb->pBt;
if(!zRight)
{
int size = pBt ? sqlite3BtreeGetPageSize(pBt) : 0;
returnSingleInt(pParse, "page_size", size);
}
else
{
/* Malloc may fail when setting the page-size, as there is an internal
** buffer that the pager module resizes using sqlite3_realloc().
*/
db->nextPagesize = atoi(zRight);
if(SQLITE_NOMEM == sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1))
{
db->mallocFailed = 1;
}
}
}
else
/*
** PRAGMA [database.]max_page_count
** PRAGMA [database.]max_page_count=N
**
** The first form reports the current setting for the
** maximum number of pages in the database file. The
** second form attempts to change this setting. Both
** forms return the current setting.
*/
if(sqlite3StrICmp(zLeft, "max_page_count") == 0)
{
Btree *pBt = pDb->pBt;
int newMax = 0;
if(zRight)
{
newMax = atoi(zRight);
}
if(pBt)
{
newMax = sqlite3BtreeMaxPageCount(pBt, newMax);
}
returnSingleInt(pParse, "max_page_count", newMax);
}
else
/*
** PRAGMA [database.]locking_mode
** PRAGMA [database.]locking_mode = (normal|exclusive)
*/
if(sqlite3StrICmp(zLeft, "locking_mode") == 0)
{
const char *zRet = "normal";
int eMode = getLockingMode(zRight);
if(pId2->n == 0 && eMode == PAGER_LOCKINGMODE_QUERY)
{
/* Simple "PRAGMA locking_mode;" statement. This is a query for
** the current default locking mode (which may be different to
** the locking-mode of the main database).
*/
eMode = db->dfltLockMode;
}
else
{
Pager *pPager;
if(pId2->n == 0)
{
/* This indicates that no database name was specified as part
** of the PRAGMA command. In this case the locking-mode must be
** set on all attached databases, as well as the main db file.
**
** Also, the sqlite3.dfltLockMode variable is set so that
** any subsequently attached databases also use the specified
** locking mode.
*/
int ii;
assert(pDb == &db->aDb[0]);
for (ii = 2; ii < db->nDb; ii++)
{
pPager = sqlite3BtreePager(db->aDb[ii].pBt);
sqlite3PagerLockingMode(pPager, eMode);
}
db->dfltLockMode = eMode;
}
pPager = sqlite3BtreePager(pDb->pBt);
eMode = sqlite3PagerLockingMode(pPager, eMode);
}
assert(eMode == PAGER_LOCKINGMODE_NORMAL || eMode == PAGER_LOCKINGMODE_EXCLUSIVE);
if(eMode == PAGER_LOCKINGMODE_EXCLUSIVE)
{
zRet = "exclusive";
}
sqlite3VdbeSetNumCols(v, 1);
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "locking_mode", P4_STATIC);
sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, zRet, 0);
sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
}
else
/*
** PRAGMA [database.]journal_mode
** PRAGMA [database.]journal_mode = (delete|persist|off)
*/
if(sqlite3StrICmp(zLeft, "journal_mode") == 0)
{
int eMode;
static const char *azModeName[] = { "delete", "persist", "off" };
if(zRight == 0)
{
eMode = PAGER_JOURNALMODE_QUERY;
}
else
{
int n = strlen(zRight);
eMode = 2;
while (eMode >= 0 && sqlite3StrNICmp(zRight, azModeName[eMode], n) != 0)
{
eMode--;
}
}
if(pId2->n == 0 && eMode == PAGER_JOURNALMODE_QUERY)
{
/* Simple "PRAGMA persistent_journal;" statement. This is a query for
** the current default journal mode (which may be different to
** the journal-mode of the main database).
*/
eMode = db->dfltJournalMode;
}
else
{
Pager *pPager;
if(pId2->n == 0)
{
/* This indicates that no database name was specified as part
** of the PRAGMA command. In this case the journal-mode must be
** set on all attached databases, as well as the main db file.
**
** Also, the sqlite3.dfltJournalMode variable is set so that
** any subsequently attached databases also use the specified
** journal mode.
*/
int ii;
assert(pDb == &db->aDb[0]);
for (ii = 1; ii < db->nDb; ii++)
{
if(db->aDb[ii].pBt)
{
pPager = sqlite3BtreePager(db->aDb[ii].pBt);
sqlite3PagerJournalMode(pPager, eMode);
}
}
db->dfltJournalMode = eMode;
}
pPager = sqlite3BtreePager(pDb->pBt);
eMode = sqlite3PagerJournalMode(pPager, eMode);
}
assert(eMode == PAGER_JOURNALMODE_DELETE
|| eMode == PAGER_JOURNALMODE_PERSIST || eMode == PAGER_JOURNALMODE_OFF);
sqlite3VdbeSetNumCols(v, 1);
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "journal_mode", P4_STATIC);
sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, azModeName[eMode], P4_STATIC);
sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
}
else
#endif /* SQLITE_OMIT_PAGER_PRAGMAS */
/*
** PRAGMA [database.]auto_vacuum
** PRAGMA [database.]auto_vacuum=N
**
** Get or set the (boolean) value of the database 'auto-vacuum' parameter.
*/
#ifndef SQLITE_OMIT_AUTOVACUUM
if(sqlite3StrICmp(zLeft, "auto_vacuum") == 0)
{
Btree *pBt = pDb->pBt;
if(sqlite3ReadSchema(pParse))
{
goto pragma_out;
}
if(!zRight)
{
int auto_vacuum =
pBt ? sqlite3BtreeGetAutoVacuum(pBt) : SQLITE_DEFAULT_AUTOVACUUM;
returnSingleInt(pParse, "auto_vacuum", auto_vacuum);
}
else
{
int eAuto = getAutoVacuum(zRight);
db->nextAutovac = eAuto;
if(eAuto >= 0)
{
/* Call SetAutoVacuum() to set initialize the internal auto and
** incr-vacuum flags. This is required in case this connection
** creates the database file. It is important that it is created
** as an auto-vacuum capable db.
*/
int rc = sqlite3BtreeSetAutoVacuum(pBt, eAuto);
if(rc == SQLITE_OK && (eAuto == 1 || eAuto == 2))
{
/* When setting the auto_vacuum mode to either "full" or
** "incremental", write the value of meta[6] in the database
** file. Before writing to meta[6], check that meta[3] indicates
** that this really is an auto-vacuum capable database.
*/
static const VdbeOpList setMeta6[] = {
{OP_Transaction, 0, 1, 0}, /* 0 */
{OP_ReadCookie, 0, 1, 3}, /* 1 */
{OP_If, 1, 0, 0}, /* 2 */
{OP_Halt, SQLITE_OK, OE_Abort, 0}, /* 3 */
{OP_Integer, 0, 1, 0}, /* 4 */
{OP_SetCookie, 0, 6, 1}, /* 5 */
};
int iAddr;
iAddr = sqlite3VdbeAddOpList(v, ArraySize(setMeta6),
setMeta6);
sqlite3VdbeChangeP1(v, iAddr, iDb);
sqlite3VdbeChangeP1(v, iAddr + 1, iDb);
sqlite3VdbeChangeP2(v, iAddr + 2, iAddr + 4);
sqlite3VdbeChangeP1(v, iAddr + 4, eAuto - 1);
sqlite3VdbeChangeP1(v, iAddr + 5, iDb);
sqlite3VdbeUsesBtree(v, iDb);
}
}
}
}
else
#endif
/*
** PRAGMA [database.]incremental_vacuum(N)
**
** Do N steps of incremental vacuuming on a database.
*/
#ifndef SQLITE_OMIT_AUTOVACUUM
if(sqlite3StrICmp(zLeft, "incremental_vacuum") == 0)
{
int iLimit, addr;
if(sqlite3ReadSchema(pParse))
{
goto pragma_out;
}
if(zRight == 0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit <= 0)
{
iLimit = 0x7fffffff;
}
sqlite3BeginWriteOperation(pParse, 0, iDb);
sqlite3VdbeAddOp2(v, OP_Integer, iLimit, 1);
addr = sqlite3VdbeAddOp1(v, OP_IncrVacuum, iDb);
sqlite3VdbeAddOp1(v, OP_ResultRow, 1);
sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1);
sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr);
sqlite3VdbeJumpHere(v, addr);
}
else
#endif
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
/*
** PRAGMA [database.]cache_size
** PRAGMA [database.]cache_size=N
**
** The first form reports the current local setting for the
** page cache size. The local setting can be different from
** the persistent cache size value that is stored in the database
** file itself. The value returned is the maximum number of
** pages in the page cache. The second form sets the local
** page cache size value. It does not change the persistent
** cache size stored on the disk so the cache size will revert
** to its default value when the database is closed and reopened.
** N should be a positive integer.
*/
if(sqlite3StrICmp(zLeft, "cache_size") == 0)
{
if(sqlite3ReadSchema(pParse))
goto pragma_out;
if(!zRight)
{
returnSingleInt(pParse, "cache_size", pDb->pSchema->cache_size);
}
else
{
int size = atoi(zRight);
if(size < 0)
size = -size;
pDb->pSchema->cache_size = size;
sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
}
}
else
/*
** PRAGMA temp_store
** PRAGMA temp_store = "default"|"memory"|"file"
**
** Return or set the local value of the temp_store flag. Changing
** the local value does not make changes to the disk file and the default
** value will be restored the next time the database is opened.
**
** Note that it is possible for the library compile-time options to
** override this setting
*/
if(sqlite3StrICmp(zLeft, "temp_store") == 0)
{
if(!zRight)
{
returnSingleInt(pParse, "temp_store", db->temp_store);
}
else
{
changeTempStorage(pParse, zRight);
}
}
else
/*
** PRAGMA temp_store_directory
** PRAGMA temp_store_directory = ""|"directory_name"
**
** Return or set the local value of the temp_store_directory flag. Changing
** the value sets a specific directory to be used for temporary files.
** Setting to a null string reverts to the default temporary directory search.
** If temporary directory is changed, then invalidateTempStorage.
**
*/
if(sqlite3StrICmp(zLeft, "temp_store_directory") == 0)
{
if(!zRight)
{
if(sqlite3_temp_directory)
{
sqlite3VdbeSetNumCols(v, 1);
sqlite3VdbeSetColName(v, 0, COLNAME_NAME,
"temp_store_directory", P4_STATIC);
sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, sqlite3_temp_directory,
0);
sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
}
}
else
{
if(zRight[0]
&& sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE) == 0)
{
sqlite3ErrorMsg(pParse, "not a writable directory");
goto pragma_out;
}
if(TEMP_STORE == 0
|| (TEMP_STORE == 1 && db->temp_store <= 1)
|| (TEMP_STORE == 2 && db->temp_store == 1))
{
invalidateTempStorage(pParse);
}
sqlite3_free(sqlite3_temp_directory);
if(zRight[0])
{
sqlite3_temp_directory = zRight;
zRight = 0;
}
else
{
sqlite3_temp_directory = 0;
}
}
}
else
/*
** PRAGMA [database.]synchronous
** PRAGMA [database.]synchronous=OFF|ON|NORMAL|FULL
**
** Return or set the local value of the synchronous flag. Changing
** the local value does not make changes to the disk file and the
** default value will be restored the next time the database is
** opened.
*/
if(sqlite3StrICmp(zLeft, "synchronous") == 0)
{
if(sqlite3ReadSchema(pParse))
goto pragma_out;
if(!zRight)
{
returnSingleInt(pParse, "synchronous", pDb->safety_level - 1);
}
else
{
if(!db->autoCommit)
{
sqlite3ErrorMsg(pParse,
"Safety level may not be changed inside a transaction");
}
else
{
pDb->safety_level = getSafetyLevel(zRight) + 1;
}
}
}
else
#endif /* SQLITE_OMIT_PAGER_PRAGMAS */
#ifndef SQLITE_OMIT_FLAG_PRAGMAS
if(flagPragma(pParse, zLeft, zRight))
{
/* The flagPragma() subroutine also generates any necessary code
** there is nothing more to do here */
}
else
#endif /* SQLITE_OMIT_FLAG_PRAGMAS */
#ifndef SQLITE_OMIT_SCHEMA_PRAGMAS
/*
** PRAGMA table_info(<table>)
**
** Return a single row for each column of the named table. The columns of
** the returned data set are:
**
** cid: Column id (numbered from left to right, starting at 0)
** name: Column name
** type: Column declaration type.
** notnull: True if 'NOT NULL' is part of column declaration
** dflt_value: The default value for the column, if any.
*/
if(sqlite3StrICmp(zLeft, "table_info") == 0 && zRight)
{
Table *pTab;
if(sqlite3ReadSchema(pParse))
goto pragma_out;
pTab = sqlite3FindTable(db, zRight, zDb);
if(pTab)
{
int i;
int nHidden = 0;
Column *pCol;
sqlite3VdbeSetNumCols(v, 6);
pParse->nMem = 6;
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cid", P4_STATIC);
sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P4_STATIC);
sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "type", P4_STATIC);
sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "notnull", P4_STATIC);
sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "dflt_value", P4_STATIC);
sqlite3VdbeSetColName(v, 5, COLNAME_NAME, "pk", P4_STATIC);
sqlite3ViewGetColumnNames(pParse, pTab);
for (i = 0, pCol = pTab->aCol; i < pTab->nCol; i++, pCol++)
{
const Token *pDflt;
if(IsHiddenColumn(pCol))
{
nHidden++;
continue;
}
sqlite3VdbeAddOp2(v, OP_Integer, i - nHidden, 1);
sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pCol->zName, 0);
sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
pCol->zType ? pCol->zType : "", 0);
sqlite3VdbeAddOp2(v, OP_Integer, pCol->notNull, 4);
if(pCol->pDflt && (pDflt = &pCol->pDflt->span)->z)
{
sqlite3VdbeAddOp4(v, OP_String8, 0, 5, 0, (char *) pDflt->z,
pDflt->n);
}
else
{
sqlite3VdbeAddOp2(v, OP_Null, 0, 5);
}
sqlite3VdbeAddOp2(v, OP_Integer, pCol->isPrimKey, 6);
sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 6);
}
}
}
else
if(sqlite3StrICmp(zLeft, "index_info") == 0 && zRight)
{
Index *pIdx;
Table *pTab;
if(sqlite3ReadSchema(pParse))
goto pragma_out;
pIdx = sqlite3FindIndex(db, zRight, zDb);
if(pIdx)
{
int i;
pTab = pIdx->pTable;
sqlite3VdbeSetNumCols(v, 3);
pParse->nMem = 3;
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seqno", P4_STATIC);
sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "cid", P4_STATIC);
sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "name", P4_STATIC);
for (i = 0; i < pIdx->nColumn; i++)
{
int cnum = pIdx->aiColumn[i];
sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
sqlite3VdbeAddOp2(v, OP_Integer, cnum, 2);
assert(pTab->nCol > cnum);
sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, pTab->aCol[cnum].zName,
0);
sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
}
}
}
else
if(sqlite3StrICmp(zLeft, "index_list") == 0 && zRight)
{
Index *pIdx;
Table *pTab;
if(sqlite3ReadSchema(pParse))
goto pragma_out;
pTab = sqlite3FindTable(db, zRight, zDb);
if(pTab)
{
v = sqlite3GetVdbe(pParse);
pIdx = pTab->pIndex;
if(pIdx)
{
int i = 0;
sqlite3VdbeSetNumCols(v, 3);
pParse->nMem = 3;
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", P4_STATIC);
sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P4_STATIC);
sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "unique", P4_STATIC);
while (pIdx)
{
sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pIdx->zName, 0);
sqlite3VdbeAddOp2(v, OP_Integer, pIdx->onError != OE_None,
3);
sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
++i;
pIdx = pIdx->pNext;
}
}
}
}
else
if(sqlite3StrICmp(zLeft, "database_list") == 0)
{
int i;
if(sqlite3ReadSchema(pParse))
goto pragma_out;
sqlite3VdbeSetNumCols(v, 3);
pParse->nMem = 3;
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", P4_STATIC);
sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P4_STATIC);
sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "file", P4_STATIC);
for (i = 0; i < db->nDb; i++)
{
if(db->aDb[i].pBt == 0)
continue;
assert(db->aDb[i].zName != 0);
sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, db->aDb[i].zName, 0);
sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
sqlite3BtreeGetFilename(db->aDb[i].pBt), 0);
sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
}
}
else
if(sqlite3StrICmp(zLeft, "collation_list") == 0)
{
int i = 0;
HashElem *p;
sqlite3VdbeSetNumCols(v, 2);
pParse->nMem = 2;
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", P4_STATIC);
sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P4_STATIC);
for (p = sqliteHashFirst(&db->aCollSeq); p; p = sqliteHashNext(p))
{
CollSeq *pColl = (CollSeq *) sqliteHashData(p);
sqlite3VdbeAddOp2(v, OP_Integer, i++, 1);
sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pColl->zName, 0);
sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 2);
}
}
else
#endif /* SQLITE_OMIT_SCHEMA_PRAGMAS */
#ifndef SQLITE_OMIT_FOREIGN_KEY
if(sqlite3StrICmp(zLeft, "foreign_key_list") == 0 && zRight)
{
FKey *pFK;
Table *pTab;
if(sqlite3ReadSchema(pParse))
goto pragma_out;
pTab = sqlite3FindTable(db, zRight, zDb);
if(pTab)
{
v = sqlite3GetVdbe(pParse);
pFK = pTab->pFKey;
if(pFK)
{
int i = 0;
sqlite3VdbeSetNumCols(v, 5);
pParse->nMem = 5;
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "id", P4_STATIC);
sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "seq", P4_STATIC);
sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "table", P4_STATIC);
sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "from", P4_STATIC);
sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "to", P4_STATIC);
while (pFK)
{
int j;
for (j = 0; j < pFK->nCol; j++)
{
char *zCol = pFK->aCol[j].zCol;
sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
sqlite3VdbeAddOp2(v, OP_Integer, j, 2);
sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, pFK->zTo,
0);
sqlite3VdbeAddOp4(v, OP_String8, 0, 4, 0,
pTab->aCol[pFK->aCol[j].iFrom].
zName, 0);
sqlite3VdbeAddOp4(v, zCol ? OP_String8 : OP_Null, 0,
5, 0, zCol, 0);
sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 5);
}
++i;
pFK = pFK->pNextFrom;
}
}
}
}
else
#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
#ifndef NDEBUG
if(sqlite3StrICmp(zLeft, "parser_trace") == 0)
{
if(zRight)
{
if(getBoolean(zRight))
{
sqlite3ParserTrace(stderr, "parser: ");
}
else
{
sqlite3ParserTrace(0, 0);
}
}
}
else
#endif
/* Reinstall the LIKE and GLOB functions. The variant of LIKE
** used will be case sensitive or not depending on the RHS.
*/
if(sqlite3StrICmp(zLeft, "case_sensitive_like") == 0)
{
if(zRight)
{
sqlite3RegisterLikeFunctions(db, getBoolean(zRight));
}
}
else
#ifndef SQLITE_INTEGRITY_CHECK_ERROR_MAX
# define SQLITE_INTEGRITY_CHECK_ERROR_MAX 100
#endif
#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/* Pragma "quick_check" is an experimental reduced version of
** integrity_check designed to detect most database corruption
** without most of the overhead of a full integrity-check.
*/
if(sqlite3StrICmp(zLeft, "integrity_check") == 0
|| sqlite3StrICmp(zLeft, "quick_check") == 0)
{
int i, j, addr, mxErr;
/* Code that appears at the end of the integrity check. If no error
** messages have been generated, output OK. Otherwise output the
** error message
*/
static const VdbeOpList endCode[] = {
{OP_AddImm, 1, 0, 0}, /* 0 */
{OP_IfNeg, 1, 0, 0}, /* 1 */
{OP_String8, 0, 3, 0}, /* 2 */
{OP_ResultRow, 3, 1, 0},
};
int isQuick = (zLeft[0] == 'q');
/* Initialize the VDBE program */
if(sqlite3ReadSchema(pParse))
goto pragma_out;
pParse->nMem = 6;
sqlite3VdbeSetNumCols(v, 1);
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "integrity_check", P4_STATIC);
/* Set the maximum error count */
mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
if(zRight)
{
mxErr = atoi(zRight);
if(mxErr <= 0)
{
mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
}
}
sqlite3VdbeAddOp2(v, OP_Integer, mxErr, 1); /* reg[1] holds errors left */
/* Do an integrity check on each database file */
for (i = 0; i < db->nDb; i++)
{
HashElem *x;
Hash *pTbls;
int cnt = 0;
if(OMIT_TEMPDB && i == 1)
continue;
sqlite3CodeVerifySchema(pParse, i);
addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Halt if out of errors */
sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
sqlite3VdbeJumpHere(v, addr);
/* Do an integrity check of the B-Tree
**
** Begin by filling registers 2, 3, ... with the root pages numbers
** for all tables and indices in the database.
*/
pTbls = &db->aDb[i].pSchema->tblHash;
for (x = sqliteHashFirst(pTbls); x; x = sqliteHashNext(x))
{
Table *pTab = sqliteHashData(x);
Index *pIdx;
sqlite3VdbeAddOp2(v, OP_Integer, pTab->tnum, 2 + cnt);
cnt++;
for (pIdx = pTab->pIndex; pIdx; pIdx = pIdx->pNext)
{
sqlite3VdbeAddOp2(v, OP_Integer, pIdx->tnum, 2 + cnt);
cnt++;
}
}
if(cnt == 0)
continue;
/* Make sure sufficient number of registers have been allocated */
if(pParse->nMem < cnt + 4)
{
pParse->nMem = cnt + 4;
}
/* Do the b-tree integrity checks */
sqlite3VdbeAddOp3(v, OP_IntegrityCk, 2, cnt, 1);
sqlite3VdbeChangeP5(v, i);
addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2);
sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
sqlite3MPrintf(db, "*** in database %s ***\n",
db->aDb[i].zName), P4_DYNAMIC);
sqlite3VdbeAddOp2(v, OP_Move, 2, 4);
sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 2);
sqlite3VdbeAddOp2(v, OP_ResultRow, 2, 1);
sqlite3VdbeJumpHere(v, addr);
/* Make sure all the indices are constructed correctly.
*/
for (x = sqliteHashFirst(pTbls); x && !isQuick; x = sqliteHashNext(x))
{
Table *pTab = sqliteHashData(x);
Index *pIdx;
int loopTop;
if(pTab->pIndex == 0)
continue;
addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Stop if out of errors */
sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
sqlite3VdbeJumpHere(v, addr);
sqlite3OpenTableAndIndices(pParse, pTab, 1, OP_OpenRead);
sqlite3VdbeAddOp2(v, OP_Integer, 0, 2); /* reg(2) will count entries */
loopTop = sqlite3VdbeAddOp2(v, OP_Rewind, 1, 0);
sqlite3VdbeAddOp2(v, OP_AddImm, 2, 1); /* increment entry count */
for (j = 0, pIdx = pTab->pIndex; pIdx; pIdx = pIdx->pNext, j++)
{
int jmp2;
static const VdbeOpList idxErr[] = {
{OP_AddImm, 1, -1, 0},
{OP_String8, 0, 3, 0}, /* 1 */
{OP_Rowid, 1, 4, 0},
{OP_String8, 0, 5, 0}, /* 3 */
{OP_String8, 0, 6, 0}, /* 4 */
{OP_Concat, 4, 3, 3},
{OP_Concat, 5, 3, 3},
{OP_Concat, 6, 3, 3},
{OP_ResultRow, 3, 1, 0},
{OP_IfPos, 1, 0, 0}, /* 9 */
{OP_Halt, 0, 0, 0},
};
sqlite3GenerateIndexKey(pParse, pIdx, 1, 3, 1);
jmp2 = sqlite3VdbeAddOp3(v, OP_Found, j + 2, 0, 3);
addr = sqlite3VdbeAddOpList(v, ArraySize(idxErr), idxErr);
sqlite3VdbeChangeP4(v, addr + 1, "rowid ", P4_STATIC);
sqlite3VdbeChangeP4(v, addr + 3, " missing from index ",
P4_STATIC);
sqlite3VdbeChangeP4(v, addr + 4, pIdx->zName, P4_STATIC);
sqlite3VdbeJumpHere(v, addr + 9);
sqlite3VdbeJumpHere(v, jmp2);
}
sqlite3VdbeAddOp2(v, OP_Next, 1, loopTop + 1);
sqlite3VdbeJumpHere(v, loopTop);
for (j = 0, pIdx = pTab->pIndex; pIdx; pIdx = pIdx->pNext, j++)
{
static const VdbeOpList cntIdx[] = {
{OP_Integer, 0, 3, 0},
{OP_Rewind, 0, 0, 0}, /* 1 */
{OP_AddImm, 3, 1, 0},
{OP_Next, 0, 0, 0}, /* 3 */
{OP_Eq, 2, 0, 3}, /* 4 */
{OP_AddImm, 1, -1, 0},
{OP_String8, 0, 2, 0}, /* 6 */
{OP_String8, 0, 3, 0}, /* 7 */
{OP_Concat, 3, 2, 2},
{OP_ResultRow, 2, 1, 0},
};
if(pIdx->tnum == 0)
continue;
addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1);
sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
sqlite3VdbeJumpHere(v, addr);
addr = sqlite3VdbeAddOpList(v, ArraySize(cntIdx), cntIdx);
sqlite3VdbeChangeP1(v, addr + 1, j + 2);
sqlite3VdbeChangeP2(v, addr + 1, addr + 4);
sqlite3VdbeChangeP1(v, addr + 3, j + 2);
sqlite3VdbeChangeP2(v, addr + 3, addr + 2);
sqlite3VdbeJumpHere(v, addr + 4);
sqlite3VdbeChangeP4(v, addr + 6,
"wrong # of entries in index ",
P4_STATIC);
sqlite3VdbeChangeP4(v, addr + 7, pIdx->zName, P4_STATIC);
}
}
}
addr = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode);
sqlite3VdbeChangeP2(v, addr, -mxErr);
sqlite3VdbeJumpHere(v, addr + 1);
sqlite3VdbeChangeP4(v, addr + 2, "ok", P4_STATIC);
}
else
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
#ifndef SQLITE_OMIT_UTF16
/*
** PRAGMA encoding
** PRAGMA encoding = "utf-8"|"utf-16"|"utf-16le"|"utf-16be"
**
** In its first form, this pragma returns the encoding of the main
** database. If the database is not initialized, it is initialized now.
**
** The second form of this pragma is a no-op if the main database file
** has not already been initialized. In this case it sets the default
** encoding that will be used for the main database file if a new file
** is created. If an existing main database file is opened, then the
** default text encoding for the existing database is used.
**
** In all cases new databases created using the ATTACH command are
** created to use the same default text encoding as the main database. If
** the main database has not been initialized and/or created when ATTACH
** is executed, this is done before the ATTACH operation.
**
** In the second form this pragma sets the text encoding to be used in
** new database files created using this database handle. It is only
** useful if invoked immediately after the main database i
*/
if(sqlite3StrICmp(zLeft, "encoding") == 0)
{
static const struct EncName
{
char *zName;
u8 enc;
} encnames[] =
{
{
"UTF-8", SQLITE_UTF8},
{
"UTF8", SQLITE_UTF8},
{
"UTF-16le", SQLITE_UTF16LE},
{
"UTF16le", SQLITE_UTF16LE},
{
"UTF-16be", SQLITE_UTF16BE},
{
"UTF16be", SQLITE_UTF16BE},
{
"UTF-16", 0}, /* SQLITE_UTF16NATIVE */
{
"UTF16", 0}, /* SQLITE_UTF16NATIVE */
{
0, 0}
};
const struct EncName *pEnc;
if(!zRight)
{ /* "PRAGMA encoding" */
if(sqlite3ReadSchema(pParse))
goto pragma_out;
sqlite3VdbeSetNumCols(v, 1);
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "encoding", P4_STATIC);
sqlite3VdbeAddOp2(v, OP_String8, 0, 1);
for (pEnc = &encnames[0]; pEnc->zName; pEnc++)
{
if(pEnc->enc == ENC(pParse->db))
{
sqlite3VdbeChangeP4(v, -1, pEnc->zName, P4_STATIC);
break;
}
}
sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
}
else
{ /* "PRAGMA encoding = XXX" */
/* Only change the value of sqlite.enc if the database handle is not
** initialized. If the main database exists, the new sqlite.enc value
** will be overwritten when the schema is next loaded. If it does not
** already exists, it will be created to use the new encoding value.
*/
if(!(DbHasProperty(db, 0, DB_SchemaLoaded)) ||
DbHasProperty(db, 0, DB_Empty))
{
for (pEnc = &encnames[0]; pEnc->zName; pEnc++)
{
if(0 == sqlite3StrICmp(zRight, pEnc->zName))
{
ENC(pParse->db) =
pEnc->enc ? pEnc->enc : SQLITE_UTF16NATIVE;
break;
}
}
if(!pEnc->zName)
{
sqlite3ErrorMsg(pParse, "unsupported encoding: %s", zRight);
}
}
}
}
else
#endif /* SQLITE_OMIT_UTF16 */
#ifndef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS
/*
** PRAGMA [database.]schema_version
** PRAGMA [database.]schema_version = <integer>
**
** PRAGMA [database.]user_version
** PRAGMA [database.]user_version = <integer>
**
** The pragma's schema_version and user_version are used to set or get
** the value of the schema-version and user-version, respectively. Both
** the schema-version and the user-version are 32-bit signed integers
** stored in the database header.
**
** The schema-cookie is usually only manipulated internally by SQLite. It
** is incremented by SQLite whenever the database schema is modified (by
** creating or dropping a table or index). The schema version is used by
** SQLite each time a query is executed to ensure that the internal cache
** of the schema used when compiling the SQL query matches the schema of
** the database against which the compiled query is actually executed.
** Subverting this mechanism by using "PRAGMA schema_version" to modify
** the schema-version is potentially dangerous and may lead to program
** crashes or database corruption. Use with caution!
**
** The user-version is not used internally by SQLite. It may be used by
** applications for any purpose.
*/
if(sqlite3StrICmp(zLeft, "schema_version") == 0
|| sqlite3StrICmp(zLeft, "user_version") == 0
|| sqlite3StrICmp(zLeft, "freelist_count") == 0)
{
int iCookie; /* Cookie index. 0 for schema-cookie, 6 for user-cookie. */
sqlite3VdbeUsesBtree(v, iDb);
switch (zLeft[0])
{
case 's':
case 'S':
iCookie = 0;
break;
case 'f':
case 'F':
iCookie = 1;
iDb = (-1 * (iDb + 1));
assert(iDb <= 0);
break;
default:
iCookie = 5;
break;
}
if(zRight && iDb >= 0)
{
/* Write the specified cookie value */
static const VdbeOpList setCookie[] = {
{OP_Transaction, 0, 1, 0}, /* 0 */
{OP_Integer, 0, 1, 0}, /* 1 */
{OP_SetCookie, 0, 0, 1}, /* 2 */
};
int addr = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie);
sqlite3VdbeChangeP1(v, addr, iDb);
sqlite3VdbeChangeP1(v, addr + 1, atoi(zRight));
sqlite3VdbeChangeP1(v, addr + 2, iDb);
sqlite3VdbeChangeP2(v, addr + 2, iCookie);
}
else
{
/* Read the specified cookie value */
static const VdbeOpList readCookie[] = {
{OP_ReadCookie, 0, 1, 0}, /* 0 */
{OP_ResultRow, 1, 1, 0}
};
int addr = sqlite3VdbeAddOpList(v, ArraySize(readCookie), readCookie);
sqlite3VdbeChangeP1(v, addr, iDb);
sqlite3VdbeChangeP3(v, addr, iCookie);
sqlite3VdbeSetNumCols(v, 1);
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLeft, P4_TRANSIENT);
}
}
else
#endif /* SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS */
#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
/*
** Report the current state of file logs for all databases
*/
if(sqlite3StrICmp(zLeft, "lock_status") == 0)
{
static const char *const azLockName[] = {
"unlocked", "shared", "reserved", "pending", "exclusive"
};
int i;
Vdbe *v = sqlite3GetVdbe(pParse);
sqlite3VdbeSetNumCols(v, 2);
pParse->nMem = 2;
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "database", P4_STATIC);
sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "status", P4_STATIC);
for (i = 0; i < db->nDb; i++)
{
Btree *pBt;
Pager *pPager;
const char *zState = "unknown";
int j;
if(db->aDb[i].zName == 0)
continue;
sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, db->aDb[i].zName, P4_STATIC);
pBt = db->aDb[i].pBt;
if(pBt == 0 || (pPager = sqlite3BtreePager(pBt)) == 0)
{
zState = "closed";
}
else if(sqlite3_file_control(db, i ? db->aDb[i].zName : 0,
SQLITE_FCNTL_LOCKSTATE, &j) == SQLITE_OK)
{
zState = azLockName[j];
}
sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, zState, P4_STATIC);
sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 2);
}
}
else
#endif
#ifdef SQLITE_SSE
/*
** Check to see if the sqlite_statements table exists. Create it
** if it does not.
*/
if(sqlite3StrICmp(zLeft, "create_sqlite_statement_table") == 0)
{
extern int sqlite3CreateStatementsTable(Parse *);
sqlite3CreateStatementsTable(pParse);
}
else
#endif
#if SQLITE_HAS_CODEC
if(sqlite3StrICmp(zLeft, "key") == 0)
{
sqlite3_key(db, zRight, strlen(zRight));
}
else
#endif
#if SQLITE_HAS_CODEC || defined(SQLITE_ENABLE_CEROD)
if(sqlite3StrICmp(zLeft, "activate_extensions") == 0)
{
#if SQLITE_HAS_CODEC
if(sqlite3StrNICmp(zRight, "see-", 4) == 0)
{
extern void sqlite3_activate_see(const char *);
sqlite3_activate_see(&zRight[4]);
}
#endif
#ifdef SQLITE_ENABLE_CEROD
if(sqlite3StrNICmp(zRight, "cerod-", 6) == 0)
{
extern void sqlite3_activate_cerod(const char *);
sqlite3_activate_cerod(&zRight[6]);
}
#endif
}
#endif
{
}
if(v)
{
/* Code an OP_Expire at the end of each PRAGMA program to cause
** the VDBE implementing the pragma to expire. Most (all?) pragmas
** are only valid for a single execution.
*/
sqlite3VdbeAddOp2(v, OP_Expire, 1, 0);
/*
** Reset the safety level, in case the fullfsync flag or synchronous
** setting changed.
*/
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
if(db->autoCommit)
{
sqlite3BtreeSetSafetyLevel(pDb->pBt, pDb->safety_level,
(db->flags & SQLITE_FullFSync) != 0);
}
#endif
}
pragma_out:
sqlite3_free(zLeft);
sqlite3_free(zRight);
}
#endif /* SQLITE_OMIT_PRAGMA || SQLITE_OMIT_PARSER */
/************** End of pragma.c **********************************************/
/************** Begin file prepare.c *****************************************/
/*
** 2005 May 25
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains the implementation of the sqlite3_prepare()
** interface, and routines that contribute to loading the database schema
** from disk.
**
*/
/*
** Fill the InitData structure with an error message that indicates
** that the database is corrupt.
*/
static void
corruptSchema(InitData * pData, /* Initialization context */
const char *zObj, /* Object being parsed at the point of error */
const char *zExtra /* Error information */
)
{
if(!pData->db->mallocFailed)
{
if(zObj == 0)
zObj = "?";
sqlite3SetString(pData->pzErrMsg, "malformed database schema (", zObj, ")",
zExtra != 0
&& zExtra[0] != 0 ? " - " : (char *) 0, zExtra, (char *) 0);
}
pData->rc = SQLITE_CORRUPT;
}
/*
** This is the callback routine for the code that initializes the
** database. See sqlite3Init() below for additional information.
** This routine is also called from the OP_ParseSchema opcode of the VDBE.
**
** Each callback contains the following information:
**
** argv[0] = name of thing being created
** argv[1] = root page number for table or index. 0 for trigger or view.
** argv[2] = SQL text for the CREATE statement.
**
*/
SQLITE_PRIVATE int
sqlite3InitCallback(void *pInit, int argc, char **argv, char **azColName)
{
InitData *pData = (InitData *) pInit;
sqlite3 *db = pData->db;
int iDb = pData->iDb;
assert(sqlite3_mutex_held(db->mutex));
pData->rc = SQLITE_OK;
DbClearProperty(db, iDb, DB_Empty);
if(db->mallocFailed)
{
corruptSchema(pData, argv[0], 0);
return SQLITE_NOMEM;
}
assert(argc == 3);
if(argv == 0)
return 0; /* Might happen if EMPTY_RESULT_CALLBACKS are on */
if(argv[1] == 0)
{
corruptSchema(pData, argv[0], 0);
return 1;
}
assert(iDb >= 0 && iDb < db->nDb);
if(argv[2] && argv[2][0])
{
/* Call the parser to process a CREATE TABLE, INDEX or VIEW.
** But because db->init.busy is set to 1, no VDBE code is generated
** or executed. All the parser does is build the internal data
** structures that describe the table, index, or view.
*/
char *zErr;
int rc;
assert(db->init.busy);
db->init.iDb = iDb;
db->init.newTnum = atoi(argv[1]);
rc = sqlite3_exec(db, argv[2], 0, 0, &zErr);
db->init.iDb = 0;
assert(rc != SQLITE_OK || zErr == 0);
if(SQLITE_OK != rc)
{
pData->rc = rc;
if(rc == SQLITE_NOMEM)
{
db->mallocFailed = 1;
}
else if(rc != SQLITE_INTERRUPT)
{
corruptSchema(pData, argv[0], zErr);
}
sqlite3_free(zErr);
return 1;
}
}
else if(argv[0] == 0)
{
corruptSchema(pData, 0, 0);
}
else
{
/* If the SQL column is blank it means this is an index that
** was created to be the PRIMARY KEY or to fulfill a UNIQUE
** constraint for a CREATE TABLE. The index should have already
** been created when we processed the CREATE TABLE. All we have
** to do here is record the root page number for that index.
*/
Index *pIndex;
pIndex = sqlite3FindIndex(db, argv[0], db->aDb[iDb].zName);
if(pIndex == 0 || pIndex->tnum != 0)
{
/* This can occur if there exists an index on a TEMP table which
** has the same name as another index on a permanent index. Since
** the permanent table is hidden by the TEMP table, we can also
** safely ignore the index on the permanent table.
*/
/* Do Nothing */ ;
}
else
{
pIndex->tnum = atoi(argv[1]);
}
}
return 0;
}
/*
** Attempt to read the database schema and initialize internal
** data structures for a single database file. The index of the
** database file is given by iDb. iDb==0 is used for the main
** database. iDb==1 should never be used. iDb>=2 is used for
** auxiliary databases. Return one of the SQLITE_ error codes to
** indicate success or failure.
*/
static int
sqlite3InitOne(sqlite3 * db, int iDb, char **pzErrMsg)
{
int rc;
BtCursor *curMain;
int size;
Table *pTab;
Db *pDb;
char const *azArg[4];
int meta[10];
InitData initData;
char const *zMasterSchema;
char const *zMasterName = SCHEMA_TABLE(iDb);
/*
** The master database table has a structure like this
*/
static const char master_schema[] =
"CREATE TABLE sqlite_master(\n"
" type text,\n"
" name text,\n" " tbl_name text,\n" " rootpage integer,\n" " sql text\n" ")";
#ifndef SQLITE_OMIT_TEMPDB
static const char temp_master_schema[] =
"CREATE TEMP TABLE sqlite_temp_master(\n"
" type text,\n"
" name text,\n" " tbl_name text,\n" " rootpage integer,\n" " sql text\n" ")";
#else
#define temp_master_schema 0
#endif
assert(iDb >= 0 && iDb < db->nDb);
assert(db->aDb[iDb].pSchema);
assert(sqlite3_mutex_held(db->mutex));
assert(iDb == 1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt));
/* zMasterSchema and zInitScript are set to point at the master schema
** and initialisation script appropriate for the database being
** initialised. zMasterName is the name of the master table.
*/
if(!OMIT_TEMPDB && iDb == 1)
{
zMasterSchema = temp_master_schema;
}
else
{
zMasterSchema = master_schema;
}
zMasterName = SCHEMA_TABLE(iDb);
/* Construct the schema tables. */
azArg[0] = zMasterName;
azArg[1] = "1";
azArg[2] = zMasterSchema;
azArg[3] = 0;
initData.db = db;
initData.iDb = iDb;
initData.pzErrMsg = pzErrMsg;
(void) sqlite3SafetyOff(db);
rc = sqlite3InitCallback(&initData, 3, (char **) azArg, 0);
(void) sqlite3SafetyOn(db);
if(rc)
{
rc = initData.rc;
goto error_out;
}
pTab = sqlite3FindTable(db, zMasterName, db->aDb[iDb].zName);
if(pTab)
{
pTab->readOnly = 1;
}
/* Create a cursor to hold the database open
*/
pDb = &db->aDb[iDb];
if(pDb->pBt == 0)
{
if(!OMIT_TEMPDB && iDb == 1)
{
DbSetProperty(db, 1, DB_SchemaLoaded);
}
return SQLITE_OK;
}
curMain = sqlite3MallocZero(sqlite3BtreeCursorSize());
if(!curMain)
{
rc = SQLITE_NOMEM;
goto error_out;
}
sqlite3BtreeEnter(pDb->pBt);
rc = sqlite3BtreeCursor(pDb->pBt, MASTER_ROOT, 0, 0, curMain);
if(rc != SQLITE_OK && rc != SQLITE_EMPTY)
{
sqlite3SetString(pzErrMsg, sqlite3ErrStr(rc), (char *) 0);
goto leave_error_out;
}
/* Get the database meta information.
**
** Meta values are as follows:
** meta[0] Schema cookie. Changes with each schema change.
** meta[1] File format of schema layer.
** meta[2] Size of the page cache.
** meta[3] Use freelist if 0. Autovacuum if greater than zero.
** meta[4] Db text encoding. 1:UTF-8 2:UTF-16LE 3:UTF-16BE
** meta[5] The user cookie. Used by the application.
** meta[6] Incremental-vacuum flag.
** meta[7]
** meta[8]
** meta[9]
**
** Note: The #defined SQLITE_UTF* symbols in sqliteInt.h correspond to
** the possible values of meta[4].
*/
if(rc == SQLITE_OK)
{
int i;
for (i = 0; rc == SQLITE_OK && i < sizeof(meta) / sizeof(meta[0]); i++)
{
rc = sqlite3BtreeGetMeta(pDb->pBt, i + 1, (u32 *) & meta[i]);
}
if(rc)
{
sqlite3SetString(pzErrMsg, sqlite3ErrStr(rc), (char *) 0);
goto leave_error_out;
}
}
else
{
memset(meta, 0, sizeof(meta));
}
pDb->pSchema->schema_cookie = meta[0];
/* If opening a non-empty database, check the text encoding. For the
** main database, set sqlite3.enc to the encoding of the main database.
** For an attached db, it is an error if the encoding is not the same
** as sqlite3.enc.
*/
if(meta[4])
{ /* text encoding */
if(iDb == 0)
{
/* If opening the main database, set ENC(db). */
ENC(db) = (u8) meta[4];
db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 6, 0);
}
else
{
/* If opening an attached database, the encoding much match ENC(db) */
if(meta[4] != ENC(db))
{
sqlite3SetString(pzErrMsg, "attached databases must use the same"
" text encoding as main database", (char *) 0);
rc = SQLITE_ERROR;
goto leave_error_out;
}
}
}
else
{
DbSetProperty(db, iDb, DB_Empty);
}
pDb->pSchema->enc = ENC(db);
size = meta[2];
if(size == 0)
{
size = SQLITE_DEFAULT_CACHE_SIZE;
}
if(size < 0)
size = -size;
pDb->pSchema->cache_size = size;
sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
/*
** file_format==1 Version 3.0.0.
** file_format==2 Version 3.1.3. // ALTER TABLE ADD COLUMN
** file_format==3 Version 3.1.4. // ditto but with non-NULL defaults
** file_format==4 Version 3.3.0. // DESC indices. Boolean constants
*/
pDb->pSchema->file_format = meta[1];
if(pDb->pSchema->file_format == 0)
{
pDb->pSchema->file_format = 1;
}
if(pDb->pSchema->file_format > SQLITE_MAX_FILE_FORMAT)
{
sqlite3SetString(pzErrMsg, "unsupported file format", (char *) 0);
rc = SQLITE_ERROR;
goto leave_error_out;
}
/* Ticket #2804: When we open a database in the newer file format,
** clear the legacy_file_format pragma flag so that a VACUUM will
** not downgrade the database and thus invalidate any descending
** indices that the user might have created.
*/
if(iDb == 0 && meta[1] >= 4)
{
db->flags &= ~SQLITE_LegacyFileFmt;
}
/* Read the schema information out of the schema tables
*/
assert(db->init.busy);
if(rc == SQLITE_EMPTY)
{
/* For an empty database, there is nothing to read */
rc = SQLITE_OK;
}
else
{
char *zSql;
zSql = sqlite3MPrintf(db,
"SELECT name, rootpage, sql FROM '%q'.%s",
db->aDb[iDb].zName, zMasterName);
(void) sqlite3SafetyOff(db);
#ifndef SQLITE_OMIT_AUTHORIZATION
{
int (*xAuth) (void *, int, const char *, const char *, const char *,
const char *);
xAuth = db->xAuth;
db->xAuth = 0;
#endif
rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
#ifndef SQLITE_OMIT_AUTHORIZATION
db->xAuth = xAuth;
}
#endif
if(rc == SQLITE_ABORT)
rc = initData.rc;
(void) sqlite3SafetyOn(db);
sqlite3_free(zSql);
#ifndef SQLITE_OMIT_ANALYZE
if(rc == SQLITE_OK)
{
sqlite3AnalysisLoad(db, iDb);
}
#endif
}
if(db->mallocFailed)
{
/* sqlite3SetString(pzErrMsg, "out of memory", (char*)0); */
rc = SQLITE_NOMEM;
sqlite3ResetInternalSchema(db, 0);
}
if(rc == SQLITE_OK || (db->flags & SQLITE_RecoveryMode))
{
/* Black magic: If the SQLITE_RecoveryMode flag is set, then consider
** the schema loaded, even if errors occured. In this situation the
** current sqlite3_prepare() operation will fail, but the following one
** will attempt to compile the supplied statement against whatever subset
** of the schema was loaded before the error occured. The primary
** purpose of this is to allow access to the sqlite_master table
** even when its contents have been corrupted.
*/
DbSetProperty(db, iDb, DB_SchemaLoaded);
rc = SQLITE_OK;
}
/* Jump here for an error that occurs after successfully allocating
** curMain and calling sqlite3BtreeEnter(). For an error that occurs
** before that point, jump to error_out.
*/
leave_error_out:
sqlite3BtreeCloseCursor(curMain);
sqlite3_free(curMain);
sqlite3BtreeLeave(pDb->pBt);
error_out:
if(rc == SQLITE_NOMEM || rc == SQLITE_IOERR_NOMEM)
{
db->mallocFailed = 1;
}
return rc;
}
/*
** Initialize all database files - the main database file, the file
** used to store temporary tables, and any additional database files
** created using ATTACH statements. Return a success code. If an
** error occurs, write an error message into *pzErrMsg.
**
** After a database is initialized, the DB_SchemaLoaded bit is set
** bit is set in the flags field of the Db structure. If the database
** file was of zero-length, then the DB_Empty flag is also set.
*/
SQLITE_PRIVATE int
sqlite3Init(sqlite3 * db, char **pzErrMsg)
{
int i, rc;
int commit_internal = !(db->flags & SQLITE_InternChanges);
assert(sqlite3_mutex_held(db->mutex));
if(db->init.busy)
return SQLITE_OK;
rc = SQLITE_OK;
db->init.busy = 1;
for (i = 0; rc == SQLITE_OK && i < db->nDb; i++)
{
if(DbHasProperty(db, i, DB_SchemaLoaded) || i == 1)
continue;
rc = sqlite3InitOne(db, i, pzErrMsg);
if(rc)
{
sqlite3ResetInternalSchema(db, i);
}
}
/* Once all the other databases have been initialised, load the schema
** for the TEMP database. This is loaded last, as the TEMP database
** schema may contain references to objects in other databases.
*/
#ifndef SQLITE_OMIT_TEMPDB
if(rc == SQLITE_OK && db->nDb > 1 && !DbHasProperty(db, 1, DB_SchemaLoaded))
{
rc = sqlite3InitOne(db, 1, pzErrMsg);
if(rc)
{
sqlite3ResetInternalSchema(db, 1);
}
}
#endif
db->init.busy = 0;
if(rc == SQLITE_OK && commit_internal)
{
sqlite3CommitInternalChanges(db);
}
return rc;
}
/*
** This routine is a no-op if the database schema is already initialised.
** Otherwise, the schema is loaded. An error code is returned.
*/
SQLITE_PRIVATE int
sqlite3ReadSchema(Parse * pParse)
{
int rc = SQLITE_OK;
sqlite3 *db = pParse->db;
assert(sqlite3_mutex_held(db->mutex));
if(!db->init.busy)
{
rc = sqlite3Init(db, &pParse->zErrMsg);
}
if(rc != SQLITE_OK)
{
pParse->rc = rc;
pParse->nErr++;
}
return rc;
}
/*
** Check schema cookies in all databases. If any cookie is out
** of date, return 0. If all schema cookies are current, return 1.
*/
static int
schemaIsValid(sqlite3 * db)
{
int iDb;
int rc;
BtCursor *curTemp;
int cookie;
int allOk = 1;
curTemp = (BtCursor *) sqlite3_malloc(sqlite3BtreeCursorSize());
if(curTemp)
{
assert(sqlite3_mutex_held(db->mutex));
for (iDb = 0; allOk && iDb < db->nDb; iDb++)
{
Btree *pBt;
pBt = db->aDb[iDb].pBt;
if(pBt == 0)
continue;
memset(curTemp, 0, sqlite3BtreeCursorSize());
rc = sqlite3BtreeCursor(pBt, MASTER_ROOT, 0, 0, curTemp);
if(rc == SQLITE_OK)
{
rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *) & cookie);
if(rc == SQLITE_OK && cookie != db->aDb[iDb].pSchema->schema_cookie)
{
allOk = 0;
}
sqlite3BtreeCloseCursor(curTemp);
}
if(rc == SQLITE_NOMEM || rc == SQLITE_IOERR_NOMEM)
{
db->mallocFailed = 1;
}
}
sqlite3_free(curTemp);
}
else
{
allOk = 0;
db->mallocFailed = 1;
}
return allOk;
}
/*
** Convert a schema pointer into the iDb index that indicates
** which database file in db->aDb[] the schema refers to.
**
** If the same database is attached more than once, the first
** attached database is returned.
*/
SQLITE_PRIVATE int
sqlite3SchemaToIndex(sqlite3 * db, Schema * pSchema)
{
int i = -1000000;
/* If pSchema is NULL, then return -1000000. This happens when code in
** expr.c is trying to resolve a reference to a transient table (i.e. one
** created by a sub-select). In this case the return value of this
** function should never be used.
**
** We return -1000000 instead of the more usual -1 simply because using
** -1000000 as incorrectly using -1000000 index into db->aDb[] is much
** more likely to cause a segfault than -1 (of course there are assert()
** statements too, but it never hurts to play the odds).
*/
assert(sqlite3_mutex_held(db->mutex));
if(pSchema)
{
for (i = 0; i < db->nDb; i++)
{
if(db->aDb[i].pSchema == pSchema)
{
break;
}
}
assert(i >= 0 && i >= 0 && i < db->nDb);
}
return i;
}
/*
** Compile the UTF-8 encoded SQL statement zSql into a statement handle.
*/
static int
sqlite3Prepare(sqlite3 * db, /* Database handle. */
const char *zSql, /* UTF-8 encoded SQL statement. */
int nBytes, /* Length of zSql in bytes. */
int saveSqlFlag, /* True to copy SQL text into the sqlite3_stmt */
sqlite3_stmt ** ppStmt, /* OUT: A pointer to the prepared statement */
const char **pzTail /* OUT: End of parsed string */
)
{
Parse sParse;
char *zErrMsg = 0;
int rc = SQLITE_OK;
int i;
assert(ppStmt);
*ppStmt = 0;
if(sqlite3SafetyOn(db))
{
return SQLITE_MISUSE;
}
assert(!db->mallocFailed);
assert(sqlite3_mutex_held(db->mutex));
/* If any attached database schemas are locked, do not proceed with
** compilation. Instead return SQLITE_LOCKED immediately.
*/
for (i = 0; i < db->nDb; i++)
{
Btree *pBt = db->aDb[i].pBt;
if(pBt)
{
int rc;
rc = sqlite3BtreeSchemaLocked(pBt);
if(rc)
{
const char *zDb = db->aDb[i].zName;
sqlite3Error(db, SQLITE_LOCKED, "database schema is locked: %s",
zDb);
(void) sqlite3SafetyOff(db);
return SQLITE_LOCKED;
}
}
}
memset(&sParse, 0, sizeof(sParse));
sParse.db = db;
if(nBytes >= 0 && zSql[nBytes - 1] != 0)
{
char *zSqlCopy;
int mxLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];
if(nBytes > mxLen)
{
sqlite3Error(db, SQLITE_TOOBIG, "statement too long");
(void) sqlite3SafetyOff(db);
return SQLITE_TOOBIG;
}
zSqlCopy = sqlite3DbStrNDup(db, zSql, nBytes);
if(zSqlCopy)
{
sqlite3RunParser(&sParse, zSqlCopy, &zErrMsg);
sqlite3_free(zSqlCopy);
sParse.zTail = &zSql[sParse.zTail - zSqlCopy];
}
else
{
sParse.zTail = &zSql[nBytes];
}
}
else
{
sqlite3RunParser(&sParse, zSql, &zErrMsg);
}
if(db->mallocFailed)
{
sParse.rc = SQLITE_NOMEM;
}
if(sParse.rc == SQLITE_DONE)
sParse.rc = SQLITE_OK;
if(sParse.checkSchema && !schemaIsValid(db))
{
sParse.rc = SQLITE_SCHEMA;
}
if(sParse.rc == SQLITE_SCHEMA)
{
sqlite3ResetInternalSchema(db, 0);
}
if(db->mallocFailed)
{
sParse.rc = SQLITE_NOMEM;
}
if(pzTail)
{
*pzTail = sParse.zTail;
}
rc = sParse.rc;
#ifndef SQLITE_OMIT_EXPLAIN
if(rc == SQLITE_OK && sParse.pVdbe && sParse.explain)
{
if(sParse.explain == 2)
{
sqlite3VdbeSetNumCols(sParse.pVdbe, 3);
sqlite3VdbeSetColName(sParse.pVdbe, 0, COLNAME_NAME, "order", P4_STATIC);
sqlite3VdbeSetColName(sParse.pVdbe, 1, COLNAME_NAME, "from", P4_STATIC);
sqlite3VdbeSetColName(sParse.pVdbe, 2, COLNAME_NAME, "detail", P4_STATIC);
}
else
{
sqlite3VdbeSetNumCols(sParse.pVdbe, 8);
sqlite3VdbeSetColName(sParse.pVdbe, 0, COLNAME_NAME, "addr", P4_STATIC);
sqlite3VdbeSetColName(sParse.pVdbe, 1, COLNAME_NAME, "opcode", P4_STATIC);
sqlite3VdbeSetColName(sParse.pVdbe, 2, COLNAME_NAME, "p1", P4_STATIC);
sqlite3VdbeSetColName(sParse.pVdbe, 3, COLNAME_NAME, "p2", P4_STATIC);
sqlite3VdbeSetColName(sParse.pVdbe, 4, COLNAME_NAME, "p3", P4_STATIC);
sqlite3VdbeSetColName(sParse.pVdbe, 5, COLNAME_NAME, "p4", P4_STATIC);
sqlite3VdbeSetColName(sParse.pVdbe, 6, COLNAME_NAME, "p5", P4_STATIC);
sqlite3VdbeSetColName(sParse.pVdbe, 7, COLNAME_NAME, "comment", P4_STATIC);
}
}
#endif
if(sqlite3SafetyOff(db))
{
rc = SQLITE_MISUSE;
}
if(saveSqlFlag)
{
sqlite3VdbeSetSql(sParse.pVdbe, zSql, sParse.zTail - zSql);
}
if(rc != SQLITE_OK || db->mallocFailed)
{
sqlite3_finalize((sqlite3_stmt *) sParse.pVdbe);
assert(!(*ppStmt));
}
else
{
*ppStmt = (sqlite3_stmt *) sParse.pVdbe;
}
if(zErrMsg)
{
sqlite3Error(db, rc, "%s", zErrMsg);
sqlite3_free(zErrMsg);
}
else
{
sqlite3Error(db, rc, 0);
}
rc = sqlite3ApiExit(db, rc);
assert((rc & db->errMask) == rc);
return rc;
}
static int
sqlite3LockAndPrepare(sqlite3 * db, /* Database handle. */
const char *zSql, /* UTF-8 encoded SQL statement. */
int nBytes, /* Length of zSql in bytes. */
int saveSqlFlag, /* True to copy SQL text into the sqlite3_stmt */
sqlite3_stmt ** ppStmt, /* OUT: A pointer to the prepared statement */
const char **pzTail /* OUT: End of parsed string */
)
{
int rc;
if(!sqlite3SafetyCheckOk(db))
{
return SQLITE_MISUSE;
}
sqlite3_mutex_enter(db->mutex);
sqlite3BtreeEnterAll(db);
rc = sqlite3Prepare(db, zSql, nBytes, saveSqlFlag, ppStmt, pzTail);
sqlite3BtreeLeaveAll(db);
sqlite3_mutex_leave(db->mutex);
return rc;
}
/*
** Rerun the compilation of a statement after a schema change.
** Return true if the statement was recompiled successfully.
** Return false if there is an error of some kind.
*/
SQLITE_PRIVATE int
sqlite3Reprepare(Vdbe * p)
{
int rc;
sqlite3_stmt *pNew;
const char *zSql;
sqlite3 *db;
assert(sqlite3_mutex_held(sqlite3VdbeDb(p)->mutex));
zSql = sqlite3_sql((sqlite3_stmt *) p);
assert(zSql != 0); /* Reprepare only called for prepare_v2() statements */
db = sqlite3VdbeDb(p);
assert(sqlite3_mutex_held(db->mutex));
rc = sqlite3LockAndPrepare(db, zSql, -1, 0, &pNew, 0);
if(rc)
{
if(rc == SQLITE_NOMEM)
{
db->mallocFailed = 1;
}
assert(pNew == 0);
return 0;
}
else
{
assert(pNew != 0);
}
sqlite3VdbeSwap((Vdbe *) pNew, p);
sqlite3_transfer_bindings(pNew, (sqlite3_stmt *) p);
sqlite3VdbeResetStepResult((Vdbe *) pNew);
sqlite3VdbeFinalize((Vdbe *) pNew);
return 1;
}
/*
** Two versions of the official API. Legacy and new use. In the legacy
** version, the original SQL text is not saved in the prepared statement
** and so if a schema change occurs, SQLITE_SCHEMA is returned by
** sqlite3_step(). In the new version, the original SQL text is retained
** and the statement is automatically recompiled if an schema change
** occurs.
*/
SQLITE_API int
sqlite3_prepare(sqlite3 * db, /* Database handle. */
const char *zSql, /* UTF-8 encoded SQL statement. */
int nBytes, /* Length of zSql in bytes. */
sqlite3_stmt ** ppStmt, /* OUT: A pointer to the prepared statement */
const char **pzTail /* OUT: End of parsed string */
)
{
int rc;
rc = sqlite3LockAndPrepare(db, zSql, nBytes, 0, ppStmt, pzTail);
assert(rc == SQLITE_OK || ppStmt == 0 || *ppStmt == 0); /* VERIFY: F13021 */
return rc;
}
SQLITE_API int
sqlite3_prepare_v2(sqlite3 * db, /* Database handle. */
const char *zSql, /* UTF-8 encoded SQL statement. */
int nBytes, /* Length of zSql in bytes. */
sqlite3_stmt ** ppStmt, /* OUT: A pointer to the prepared statement */
const char **pzTail /* OUT: End of parsed string */
)
{
int rc;
rc = sqlite3LockAndPrepare(db, zSql, nBytes, 1, ppStmt, pzTail);
assert(rc == SQLITE_OK || ppStmt == 0 || *ppStmt == 0); /* VERIFY: F13021 */
return rc;
}
#ifndef SQLITE_OMIT_UTF16
/*
** Compile the UTF-16 encoded SQL statement zSql into a statement handle.
*/
static int
sqlite3Prepare16(sqlite3 * db, /* Database handle. */
const void *zSql, /* UTF-8 encoded SQL statement. */
int nBytes, /* Length of zSql in bytes. */
int saveSqlFlag, /* True to save SQL text into the sqlite3_stmt */
sqlite3_stmt ** ppStmt, /* OUT: A pointer to the prepared statement */
const void **pzTail /* OUT: End of parsed string */
)
{
/* This function currently works by first transforming the UTF-16
** encoded string to UTF-8, then invoking sqlite3_prepare(). The
** tricky bit is figuring out the pointer to return in *pzTail.
*/
char *zSql8;
const char *zTail8 = 0;
int rc = SQLITE_OK;
if(!sqlite3SafetyCheckOk(db))
{
return SQLITE_MISUSE;
}
sqlite3_mutex_enter(db->mutex);
zSql8 = sqlite3Utf16to8(db, zSql, nBytes);
if(zSql8)
{
rc = sqlite3LockAndPrepare(db, zSql8, -1, saveSqlFlag, ppStmt, &zTail8);
}
if(zTail8 && pzTail)
{
/* If sqlite3_prepare returns a tail pointer, we calculate the
** equivalent pointer into the UTF-16 string by counting the unicode
** characters between zSql8 and zTail8, and then returning a pointer
** the same number of characters into the UTF-16 string.
*/
int chars_parsed = sqlite3Utf8CharLen(zSql8, zTail8 - zSql8);
*pzTail = (u8 *) zSql + sqlite3Utf16ByteLen(zSql, chars_parsed);
}
sqlite3_free(zSql8);
rc = sqlite3ApiExit(db, rc);
sqlite3_mutex_leave(db->mutex);
return rc;
}
/*
** Two versions of the official API. Legacy and new use. In the legacy
** version, the original SQL text is not saved in the prepared statement
** and so if a schema change occurs, SQLITE_SCHEMA is returned by
** sqlite3_step(). In the new version, the original SQL text is retained
** and the statement is automatically recompiled if an schema change
** occurs.
*/
SQLITE_API int
sqlite3_prepare16(sqlite3 * db, /* Database handle. */
const void *zSql, /* UTF-8 encoded SQL statement. */
int nBytes, /* Length of zSql in bytes. */
sqlite3_stmt ** ppStmt, /* OUT: A pointer to the prepared statement */
const void **pzTail /* OUT: End of parsed string */
)
{
int rc;
rc = sqlite3Prepare16(db, zSql, nBytes, 0, ppStmt, pzTail);
assert(rc == SQLITE_OK || ppStmt == 0 || *ppStmt == 0); /* VERIFY: F13021 */
return rc;
}
SQLITE_API int
sqlite3_prepare16_v2(sqlite3 * db, /* Database handle. */
const void *zSql, /* UTF-8 encoded SQL statement. */
int nBytes, /* Length of zSql in bytes. */
sqlite3_stmt ** ppStmt, /* OUT: A pointer to the prepared statement */
const void **pzTail /* OUT: End of parsed string */
)
{
int rc;
rc = sqlite3Prepare16(db, zSql, nBytes, 1, ppStmt, pzTail);
assert(rc == SQLITE_OK || ppStmt == 0 || *ppStmt == 0); /* VERIFY: F13021 */
return rc;
}
#endif /* SQLITE_OMIT_UTF16 */
/************** End of prepare.c *********************************************/
/************** Begin file select.c ******************************************/
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle SELECT statements in SQLite.
**
*/
/*
** Delete all the content of a Select structure but do not deallocate
** the select structure itself.
*/
static void
clearSelect(Select * p)
{
sqlite3ExprListDelete(p->pEList);
sqlite3SrcListDelete(p->pSrc);
sqlite3ExprDelete(p->pWhere);
sqlite3ExprListDelete(p->pGroupBy);
sqlite3ExprDelete(p->pHaving);
sqlite3ExprListDelete(p->pOrderBy);
sqlite3SelectDelete(p->pPrior);
sqlite3ExprDelete(p->pLimit);
sqlite3ExprDelete(p->pOffset);
}
/*
** Initialize a SelectDest structure.
*/
SQLITE_PRIVATE void
sqlite3SelectDestInit(SelectDest * pDest, int eDest, int iParm)
{
pDest->eDest = eDest;
pDest->iParm = iParm;
pDest->affinity = 0;
pDest->iMem = 0;
pDest->nMem = 0;
}
/*
** Allocate a new Select structure and return a pointer to that
** structure.
*/
SQLITE_PRIVATE Select *
sqlite3SelectNew(Parse * pParse, /* Parsing context */
ExprList * pEList, /* which columns to include in the result */
SrcList * pSrc, /* the FROM clause -- which tables to scan */
Expr * pWhere, /* the WHERE clause */
ExprList * pGroupBy, /* the GROUP BY clause */
Expr * pHaving, /* the HAVING clause */
ExprList * pOrderBy, /* the ORDER BY clause */
int isDistinct, /* true if the DISTINCT keyword is present */
Expr * pLimit, /* LIMIT value. NULL means not used */
Expr * pOffset /* OFFSET value. NULL means no offset */
)
{
Select *pNew;
Select standin;
sqlite3 *db = pParse->db;
pNew = sqlite3DbMallocZero(db, sizeof(*pNew));
assert(!pOffset || pLimit); /* Can't have OFFSET without LIMIT. */
if(pNew == 0)
{
pNew = &standin;
memset(pNew, 0, sizeof(*pNew));
}
if(pEList == 0)
{
pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0, 0, 0), 0);
}
pNew->pEList = pEList;
pNew->pSrc = pSrc;
pNew->pWhere = pWhere;
pNew->pGroupBy = pGroupBy;
pNew->pHaving = pHaving;
pNew->pOrderBy = pOrderBy;
pNew->isDistinct = isDistinct;
pNew->op = TK_SELECT;
assert(pOffset == 0 || pLimit != 0);
pNew->pLimit = pLimit;
pNew->pOffset = pOffset;
pNew->iLimit = -1;
pNew->iOffset = -1;
pNew->addrOpenEphm[0] = -1;
pNew->addrOpenEphm[1] = -1;
pNew->addrOpenEphm[2] = -1;
if(pNew == &standin)
{
clearSelect(pNew);
pNew = 0;
}
return pNew;
}
/*
** Delete the given Select structure and all of its substructures.
*/
SQLITE_PRIVATE void
sqlite3SelectDelete(Select * p)
{
if(p)
{
clearSelect(p);
sqlite3_free(p);
}
}
/*
** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
** type of join. Return an integer constant that expresses that type
** in terms of the following bit values:
**
** JT_INNER
** JT_CROSS
** JT_OUTER
** JT_NATURAL
** JT_LEFT
** JT_RIGHT
**
** A full outer join is the combination of JT_LEFT and JT_RIGHT.
**
** If an illegal or unsupported join type is seen, then still return
** a join type, but put an error in the pParse structure.
*/
SQLITE_PRIVATE int
sqlite3JoinType(Parse * pParse, Token * pA, Token * pB, Token * pC)
{
int jointype = 0;
Token *apAll[3];
Token *p;
static const struct
{
const char zKeyword[8];
u8 nChar;
u8 code;
} keywords[] =
{
{
"natural", 7, JT_NATURAL},
{
"left", 4, JT_LEFT | JT_OUTER},
{
"right", 5, JT_RIGHT | JT_OUTER},
{
"full", 4, JT_LEFT | JT_RIGHT | JT_OUTER},
{
"outer", 5, JT_OUTER},
{
"inner", 5, JT_INNER},
{
"cross", 5, JT_INNER | JT_CROSS},};
int i, j;
apAll[0] = pA;
apAll[1] = pB;
apAll[2] = pC;
for (i = 0; i < 3 && apAll[i]; i++)
{
p = apAll[i];
for (j = 0; j < sizeof(keywords) / sizeof(keywords[0]); j++)
{
if(p->n == keywords[j].nChar
&& sqlite3StrNICmp((char *) p->z, keywords[j].zKeyword, p->n) == 0)
{
jointype |= keywords[j].code;
break;
}
}
if(j >= sizeof(keywords) / sizeof(keywords[0]))
{
jointype |= JT_ERROR;
break;
}
}
if((jointype & (JT_INNER | JT_OUTER)) == (JT_INNER | JT_OUTER) ||
(jointype & JT_ERROR) != 0)
{
const char *zSp1 = " ";
const char *zSp2 = " ";
if(pB == 0)
{
zSp1++;
}
if(pC == 0)
{
zSp2++;
}
sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
"%T%s%T%s%T", pA, zSp1, pB, zSp2, pC);
jointype = JT_INNER;
}
else if(jointype & JT_RIGHT)
{
sqlite3ErrorMsg(pParse, "RIGHT and FULL OUTER JOINs are not currently supported");
jointype = JT_INNER;
}
return jointype;
}
/*
** Return the index of a column in a table. Return -1 if the column
** is not contained in the table.
*/
static int
columnIndex(Table * pTab, const char *zCol)
{
int i;
for (i = 0; i < pTab->nCol; i++)
{
if(sqlite3StrICmp(pTab->aCol[i].zName, zCol) == 0)
return i;
}
return -1;
}
/*
** Set the value of a token to a '\000'-terminated string.
*/
static void
setToken(Token * p, const char *z)
{
p->z = (u8 *) z;
p->n = z ? strlen(z) : 0;
p->dyn = 0;
}
/*
** Set the token to the double-quoted and escaped version of the string pointed
** to by z. For example;
**
** {a"bc} -> {"a""bc"}
*/
static void
setQuotedToken(Parse * pParse, Token * p, const char *z)
{
/* Check if the string contains any " characters. If it does, then
** this function will malloc space to create a quoted version of
** the string in. Otherwise, save a call to sqlite3MPrintf() by
** just copying the pointer to the string.
*/
const char *z2 = z;
while (*z2)
{
if(*z2 == '"')
break;
z2++;
}
if(*z2)
{
/* String contains " characters - copy and quote the string. */
p->z = (u8 *) sqlite3MPrintf(pParse->db, "\"%w\"", z);
if(p->z)
{
p->n = strlen((char *) p->z);
p->dyn = 1;
}
}
else
{
/* String contains no " characters - copy the pointer. */
p->z = (u8 *) z;
p->n = (z2 - z);
p->dyn = 0;
}
}
/*
** Create an expression node for an identifier with the name of zName
*/
SQLITE_PRIVATE Expr *
sqlite3CreateIdExpr(Parse * pParse, const char *zName)
{
Token dummy;
setToken(&dummy, zName);
return sqlite3PExpr(pParse, TK_ID, 0, 0, &dummy);
}
/*
** Add a term to the WHERE expression in *ppExpr that requires the
** zCol column to be equal in the two tables pTab1 and pTab2.
*/
static void
addWhereTerm(Parse * pParse, /* Parsing context */
const char *zCol, /* Name of the column */
const Table * pTab1, /* First table */
const char *zAlias1, /* Alias for first table. May be NULL */
const Table * pTab2, /* Second table */
const char *zAlias2, /* Alias for second table. May be NULL */
int iRightJoinTable, /* VDBE cursor for the right table */
Expr ** ppExpr, /* Add the equality term to this expression */
int isOuterJoin /* True if dealing with an OUTER join */
)
{
Expr *pE1a, *pE1b, *pE1c;
Expr *pE2a, *pE2b, *pE2c;
Expr *pE;
pE1a = sqlite3CreateIdExpr(pParse, zCol);
pE2a = sqlite3CreateIdExpr(pParse, zCol);
if(zAlias1 == 0)
{
zAlias1 = pTab1->zName;
}
pE1b = sqlite3CreateIdExpr(pParse, zAlias1);
if(zAlias2 == 0)
{
zAlias2 = pTab2->zName;
}
pE2b = sqlite3CreateIdExpr(pParse, zAlias2);
pE1c = sqlite3PExpr(pParse, TK_DOT, pE1b, pE1a, 0);
pE2c = sqlite3PExpr(pParse, TK_DOT, pE2b, pE2a, 0);
pE = sqlite3PExpr(pParse, TK_EQ, pE1c, pE2c, 0);
if(pE && isOuterJoin)
{
ExprSetProperty(pE, EP_FromJoin);
pE->iRightJoinTable = iRightJoinTable;
}
*ppExpr = sqlite3ExprAnd(pParse->db, *ppExpr, pE);
}
/*
** Set the EP_FromJoin property on all terms of the given expression.
** And set the Expr.iRightJoinTable to iTable for every term in the
** expression.
**
** The EP_FromJoin property is used on terms of an expression to tell
** the LEFT OUTER JOIN processing logic that this term is part of the
** join restriction specified in the ON or USING clause and not a part
** of the more general WHERE clause. These terms are moved over to the
** WHERE clause during join processing but we need to remember that they
** originated in the ON or USING clause.
**
** The Expr.iRightJoinTable tells the WHERE clause processing that the
** expression depends on table iRightJoinTable even if that table is not
** explicitly mentioned in the expression. That information is needed
** for cases like this:
**
** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
**
** The where clause needs to defer the handling of the t1.x=5
** term until after the t2 loop of the join. In that way, a
** NULL t2 row will be inserted whenever t1.x!=5. If we do not
** defer the handling of t1.x=5, it will be processed immediately
** after the t1 loop and rows with t1.x!=5 will never appear in
** the output, which is incorrect.
*/
static void
setJoinExpr(Expr * p, int iTable)
{
while (p)
{
ExprSetProperty(p, EP_FromJoin);
p->iRightJoinTable = iTable;
setJoinExpr(p->pLeft, iTable);
p = p->pRight;
}
}
/*
** This routine processes the join information for a SELECT statement.
** ON and USING clauses are converted into extra terms of the WHERE clause.
** NATURAL joins also create extra WHERE clause terms.
**
** The terms of a FROM clause are contained in the Select.pSrc structure.
** The left most table is the first entry in Select.pSrc. The right-most
** table is the last entry. The join operator is held in the entry to
** the left. Thus entry 0 contains the join operator for the join between
** entries 0 and 1. Any ON or USING clauses associated with the join are
** also attached to the left entry.
**
** This routine returns the number of errors encountered.
*/
static int
sqliteProcessJoin(Parse * pParse, Select * p)
{
SrcList *pSrc; /* All tables in the FROM clause */
int i, j; /* Loop counters */
struct SrcList_item *pLeft; /* Left table being joined */
struct SrcList_item *pRight; /* Right table being joined */
pSrc = p->pSrc;
pLeft = &pSrc->a[0];
pRight = &pLeft[1];
for (i = 0; i < pSrc->nSrc - 1; i++, pRight++, pLeft++)
{
Table *pLeftTab = pLeft->pTab;
Table *pRightTab = pRight->pTab;
int isOuter;
if(pLeftTab == 0 || pRightTab == 0)
continue;
isOuter = (pRight->jointype & JT_OUTER) != 0;
/* When the NATURAL keyword is present, add WHERE clause terms for
** every column that the two tables have in common.
*/
if(pRight->jointype & JT_NATURAL)
{
if(pRight->pOn || pRight->pUsing)
{
sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
"an ON or USING clause", 0);
return 1;
}
for (j = 0; j < pLeftTab->nCol; j++)
{
char *zName = pLeftTab->aCol[j].zName;
if(columnIndex(pRightTab, zName) >= 0)
{
addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias,
pRightTab, pRight->zAlias,
pRight->iCursor, &p->pWhere, isOuter);
}
}
}
/* Disallow both ON and USING clauses in the same join
*/
if(pRight->pOn && pRight->pUsing)
{
sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
"clauses in the same join");
return 1;
}
/* Add the ON clause to the end of the WHERE clause, connected by
** an AND operator.
*/
if(pRight->pOn)
{
if(isOuter)
setJoinExpr(pRight->pOn, pRight->iCursor);
p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
pRight->pOn = 0;
}
/* Create extra terms on the WHERE clause for each column named
** in the USING clause. Example: If the two tables to be joined are
** A and B and the USING clause names X, Y, and Z, then add this
** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
** Report an error if any column mentioned in the USING clause is
** not contained in both tables to be joined.
*/
if(pRight->pUsing)
{
IdList *pList = pRight->pUsing;
for (j = 0; j < pList->nId; j++)
{
char *zName = pList->a[j].zName;
if(columnIndex(pLeftTab, zName) < 0
|| columnIndex(pRightTab, zName) < 0)
{
sqlite3ErrorMsg(pParse,
"cannot join using column %s - column "
"not present in both tables", zName);
return 1;
}
addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias,
pRightTab, pRight->zAlias,
pRight->iCursor, &p->pWhere, isOuter);
}
}
}
return 0;
}
/*
** Insert code into "v" that will push the record on the top of the
** stack into the sorter.
*/
static void
pushOntoSorter(Parse * pParse, /* Parser context */
ExprList * pOrderBy, /* The ORDER BY clause */
Select * pSelect, /* The whole SELECT statement */
int regData /* Register holding data to be sorted */
)
{
Vdbe *v = pParse->pVdbe;
int nExpr = pOrderBy->nExpr;
int regBase = sqlite3GetTempRange(pParse, nExpr + 2);
int regRecord = sqlite3GetTempReg(pParse);
sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0);
sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase + nExpr);
sqlite3ExprCodeMove(pParse, regData, regBase + nExpr + 1);
sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord);
sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord);
sqlite3ReleaseTempReg(pParse, regRecord);
sqlite3ReleaseTempRange(pParse, regBase, nExpr + 2);
if(pSelect->iLimit >= 0)
{
int addr1, addr2;
int iLimit;
if(pSelect->pOffset)
{
iLimit = pSelect->iOffset + 1;
}
else
{
iLimit = pSelect->iLimit;
}
addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit);
sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
sqlite3VdbeJumpHere(v, addr1);
sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor);
sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor);
sqlite3VdbeJumpHere(v, addr2);
pSelect->iLimit = -1;
}
}
/*
** Add code to implement the OFFSET
*/
static void
codeOffset(Vdbe * v, /* Generate code into this VM */
Select * p, /* The SELECT statement being coded */
int iContinue /* Jump here to skip the current record */
)
{
if(p->iOffset >= 0 && iContinue != 0)
{
int addr;
sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1);
addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset);
sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
VdbeComment((v, "skip OFFSET records"));
sqlite3VdbeJumpHere(v, addr);
}
}
/*
** Add code that will check to make sure the N registers starting at iMem
** form a distinct entry. iTab is a sorting index that holds previously
** seen combinations of the N values. A new entry is made in iTab
** if the current N values are new.
**
** A jump to addrRepeat is made and the N+1 values are popped from the
** stack if the top N elements are not distinct.
*/
static void
codeDistinct(Parse * pParse, /* Parsing and code generating context */
int iTab, /* A sorting index used to test for distinctness */
int addrRepeat, /* Jump to here if not distinct */
int N, /* Number of elements */
int iMem /* First element */
)
{
Vdbe *v;
int r1;
v = pParse->pVdbe;
r1 = sqlite3GetTempReg(pParse);
sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
sqlite3VdbeAddOp3(v, OP_Found, iTab, addrRepeat, r1);
sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
sqlite3ReleaseTempReg(pParse, r1);
}
/*
** Generate an error message when a SELECT is used within a subexpression
** (example: "a IN (SELECT * FROM table)") but it has more than 1 result
** column. We do this in a subroutine because the error occurs in multiple
** places.
*/
static int
checkForMultiColumnSelectError(Parse * pParse, /* Parse context. */
SelectDest * pDest, /* Destination of SELECT results */
int nExpr /* Number of result columns returned by SELECT */
)
{
int eDest = pDest->eDest;
if(nExpr > 1 && (eDest == SRT_Mem || eDest == SRT_Set))
{
sqlite3ErrorMsg(pParse, "only a single result allowed for "
"a SELECT that is part of an expression");
return 1;
}
else
{
return 0;
}
}
/*
** This routine generates the code for the inside of the inner loop
** of a SELECT.
**
** If srcTab and nColumn are both zero, then the pEList expressions
** are evaluated in order to get the data for this row. If nColumn>0
** then data is pulled from srcTab and pEList is used only to get the
** datatypes for each column.
*/
static void
selectInnerLoop(Parse * pParse, /* The parser context */
Select * p, /* The complete select statement being coded */
ExprList * pEList, /* List of values being extracted */
int srcTab, /* Pull data from this table */
int nColumn, /* Number of columns in the source table */
ExprList * pOrderBy, /* If not NULL, sort results using this key */
int distinct, /* If >=0, make sure results are distinct */
SelectDest * pDest, /* How to dispose of the results */
int iContinue, /* Jump here to continue with next row */
int iBreak, /* Jump here to break out of the inner loop */
char *aff /* affinity string if eDest is SRT_Union */
)
{
Vdbe *v = pParse->pVdbe;
int i;
int hasDistinct; /* True if the DISTINCT keyword is present */
int regResult; /* Start of memory holding result set */
int eDest = pDest->eDest; /* How to dispose of results */
int iParm = pDest->iParm; /* First argument to disposal method */
int nResultCol; /* Number of result columns */
if(v == 0)
return;
assert(pEList != 0);
/* If there was a LIMIT clause on the SELECT statement, then do the check
** to see if this row should be output.
*/
hasDistinct = distinct >= 0 && pEList->nExpr > 0;
if(pOrderBy == 0 && !hasDistinct)
{
codeOffset(v, p, iContinue);
}
/* Pull the requested columns.
*/
if(nColumn > 0)
{
nResultCol = nColumn;
}
else
{
nResultCol = pEList->nExpr;
}
if(pDest->iMem == 0)
{
pDest->iMem = sqlite3GetTempRange(pParse, nResultCol);
pDest->nMem = nResultCol;
}
else if(pDest->nMem != nResultCol)
{
/* This happens when two SELECTs of a compound SELECT have differing
** numbers of result columns. The error message will be generated by
** a higher-level routine. */
return;
}
regResult = pDest->iMem;
if(nColumn > 0)
{
for (i = 0; i < nColumn; i++)
{
sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult + i);
}
}
else if(eDest != SRT_Exists)
{
/* If the destination is an EXISTS(...) expression, the actual
** values returned by the SELECT are not required.
*/
sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest == SRT_Callback);
}
nColumn = nResultCol;
/* If the DISTINCT keyword was present on the SELECT statement
** and this row has been seen before, then do not make this row
** part of the result.
*/
if(hasDistinct)
{
assert(pEList != 0);
assert(pEList->nExpr == nColumn);
codeDistinct(pParse, distinct, iContinue, nColumn, regResult);
if(pOrderBy == 0)
{
codeOffset(v, p, iContinue);
}
}
if(checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr))
{
return;
}
switch (eDest)
{
/* In this mode, write each query result to the key of the temporary
** table iParm.
*/
#ifndef SQLITE_OMIT_COMPOUND_SELECT
case SRT_Union:
{
int r1;
r1 = sqlite3GetTempReg(pParse);
sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
if(aff)
{
sqlite3VdbeChangeP4(v, -1, aff, P4_STATIC);
}
sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
sqlite3ReleaseTempReg(pParse, r1);
break;
}
/* Construct a record from the query result, but instead of
** saving that record, use it as a key to delete elements from
** the temporary table iParm.
*/
case SRT_Except:
{
sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn);
break;
}
#endif
/* Store the result as data using a unique key.
*/
case SRT_Table:
case SRT_EphemTab:
{
int r1 = sqlite3GetTempReg(pParse);
sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
if(pOrderBy)
{
pushOntoSorter(pParse, pOrderBy, p, r1);
}
else
{
int r2 = sqlite3GetTempReg(pParse);
sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
sqlite3ReleaseTempReg(pParse, r2);
}
sqlite3ReleaseTempReg(pParse, r1);
break;
}
#ifndef SQLITE_OMIT_SUBQUERY
/* If we are creating a set for an "expr IN (SELECT ...)" construct,
** then there should be a single item on the stack. Write this
** item into the set table with bogus data.
*/
case SRT_Set:
{
int addr2;
assert(nColumn == 1);
addr2 = sqlite3VdbeAddOp1(v, OP_IsNull, regResult);
p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity);
if(pOrderBy)
{
/* At first glance you would think we could optimize out the
** ORDER BY in this case since the order of entries in the set
** does not matter. But there might be a LIMIT clause, in which
** case the order does matter */
pushOntoSorter(pParse, pOrderBy, p, regResult);
}
else
{
int r1 = sqlite3GetTempReg(pParse);
sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity,
1);
sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
sqlite3ReleaseTempReg(pParse, r1);
}
sqlite3VdbeJumpHere(v, addr2);
break;
}
/* If any row exist in the result set, record that fact and abort.
*/
case SRT_Exists:
{
sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
/* The LIMIT clause will terminate the loop for us */
break;
}
/* If this is a scalar select that is part of an expression, then
** store the results in the appropriate memory cell and break out
** of the scan loop.
*/
case SRT_Mem:
{
assert(nColumn == 1);
if(pOrderBy)
{
pushOntoSorter(pParse, pOrderBy, p, regResult);
}
else
{
sqlite3ExprCodeMove(pParse, regResult, iParm);
/* The LIMIT clause will jump out of the loop for us */
}
break;
}
#endif /* #ifndef SQLITE_OMIT_SUBQUERY */
/* Send the data to the callback function or to a subroutine. In the
** case of a subroutine, the subroutine itself is responsible for
** popping the data from the stack.
*/
case SRT_Subroutine:
case SRT_Callback:
{
if(pOrderBy)
{
int r1 = sqlite3GetTempReg(pParse);
sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
pushOntoSorter(pParse, pOrderBy, p, r1);
sqlite3ReleaseTempReg(pParse, r1);
}
else if(eDest == SRT_Subroutine)
{
sqlite3VdbeAddOp2(v, OP_Gosub, 0, iParm);
}
else
{
sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn);
sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn);
}
break;
}
#if !defined(SQLITE_OMIT_TRIGGER)
/* Discard the results. This is used for SELECT statements inside
** the body of a TRIGGER. The purpose of such selects is to call
** user-defined functions that have side effects. We do not care
** about the actual results of the select.
*/
default:
{
assert(eDest == SRT_Discard);
break;
}
#endif
}
/* Jump to the end of the loop if the LIMIT is reached.
*/
if(p->iLimit >= 0 && pOrderBy == 0)
{
sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak);
}
}
/*
** Given an expression list, generate a KeyInfo structure that records
** the collating sequence for each expression in that expression list.
**
** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
** KeyInfo structure is appropriate for initializing a virtual index to
** implement that clause. If the ExprList is the result set of a SELECT
** then the KeyInfo structure is appropriate for initializing a virtual
** index to implement a DISTINCT test.
**
** Space to hold the KeyInfo structure is obtain from malloc. The calling
** function is responsible for seeing that this structure is eventually
** freed. Add the KeyInfo structure to the P4 field of an opcode using
** P4_KEYINFO_HANDOFF is the usual way of dealing with this.
*/
static KeyInfo *
keyInfoFromExprList(Parse * pParse, ExprList * pList)
{
sqlite3 *db = pParse->db;
int nExpr;
KeyInfo *pInfo;
struct ExprList_item *pItem;
int i;
nExpr = pList->nExpr;
pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr * (sizeof(CollSeq *) + 1));
if(pInfo)
{
pInfo->aSortOrder = (u8 *) & pInfo->aColl[nExpr];
pInfo->nField = nExpr;
pInfo->enc = ENC(db);
for (i = 0, pItem = pList->a; i < nExpr; i++, pItem++)
{
CollSeq *pColl;
pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
if(!pColl)
{
pColl = db->pDfltColl;
}
pInfo->aColl[i] = pColl;
pInfo->aSortOrder[i] = pItem->sortOrder;
}
}
return pInfo;
}
/*
** If the inner loop was generated using a non-null pOrderBy argument,
** then the results were placed in a sorter. After the loop is terminated
** we need to run the sorter and output the results. The following
** routine generates the code needed to do that.
*/
static void
generateSortTail(Parse * pParse, /* Parsing context */
Select * p, /* The SELECT statement */
Vdbe * v, /* Generate code into this VDBE */
int nColumn, /* Number of columns of data */
SelectDest * pDest /* Write the sorted results here */
)
{
int brk = sqlite3VdbeMakeLabel(v);
int cont = sqlite3VdbeMakeLabel(v);
int addr;
int iTab;
int pseudoTab = 0;
ExprList *pOrderBy = p->pOrderBy;
int eDest = pDest->eDest;
int iParm = pDest->iParm;
int regRow;
int regRowid;
iTab = pOrderBy->iECursor;
if(eDest == SRT_Callback || eDest == SRT_Subroutine)
{
pseudoTab = pParse->nTab++;
sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, nColumn);
sqlite3VdbeAddOp2(v, OP_OpenPseudo, pseudoTab, eDest == SRT_Callback);
}
addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, brk);
codeOffset(v, p, cont);
regRow = sqlite3GetTempReg(pParse);
regRowid = sqlite3GetTempReg(pParse);
sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow);
switch (eDest)
{
case SRT_Table:
case SRT_EphemTab:
{
sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
break;
}
#ifndef SQLITE_OMIT_SUBQUERY
case SRT_Set:
{
int j1;
assert(nColumn == 1);
j1 = sqlite3VdbeAddOp1(v, OP_IsNull, regRow);
sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1);
sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
sqlite3VdbeJumpHere(v, j1);
break;
}
case SRT_Mem:
{
assert(nColumn == 1);
sqlite3ExprCodeMove(pParse, regRow, iParm);
/* The LIMIT clause will terminate the loop for us */
break;
}
#endif
case SRT_Callback:
case SRT_Subroutine:
{
int i;
sqlite3VdbeAddOp2(v, OP_Integer, 1, regRowid);
sqlite3VdbeAddOp3(v, OP_Insert, pseudoTab, regRow, regRowid);
for (i = 0; i < nColumn; i++)
{
assert(regRow != pDest->iMem + i);
sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem + i);
}
if(eDest == SRT_Callback)
{
sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn);
sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn);
}
else
{
sqlite3VdbeAddOp2(v, OP_Gosub, 0, iParm);
}
break;
}
default:
{
/* Do nothing */
break;
}
}
sqlite3ReleaseTempReg(pParse, regRow);
sqlite3ReleaseTempReg(pParse, regRowid);
/* Jump to the end of the loop when the LIMIT is reached
*/
if(p->iLimit >= 0)
{
sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, brk);
}
/* The bottom of the loop
*/
sqlite3VdbeResolveLabel(v, cont);
sqlite3VdbeAddOp2(v, OP_Next, iTab, addr);
sqlite3VdbeResolveLabel(v, brk);
if(eDest == SRT_Callback || eDest == SRT_Subroutine)
{
sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
}
}
/*
** Return a pointer to a string containing the 'declaration type' of the
** expression pExpr. The string may be treated as static by the caller.
**
** The declaration type is the exact datatype definition extracted from the
** original CREATE TABLE statement if the expression is a column. The
** declaration type for a ROWID field is INTEGER. Exactly when an expression
** is considered a column can be complex in the presence of subqueries. The
** result-set expression in all of the following SELECT statements is
** considered a column by this function.
**
** SELECT col FROM tbl;
** SELECT (SELECT col FROM tbl;
** SELECT (SELECT col FROM tbl);
** SELECT abc FROM (SELECT col AS abc FROM tbl);
**
** The declaration type for any expression other than a column is NULL.
*/
static const char *
columnType(NameContext * pNC,
Expr * pExpr,
const char **pzOriginDb, const char **pzOriginTab, const char **pzOriginCol)
{
char const *zType = 0;
char const *zOriginDb = 0;
char const *zOriginTab = 0;
char const *zOriginCol = 0;
int j;
if(pExpr == 0 || pNC->pSrcList == 0)
return 0;
switch (pExpr->op)
{
case TK_AGG_COLUMN:
case TK_COLUMN:
{
/* The expression is a column. Locate the table the column is being
** extracted from in NameContext.pSrcList. This table may be real
** database table or a subquery.
*/
Table *pTab = 0; /* Table structure column is extracted from */
Select *pS = 0; /* Select the column is extracted from */
int iCol = pExpr->iColumn; /* Index of column in pTab */
while (pNC && !pTab)
{
SrcList *pTabList = pNC->pSrcList;
for (j = 0;
j < pTabList->nSrc && pTabList->a[j].iCursor != pExpr->iTable;
j++);
if(j < pTabList->nSrc)
{
pTab = pTabList->a[j].pTab;
pS = pTabList->a[j].pSelect;
}
else
{
pNC = pNC->pNext;
}
}
if(pTab == 0)
{
/* FIX ME:
** This can occurs if you have something like "SELECT new.x;" inside
** a trigger. In other words, if you reference the special "new"
** table in the result set of a select. We do not have a good way
** to find the actual table type, so call it "TEXT". This is really
** something of a bug, but I do not know how to fix it.
**
** This code does not produce the correct answer - it just prevents
** a segfault. See ticket #1229.
*/
zType = "TEXT";
break;
}
assert(pTab);
if(pS)
{
/* The "table" is actually a sub-select or a view in the FROM clause
** of the SELECT statement. Return the declaration type and origin
** data for the result-set column of the sub-select.
*/
if(iCol >= 0 && iCol < pS->pEList->nExpr)
{
/* If iCol is less than zero, then the expression requests the
** rowid of the sub-select or view. This expression is legal (see
** test case misc2.2.2) - it always evaluates to NULL.
*/
NameContext sNC;
Expr *p = pS->pEList->a[iCol].pExpr;
sNC.pSrcList = pS->pSrc;
sNC.pNext = 0;
sNC.pParse = pNC->pParse;
zType = columnType(&sNC, p, &zOriginDb, &zOriginTab,
&zOriginCol);
}
}
else if(pTab->pSchema)
{
/* A real table */
assert(!pS);
if(iCol < 0)
iCol = pTab->iPKey;
assert(iCol == -1 || (iCol >= 0 && iCol < pTab->nCol));
if(iCol < 0)
{
zType = "INTEGER";
zOriginCol = "rowid";
}
else
{
zType = pTab->aCol[iCol].zType;
zOriginCol = pTab->aCol[iCol].zName;
}
zOriginTab = pTab->zName;
if(pNC->pParse)
{
int iDb =
sqlite3SchemaToIndex(pNC->pParse->db,
pTab->pSchema);
zOriginDb = pNC->pParse->db->aDb[iDb].zName;
}
}
break;
}
#ifndef SQLITE_OMIT_SUBQUERY
case TK_SELECT:
{
/* The expression is a sub-select. Return the declaration type and
** origin info for the single column in the result set of the SELECT
** statement.
*/
NameContext sNC;
Select *pS = pExpr->pSelect;
Expr *p = pS->pEList->a[0].pExpr;
sNC.pSrcList = pS->pSrc;
sNC.pNext = pNC;
sNC.pParse = pNC->pParse;
zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
break;
}
#endif
}
if(pzOriginDb)
{
assert(pzOriginTab && pzOriginCol);
*pzOriginDb = zOriginDb;
*pzOriginTab = zOriginTab;
*pzOriginCol = zOriginCol;
}
return zType;
}
/*
** Generate code that will tell the VDBE the declaration types of columns
** in the result set.
*/
static void
generateColumnTypes(Parse * pParse, /* Parser context */
SrcList * pTabList, /* List of tables */
ExprList * pEList /* Expressions defining the result set */
)
{
#ifndef SQLITE_OMIT_DECLTYPE
Vdbe *v = pParse->pVdbe;
int i;
NameContext sNC;
sNC.pSrcList = pTabList;
sNC.pParse = pParse;
for (i = 0; i < pEList->nExpr; i++)
{
Expr *p = pEList->a[i].pExpr;
const char *zType;
#ifdef SQLITE_ENABLE_COLUMN_METADATA
const char *zOrigDb = 0;
const char *zOrigTab = 0;
const char *zOrigCol = 0;
zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
/* The vdbe must make its own copy of the column-type and other
** column specific strings, in case the schema is reset before this
** virtual machine is deleted.
*/
sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P4_TRANSIENT);
sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P4_TRANSIENT);
sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P4_TRANSIENT);
#else
zType = columnType(&sNC, p, 0, 0, 0);
#endif
sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P4_TRANSIENT);
}
#endif /* SQLITE_OMIT_DECLTYPE */
}
/*
** Generate code that will tell the VDBE the names of columns
** in the result set. This information is used to provide the
** azCol[] values in the callback.
*/
static void
generateColumnNames(Parse * pParse, /* Parser context */
SrcList * pTabList, /* List of tables */
ExprList * pEList /* Expressions defining the result set */
)
{
Vdbe *v = pParse->pVdbe;
int i, j;
sqlite3 *db = pParse->db;
int fullNames, shortNames;
#ifndef SQLITE_OMIT_EXPLAIN
/* If this is an EXPLAIN, skip this step */
if(pParse->explain)
{
return;
}
#endif
assert(v != 0);
if(pParse->colNamesSet || v == 0 || db->mallocFailed)
return;
pParse->colNamesSet = 1;
fullNames = (db->flags & SQLITE_FullColNames) != 0;
shortNames = (db->flags & SQLITE_ShortColNames) != 0;
sqlite3VdbeSetNumCols(v, pEList->nExpr);
for (i = 0; i < pEList->nExpr; i++)
{
Expr *p;
p = pEList->a[i].pExpr;
if(p == 0)
continue;
if(pEList->a[i].zName)
{
char *zName = pEList->a[i].zName;
sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName));
continue;
}
if(p->op == TK_COLUMN && pTabList)
{
Table *pTab;
char *zCol;
int iCol = p->iColumn;
for (j = 0; j < pTabList->nSrc && pTabList->a[j].iCursor != p->iTable; j++)
{
}
assert(j < pTabList->nSrc);
pTab = pTabList->a[j].pTab;
if(iCol < 0)
iCol = pTab->iPKey;
assert(iCol == -1 || (iCol >= 0 && iCol < pTab->nCol));
if(iCol < 0)
{
zCol = "rowid";
}
else
{
zCol = pTab->aCol[iCol].zName;
}
if(!shortNames && !fullNames && p->span.z && p->span.z[0])
{
sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char *) p->span.z,
p->span.n);
}
else if(fullNames || (!shortNames && pTabList->nSrc > 1))
{
char *zName = 0;
char *zTab;
zTab = pTabList->a[j].zAlias;
if(fullNames || zTab == 0)
zTab = pTab->zName;
sqlite3SetString(&zName, zTab, ".", zCol, (char *) 0);
sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P4_DYNAMIC);
}
else
{
sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol));
}
}
else if(p->span.z && p->span.z[0])
{
sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char *) p->span.z, p->span.n);
/* sqlite3VdbeCompressSpace(v, addr); */
}
else
{
char zName[30];
assert(p->op != TK_COLUMN || pTabList == 0);
sqlite3_snprintf(sizeof(zName), zName, "column%d", i + 1);
sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, 0);
}
}
generateColumnTypes(pParse, pTabList, pEList);
}
#ifndef SQLITE_OMIT_COMPOUND_SELECT
/*
** Name of the connection operator, used for error messages.
*/
static const char *
selectOpName(int id)
{
char *z;
switch (id)
{
case TK_ALL:
z = "UNION ALL";
break;
case TK_INTERSECT:
z = "INTERSECT";
break;
case TK_EXCEPT:
z = "EXCEPT";
break;
default:
z = "UNION";
break;
}
return z;
}
#endif /* SQLITE_OMIT_COMPOUND_SELECT */
/*
** Forward declaration
*/
static int prepSelectStmt(Parse *, Select *);
/*
** Given a SELECT statement, generate a Table structure that describes
** the result set of that SELECT.
*/
SQLITE_PRIVATE Table *
sqlite3ResultSetOfSelect(Parse * pParse, char *zTabName, Select * pSelect)
{
Table *pTab;
int i, j;
ExprList *pEList;
Column *aCol, *pCol;
sqlite3 *db = pParse->db;
while (pSelect->pPrior)
pSelect = pSelect->pPrior;
if(prepSelectStmt(pParse, pSelect))
{
return 0;
}
if(sqlite3SelectResolve(pParse, pSelect, 0))
{
return 0;
}
pTab = sqlite3DbMallocZero(db, sizeof(Table));
if(pTab == 0)
{
return 0;
}
pTab->nRef = 1;
pTab->zName = zTabName ? sqlite3DbStrDup(db, zTabName) : 0;
pEList = pSelect->pEList;
pTab->nCol = pEList->nExpr;
assert(pTab->nCol > 0);
pTab->aCol = aCol = sqlite3DbMallocZero(db, sizeof(pTab->aCol[0]) * pTab->nCol);
for (i = 0, pCol = aCol; i < pTab->nCol; i++, pCol++)
{
Expr *p, *pR;
char *zType;
char *zName;
int nName;
CollSeq *pColl;
int cnt;
NameContext sNC;
/* Get an appropriate name for the column
*/
p = pEList->a[i].pExpr;
assert(p->pRight == 0 || p->pRight->token.z == 0 || p->pRight->token.z[0] != 0);
if((zName = pEList->a[i].zName) != 0)
{
/* If the column contains an "AS <name>" phrase, use <name> as the name */
zName = sqlite3DbStrDup(db, zName);
}
else if(p->op == TK_DOT && (pR = p->pRight) != 0 && pR->token.z && pR->token.z[0])
{
/* For columns of the from A.B use B as the name */
zName = sqlite3MPrintf(db, "%T", &pR->token);
}
else if(p->span.z && p->span.z[0])
{
/* Use the original text of the column expression as its name */
zName = sqlite3MPrintf(db, "%T", &p->span);
}
else
{
/* If all else fails, make up a name */
zName = sqlite3MPrintf(db, "column%d", i + 1);
}
if(!zName || db->mallocFailed)
{
db->mallocFailed = 1;
sqlite3_free(zName);
sqlite3DeleteTable(pTab);
return 0;
}
sqlite3Dequote(zName);
/* Make sure the column name is unique. If the name is not unique,
** append a integer to the name so that it becomes unique.
*/
nName = strlen(zName);
for (j = cnt = 0; j < i; j++)
{
if(sqlite3StrICmp(aCol[j].zName, zName) == 0)
{
zName[nName] = 0;
zName = sqlite3MPrintf(db, "%z:%d", zName, ++cnt);
j = -1;
if(zName == 0)
break;
}
}
pCol->zName = zName;
/* Get the typename, type affinity, and collating sequence for the
** column.
*/
memset(&sNC, 0, sizeof(sNC));
sNC.pSrcList = pSelect->pSrc;
zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0));
pCol->zType = zType;
pCol->affinity = sqlite3ExprAffinity(p);
pColl = sqlite3ExprCollSeq(pParse, p);
if(pColl)
{
pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
}
}
pTab->iPKey = -1;
return pTab;
}
/*
** Prepare a SELECT statement for processing by doing the following
** things:
**
** (1) Make sure VDBE cursor numbers have been assigned to every
** element of the FROM clause.
**
** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
** defines FROM clause. When views appear in the FROM clause,
** fill pTabList->a[].pSelect with a copy of the SELECT statement
** that implements the view. A copy is made of the view's SELECT
** statement so that we can freely modify or delete that statement
** without worrying about messing up the presistent representation
** of the view.
**
** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword
** on joins and the ON and USING clause of joins.
**
** (4) Scan the list of columns in the result set (pEList) looking
** for instances of the "*" operator or the TABLE.* operator.
** If found, expand each "*" to be every column in every table
** and TABLE.* to be every column in TABLE.
**
** Return 0 on success. If there are problems, leave an error message
** in pParse and return non-zero.
*/
static int
prepSelectStmt(Parse * pParse, Select * p)
{
int i, j, k, rc;
SrcList *pTabList;
ExprList *pEList;
struct SrcList_item *pFrom;
sqlite3 *db = pParse->db;
if(p == 0 || p->pSrc == 0 || db->mallocFailed)
{
return 1;
}
pTabList = p->pSrc;
pEList = p->pEList;
/* Make sure cursor numbers have been assigned to all entries in
** the FROM clause of the SELECT statement.
*/
sqlite3SrcListAssignCursors(pParse, p->pSrc);
/* Look up every table named in the FROM clause of the select. If
** an entry of the FROM clause is a subquery instead of a table or view,
** then create a transient table structure to describe the subquery.
*/
for (i = 0, pFrom = pTabList->a; i < pTabList->nSrc; i++, pFrom++)
{
Table *pTab;
if(pFrom->pTab != 0)
{
/* This statement has already been prepared. There is no need
** to go further. */
assert(i == 0);
return 0;
}
if(pFrom->zName == 0)
{
#ifndef SQLITE_OMIT_SUBQUERY
/* A sub-query in the FROM clause of a SELECT */
assert(pFrom->pSelect != 0);
if(pFrom->zAlias == 0)
{
pFrom->zAlias =
sqlite3MPrintf(db, "sqlite_subquery_%p_",
(void *) pFrom->pSelect);
}
assert(pFrom->pTab == 0);
pFrom->pTab = pTab =
sqlite3ResultSetOfSelect(pParse, pFrom->zAlias, pFrom->pSelect);
if(pTab == 0)
{
return 1;
}
/* The isEphem flag indicates that the Table structure has been
** dynamically allocated and may be freed at any time. In other words,
** pTab is not pointing to a persistent table structure that defines
** part of the schema. */
pTab->isEphem = 1;
#endif
}
else
{
/* An ordinary table or view name in the FROM clause */
assert(pFrom->pTab == 0);
pFrom->pTab = pTab =
sqlite3LocateTable(pParse, 0, pFrom->zName, pFrom->zDatabase);
if(pTab == 0)
{
return 1;
}
pTab->nRef++;
#if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
if(pTab->pSelect || IsVirtual(pTab))
{
/* We reach here if the named table is a really a view */
if(sqlite3ViewGetColumnNames(pParse, pTab))
{
return 1;
}
/* If pFrom->pSelect!=0 it means we are dealing with a
** view within a view. The SELECT structure has already been
** copied by the outer view so we can skip the copy step here
** in the inner view.
*/
if(pFrom->pSelect == 0)
{
pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect);
}
}
#endif
}
}
/* Process NATURAL keywords, and ON and USING clauses of joins.
*/
if(sqliteProcessJoin(pParse, p))
return 1;
/* For every "*" that occurs in the column list, insert the names of
** all columns in all tables. And for every TABLE.* insert the names
** of all columns in TABLE. The parser inserted a special expression
** with the TK_ALL operator for each "*" that it found in the column list.
** The following code just has to locate the TK_ALL expressions and expand
** each one to the list of all columns in all tables.
**
** The first loop just checks to see if there are any "*" operators
** that need expanding.
*/
for (k = 0; k < pEList->nExpr; k++)
{
Expr *pE = pEList->a[k].pExpr;
if(pE->op == TK_ALL)
break;
if(pE->op == TK_DOT && pE->pRight && pE->pRight->op == TK_ALL
&& pE->pLeft && pE->pLeft->op == TK_ID)
break;
}
rc = 0;
if(k < pEList->nExpr)
{
/*
** If we get here it means the result set contains one or more "*"
** operators that need to be expanded. Loop through each expression
** in the result set and expand them one by one.
*/
struct ExprList_item *a = pEList->a;
ExprList *pNew = 0;
int flags = pParse->db->flags;
int longNames = (flags & SQLITE_FullColNames) != 0 &&
(flags & SQLITE_ShortColNames) == 0;
for (k = 0; k < pEList->nExpr; k++)
{
Expr *pE = a[k].pExpr;
if(pE->op != TK_ALL &&
(pE->op != TK_DOT || pE->pRight == 0 || pE->pRight->op != TK_ALL))
{
/* This particular expression does not need to be expanded.
*/
pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr, 0);
if(pNew)
{
pNew->a[pNew->nExpr - 1].zName = a[k].zName;
}
else
{
rc = 1;
}
a[k].pExpr = 0;
a[k].zName = 0;
}
else
{
/* This expression is a "*" or a "TABLE.*" and needs to be
** expanded. */
int tableSeen = 0; /* Set to 1 when TABLE matches */
char *zTName; /* text of name of TABLE */
if(pE->op == TK_DOT && pE->pLeft)
{
zTName = sqlite3NameFromToken(db, &pE->pLeft->token);
}
else
{
zTName = 0;
}
for (i = 0, pFrom = pTabList->a; i < pTabList->nSrc; i++, pFrom++)
{
Table *pTab = pFrom->pTab;
char *zTabName = pFrom->zAlias;
if(zTabName == 0 || zTabName[0] == 0)
{
zTabName = pTab->zName;
}
if(zTName && (zTabName == 0 || zTabName[0] == 0 ||
sqlite3StrICmp(zTName, zTabName) != 0))
{
continue;
}
tableSeen = 1;
for (j = 0; j < pTab->nCol; j++)
{
Expr *pExpr, *pRight;
char *zName = pTab->aCol[j].zName;
/* If a column is marked as 'hidden' (currently only possible
** for virtual tables), do not include it in the expanded
** result-set list.
*/
if(IsHiddenColumn(&pTab->aCol[j]))
{
assert(IsVirtual(pTab));
continue;
}
if(i > 0)
{
struct SrcList_item *pLeft =
&pTabList->a[i - 1];
if((pLeft[1].jointype & JT_NATURAL) != 0
&& columnIndex(pLeft->pTab, zName) >= 0)
{
/* In a NATURAL join, omit the join columns from the
** table on the right */
continue;
}
if(sqlite3IdListIndex
(pLeft[1].pUsing, zName) >= 0)
{
/* In a join with a USING clause, omit columns in the
** using clause from the table on the right. */
continue;
}
}
pRight = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
if(pRight == 0)
break;
setQuotedToken(pParse, &pRight->token, zName);
if(zTabName && (longNames || pTabList->nSrc > 1))
{
Expr *pLeft =
sqlite3PExpr(pParse, TK_ID, 0, 0,
0);
pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft,
pRight, 0);
if(pExpr == 0)
break;
setQuotedToken(pParse, &pLeft->token,
zTabName);
setToken(&pExpr->span,
sqlite3MPrintf(db, "%s.%s",
zTabName, zName));
pExpr->span.dyn = 1;
pExpr->token.z = 0;
pExpr->token.n = 0;
pExpr->token.dyn = 0;
}
else
{
pExpr = pRight;
pExpr->span = pExpr->token;
pExpr->span.dyn = 0;
}
if(longNames)
{
pNew = sqlite3ExprListAppend(pParse, pNew,
pExpr,
&pExpr->span);
}
else
{
pNew = sqlite3ExprListAppend(pParse, pNew,
pExpr,
&pRight->
token);
}
}
}
if(!tableSeen)
{
if(zTName)
{
sqlite3ErrorMsg(pParse, "no such table: %s",
zTName);
}
else
{
sqlite3ErrorMsg(pParse, "no tables specified");
}
rc = 1;
}
sqlite3_free(zTName);
}
}
sqlite3ExprListDelete(pEList);
p->pEList = pNew;
}
#if SQLITE_MAX_COLUMN
if(p->pEList && p->pEList->nExpr > db->aLimit[SQLITE_LIMIT_COLUMN])
{
sqlite3ErrorMsg(pParse, "too many columns in result set");
rc = SQLITE_ERROR;
}
#endif
if(db->mallocFailed)
{
rc = SQLITE_NOMEM;
}
return rc;
}
/*
** pE is a pointer to an expression which is a single term in
** ORDER BY or GROUP BY clause.
**
** If pE evaluates to an integer constant i, then return i.
** This is an indication to the caller that it should sort
** by the i-th column of the result set.
**
** If pE is a well-formed expression and the SELECT statement
** is not compound, then return 0. This indicates to the
** caller that it should sort by the value of the ORDER BY
** expression.
**
** If the SELECT is compound, then attempt to match pE against
** result set columns in the left-most SELECT statement. Return
** the index i of the matching column, as an indication to the
** caller that it should sort by the i-th column. If there is
** no match, return -1 and leave an error message in pParse.
*/
static int
matchOrderByTermToExprList(Parse * pParse, /* Parsing context for error messages */
Select * pSelect, /* The SELECT statement with the ORDER BY clause */
Expr * pE, /* The specific ORDER BY term */
int idx, /* When ORDER BY term is this */
int isCompound, /* True if this is a compound SELECT */
u8 * pHasAgg /* True if expression contains aggregate functions */
)
{
int i; /* Loop counter */
ExprList *pEList; /* The columns of the result set */
NameContext nc; /* Name context for resolving pE */
/* If the term is an integer constant, return the value of that
** constant */
pEList = pSelect->pEList;
if(sqlite3ExprIsInteger(pE, &i))
{
if(i <= 0)
{
/* If i is too small, make it too big. That way the calling
** function still sees a value that is out of range, but does
** not confuse the column number with 0 or -1 result code.
*/
i = pEList->nExpr + 1;
}
return i;
}
/* If the term is a simple identifier that try to match that identifier
** against a column name in the result set.
*/
if(pE->op == TK_ID || (pE->op == TK_STRING && pE->token.z[0] != '\''))
{
sqlite3 *db = pParse->db;
char *zCol = sqlite3NameFromToken(db, &pE->token);
if(zCol == 0)
{
return -1;
}
for (i = 0; i < pEList->nExpr; i++)
{
char *zAs = pEList->a[i].zName;
if(zAs != 0 && sqlite3StrICmp(zAs, zCol) == 0)
{
sqlite3_free(zCol);
return i + 1;
}
}
sqlite3_free(zCol);
}
/* Resolve all names in the ORDER BY term expression
*/
memset(&nc, 0, sizeof(nc));
nc.pParse = pParse;
nc.pSrcList = pSelect->pSrc;
nc.pEList = pEList;
nc.allowAgg = 1;
nc.nErr = 0;
if(sqlite3ExprResolveNames(&nc, pE))
{
if(isCompound)
{
sqlite3ErrorClear(pParse);
return 0;
}
else
{
return -1;
}
}
if(nc.hasAgg && pHasAgg)
{
*pHasAgg = 1;
}
/* For a compound SELECT, we need to try to match the ORDER BY
** expression against an expression in the result set
*/
if(isCompound)
{
for (i = 0; i < pEList->nExpr; i++)
{
if(sqlite3ExprCompare(pEList->a[i].pExpr, pE))
{
return i + 1;
}
}
}
return 0;
}
/*
** Analyze and ORDER BY or GROUP BY clause in a simple SELECT statement.
** Return the number of errors seen.
**
** Every term of the ORDER BY or GROUP BY clause needs to be an
** expression. If any expression is an integer constant, then
** that expression is replaced by the corresponding
** expression from the result set.
*/
static int
processOrderGroupBy(Parse * pParse, /* Parsing context. Leave error messages here */
Select * pSelect, /* The SELECT statement containing the clause */
ExprList * pOrderBy, /* The ORDER BY or GROUP BY clause to be processed */
int isOrder, /* 1 for ORDER BY. 0 for GROUP BY */
u8 * pHasAgg /* Set to TRUE if any term contains an aggregate */
)
{
int i;
sqlite3 *db = pParse->db;
ExprList *pEList;
if(pOrderBy == 0 || pParse->db->mallocFailed)
return 0;
#if SQLITE_MAX_COLUMN
if(pOrderBy->nExpr > db->aLimit[SQLITE_LIMIT_COLUMN])
{
const char *zType = isOrder ? "ORDER" : "GROUP";
sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType);
return 1;
}
#endif
pEList = pSelect->pEList;
if(pEList == 0)
{
return 0;
}
for (i = 0; i < pOrderBy->nExpr; i++)
{
int iCol;
Expr *pE = pOrderBy->a[i].pExpr;
iCol = matchOrderByTermToExprList(pParse, pSelect, pE, i + 1, 0, pHasAgg);
if(iCol < 0)
{
return 1;
}
if(iCol > pEList->nExpr)
{
const char *zType = isOrder ? "ORDER" : "GROUP";
sqlite3ErrorMsg(pParse,
"%r %s BY term out of range - should be "
"between 1 and %d", i + 1, zType, pEList->nExpr);
return 1;
}
if(iCol > 0)
{
CollSeq *pColl = pE->pColl;
int flags = pE->flags & EP_ExpCollate;
sqlite3ExprDelete(pE);
pE = sqlite3ExprDup(db, pEList->a[iCol - 1].pExpr);
pOrderBy->a[i].pExpr = pE;
if(pE && pColl && flags)
{
pE->pColl = pColl;
pE->flags |= flags;
}
}
}
return 0;
}
/*
** Analyze and ORDER BY or GROUP BY clause in a SELECT statement. Return
** the number of errors seen.
**
** The processing depends on whether the SELECT is simple or compound.
** For a simple SELECT statement, evry term of the ORDER BY or GROUP BY
** clause needs to be an expression. If any expression is an integer
** constant, then that expression is replaced by the corresponding
** expression from the result set.
**
** For compound SELECT statements, every expression needs to be of
** type TK_COLUMN with a iTable value as given in the 4th parameter.
** If any expression is an integer, that becomes the column number.
** Otherwise, match the expression against result set columns from
** the left-most SELECT.
*/
static int
processCompoundOrderBy(Parse * pParse, /* Parsing context. Leave error messages here */
Select * pSelect, /* The SELECT statement containing the ORDER BY */
int iTable /* Output table for compound SELECT statements */
)
{
int i;
ExprList *pOrderBy;
ExprList *pEList;
sqlite3 *db;
int moreToDo = 1;
pOrderBy = pSelect->pOrderBy;
if(pOrderBy == 0)
return 0;
db = pParse->db;
#if SQLITE_MAX_COLUMN
if(pOrderBy->nExpr > db->aLimit[SQLITE_LIMIT_COLUMN])
{
sqlite3ErrorMsg(pParse, "too many terms in ORDER BY clause");
return 1;
}
#endif
for (i = 0; i < pOrderBy->nExpr; i++)
{
pOrderBy->a[i].done = 0;
}
while (pSelect->pPrior)
{
pSelect = pSelect->pPrior;
}
while (pSelect && moreToDo)
{
moreToDo = 0;
for (i = 0; i < pOrderBy->nExpr; i++)
{
int iCol = -1;
Expr *pE, *pDup;
if(pOrderBy->a[i].done)
continue;
pE = pOrderBy->a[i].pExpr;
pDup = sqlite3ExprDup(db, pE);
if(!db->mallocFailed)
{
assert(pDup);
iCol = matchOrderByTermToExprList(pParse, pSelect, pDup, i + 1, 1,
0);
}
sqlite3ExprDelete(pDup);
if(iCol < 0)
{
return 1;
}
pEList = pSelect->pEList;
if(pEList == 0)
{
return 1;
}
if(iCol > pEList->nExpr)
{
sqlite3ErrorMsg(pParse,
"%r ORDER BY term out of range - should be "
"between 1 and %d", i + 1, pEList->nExpr);
return 1;
}
if(iCol > 0)
{
pE->op = TK_COLUMN;
pE->iTable = iTable;
pE->iAgg = -1;
pE->iColumn = iCol - 1;
pE->pTab = 0;
pOrderBy->a[i].done = 1;
}
else
{
moreToDo = 1;
}
}
pSelect = pSelect->pNext;
}
for (i = 0; i < pOrderBy->nExpr; i++)
{
if(pOrderBy->a[i].done == 0)
{
sqlite3ErrorMsg(pParse, "%r ORDER BY term does not match any "
"column in the result set", i + 1);
return 1;
}
}
return 0;
}
/*
** Get a VDBE for the given parser context. Create a new one if necessary.
** If an error occurs, return NULL and leave a message in pParse.
*/
SQLITE_PRIVATE Vdbe *
sqlite3GetVdbe(Parse * pParse)
{
Vdbe *v = pParse->pVdbe;
if(v == 0)
{
v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
#ifndef SQLITE_OMIT_TRACE
if(v)
{
sqlite3VdbeAddOp0(v, OP_Trace);
}
#endif
}
return v;
}
/*
** Compute the iLimit and iOffset fields of the SELECT based on the
** pLimit and pOffset expressions. pLimit and pOffset hold the expressions
** that appear in the original SQL statement after the LIMIT and OFFSET
** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
** are the integer memory register numbers for counters used to compute
** the limit and offset. If there is no limit and/or offset, then
** iLimit and iOffset are negative.
**
** This routine changes the values of iLimit and iOffset only if
** a limit or offset is defined by pLimit and pOffset. iLimit and
** iOffset should have been preset to appropriate default values
** (usually but not always -1) prior to calling this routine.
** Only if pLimit!=0 or pOffset!=0 do the limit registers get
** redefined. The UNION ALL operator uses this property to force
** the reuse of the same limit and offset registers across multiple
** SELECT statements.
*/
static void
computeLimitRegisters(Parse * pParse, Select * p, int iBreak)
{
Vdbe *v = 0;
int iLimit = 0;
int iOffset;
int addr1;
/*
** "LIMIT -1" always shows all rows. There is some
** contraversy about what the correct behavior should be.
** The current implementation interprets "LIMIT 0" to mean
** no rows.
*/
if(p->pLimit)
{
p->iLimit = iLimit = ++pParse->nMem;
v = sqlite3GetVdbe(pParse);
if(v == 0)
return;
sqlite3ExprCode(pParse, p->pLimit, iLimit);
sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit);
VdbeComment((v, "LIMIT counter"));
sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak);
}
if(p->pOffset)
{
p->iOffset = iOffset = ++pParse->nMem;
if(p->pLimit)
{
pParse->nMem++; /* Allocate an extra register for limit+offset */
}
v = sqlite3GetVdbe(pParse);
if(v == 0)
return;
sqlite3ExprCode(pParse, p->pOffset, iOffset);
sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset);
VdbeComment((v, "OFFSET counter"));
addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset);
sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
sqlite3VdbeJumpHere(v, addr1);
if(p->pLimit)
{
sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset + 1);
VdbeComment((v, "LIMIT+OFFSET"));
addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit);
sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset + 1);
sqlite3VdbeJumpHere(v, addr1);
}
}
}
/*
** Allocate a virtual index to use for sorting.
*/
static void
createSortingIndex(Parse * pParse, Select * p, ExprList * pOrderBy)
{
if(pOrderBy)
{
int addr;
assert(pOrderBy->iECursor == 0);
pOrderBy->iECursor = pParse->nTab++;
addr = sqlite3VdbeAddOp2(pParse->pVdbe, OP_OpenEphemeral,
pOrderBy->iECursor, pOrderBy->nExpr + 1);
assert(p->addrOpenEphm[2] == -1);
p->addrOpenEphm[2] = addr;
}
}
#ifndef SQLITE_OMIT_COMPOUND_SELECT
/*
** Return the appropriate collating sequence for the iCol-th column of
** the result set for the compound-select statement "p". Return NULL if
** the column has no default collating sequence.
**
** The collating sequence for the compound select is taken from the
** left-most term of the select that has a collating sequence.
*/
static CollSeq *
multiSelectCollSeq(Parse * pParse, Select * p, int iCol)
{
CollSeq *pRet;
if(p->pPrior)
{
pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
}
else
{
pRet = 0;
}
if(pRet == 0)
{
pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
}
return pRet;
}
#endif /* SQLITE_OMIT_COMPOUND_SELECT */
#ifndef SQLITE_OMIT_COMPOUND_SELECT
/*
** This routine is called to process a query that is really the union
** or intersection of two or more separate queries.
**
** "p" points to the right-most of the two queries. the query on the
** left is p->pPrior. The left query could also be a compound query
** in which case this routine will be called recursively.
**
** The results of the total query are to be written into a destination
** of type eDest with parameter iParm.
**
** Example 1: Consider a three-way compound SQL statement.
**
** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
**
** This statement is parsed up as follows:
**
** SELECT c FROM t3
** |
** `-----> SELECT b FROM t2
** |
** `------> SELECT a FROM t1
**
** The arrows in the diagram above represent the Select.pPrior pointer.
** So if this routine is called with p equal to the t3 query, then
** pPrior will be the t2 query. p->op will be TK_UNION in this case.
**
** Notice that because of the way SQLite parses compound SELECTs, the
** individual selects always group from left to right.
*/
static int
multiSelect(Parse * pParse, /* Parsing context */
Select * p, /* The right-most of SELECTs to be coded */
SelectDest * pDest, /* What to do with query results */
char *aff /* If eDest is SRT_Union, the affinity string */
)
{
int rc = SQLITE_OK; /* Success code from a subroutine */
Select *pPrior; /* Another SELECT immediately to our left */
Vdbe *v; /* Generate code to this VDBE */
int nCol; /* Number of columns in the result set */
ExprList *pOrderBy; /* The ORDER BY clause on p */
int aSetP2[2]; /* Set P2 value of these op to number of columns */
int nSetP2 = 0; /* Number of slots in aSetP2[] used */
SelectDest dest; /* Alternative data destination */
dest = *pDest;
/* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
*/
if(p == 0 || p->pPrior == 0)
{
rc = 1;
goto multi_select_end;
}
pPrior = p->pPrior;
assert(pPrior->pRightmost != pPrior);
assert(pPrior->pRightmost == p->pRightmost);
if(pPrior->pOrderBy)
{
sqlite3ErrorMsg(pParse, "ORDER BY clause should come after %s not before",
selectOpName(p->op));
rc = 1;
goto multi_select_end;
}
if(pPrior->pLimit)
{
sqlite3ErrorMsg(pParse, "LIMIT clause should come after %s not before",
selectOpName(p->op));
rc = 1;
goto multi_select_end;
}
/* Make sure we have a valid query engine. If not, create a new one.
*/
v = sqlite3GetVdbe(pParse);
if(v == 0)
{
rc = 1;
goto multi_select_end;
}
/* Create the destination temporary table if necessary
*/
if(dest.eDest == SRT_EphemTab)
{
assert(p->pEList);
assert(nSetP2 < sizeof(aSetP2) / sizeof(aSetP2[0]));
aSetP2[nSetP2++] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, 0);
dest.eDest = SRT_Table;
}
/* Generate code for the left and right SELECT statements.
*/
pOrderBy = p->pOrderBy;
switch (p->op)
{
case TK_ALL:
{
if(pOrderBy == 0)
{
int addr = 0;
assert(!pPrior->pLimit);
pPrior->pLimit = p->pLimit;
pPrior->pOffset = p->pOffset;
rc = sqlite3Select(pParse, pPrior, &dest, 0, 0, 0, aff);
p->pLimit = 0;
p->pOffset = 0;
if(rc)
{
goto multi_select_end;
}
p->pPrior = 0;
p->iLimit = pPrior->iLimit;
p->iOffset = pPrior->iOffset;
if(p->iLimit >= 0)
{
addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit);
VdbeComment((v, "Jump ahead if LIMIT reached"));
}
rc = sqlite3Select(pParse, p, &dest, 0, 0, 0, aff);
p->pPrior = pPrior;
if(rc)
{
goto multi_select_end;
}
if(addr)
{
sqlite3VdbeJumpHere(v, addr);
}
break;
}
/* For UNION ALL ... ORDER BY fall through to the next case */
}
case TK_EXCEPT:
case TK_UNION:
{
int unionTab; /* Cursor number of the temporary table holding result */
int op = 0; /* One of the SRT_ operations to apply to self */
int priorOp; /* The SRT_ operation to apply to prior selects */
Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
int addr;
SelectDest uniondest;
priorOp = p->op == TK_ALL ? SRT_Table : SRT_Union;
if(dest.eDest == priorOp && pOrderBy == 0 && !p->pLimit && !p->pOffset)
{
/* We can reuse a temporary table generated by a SELECT to our
** right.
*/
unionTab = dest.iParm;
}
else
{
/* We will need to create our own temporary table to hold the
** intermediate results.
*/
unionTab = pParse->nTab++;
if(processCompoundOrderBy(pParse, p, unionTab))
{
rc = 1;
goto multi_select_end;
}
addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
if(priorOp == SRT_Table)
{
assert(nSetP2 < sizeof(aSetP2) / sizeof(aSetP2[0]));
aSetP2[nSetP2++] = addr;
}
else
{
assert(p->addrOpenEphm[0] == -1);
p->addrOpenEphm[0] = addr;
p->pRightmost->usesEphm = 1;
}
createSortingIndex(pParse, p, pOrderBy);
assert(p->pEList);
}
/* Code the SELECT statements to our left
*/
assert(!pPrior->pOrderBy);
sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
rc = sqlite3Select(pParse, pPrior, &uniondest, 0, 0, 0, aff);
if(rc)
{
goto multi_select_end;
}
/* Code the current SELECT statement
*/
switch (p->op)
{
case TK_EXCEPT:
op = SRT_Except;
break;
case TK_UNION:
op = SRT_Union;
break;
case TK_ALL:
op = SRT_Table;
break;
}
p->pPrior = 0;
p->pOrderBy = 0;
p->disallowOrderBy = pOrderBy != 0;
pLimit = p->pLimit;
p->pLimit = 0;
pOffset = p->pOffset;
p->pOffset = 0;
uniondest.eDest = op;
rc = sqlite3Select(pParse, p, &uniondest, 0, 0, 0, aff);
/* Query flattening in sqlite3Select() might refill p->pOrderBy.
** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
sqlite3ExprListDelete(p->pOrderBy);
p->pPrior = pPrior;
p->pOrderBy = pOrderBy;
sqlite3ExprDelete(p->pLimit);
p->pLimit = pLimit;
p->pOffset = pOffset;
p->iLimit = -1;
p->iOffset = -1;
if(rc)
{
goto multi_select_end;
}
/* Convert the data in the temporary table into whatever form
** it is that we currently need.
*/
if(dest.eDest != priorOp || unionTab != dest.iParm)
{
int iCont, iBreak, iStart;
assert(p->pEList);
if(dest.eDest == SRT_Callback)
{
Select *pFirst = p;
while (pFirst->pPrior)
pFirst = pFirst->pPrior;
generateColumnNames(pParse, 0, pFirst->pEList);
}
iBreak = sqlite3VdbeMakeLabel(v);
iCont = sqlite3VdbeMakeLabel(v);
computeLimitRegisters(pParse, p, iBreak);
sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak);
iStart = sqlite3VdbeCurrentAddr(v);
selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
pOrderBy, -1, &dest, iCont, iBreak, 0);
sqlite3VdbeResolveLabel(v, iCont);
sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart);
sqlite3VdbeResolveLabel(v, iBreak);
sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
}
break;
}
case TK_INTERSECT:
{
int tab1, tab2;
int iCont, iBreak, iStart;
Expr *pLimit, *pOffset;
int addr;
SelectDest intersectdest;
int r1;
/* INTERSECT is different from the others since it requires
** two temporary tables. Hence it has its own case. Begin
** by allocating the tables we will need.
*/
tab1 = pParse->nTab++;
tab2 = pParse->nTab++;
if(processCompoundOrderBy(pParse, p, tab1))
{
rc = 1;
goto multi_select_end;
}
createSortingIndex(pParse, p, pOrderBy);
addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
assert(p->addrOpenEphm[0] == -1);
p->addrOpenEphm[0] = addr;
p->pRightmost->usesEphm = 1;
assert(p->pEList);
/* Code the SELECTs to our left into temporary table "tab1".
*/
sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
rc = sqlite3Select(pParse, pPrior, &intersectdest, 0, 0, 0, aff);
if(rc)
{
goto multi_select_end;
}
/* Code the current SELECT into temporary table "tab2"
*/
addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
assert(p->addrOpenEphm[1] == -1);
p->addrOpenEphm[1] = addr;
p->pPrior = 0;
pLimit = p->pLimit;
p->pLimit = 0;
pOffset = p->pOffset;
p->pOffset = 0;
intersectdest.iParm = tab2;
rc = sqlite3Select(pParse, p, &intersectdest, 0, 0, 0, aff);
p->pPrior = pPrior;
sqlite3ExprDelete(p->pLimit);
p->pLimit = pLimit;
p->pOffset = pOffset;
if(rc)
{
goto multi_select_end;
}
/* Generate code to take the intersection of the two temporary
** tables.
*/
assert(p->pEList);
if(dest.eDest == SRT_Callback)
{
Select *pFirst = p;
while (pFirst->pPrior)
pFirst = pFirst->pPrior;
generateColumnNames(pParse, 0, pFirst->pEList);
}
iBreak = sqlite3VdbeMakeLabel(v);
iCont = sqlite3VdbeMakeLabel(v);
computeLimitRegisters(pParse, p, iBreak);
sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak);
r1 = sqlite3GetTempReg(pParse);
iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
sqlite3VdbeAddOp3(v, OP_NotFound, tab2, iCont, r1);
sqlite3ReleaseTempReg(pParse, r1);
selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
pOrderBy, -1, &dest, iCont, iBreak, 0);
sqlite3VdbeResolveLabel(v, iCont);
sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart);
sqlite3VdbeResolveLabel(v, iBreak);
sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
break;
}
}
/* Make sure all SELECTs in the statement have the same number of elements
** in their result sets.
*/
assert(p->pEList && pPrior->pEList);
if(p->pEList->nExpr != pPrior->pEList->nExpr)
{
sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
" do not have the same number of result columns",
selectOpName(p->op));
rc = 1;
goto multi_select_end;
}
/* Set the number of columns in temporary tables
*/
nCol = p->pEList->nExpr;
while (nSetP2)
{
sqlite3VdbeChangeP2(v, aSetP2[--nSetP2], nCol);
}
/* Compute collating sequences used by either the ORDER BY clause or
** by any temporary tables needed to implement the compound select.
** Attach the KeyInfo structure to all temporary tables. Invoke the
** ORDER BY processing if there is an ORDER BY clause.
**
** This section is run by the right-most SELECT statement only.
** SELECT statements to the left always skip this part. The right-most
** SELECT might also skip this part if it has no ORDER BY clause and
** no temp tables are required.
*/
if(pOrderBy || p->usesEphm)
{
int i; /* Loop counter */
KeyInfo *pKeyInfo; /* Collating sequence for the result set */
Select *pLoop; /* For looping through SELECT statements */
int nKeyCol; /* Number of entries in pKeyInfo->aCol[] */
CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */
CollSeq **aCopy; /* A copy of pKeyInfo->aColl[] */
assert(p->pRightmost == p);
nKeyCol = nCol + (pOrderBy ? pOrderBy->nExpr : 0);
pKeyInfo = sqlite3DbMallocZero(pParse->db,
sizeof(*pKeyInfo) + nKeyCol * (sizeof(CollSeq *) +
1));
if(!pKeyInfo)
{
rc = SQLITE_NOMEM;
goto multi_select_end;
}
pKeyInfo->enc = ENC(pParse->db);
pKeyInfo->nField = nCol;
for (i = 0, apColl = pKeyInfo->aColl; i < nCol; i++, apColl++)
{
*apColl = multiSelectCollSeq(pParse, p, i);
if(0 == *apColl)
{
*apColl = pParse->db->pDfltColl;
}
}
for (pLoop = p; pLoop; pLoop = pLoop->pPrior)
{
for (i = 0; i < 2; i++)
{
int addr = pLoop->addrOpenEphm[i];
if(addr < 0)
{
/* If [0] is unused then [1] is also unused. So we can
** always safely abort as soon as the first unused slot is found */
assert(pLoop->addrOpenEphm[1] < 0);
break;
}
sqlite3VdbeChangeP2(v, addr, nCol);
sqlite3VdbeChangeP4(v, addr, (char *) pKeyInfo, P4_KEYINFO);
pLoop->addrOpenEphm[i] = -1;
}
}
if(pOrderBy)
{
struct ExprList_item *pOTerm = pOrderBy->a;
int nOrderByExpr = pOrderBy->nExpr;
int addr;
u8 *pSortOrder;
/* Reuse the same pKeyInfo for the ORDER BY as was used above for
** the compound select statements. Except we have to change out the
** pKeyInfo->aColl[] values. Some of the aColl[] values will be
** reused when constructing the pKeyInfo for the ORDER BY, so make
** a copy. Sufficient space to hold both the nCol entries for
** the compound select and the nOrderbyExpr entries for the ORDER BY
** was allocated above. But we need to move the compound select
** entries out of the way before constructing the ORDER BY entries.
** Move the compound select entries into aCopy[] where they can be
** accessed and reused when constructing the ORDER BY entries.
** Because nCol might be greater than or less than nOrderByExpr
** we have to use memmove() when doing the copy.
*/
aCopy = &pKeyInfo->aColl[nOrderByExpr];
pSortOrder = pKeyInfo->aSortOrder = (u8 *) & aCopy[nCol];
memmove(aCopy, pKeyInfo->aColl, nCol * sizeof(CollSeq *));
apColl = pKeyInfo->aColl;
for (i = 0; i < nOrderByExpr; i++, pOTerm++, apColl++, pSortOrder++)
{
Expr *pExpr = pOTerm->pExpr;
if((pExpr->flags & EP_ExpCollate))
{
assert(pExpr->pColl != 0);
*apColl = pExpr->pColl;
}
else
{
*apColl = aCopy[pExpr->iColumn];
}
*pSortOrder = pOTerm->sortOrder;
}
assert(p->pRightmost == p);
assert(p->addrOpenEphm[2] >= 0);
addr = p->addrOpenEphm[2];
sqlite3VdbeChangeP2(v, addr, p->pOrderBy->nExpr + 2);
pKeyInfo->nField = nOrderByExpr;
sqlite3VdbeChangeP4(v, addr, (char *) pKeyInfo, P4_KEYINFO_HANDOFF);
pKeyInfo = 0;
generateSortTail(pParse, p, v, p->pEList->nExpr, &dest);
}
sqlite3_free(pKeyInfo);
}
multi_select_end:
pDest->iMem = dest.iMem;
pDest->nMem = dest.nMem;
return rc;
}
#endif /* SQLITE_OMIT_COMPOUND_SELECT */
#ifndef SQLITE_OMIT_VIEW
/* Forward Declarations */
static void substExprList(sqlite3 *, ExprList *, int, ExprList *);
static void substSelect(sqlite3 *, Select *, int, ExprList *);
/*
** Scan through the expression pExpr. Replace every reference to
** a column in table number iTable with a copy of the iColumn-th
** entry in pEList. (But leave references to the ROWID column
** unchanged.)
**
** This routine is part of the flattening procedure. A subquery
** whose result set is defined by pEList appears as entry in the
** FROM clause of a SELECT such that the VDBE cursor assigned to that
** FORM clause entry is iTable. This routine make the necessary
** changes to pExpr so that it refers directly to the source table
** of the subquery rather the result set of the subquery.
*/
static void
substExpr(sqlite3 * db, /* Report malloc errors to this connection */
Expr * pExpr, /* Expr in which substitution occurs */
int iTable, /* Table to be substituted */
ExprList * pEList /* Substitute expressions */
)
{
if(pExpr == 0)
return;
if(pExpr->op == TK_COLUMN && pExpr->iTable == iTable)
{
if(pExpr->iColumn < 0)
{
pExpr->op = TK_NULL;
}
else
{
Expr *pNew;
assert(pEList != 0 && pExpr->iColumn < pEList->nExpr);
assert(pExpr->pLeft == 0 && pExpr->pRight == 0 && pExpr->pList == 0);
pNew = pEList->a[pExpr->iColumn].pExpr;
assert(pNew != 0);
pExpr->op = pNew->op;
assert(pExpr->pLeft == 0);
pExpr->pLeft = sqlite3ExprDup(db, pNew->pLeft);
assert(pExpr->pRight == 0);
pExpr->pRight = sqlite3ExprDup(db, pNew->pRight);
assert(pExpr->pList == 0);
pExpr->pList = sqlite3ExprListDup(db, pNew->pList);
pExpr->iTable = pNew->iTable;
pExpr->pTab = pNew->pTab;
pExpr->iColumn = pNew->iColumn;
pExpr->iAgg = pNew->iAgg;
sqlite3TokenCopy(db, &pExpr->token, &pNew->token);
sqlite3TokenCopy(db, &pExpr->span, &pNew->span);
pExpr->pSelect = sqlite3SelectDup(db, pNew->pSelect);
pExpr->flags = pNew->flags;
}
}
else
{
substExpr(db, pExpr->pLeft, iTable, pEList);
substExpr(db, pExpr->pRight, iTable, pEList);
substSelect(db, pExpr->pSelect, iTable, pEList);
substExprList(db, pExpr->pList, iTable, pEList);
}
}
static void
substExprList(sqlite3 * db, /* Report malloc errors here */
ExprList * pList, /* List to scan and in which to make substitutes */
int iTable, /* Table to be substituted */
ExprList * pEList /* Substitute values */
)
{
int i;
if(pList == 0)
return;
for (i = 0; i < pList->nExpr; i++)
{
substExpr(db, pList->a[i].pExpr, iTable, pEList);
}
}
static void
substSelect(sqlite3 * db, /* Report malloc errors here */
Select * p, /* SELECT statement in which to make substitutions */
int iTable, /* Table to be replaced */
ExprList * pEList /* Substitute values */
)
{
if(!p)
return;
substExprList(db, p->pEList, iTable, pEList);
substExprList(db, p->pGroupBy, iTable, pEList);
substExprList(db, p->pOrderBy, iTable, pEList);
substExpr(db, p->pHaving, iTable, pEList);
substExpr(db, p->pWhere, iTable, pEList);
substSelect(db, p->pPrior, iTable, pEList);
}
#endif /* !defined(SQLITE_OMIT_VIEW) */
#ifndef SQLITE_OMIT_VIEW
/*
** This routine attempts to flatten subqueries in order to speed
** execution. It returns 1 if it makes changes and 0 if no flattening
** occurs.
**
** To understand the concept of flattening, consider the following
** query:
**
** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
**
** The default way of implementing this query is to execute the
** subquery first and store the results in a temporary table, then
** run the outer query on that temporary table. This requires two
** passes over the data. Furthermore, because the temporary table
** has no indices, the WHERE clause on the outer query cannot be
** optimized.
**
** This routine attempts to rewrite queries such as the above into
** a single flat select, like this:
**
** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
**
** The code generated for this simpification gives the same result
** but only has to scan the data once. And because indices might
** exist on the table t1, a complete scan of the data might be
** avoided.
**
** Flattening is only attempted if all of the following are true:
**
** (1) The subquery and the outer query do not both use aggregates.
**
** (2) The subquery is not an aggregate or the outer query is not a join.
**
** (3) The subquery is not the right operand of a left outer join, or
** the subquery is not itself a join. (Ticket #306)
**
** (4) The subquery is not DISTINCT or the outer query is not a join.
**
** (5) The subquery is not DISTINCT or the outer query does not use
** aggregates.
**
** (6) The subquery does not use aggregates or the outer query is not
** DISTINCT.
**
** (7) The subquery has a FROM clause.
**
** (8) The subquery does not use LIMIT or the outer query is not a join.
**
** (9) The subquery does not use LIMIT or the outer query does not use
** aggregates.
**
** (10) The subquery does not use aggregates or the outer query does not
** use LIMIT.
**
** (11) The subquery and the outer query do not both have ORDER BY clauses.
**
** (12) The subquery is not the right term of a LEFT OUTER JOIN or the
** subquery has no WHERE clause. (added by ticket #350)
**
** (13) The subquery and outer query do not both use LIMIT
**
** (14) The subquery does not use OFFSET
**
** (15) The outer query is not part of a compound select or the
** subquery does not have both an ORDER BY and a LIMIT clause.
** (See ticket #2339)
**
** (16) The outer query is not an aggregate or the subquery does
** not contain ORDER BY. (Ticket #2942) This used to not matter
** until we introduced the group_concat() function.
**
** In this routine, the "p" parameter is a pointer to the outer query.
** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
**
** If flattening is not attempted, this routine is a no-op and returns 0.
** If flattening is attempted this routine returns 1.
**
** All of the expression analysis must occur on both the outer query and
** the subquery before this routine runs.
*/
static int
flattenSubquery(sqlite3 * db, /* Database connection */
Select * p, /* The parent or outer SELECT statement */
int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
int isAgg, /* True if outer SELECT uses aggregate functions */
int subqueryIsAgg /* True if the subquery uses aggregate functions */
)
{
Select *pSub; /* The inner query or "subquery" */
SrcList *pSrc; /* The FROM clause of the outer query */
SrcList *pSubSrc; /* The FROM clause of the subquery */
ExprList *pList; /* The result set of the outer query */
int iParent; /* VDBE cursor number of the pSub result set temp table */
int i; /* Loop counter */
Expr *pWhere; /* The WHERE clause */
struct SrcList_item *pSubitem; /* The subquery */
/* Check to see if flattening is permitted. Return 0 if not.
*/
if(p == 0)
return 0;
pSrc = p->pSrc;
assert(pSrc && iFrom >= 0 && iFrom < pSrc->nSrc);
pSubitem = &pSrc->a[iFrom];
pSub = pSubitem->pSelect;
assert(pSub != 0);
if(isAgg && subqueryIsAgg)
return 0; /* Restriction (1) */
if(subqueryIsAgg && pSrc->nSrc > 1)
return 0; /* Restriction (2) */
pSubSrc = pSub->pSrc;
assert(pSubSrc);
/* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
** because they could be computed at compile-time. But when LIMIT and OFFSET
** became arbitrary expressions, we were forced to add restrictions (13)
** and (14). */
if(pSub->pLimit && p->pLimit)
return 0; /* Restriction (13) */
if(pSub->pOffset)
return 0; /* Restriction (14) */
if(p->pRightmost && pSub->pLimit && pSub->pOrderBy)
{
return 0; /* Restriction (15) */
}
if(pSubSrc->nSrc == 0)
return 0; /* Restriction (7) */
if((pSub->isDistinct || pSub->pLimit) && (pSrc->nSrc > 1 || isAgg))
{ /* Restrictions (4)(5)(8)(9) */
return 0;
}
if(p->isDistinct && subqueryIsAgg)
return 0; /* Restriction (6) */
if((p->disallowOrderBy || p->pOrderBy) && pSub->pOrderBy)
{
return 0; /* Restriction (11) */
}
if(isAgg && pSub->pOrderBy)
return 0; /* Restriction (16) */
/* Restriction 3: If the subquery is a join, make sure the subquery is
** not used as the right operand of an outer join. Examples of why this
** is not allowed:
**
** t1 LEFT OUTER JOIN (t2 JOIN t3)
**
** If we flatten the above, we would get
**
** (t1 LEFT OUTER JOIN t2) JOIN t3
**
** which is not at all the same thing.
*/
if(pSubSrc->nSrc > 1 && (pSubitem->jointype & JT_OUTER) != 0)
{
return 0;
}
/* Restriction 12: If the subquery is the right operand of a left outer
** join, make sure the subquery has no WHERE clause.
** An examples of why this is not allowed:
**
** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
**
** If we flatten the above, we would get
**
** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
**
** But the t2.x>0 test will always fail on a NULL row of t2, which
** effectively converts the OUTER JOIN into an INNER JOIN.
*/
if((pSubitem->jointype & JT_OUTER) != 0 && pSub->pWhere != 0)
{
return 0;
}
/* If we reach this point, it means flattening is permitted for the
** iFrom-th entry of the FROM clause in the outer query.
*/
/* Move all of the FROM elements of the subquery into the
** the FROM clause of the outer query. Before doing this, remember
** the cursor number for the original outer query FROM element in
** iParent. The iParent cursor will never be used. Subsequent code
** will scan expressions looking for iParent references and replace
** those references with expressions that resolve to the subquery FROM
** elements we are now copying in.
*/
iParent = pSubitem->iCursor;
{
int nSubSrc = pSubSrc->nSrc;
int jointype = pSubitem->jointype;
sqlite3DeleteTable(pSubitem->pTab);
sqlite3_free(pSubitem->zDatabase);
sqlite3_free(pSubitem->zName);
sqlite3_free(pSubitem->zAlias);
pSubitem->pTab = 0;
pSubitem->zDatabase = 0;
pSubitem->zName = 0;
pSubitem->zAlias = 0;
if(nSubSrc > 1)
{
int extra = nSubSrc - 1;
for (i = 1; i < nSubSrc; i++)
{
pSrc = sqlite3SrcListAppend(db, pSrc, 0, 0);
if(pSrc == 0)
{
p->pSrc = 0;
return 1;
}
}
p->pSrc = pSrc;
for (i = pSrc->nSrc - 1; i - extra >= iFrom; i--)
{
pSrc->a[i] = pSrc->a[i - extra];
}
}
for (i = 0; i < nSubSrc; i++)
{
pSrc->a[i + iFrom] = pSubSrc->a[i];
memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
}
pSrc->a[iFrom].jointype = jointype;
}
/* Now begin substituting subquery result set expressions for
** references to the iParent in the outer query.
**
** Example:
**
** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
** \ \_____________ subquery __________/ /
** \_____________________ outer query ______________________________/
**
** We look at every expression in the outer query and every place we see
** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
*/
pList = p->pEList;
for (i = 0; i < pList->nExpr; i++)
{
Expr *pExpr;
if(pList->a[i].zName == 0 && (pExpr = pList->a[i].pExpr)->span.z != 0)
{
pList->a[i].zName =
sqlite3DbStrNDup(db, (char *) pExpr->span.z, pExpr->span.n);
}
}
substExprList(db, p->pEList, iParent, pSub->pEList);
if(isAgg)
{
substExprList(db, p->pGroupBy, iParent, pSub->pEList);
substExpr(db, p->pHaving, iParent, pSub->pEList);
}
if(pSub->pOrderBy)
{
assert(p->pOrderBy == 0);
p->pOrderBy = pSub->pOrderBy;
pSub->pOrderBy = 0;
}
else if(p->pOrderBy)
{
substExprList(db, p->pOrderBy, iParent, pSub->pEList);
}
if(pSub->pWhere)
{
pWhere = sqlite3ExprDup(db, pSub->pWhere);
}
else
{
pWhere = 0;
}
if(subqueryIsAgg)
{
assert(p->pHaving == 0);
p->pHaving = p->pWhere;
p->pWhere = pWhere;
substExpr(db, p->pHaving, iParent, pSub->pEList);
p->pHaving = sqlite3ExprAnd(db, p->pHaving, sqlite3ExprDup(db, pSub->pHaving));
assert(p->pGroupBy == 0);
p->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy);
}
else
{
substExpr(db, p->pWhere, iParent, pSub->pEList);
p->pWhere = sqlite3ExprAnd(db, p->pWhere, pWhere);
}
/* The flattened query is distinct if either the inner or the
** outer query is distinct.
*/
p->isDistinct = p->isDistinct || pSub->isDistinct;
/*
** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
**
** One is tempted to try to add a and b to combine the limits. But this
** does not work if either limit is negative.
*/
if(pSub->pLimit)
{
p->pLimit = pSub->pLimit;
pSub->pLimit = 0;
}
/* Finially, delete what is left of the subquery and return
** success.
*/
sqlite3SelectDelete(pSub);
return 1;
}
#endif /* SQLITE_OMIT_VIEW */
/*
** Analyze the SELECT statement passed as an argument to see if it
** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if
** it is, or 0 otherwise. At present, a query is considered to be
** a min()/max() query if:
**
** 1. There is a single object in the FROM clause.
**
** 2. There is a single expression in the result set, and it is
** either min(x) or max(x), where x is a column reference.
*/
static int
minMaxQuery(Parse * pParse, Select * p)
{
Expr *pExpr;
ExprList *pEList = p->pEList;
if(pEList->nExpr != 1)
return WHERE_ORDERBY_NORMAL;
pExpr = pEList->a[0].pExpr;
pEList = pExpr->pList;
if(pExpr->op != TK_AGG_FUNCTION || pEList == 0 || pEList->nExpr != 1)
return 0;
if(pEList->a[0].pExpr->op != TK_AGG_COLUMN)
return WHERE_ORDERBY_NORMAL;
if(pExpr->token.n != 3)
return WHERE_ORDERBY_NORMAL;
if(sqlite3StrNICmp((char *) pExpr->token.z, "min", 3) == 0)
{
return WHERE_ORDERBY_MIN;
}
else if(sqlite3StrNICmp((char *) pExpr->token.z, "max", 3) == 0)
{
return WHERE_ORDERBY_MAX;
}
return WHERE_ORDERBY_NORMAL;
}
/*
** This routine resolves any names used in the result set of the
** supplied SELECT statement. If the SELECT statement being resolved
** is a sub-select, then pOuterNC is a pointer to the NameContext
** of the parent SELECT.
*/
SQLITE_PRIVATE int
sqlite3SelectResolve(Parse * pParse, /* The parser context */
Select * p, /* The SELECT statement being coded. */
NameContext * pOuterNC /* The outer name context. May be NULL. */
)
{
ExprList *pEList; /* Result set. */
int i; /* For-loop variable used in multiple places */
NameContext sNC; /* Local name-context */
ExprList *pGroupBy; /* The group by clause */
/* If this routine has run before, return immediately. */
if(p->isResolved)
{
assert(!pOuterNC);
return SQLITE_OK;
}
p->isResolved = 1;
/* If there have already been errors, do nothing. */
if(pParse->nErr > 0)
{
return SQLITE_ERROR;
}
/* Prepare the select statement. This call will allocate all cursors
** required to handle the tables and subqueries in the FROM clause.
*/
if(prepSelectStmt(pParse, p))
{
return SQLITE_ERROR;
}
/* Resolve the expressions in the LIMIT and OFFSET clauses. These
** are not allowed to refer to any names, so pass an empty NameContext.
*/
memset(&sNC, 0, sizeof(sNC));
sNC.pParse = pParse;
if(sqlite3ExprResolveNames(&sNC, p->pLimit) || sqlite3ExprResolveNames(&sNC, p->pOffset))
{
return SQLITE_ERROR;
}
/* Set up the local name-context to pass to ExprResolveNames() to
** resolve the expression-list.
*/
sNC.allowAgg = 1;
sNC.pSrcList = p->pSrc;
sNC.pNext = pOuterNC;
/* Resolve names in the result set. */
pEList = p->pEList;
if(!pEList)
return SQLITE_ERROR;
for (i = 0; i < pEList->nExpr; i++)
{
Expr *pX = pEList->a[i].pExpr;
if(sqlite3ExprResolveNames(&sNC, pX))
{
return SQLITE_ERROR;
}
}
/* If there are no aggregate functions in the result-set, and no GROUP BY
** expression, do not allow aggregates in any of the other expressions.
*/
assert(!p->isAgg);
pGroupBy = p->pGroupBy;
if(pGroupBy || sNC.hasAgg)
{
p->isAgg = 1;
}
else
{
sNC.allowAgg = 0;
}
/* If a HAVING clause is present, then there must be a GROUP BY clause.
*/
if(p->pHaving && !pGroupBy)
{
sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING");
return SQLITE_ERROR;
}
/* Add the expression list to the name-context before parsing the
** other expressions in the SELECT statement. This is so that
** expressions in the WHERE clause (etc.) can refer to expressions by
** aliases in the result set.
**
** Minor point: If this is the case, then the expression will be
** re-evaluated for each reference to it.
*/
sNC.pEList = p->pEList;
if(sqlite3ExprResolveNames(&sNC, p->pWhere) || sqlite3ExprResolveNames(&sNC, p->pHaving))
{
return SQLITE_ERROR;
}
if(p->pPrior == 0)
{
if(processOrderGroupBy(pParse, p, p->pOrderBy, 1, &sNC.hasAgg))
{
return SQLITE_ERROR;
}
}
if(processOrderGroupBy(pParse, p, pGroupBy, 0, &sNC.hasAgg))
{
return SQLITE_ERROR;
}
if(pParse->db->mallocFailed)
{
return SQLITE_NOMEM;
}
/* Make sure the GROUP BY clause does not contain aggregate functions.
*/
if(pGroupBy)
{
struct ExprList_item *pItem;
for (i = 0, pItem = pGroupBy->a; i < pGroupBy->nExpr; i++, pItem++)
{
if(ExprHasProperty(pItem->pExpr, EP_Agg))
{
sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in "
"the GROUP BY clause");
return SQLITE_ERROR;
}
}
}
/* If this is one SELECT of a compound, be sure to resolve names
** in the other SELECTs.
*/
if(p->pPrior)
{
return sqlite3SelectResolve(pParse, p->pPrior, pOuterNC);
}
else
{
return SQLITE_OK;
}
}
/*
** Reset the aggregate accumulator.
**
** The aggregate accumulator is a set of memory cells that hold
** intermediate results while calculating an aggregate. This
** routine simply stores NULLs in all of those memory cells.
*/
static void
resetAccumulator(Parse * pParse, AggInfo * pAggInfo)
{
Vdbe *v = pParse->pVdbe;
int i;
struct AggInfo_func *pFunc;
if(pAggInfo->nFunc + pAggInfo->nColumn == 0)
{
return;
}
for (i = 0; i < pAggInfo->nColumn; i++)
{
sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem);
}
for (pFunc = pAggInfo->aFunc, i = 0; i < pAggInfo->nFunc; i++, pFunc++)
{
sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem);
if(pFunc->iDistinct >= 0)
{
Expr *pE = pFunc->pExpr;
if(pE->pList == 0 || pE->pList->nExpr != 1)
{
sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed "
"by an expression");
pFunc->iDistinct = -1;
}
else
{
KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList);
sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
(char *) pKeyInfo, P4_KEYINFO_HANDOFF);
}
}
}
}
/*
** Invoke the OP_AggFinalize opcode for every aggregate function
** in the AggInfo structure.
*/
static void
finalizeAggFunctions(Parse * pParse, AggInfo * pAggInfo)
{
Vdbe *v = pParse->pVdbe;
int i;
struct AggInfo_func *pF;
for (i = 0, pF = pAggInfo->aFunc; i < pAggInfo->nFunc; i++, pF++)
{
ExprList *pList = pF->pExpr->pList;
sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
(void *) pF->pFunc, P4_FUNCDEF);
}
}
/*
** Update the accumulator memory cells for an aggregate based on
** the current cursor position.
*/
static void
updateAccumulator(Parse * pParse, AggInfo * pAggInfo)
{
Vdbe *v = pParse->pVdbe;
int i;
struct AggInfo_func *pF;
struct AggInfo_col *pC;
pAggInfo->directMode = 1;
for (i = 0, pF = pAggInfo->aFunc; i < pAggInfo->nFunc; i++, pF++)
{
int nArg;
int addrNext = 0;
int regAgg;
ExprList *pList = pF->pExpr->pList;
if(pList)
{
nArg = pList->nExpr;
regAgg = sqlite3GetTempRange(pParse, nArg);
sqlite3ExprCodeExprList(pParse, pList, regAgg, 0);
}
else
{
nArg = 0;
regAgg = 0;
}
if(pF->iDistinct >= 0)
{
addrNext = sqlite3VdbeMakeLabel(v);
assert(nArg == 1);
codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
}
if(pF->pFunc->needCollSeq)
{
CollSeq *pColl = 0;
struct ExprList_item *pItem;
int j;
assert(pList != 0); /* pList!=0 if pF->pFunc->needCollSeq is true */
for (j = 0, pItem = pList->a; !pColl && j < nArg; j++, pItem++)
{
pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
}
if(!pColl)
{
pColl = pParse->db->pDfltColl;
}
sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *) pColl, P4_COLLSEQ);
}
sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
(void *) pF->pFunc, P4_FUNCDEF);
sqlite3VdbeChangeP5(v, nArg);
sqlite3ReleaseTempRange(pParse, regAgg, nArg);
sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
if(addrNext)
{
sqlite3VdbeResolveLabel(v, addrNext);
}
}
for (i = 0, pC = pAggInfo->aCol; i < pAggInfo->nAccumulator; i++, pC++)
{
sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
}
pAggInfo->directMode = 0;
}
#if 0
/*
** This function is used when a SELECT statement is used to create a
** temporary table for iterating through when running an INSTEAD OF
** UPDATE or INSTEAD OF DELETE trigger.
**
** If possible, the SELECT statement is modified so that NULL values
** are stored in the temporary table for all columns for which the
** corresponding bit in argument mask is not set. If mask takes the
** special value 0xffffffff, then all columns are populated.
*/
SQLITE_PRIVATE void
sqlite3SelectMask(Parse * pParse, Select * p, u32 mask)
{
if(p && !p->pPrior && !p->isDistinct && mask != 0xffffffff)
{
ExprList *pEList;
int i;
sqlite3SelectResolve(pParse, p, 0);
pEList = p->pEList;
for (i = 0; pEList && i < pEList->nExpr && i < 32; i++)
{
if(!(mask & ((u32) 1 << i)))
{
sqlite3ExprDelete(pEList->a[i].pExpr);
pEList->a[i].pExpr = sqlite3Expr(pParse->db, TK_NULL, 0, 0, 0);
}
}
}
}
#endif
/*
** Generate code for the given SELECT statement.
**
** The results are distributed in various ways depending on the
** contents of the SelectDest structure pointed to by argument pDest
** as follows:
**
** pDest->eDest Result
** ------------ -------------------------------------------
** SRT_Callback Invoke the callback for each row of the result.
**
** SRT_Mem Store first result in memory cell pDest->iParm
**
** SRT_Set Store non-null results as keys of table pDest->iParm.
** Apply the affinity pDest->affinity before storing them.
**
** SRT_Union Store results as a key in a temporary table pDest->iParm.
**
** SRT_Except Remove results from the temporary table pDest->iParm.
**
** SRT_Table Store results in temporary table pDest->iParm
**
** SRT_EphemTab Create an temporary table pDest->iParm and store
** the result there. The cursor is left open after
** returning.
**
** SRT_Subroutine For each row returned, push the results onto the
** vdbe stack and call the subroutine (via OP_Gosub)
** at address pDest->iParm.
**
** SRT_Exists Store a 1 in memory cell pDest->iParm if the result
** set is not empty.
**
** SRT_Discard Throw the results away.
**
** See the selectInnerLoop() function for a canonical listing of the
** allowed values of eDest and their meanings.
**
** This routine returns the number of errors. If any errors are
** encountered, then an appropriate error message is left in
** pParse->zErrMsg.
**
** This routine does NOT free the Select structure passed in. The
** calling function needs to do that.
**
** The pParent, parentTab, and *pParentAgg fields are filled in if this
** SELECT is a subquery. This routine may try to combine this SELECT
** with its parent to form a single flat query. In so doing, it might
** change the parent query from a non-aggregate to an aggregate query.
** For that reason, the pParentAgg flag is passed as a pointer, so it
** can be changed.
**
** Example 1: The meaning of the pParent parameter.
**
** SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3;
** \ \_______ subquery _______/ /
** \ /
** \____________________ outer query ___________________/
**
** This routine is called for the outer query first. For that call,
** pParent will be NULL. During the processing of the outer query, this
** routine is called recursively to handle the subquery. For the recursive
** call, pParent will point to the outer query. Because the subquery is
** the second element in a three-way join, the parentTab parameter will
** be 1 (the 2nd value of a 0-indexed array.)
*/
SQLITE_PRIVATE int
sqlite3Select(Parse * pParse, /* The parser context */
Select * p, /* The SELECT statement being coded. */
SelectDest * pDest, /* What to do with the query results */
Select * pParent, /* Another SELECT for which this is a sub-query */
int parentTab, /* Index in pParent->pSrc of this query */
int *pParentAgg, /* True if pParent uses aggregate functions */
char *aff /* If eDest is SRT_Union, the affinity string */
)
{
int i, j; /* Loop counters */
WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */
Vdbe *v; /* The virtual machine under construction */
int isAgg; /* True for select lists like "count(*)" */
ExprList *pEList; /* List of columns to extract. */
SrcList *pTabList; /* List of tables to select from */
Expr *pWhere; /* The WHERE clause. May be NULL */
ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */
ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
Expr *pHaving; /* The HAVING clause. May be NULL */
int isDistinct; /* True if the DISTINCT keyword is present */
int distinct; /* Table to use for the distinct set */
int rc = 1; /* Value to return from this function */
int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */
AggInfo sAggInfo; /* Information used by aggregate queries */
int iEnd; /* Address of the end of the query */
sqlite3 *db; /* The database connection */
db = pParse->db;
if(p == 0 || db->mallocFailed || pParse->nErr)
{
return 1;
}
if(sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0))
return 1;
memset(&sAggInfo, 0, sizeof(sAggInfo));
pOrderBy = p->pOrderBy;
if(IgnorableOrderby(pDest))
{
p->pOrderBy = 0;
/* In these cases the DISTINCT operator makes no difference to the
** results, so remove it if it were specified.
*/
assert(pDest->eDest == SRT_Exists || pDest->eDest == SRT_Union ||
pDest->eDest == SRT_Except || pDest->eDest == SRT_Discard);
p->isDistinct = 0;
}
if(sqlite3SelectResolve(pParse, p, 0))
{
goto select_end;
}
p->pOrderBy = pOrderBy;
#ifndef SQLITE_OMIT_COMPOUND_SELECT
/* If there is are a sequence of queries, do the earlier ones first.
*/
if(p->pPrior)
{
if(p->pRightmost == 0)
{
Select *pLoop, *pRight = 0;
int cnt = 0;
int mxSelect;
for (pLoop = p; pLoop; pLoop = pLoop->pPrior, cnt++)
{
pLoop->pRightmost = p;
pLoop->pNext = pRight;
pRight = pLoop;
}
mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT];
if(mxSelect && cnt > mxSelect)
{
sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
return 1;
}
}
return multiSelect(pParse, p, pDest, aff);
}
#endif
/* Make local copies of the parameters for this query.
*/
pTabList = p->pSrc;
pWhere = p->pWhere;
pGroupBy = p->pGroupBy;
pHaving = p->pHaving;
isAgg = p->isAgg;
isDistinct = p->isDistinct;
pEList = p->pEList;
if(pEList == 0)
goto select_end;
/*
** Do not even attempt to generate any code if we have already seen
** errors before this routine starts.
*/
if(pParse->nErr > 0)
goto select_end;
/* If writing to memory or generating a set
** only a single column may be output.
*/
#ifndef SQLITE_OMIT_SUBQUERY
if(checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr))
{
goto select_end;
}
#endif
/* ORDER BY is ignored for some destinations.
*/
if(IgnorableOrderby(pDest))
{
pOrderBy = 0;
}
/* Begin generating code.
*/
v = sqlite3GetVdbe(pParse);
if(v == 0)
goto select_end;
/* Generate code for all sub-queries in the FROM clause
*/
#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
for (i = 0; i < pTabList->nSrc; i++)
{
const char *zSavedAuthContext = 0;
int needRestoreContext;
struct SrcList_item *pItem = &pTabList->a[i];
SelectDest dest;
if(pItem->pSelect == 0 || pItem->isPopulated)
continue;
if(pItem->zName != 0)
{
zSavedAuthContext = pParse->zAuthContext;
pParse->zAuthContext = pItem->zName;
needRestoreContext = 1;
}
else
{
needRestoreContext = 0;
}
/* Increment Parse.nHeight by the height of the largest expression
** tree refered to by this, the parent select. The child select
** may contain expression trees of at most
** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
** more conservative than necessary, but much easier than enforcing
** an exact limit.
*/
pParse->nHeight += sqlite3SelectExprHeight(p);
sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
sqlite3Select(pParse, pItem->pSelect, &dest, p, i, &isAgg, 0);
if(db->mallocFailed)
{
goto select_end;
}
pParse->nHeight -= sqlite3SelectExprHeight(p);
if(needRestoreContext)
{
pParse->zAuthContext = zSavedAuthContext;
}
pTabList = p->pSrc;
pWhere = p->pWhere;
if(!IgnorableOrderby(pDest))
{
pOrderBy = p->pOrderBy;
}
pGroupBy = p->pGroupBy;
pHaving = p->pHaving;
isDistinct = p->isDistinct;
}
#endif
/* Check to see if this is a subquery that can be "flattened" into its parent.
** If flattening is a possiblity, do so and return immediately.
*/
#ifndef SQLITE_OMIT_VIEW
if(pParent && pParentAgg && flattenSubquery(db, pParent, parentTab, *pParentAgg, isAgg))
{
if(isAgg)
*pParentAgg = 1;
goto select_end;
}
#endif
/* If possible, rewrite the query to use GROUP BY instead of DISTINCT.
** GROUP BY may use an index, DISTINCT never does.
*/
if(p->isDistinct && !p->isAgg && !p->pGroupBy)
{
p->pGroupBy = sqlite3ExprListDup(db, p->pEList);
pGroupBy = p->pGroupBy;
p->isDistinct = 0;
isDistinct = 0;
}
/* If there is an ORDER BY clause, then this sorting
** index might end up being unused if the data can be
** extracted in pre-sorted order. If that is the case, then the
** OP_OpenEphemeral instruction will be changed to an OP_Noop once
** we figure out that the sorting index is not needed. The addrSortIndex
** variable is used to facilitate that change.
*/
if(pOrderBy)
{
KeyInfo *pKeyInfo;
pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
pOrderBy->iECursor = pParse->nTab++;
p->addrOpenEphm[2] = addrSortIndex =
sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
pOrderBy->iECursor, pOrderBy->nExpr + 2, 0,
(char *) pKeyInfo, P4_KEYINFO_HANDOFF);
}
else
{
addrSortIndex = -1;
}
/* If the output is destined for a temporary table, open that table.
*/
if(pDest->eDest == SRT_EphemTab)
{
sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr);
}
/* Set the limiter.
*/
iEnd = sqlite3VdbeMakeLabel(v);
computeLimitRegisters(pParse, p, iEnd);
/* Open a virtual index to use for the distinct set.
*/
if(isDistinct)
{
KeyInfo *pKeyInfo;
assert(isAgg || pGroupBy);
distinct = pParse->nTab++;
pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0,
(char *) pKeyInfo, P4_KEYINFO_HANDOFF);
}
else
{
distinct = -1;
}
/* Aggregate and non-aggregate queries are handled differently */
if(!isAgg && pGroupBy == 0)
{
/* This case is for non-aggregate queries
** Begin the database scan
*/
pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0);
if(pWInfo == 0)
goto select_end;
/* If sorting index that was created by a prior OP_OpenEphemeral
** instruction ended up not being needed, then change the OP_OpenEphemeral
** into an OP_Noop.
*/
if(addrSortIndex >= 0 && pOrderBy == 0)
{
sqlite3VdbeChangeToNoop(v, addrSortIndex, 1);
p->addrOpenEphm[2] = -1;
}
/* Use the standard inner loop
*/
assert(!isDistinct);
selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest,
pWInfo->iContinue, pWInfo->iBreak, aff);
/* End the database scan loop.
*/
sqlite3WhereEnd(pWInfo);
}
else
{
/* This is the processing for aggregate queries */
NameContext sNC; /* Name context for processing aggregate information */
int iAMem; /* First Mem address for storing current GROUP BY */
int iBMem; /* First Mem address for previous GROUP BY */
int iUseFlag; /* Mem address holding flag indicating that at least
** one row of the input to the aggregator has been
** processed */
int iAbortFlag; /* Mem address which causes query abort if positive */
int groupBySort; /* Rows come from source in GROUP BY order */
/* The following variables hold addresses or labels for parts of the
** virtual machine program we are putting together */
int addrOutputRow; /* Start of subroutine that outputs a result row */
int addrSetAbort; /* Set the abort flag and return */
int addrInitializeLoop; /* Start of code that initializes the input loop */
int addrTopOfLoop; /* Top of the input loop */
int addrGroupByChange; /* Code that runs when any GROUP BY term changes */
int addrProcessRow; /* Code to process a single input row */
int addrEnd; /* End of all processing */
int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
int addrReset; /* Subroutine for resetting the accumulator */
addrEnd = sqlite3VdbeMakeLabel(v);
/* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
** SELECT statement.
*/
memset(&sNC, 0, sizeof(sNC));
sNC.pParse = pParse;
sNC.pSrcList = pTabList;
sNC.pAggInfo = &sAggInfo;
sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr + 1 : 0;
sAggInfo.pGroupBy = pGroupBy;
sqlite3ExprAnalyzeAggList(&sNC, pEList);
sqlite3ExprAnalyzeAggList(&sNC, pOrderBy);
if(pHaving)
{
sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
}
sAggInfo.nAccumulator = sAggInfo.nColumn;
for (i = 0; i < sAggInfo.nFunc; i++)
{
sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList);
}
if(db->mallocFailed)
goto select_end;
/* Processing for aggregates with GROUP BY is very different and
** much more complex than aggregates without a GROUP BY.
*/
if(pGroupBy)
{
KeyInfo *pKeyInfo; /* Keying information for the group by clause */
/* Create labels that we will be needing
*/
addrInitializeLoop = sqlite3VdbeMakeLabel(v);
addrGroupByChange = sqlite3VdbeMakeLabel(v);
addrProcessRow = sqlite3VdbeMakeLabel(v);
/* If there is a GROUP BY clause we might need a sorting index to
** implement it. Allocate that sorting index now. If it turns out
** that we do not need it after all, the OpenEphemeral instruction
** will be converted into a Noop.
*/
sAggInfo.sortingIdx = pParse->nTab++;
pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
sAggInfo.sortingIdx,
sAggInfo.nSortingColumn, 0,
(char *) pKeyInfo, P4_KEYINFO_HANDOFF);
/* Initialize memory locations used by GROUP BY aggregate processing
*/
iUseFlag = ++pParse->nMem;
iAbortFlag = ++pParse->nMem;
iAMem = pParse->nMem + 1;
pParse->nMem += pGroupBy->nExpr;
iBMem = pParse->nMem + 1;
pParse->nMem += pGroupBy->nExpr;
sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
VdbeComment((v, "clear abort flag"));
sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
VdbeComment((v, "indicate accumulator empty"));
sqlite3VdbeAddOp2(v, OP_Goto, 0, addrInitializeLoop);
/* Generate a subroutine that outputs a single row of the result
** set. This subroutine first looks at the iUseFlag. If iUseFlag
** is less than or equal to zero, the subroutine is a no-op. If
** the processing calls for the query to abort, this subroutine
** increments the iAbortFlag memory location before returning in
** order to signal the caller to abort.
*/
addrSetAbort = sqlite3VdbeCurrentAddr(v);
sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
VdbeComment((v, "set abort flag"));
sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
addrOutputRow = sqlite3VdbeCurrentAddr(v);
sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow + 2);
VdbeComment((v, "Groupby result generator entry point"));
sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
finalizeAggFunctions(pParse, &sAggInfo);
if(pHaving)
{
sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow + 1,
SQLITE_JUMPIFNULL);
}
selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
distinct, pDest, addrOutputRow + 1, addrSetAbort, aff);
sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
VdbeComment((v, "end groupby result generator"));
/* Generate a subroutine that will reset the group-by accumulator
*/
addrReset = sqlite3VdbeCurrentAddr(v);
resetAccumulator(pParse, &sAggInfo);
sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
/* Begin a loop that will extract all source rows in GROUP BY order.
** This might involve two separate loops with an OP_Sort in between, or
** it might be a single loop that uses an index to extract information
** in the right order to begin with.
*/
sqlite3VdbeResolveLabel(v, addrInitializeLoop);
sqlite3VdbeAddOp2(v, OP_Gosub, 0, addrReset);
pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0);
if(pWInfo == 0)
goto select_end;
if(pGroupBy == 0)
{
/* The optimizer is able to deliver rows in group by order so
** we do not have to sort. The OP_OpenEphemeral table will be
** cancelled later because we still need to use the pKeyInfo
*/
pGroupBy = p->pGroupBy;
groupBySort = 0;
}
else
{
/* Rows are coming out in undetermined order. We have to push
** each row into a sorting index, terminate the first loop,
** then loop over the sorting index in order to get the output
** in sorted order
*/
int regBase;
int regRecord;
int nCol;
int nGroupBy;
groupBySort = 1;
nGroupBy = pGroupBy->nExpr;
nCol = nGroupBy + 1;
j = nGroupBy + 1;
for (i = 0; i < sAggInfo.nColumn; i++)
{
if(sAggInfo.aCol[i].iSorterColumn >= j)
{
nCol++;
j++;
}
}
regBase = sqlite3GetTempRange(pParse, nCol);
sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,
regBase + nGroupBy);
j = nGroupBy + 1;
for (i = 0; i < sAggInfo.nColumn; i++)
{
struct AggInfo_col *pCol = &sAggInfo.aCol[i];
if(pCol->iSorterColumn >= j)
{
int r1 = j + regBase;
int r2 = sqlite3ExprCodeGetColumn(pParse,
pCol->pTab,
pCol->iColumn,
pCol->iTable, r1,
0);
if(r1 != r2)
{
sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
}
j++;
}
}
regRecord = sqlite3GetTempReg(pParse);
sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord);
sqlite3ReleaseTempReg(pParse, regRecord);
sqlite3ReleaseTempRange(pParse, regBase, nCol);
sqlite3WhereEnd(pWInfo);
sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd);
VdbeComment((v, "GROUP BY sort"));
sAggInfo.useSortingIdx = 1;
}
/* Evaluate the current GROUP BY terms and store in b0, b1, b2...
** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
** Then compare the current GROUP BY terms against the GROUP BY terms
** from the previous row currently stored in a0, a1, a2...
*/
addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
for (j = 0; j < pGroupBy->nExpr; j++)
{
if(groupBySort)
{
sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j,
iBMem + j);
}
else
{
sAggInfo.directMode = 1;
sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem + j);
}
}
for (j = pGroupBy->nExpr - 1; j >= 0; j--)
{
if(j == 0)
{
sqlite3VdbeAddOp3(v, OP_Eq, iAMem + j, addrProcessRow,
iBMem + j);
}
else
{
sqlite3VdbeAddOp3(v, OP_Ne, iAMem + j, addrGroupByChange,
iBMem + j);
}
sqlite3VdbeChangeP4(v, -1, (void *) pKeyInfo->aColl[j], P4_COLLSEQ);
sqlite3VdbeChangeP5(v, SQLITE_NULLEQUAL);
}
/* Generate code that runs whenever the GROUP BY changes.
** Change in the GROUP BY are detected by the previous code
** block. If there were no changes, this block is skipped.
**
** This code copies current group by terms in b0,b1,b2,...
** over to a0,a1,a2. It then calls the output subroutine
** and resets the aggregate accumulator registers in preparation
** for the next GROUP BY batch.
*/
sqlite3VdbeResolveLabel(v, addrGroupByChange);
for (j = 0; j < pGroupBy->nExpr; j++)
{
sqlite3ExprCodeMove(pParse, iBMem + j, iAMem + j);
}
sqlite3VdbeAddOp2(v, OP_Gosub, 0, addrOutputRow);
VdbeComment((v, "output one row"));
sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd);
VdbeComment((v, "check abort flag"));
sqlite3VdbeAddOp2(v, OP_Gosub, 0, addrReset);
VdbeComment((v, "reset accumulator"));
/* Update the aggregate accumulators based on the content of
** the current row
*/
sqlite3VdbeResolveLabel(v, addrProcessRow);
updateAccumulator(pParse, &sAggInfo);
sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
VdbeComment((v, "indicate data in accumulator"));
/* End of the loop
*/
if(groupBySort)
{
sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop);
}
else
{
sqlite3WhereEnd(pWInfo);
sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1);
}
/* Output the final row of result
*/
sqlite3VdbeAddOp2(v, OP_Gosub, 0, addrOutputRow);
VdbeComment((v, "output final row"));
} /* endif pGroupBy */
else
{
ExprList *pMinMax = 0;
ExprList *pDel = 0;
u8 flag;
/* Check if the query is of one of the following forms:
**
** SELECT min(x) FROM ...
** SELECT max(x) FROM ...
**
** If it is, then ask the code in where.c to attempt to sort results
** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
** If where.c is able to produce results sorted in this order, then
** add vdbe code to break out of the processing loop after the
** first iteration (since the first iteration of the loop is
** guaranteed to operate on the row with the minimum or maximum
** value of x, the only row required).
**
** A special flag must be passed to sqlite3WhereBegin() to slightly
** modify behaviour as follows:
**
** + If the query is a "SELECT min(x)", then the loop coded by
** where.c should not iterate over any values with a NULL value
** for x.
**
** + The optimizer code in where.c (the thing that decides which
** index or indices to use) should place a different priority on
** satisfying the 'ORDER BY' clause than it does in other cases.
** Refer to code and comments in where.c for details.
*/
flag = minMaxQuery(pParse, p);
if(flag)
{
pDel = pMinMax =
sqlite3ExprListDup(db, p->pEList->a[0].pExpr->pList);
if(pMinMax && !db->mallocFailed)
{
pMinMax->a[0].sortOrder =
((flag == WHERE_ORDERBY_MIN) ? 0 : 1);
pMinMax->a[0].pExpr->op = TK_COLUMN;
}
}
/* This case runs if the aggregate has no GROUP BY clause. The
** processing is much simpler since there is only a single row
** of output.
*/
resetAccumulator(pParse, &sAggInfo);
pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag);
if(pWInfo == 0)
{
sqlite3ExprListDelete(pDel);
goto select_end;
}
updateAccumulator(pParse, &sAggInfo);
if(!pMinMax && flag)
{
sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak);
VdbeComment((v, "%s() by index",
(flag == WHERE_ORDERBY_MIN ? "min" : "max")));
}
sqlite3WhereEnd(pWInfo);
finalizeAggFunctions(pParse, &sAggInfo);
pOrderBy = 0;
if(pHaving)
{
sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
}
selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1,
pDest, addrEnd, addrEnd, aff);
sqlite3ExprListDelete(pDel);
}
sqlite3VdbeResolveLabel(v, addrEnd);
} /* endif aggregate query */
/* If there is an ORDER BY clause, then we need to sort the results
** and send them to the callback one by one.
*/
if(pOrderBy)
{
generateSortTail(pParse, p, v, pEList->nExpr, pDest);
}
#ifndef SQLITE_OMIT_SUBQUERY
/* If this was a subquery, we have now converted the subquery into a
** temporary table. So set the SrcList_item.isPopulated flag to prevent
** this subquery from being evaluated again and to force the use of
** the temporary table.
*/
if(pParent)
{
assert(pParent->pSrc->nSrc > parentTab);
assert(pParent->pSrc->a[parentTab].pSelect == p);
pParent->pSrc->a[parentTab].isPopulated = 1;
}
#endif
/* Jump here to skip this query
*/
sqlite3VdbeResolveLabel(v, iEnd);
/* The SELECT was successfully coded. Set the return code to 0
** to indicate no errors.
*/
rc = 0;
/* Control jumps to here if an error is encountered above, or upon
** successful coding of the SELECT.
*/
select_end:
/* Identify column names if we will be using them in a callback. This
** step is skipped if the output is going to some other destination.
*/
if(rc == SQLITE_OK && pDest->eDest == SRT_Callback)
{
generateColumnNames(pParse, pTabList, pEList);
}
sqlite3_free(sAggInfo.aCol);
sqlite3_free(sAggInfo.aFunc);
return rc;
}
#if defined(SQLITE_DEBUG)
/*
*******************************************************************************
** The following code is used for testing and debugging only. The code
** that follows does not appear in normal builds.
**
** These routines are used to print out the content of all or part of a
** parse structures such as Select or Expr. Such printouts are useful
** for helping to understand what is happening inside the code generator
** during the execution of complex SELECT statements.
**
** These routine are not called anywhere from within the normal
** code base. Then are intended to be called from within the debugger
** or from temporary "printf" statements inserted for debugging.
*/
SQLITE_PRIVATE void
sqlite3PrintExpr(Expr * p)
{
if(p->token.z && p->token.n > 0)
{
sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z);
}
else
{
sqlite3DebugPrintf("(%d", p->op);
}
if(p->pLeft)
{
sqlite3DebugPrintf(" ");
sqlite3PrintExpr(p->pLeft);
}
if(p->pRight)
{
sqlite3DebugPrintf(" ");
sqlite3PrintExpr(p->pRight);
}
sqlite3DebugPrintf(")");
}
SQLITE_PRIVATE void
sqlite3PrintExprList(ExprList * pList)
{
int i;
for (i = 0; i < pList->nExpr; i++)
{
sqlite3PrintExpr(pList->a[i].pExpr);
if(i < pList->nExpr - 1)
{
sqlite3DebugPrintf(", ");
}
}
}
SQLITE_PRIVATE void
sqlite3PrintSelect(Select * p, int indent)
{
sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p);
sqlite3PrintExprList(p->pEList);
sqlite3DebugPrintf("\n");
if(p->pSrc)
{
char *zPrefix;
int i;
zPrefix = "FROM";
for (i = 0; i < p->pSrc->nSrc; i++)
{
struct SrcList_item *pItem = &p->pSrc->a[i];
sqlite3DebugPrintf("%*s ", indent + 6, zPrefix);
zPrefix = "";
if(pItem->pSelect)
{
sqlite3DebugPrintf("(\n");
sqlite3PrintSelect(pItem->pSelect, indent + 10);
sqlite3DebugPrintf("%*s)", indent + 8, "");
}
else if(pItem->zName)
{
sqlite3DebugPrintf("%s", pItem->zName);
}
if(pItem->pTab)
{
sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName);
}
if(pItem->zAlias)
{
sqlite3DebugPrintf(" AS %s", pItem->zAlias);
}
if(i < p->pSrc->nSrc - 1)
{
sqlite3DebugPrintf(",");
}
sqlite3DebugPrintf("\n");
}
}
if(p->pWhere)
{
sqlite3DebugPrintf("%*s WHERE ", indent, "");
sqlite3PrintExpr(p->pWhere);
sqlite3DebugPrintf("\n");
}
if(p->pGroupBy)
{
sqlite3DebugPrintf("%*s GROUP BY ", indent, "");
sqlite3PrintExprList(p->pGroupBy);
sqlite3DebugPrintf("\n");
}
if(p->pHaving)
{
sqlite3DebugPrintf("%*s HAVING ", indent, "");
sqlite3PrintExpr(p->pHaving);
sqlite3DebugPrintf("\n");
}
if(p->pOrderBy)
{
sqlite3DebugPrintf("%*s ORDER BY ", indent, "");
sqlite3PrintExprList(p->pOrderBy);
sqlite3DebugPrintf("\n");
}
}
/* End of the structure debug printing code
*****************************************************************************/
#endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
/************** End of select.c **********************************************/
/************** Begin file table.c *******************************************/
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains the sqlite3_get_table() and sqlite3_free_table()
** interface routines. These are just wrappers around the main
** interface routine of sqlite3_exec().
**
** These routines are in a separate files so that they will not be linked
** if they are not used.
*/
#ifndef SQLITE_OMIT_GET_TABLE
/*
** This structure is used to pass data from sqlite3_get_table() through
** to the callback function is uses to build the result.
*/
typedef struct TabResult
{
char **azResult;
char *zErrMsg;
int nResult;
int nAlloc;
int nRow;
int nColumn;
int nData;
int rc;
} TabResult;
/*
** This routine is called once for each row in the result table. Its job
** is to fill in the TabResult structure appropriately, allocating new
** memory as necessary.
*/
static int
sqlite3_get_table_cb(void *pArg, int nCol, char **argv, char **colv)
{
TabResult *p = (TabResult *) pArg;
int need;
int i;
char *z;
/* Make sure there is enough space in p->azResult to hold everything
** we need to remember from this invocation of the callback.
*/
if(p->nRow == 0 && argv != 0)
{
need = nCol * 2;
}
else
{
need = nCol;
}
if(p->nData + need >= p->nAlloc)
{
char **azNew;
p->nAlloc = p->nAlloc * 2 + need + 1;
azNew = sqlite3_realloc(p->azResult, sizeof(char *) * p->nAlloc);
if(azNew == 0)
goto malloc_failed;
p->azResult = azNew;
}
/* If this is the first row, then generate an extra row containing
** the names of all columns.
*/
if(p->nRow == 0)
{
p->nColumn = nCol;
for (i = 0; i < nCol; i++)
{
z = sqlite3_mprintf("%s", colv[i]);
if(z == 0)
goto malloc_failed;
p->azResult[p->nData++] = z;
}
}
else if(p->nColumn != nCol)
{
sqlite3_free(p->zErrMsg);
p->zErrMsg =
sqlite3_mprintf
("sqlite3_get_table() called with two or more incompatible queries");
p->rc = SQLITE_ERROR;
return 1;
}
/* Copy over the row data
*/
if(argv != 0)
{
for (i = 0; i < nCol; i++)
{
if(argv[i] == 0)
{
z = 0;
}
else
{
int n = strlen(argv[i]) + 1;
z = sqlite3_malloc(n);
if(z == 0)
goto malloc_failed;
memcpy(z, argv[i], n);
}
p->azResult[p->nData++] = z;
}
p->nRow++;
}
return 0;
malloc_failed:
p->rc = SQLITE_NOMEM;
return 1;
}
/*
** Query the database. But instead of invoking a callback for each row,
** malloc() for space to hold the result and return the entire results
** at the conclusion of the call.
**
** The result that is written to ***pazResult is held in memory obtained
** from malloc(). But the caller cannot free this memory directly.
** Instead, the entire table should be passed to sqlite3_free_table() when
** the calling procedure is finished using it.
*/
SQLITE_API int
sqlite3_get_table(sqlite3 * db, /* The database on which the SQL executes */
const char *zSql, /* The SQL to be executed */
char ***pazResult, /* Write the result table here */
int *pnRow, /* Write the number of rows in the result here */
int *pnColumn, /* Write the number of columns of result here */
char **pzErrMsg /* Write error messages here */
)
{
int rc;
TabResult res;
*pazResult = 0;
if(pnColumn)
*pnColumn = 0;
if(pnRow)
*pnRow = 0;
res.zErrMsg = 0;
res.nResult = 0;
res.nRow = 0;
res.nColumn = 0;
res.nData = 1;
res.nAlloc = 20;
res.rc = SQLITE_OK;
res.azResult = sqlite3_malloc(sizeof(char *) * res.nAlloc);
if(res.azResult == 0)
{
db->errCode = SQLITE_NOMEM;
return SQLITE_NOMEM;
}
res.azResult[0] = 0;
rc = sqlite3_exec(db, zSql, sqlite3_get_table_cb, &res, pzErrMsg);
assert(sizeof(res.azResult[0]) >= sizeof(res.nData));
res.azResult[0] = (char *) (long)res.nData;
if((rc & 0xff) == SQLITE_ABORT)
{
sqlite3_free_table(&res.azResult[1]);
if(res.zErrMsg)
{
if(pzErrMsg)
{
sqlite3_free(*pzErrMsg);
*pzErrMsg = sqlite3_mprintf("%s", res.zErrMsg);
}
sqlite3_free(res.zErrMsg);
}
db->errCode = res.rc; /* Assume 32-bit assignment is atomic */
return res.rc;
}
sqlite3_free(res.zErrMsg);
if(rc != SQLITE_OK)
{
sqlite3_free_table(&res.azResult[1]);
return rc;
}
if(res.nAlloc > res.nData)
{
char **azNew;
azNew = sqlite3_realloc(res.azResult, sizeof(char *) * (res.nData + 1));
if(azNew == 0)
{
sqlite3_free_table(&res.azResult[1]);
db->errCode = SQLITE_NOMEM;
return SQLITE_NOMEM;
}
res.nAlloc = res.nData + 1;
res.azResult = azNew;
}
*pazResult = &res.azResult[1];
if(pnColumn)
*pnColumn = res.nColumn;
if(pnRow)
*pnRow = res.nRow;
return rc;
}
/*
** This routine frees the space the sqlite3_get_table() malloced.
*/
SQLITE_API void
sqlite3_free_table(char **azResult /* Result returned from from sqlite3_get_table() */
)
{
if(azResult)
{
int i, n;
azResult--;
assert(azResult != 0);
n = (long int) azResult[0];
for (i = 1; i < n; i++)
{
if(azResult[i])
sqlite3_free(azResult[i]);
}
sqlite3_free(azResult);
}
}
#endif /* SQLITE_OMIT_GET_TABLE */
/************** End of table.c ***********************************************/
/************** Begin file trigger.c *****************************************/
/*
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
*
*/
#ifndef SQLITE_OMIT_TRIGGER
/*
** Delete a linked list of TriggerStep structures.
*/
SQLITE_PRIVATE void
sqlite3DeleteTriggerStep(TriggerStep * pTriggerStep)
{
while (pTriggerStep)
{
TriggerStep *pTmp = pTriggerStep;
pTriggerStep = pTriggerStep->pNext;
if(pTmp->target.dyn)
sqlite3_free((char *) pTmp->target.z);
sqlite3ExprDelete(pTmp->pWhere);
sqlite3ExprListDelete(pTmp->pExprList);
sqlite3SelectDelete(pTmp->pSelect);
sqlite3IdListDelete(pTmp->pIdList);
sqlite3_free(pTmp);
}
}
/*
** This is called by the parser when it sees a CREATE TRIGGER statement
** up to the point of the BEGIN before the trigger actions. A Trigger
** structure is generated based on the information available and stored
** in pParse->pNewTrigger. After the trigger actions have been parsed, the
** sqlite3FinishTrigger() function is called to complete the trigger
** construction process.
*/
SQLITE_PRIVATE void
sqlite3BeginTrigger(Parse * pParse, /* The parse context of the CREATE TRIGGER statement */
Token * pName1, /* The name of the trigger */
Token * pName2, /* The name of the trigger */
int tr_tm, /* One of TK_BEFORE, TK_AFTER, TK_INSTEAD */
int op, /* One of TK_INSERT, TK_UPDATE, TK_DELETE */
IdList * pColumns, /* column list if this is an UPDATE OF trigger */
SrcList * pTableName, /* The name of the table/view the trigger applies to */
Expr * pWhen, /* WHEN clause */
int isTemp, /* True if the TEMPORARY keyword is present */
int noErr /* Suppress errors if the trigger already exists */
)
{
Trigger *pTrigger = 0;
Table *pTab;
char *zName = 0; /* Name of the trigger */
sqlite3 *db = pParse->db;
int iDb; /* The database to store the trigger in */
Token *pName; /* The unqualified db name */
DbFixer sFix;
int iTabDb;
assert(pName1 != 0); /* pName1->z might be NULL, but not pName1 itself */
assert(pName2 != 0);
if(isTemp)
{
/* If TEMP was specified, then the trigger name may not be qualified. */
if(pName2->n > 0)
{
sqlite3ErrorMsg(pParse, "temporary trigger may not have qualified name");
goto trigger_cleanup;
}
iDb = 1;
pName = pName1;
}
else
{
/* Figure out the db that the the trigger will be created in */
iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
if(iDb < 0)
{
goto trigger_cleanup;
}
}
/* If the trigger name was unqualified, and the table is a temp table,
** then set iDb to 1 to create the trigger in the temporary database.
** If sqlite3SrcListLookup() returns 0, indicating the table does not
** exist, the error is caught by the block below.
*/
if(!pTableName || db->mallocFailed)
{
goto trigger_cleanup;
}
pTab = sqlite3SrcListLookup(pParse, pTableName);
if(pName2->n == 0 && pTab && pTab->pSchema == db->aDb[1].pSchema)
{
iDb = 1;
}
/* Ensure the table name matches database name and that the table exists */
if(db->mallocFailed)
goto trigger_cleanup;
assert(pTableName->nSrc == 1);
if(sqlite3FixInit(&sFix, pParse, iDb, "trigger", pName) &&
sqlite3FixSrcList(&sFix, pTableName))
{
goto trigger_cleanup;
}
pTab = sqlite3SrcListLookup(pParse, pTableName);
if(!pTab)
{
/* The table does not exist. */
goto trigger_cleanup;
}
if(IsVirtual(pTab))
{
sqlite3ErrorMsg(pParse, "cannot create triggers on virtual tables");
goto trigger_cleanup;
}
/* Check that the trigger name is not reserved and that no trigger of the
** specified name exists */
zName = sqlite3NameFromToken(db, pName);
if(!zName || SQLITE_OK != sqlite3CheckObjectName(pParse, zName))
{
goto trigger_cleanup;
}
if(sqlite3HashFind(&(db->aDb[iDb].pSchema->trigHash), zName, strlen(zName)))
{
if(!noErr)
{
sqlite3ErrorMsg(pParse, "trigger %T already exists", pName);
}
goto trigger_cleanup;
}
/* Do not create a trigger on a system table */
if(sqlite3StrNICmp(pTab->zName, "sqlite_", 7) == 0)
{
sqlite3ErrorMsg(pParse, "cannot create trigger on system table");
pParse->nErr++;
goto trigger_cleanup;
}
/* INSTEAD of triggers are only for views and views only support INSTEAD
** of triggers.
*/
if(pTab->pSelect && tr_tm != TK_INSTEAD)
{
sqlite3ErrorMsg(pParse, "cannot create %s trigger on view: %S",
(tr_tm == TK_BEFORE) ? "BEFORE" : "AFTER", pTableName, 0);
goto trigger_cleanup;
}
if(!pTab->pSelect && tr_tm == TK_INSTEAD)
{
sqlite3ErrorMsg(pParse, "cannot create INSTEAD OF"
" trigger on table: %S", pTableName, 0);
goto trigger_cleanup;
}
iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema);
#ifndef SQLITE_OMIT_AUTHORIZATION
{
int code = SQLITE_CREATE_TRIGGER;
const char *zDb = db->aDb[iTabDb].zName;
const char *zDbTrig = isTemp ? db->aDb[1].zName : zDb;
if(iTabDb == 1 || isTemp)
code = SQLITE_CREATE_TEMP_TRIGGER;
if(sqlite3AuthCheck(pParse, code, zName, pTab->zName, zDbTrig))
{
goto trigger_cleanup;
}
if(sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iTabDb), 0, zDb))
{
goto trigger_cleanup;
}
}
#endif
/* INSTEAD OF triggers can only appear on views and BEFORE triggers
** cannot appear on views. So we might as well translate every
** INSTEAD OF trigger into a BEFORE trigger. It simplifies code
** elsewhere.
*/
if(tr_tm == TK_INSTEAD)
{
tr_tm = TK_BEFORE;
}
/* Build the Trigger object */
pTrigger = (Trigger *) sqlite3DbMallocZero(db, sizeof(Trigger));
if(pTrigger == 0)
goto trigger_cleanup;
pTrigger->name = zName;
zName = 0;
pTrigger->table = sqlite3DbStrDup(db, pTableName->a[0].zName);
pTrigger->pSchema = db->aDb[iDb].pSchema;
pTrigger->pTabSchema = pTab->pSchema;
pTrigger->op = op;
pTrigger->tr_tm = tr_tm == TK_BEFORE ? TRIGGER_BEFORE : TRIGGER_AFTER;
pTrigger->pWhen = sqlite3ExprDup(db, pWhen);
pTrigger->pColumns = sqlite3IdListDup(db, pColumns);
sqlite3TokenCopy(db, &pTrigger->nameToken, pName);
assert(pParse->pNewTrigger == 0);
pParse->pNewTrigger = pTrigger;
trigger_cleanup:
sqlite3_free(zName);
sqlite3SrcListDelete(pTableName);
sqlite3IdListDelete(pColumns);
sqlite3ExprDelete(pWhen);
if(!pParse->pNewTrigger)
{
sqlite3DeleteTrigger(pTrigger);
}
else
{
assert(pParse->pNewTrigger == pTrigger);
}
}
/*
** This routine is called after all of the trigger actions have been parsed
** in order to complete the process of building the trigger.
*/
SQLITE_PRIVATE void
sqlite3FinishTrigger(Parse * pParse, /* Parser context */
TriggerStep * pStepList, /* The triggered program */
Token * pAll /* Token that describes the complete CREATE TRIGGER */
)
{
Trigger *pTrig = 0; /* The trigger whose construction is finishing up */
sqlite3 *db = pParse->db; /* The database */
DbFixer sFix;
int iDb; /* Database containing the trigger */
pTrig = pParse->pNewTrigger;
pParse->pNewTrigger = 0;
if(pParse->nErr || !pTrig)
goto triggerfinish_cleanup;
iDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema);
pTrig->step_list = pStepList;
while (pStepList)
{
pStepList->pTrig = pTrig;
pStepList = pStepList->pNext;
}
if(sqlite3FixInit(&sFix, pParse, iDb, "trigger", &pTrig->nameToken)
&& sqlite3FixTriggerStep(&sFix, pTrig->step_list))
{
goto triggerfinish_cleanup;
}
/* if we are not initializing, and this trigger is not on a TEMP table,
** build the sqlite_master entry
*/
if(!db->init.busy)
{
Vdbe *v;
char *z;
/* Make an entry in the sqlite_master table */
v = sqlite3GetVdbe(pParse);
if(v == 0)
goto triggerfinish_cleanup;
sqlite3BeginWriteOperation(pParse, 0, iDb);
z = sqlite3DbStrNDup(db, (char *) pAll->z, pAll->n);
sqlite3NestedParse(pParse,
"INSERT INTO %Q.%s VALUES('trigger',%Q,%Q,0,'CREATE TRIGGER %q')",
db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pTrig->name,
pTrig->table, z);
sqlite3_free(z);
sqlite3ChangeCookie(pParse, iDb);
sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
sqlite3MPrintf(db, "type='trigger' AND name='%q'", pTrig->name),
P4_DYNAMIC);
}
if(db->init.busy)
{
int n;
Table *pTab;
Trigger *pDel;
pDel = sqlite3HashInsert(&db->aDb[iDb].pSchema->trigHash,
pTrig->name, strlen(pTrig->name), pTrig);
if(pDel)
{
assert(pDel == pTrig);
db->mallocFailed = 1;
goto triggerfinish_cleanup;
}
n = strlen(pTrig->table) + 1;
pTab = sqlite3HashFind(&pTrig->pTabSchema->tblHash, pTrig->table, n);
assert(pTab != 0);
pTrig->pNext = pTab->pTrigger;
pTab->pTrigger = pTrig;
pTrig = 0;
}
triggerfinish_cleanup:
sqlite3DeleteTrigger(pTrig);
assert(!pParse->pNewTrigger);
sqlite3DeleteTriggerStep(pStepList);
}
/*
** Make a copy of all components of the given trigger step. This has
** the effect of copying all Expr.token.z values into memory obtained
** from sqlite3_malloc(). As initially created, the Expr.token.z values
** all point to the input string that was fed to the parser. But that
** string is ephemeral - it will go away as soon as the sqlite3_exec()
** call that started the parser exits. This routine makes a persistent
** copy of all the Expr.token.z strings so that the TriggerStep structure
** will be valid even after the sqlite3_exec() call returns.
*/
static void
sqlitePersistTriggerStep(sqlite3 * db, TriggerStep * p)
{
if(p->target.z)
{
p->target.z = (u8 *) sqlite3DbStrNDup(db, (char *) p->target.z, p->target.n);
p->target.dyn = 1;
}
if(p->pSelect)
{
Select *pNew = sqlite3SelectDup(db, p->pSelect);
sqlite3SelectDelete(p->pSelect);
p->pSelect = pNew;
}
if(p->pWhere)
{
Expr *pNew = sqlite3ExprDup(db, p->pWhere);
sqlite3ExprDelete(p->pWhere);
p->pWhere = pNew;
}
if(p->pExprList)
{
ExprList *pNew = sqlite3ExprListDup(db, p->pExprList);
sqlite3ExprListDelete(p->pExprList);
p->pExprList = pNew;
}
if(p->pIdList)
{
IdList *pNew = sqlite3IdListDup(db, p->pIdList);
sqlite3IdListDelete(p->pIdList);
p->pIdList = pNew;
}
}
/*
** Turn a SELECT statement (that the pSelect parameter points to) into
** a trigger step. Return a pointer to a TriggerStep structure.
**
** The parser calls this routine when it finds a SELECT statement in
** body of a TRIGGER.
*/
SQLITE_PRIVATE TriggerStep *
sqlite3TriggerSelectStep(sqlite3 * db, Select * pSelect)
{
TriggerStep *pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep));
if(pTriggerStep == 0)
{
sqlite3SelectDelete(pSelect);
return 0;
}
pTriggerStep->op = TK_SELECT;
pTriggerStep->pSelect = pSelect;
pTriggerStep->orconf = OE_Default;
sqlitePersistTriggerStep(db, pTriggerStep);
return pTriggerStep;
}
/*
** Build a trigger step out of an INSERT statement. Return a pointer
** to the new trigger step.
**
** The parser calls this routine when it sees an INSERT inside the
** body of a trigger.
*/
SQLITE_PRIVATE TriggerStep *
sqlite3TriggerInsertStep(sqlite3 * db, /* The database connection */
Token * pTableName, /* Name of the table into which we insert */
IdList * pColumn, /* List of columns in pTableName to insert into */
ExprList * pEList, /* The VALUE clause: a list of values to be inserted */
Select * pSelect, /* A SELECT statement that supplies values */
int orconf /* The conflict algorithm (OE_Abort, OE_Replace, etc.) */
)
{
TriggerStep *pTriggerStep;
assert(pEList == 0 || pSelect == 0);
assert(pEList != 0 || pSelect != 0 || db->mallocFailed);
pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep));
if(pTriggerStep)
{
pTriggerStep->op = TK_INSERT;
pTriggerStep->pSelect = pSelect;
pTriggerStep->target = *pTableName;
pTriggerStep->pIdList = pColumn;
pTriggerStep->pExprList = pEList;
pTriggerStep->orconf = orconf;
sqlitePersistTriggerStep(db, pTriggerStep);
}
else
{
sqlite3IdListDelete(pColumn);
sqlite3ExprListDelete(pEList);
sqlite3SelectDelete(pSelect);
}
return pTriggerStep;
}
/*
** Construct a trigger step that implements an UPDATE statement and return
** a pointer to that trigger step. The parser calls this routine when it
** sees an UPDATE statement inside the body of a CREATE TRIGGER.
*/
SQLITE_PRIVATE TriggerStep *
sqlite3TriggerUpdateStep(sqlite3 * db, /* The database connection */
Token * pTableName, /* Name of the table to be updated */
ExprList * pEList, /* The SET clause: list of column and new values */
Expr * pWhere, /* The WHERE clause */
int orconf /* The conflict algorithm. (OE_Abort, OE_Ignore, etc) */
)
{
TriggerStep *pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep));
if(pTriggerStep == 0)
{
sqlite3ExprListDelete(pEList);
sqlite3ExprDelete(pWhere);
return 0;
}
pTriggerStep->op = TK_UPDATE;
pTriggerStep->target = *pTableName;
pTriggerStep->pExprList = pEList;
pTriggerStep->pWhere = pWhere;
pTriggerStep->orconf = orconf;
sqlitePersistTriggerStep(db, pTriggerStep);
return pTriggerStep;
}
/*
** Construct a trigger step that implements a DELETE statement and return
** a pointer to that trigger step. The parser calls this routine when it
** sees a DELETE statement inside the body of a CREATE TRIGGER.
*/
SQLITE_PRIVATE TriggerStep *
sqlite3TriggerDeleteStep(sqlite3 * db, /* Database connection */
Token * pTableName, /* The table from which rows are deleted */
Expr * pWhere /* The WHERE clause */
)
{
TriggerStep *pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep));
if(pTriggerStep == 0)
{
sqlite3ExprDelete(pWhere);
return 0;
}
pTriggerStep->op = TK_DELETE;
pTriggerStep->target = *pTableName;
pTriggerStep->pWhere = pWhere;
pTriggerStep->orconf = OE_Default;
sqlitePersistTriggerStep(db, pTriggerStep);
return pTriggerStep;
}
/*
** Recursively delete a Trigger structure
*/
SQLITE_PRIVATE void
sqlite3DeleteTrigger(Trigger * pTrigger)
{
if(pTrigger == 0)
return;
sqlite3DeleteTriggerStep(pTrigger->step_list);
sqlite3_free(pTrigger->name);
sqlite3_free(pTrigger->table);
sqlite3ExprDelete(pTrigger->pWhen);
sqlite3IdListDelete(pTrigger->pColumns);
if(pTrigger->nameToken.dyn)
sqlite3_free((char *) pTrigger->nameToken.z);
sqlite3_free(pTrigger);
}
/*
** This function is called to drop a trigger from the database schema.
**
** This may be called directly from the parser and therefore identifies
** the trigger by name. The sqlite3DropTriggerPtr() routine does the
** same job as this routine except it takes a pointer to the trigger
** instead of the trigger name.
**/
SQLITE_PRIVATE void
sqlite3DropTrigger(Parse * pParse, SrcList * pName, int noErr)
{
Trigger *pTrigger = 0;
int i;
const char *zDb;
const char *zName;
int nName;
sqlite3 *db = pParse->db;
if(db->mallocFailed)
goto drop_trigger_cleanup;
if(SQLITE_OK != sqlite3ReadSchema(pParse))
{
goto drop_trigger_cleanup;
}
assert(pName->nSrc == 1);
zDb = pName->a[0].zDatabase;
zName = pName->a[0].zName;
nName = strlen(zName);
for (i = OMIT_TEMPDB; i < db->nDb; i++)
{
int j = (i < 2) ? i ^ 1 : i; /* Search TEMP before MAIN */
if(zDb && sqlite3StrICmp(db->aDb[j].zName, zDb))
continue;
pTrigger = sqlite3HashFind(&(db->aDb[j].pSchema->trigHash), zName, nName);
if(pTrigger)
break;
}
if(!pTrigger)
{
if(!noErr)
{
sqlite3ErrorMsg(pParse, "no such trigger: %S", pName, 0);
}
goto drop_trigger_cleanup;
}
sqlite3DropTriggerPtr(pParse, pTrigger);
drop_trigger_cleanup:
sqlite3SrcListDelete(pName);
}
/*
** Return a pointer to the Table structure for the table that a trigger
** is set on.
*/
static Table *
tableOfTrigger(Trigger * pTrigger)
{
int n = strlen(pTrigger->table) + 1;
return sqlite3HashFind(&pTrigger->pTabSchema->tblHash, pTrigger->table, n);
}
/*
** Drop a trigger given a pointer to that trigger.
*/
SQLITE_PRIVATE void
sqlite3DropTriggerPtr(Parse * pParse, Trigger * pTrigger)
{
Table *pTable;
Vdbe *v;
sqlite3 *db = pParse->db;
int iDb;
iDb = sqlite3SchemaToIndex(pParse->db, pTrigger->pSchema);
assert(iDb >= 0 && iDb < db->nDb);
pTable = tableOfTrigger(pTrigger);
assert(pTable);
assert(pTable->pSchema == pTrigger->pSchema || iDb == 1);
#ifndef SQLITE_OMIT_AUTHORIZATION
{
int code = SQLITE_DROP_TRIGGER;
const char *zDb = db->aDb[iDb].zName;
const char *zTab = SCHEMA_TABLE(iDb);
if(iDb == 1)
code = SQLITE_DROP_TEMP_TRIGGER;
if(sqlite3AuthCheck(pParse, code, pTrigger->name, pTable->zName, zDb) ||
sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb))
{
return;
}
}
#endif
/* Generate code to destroy the database record of the trigger.
*/
assert(pTable != 0);
if((v = sqlite3GetVdbe(pParse)) != 0)
{
int base;
static const VdbeOpList dropTrigger[] = {
{OP_Rewind, 0, ADDR(9), 0},
{OP_String8, 0, 1, 0}, /* 1 */
{OP_Column, 0, 1, 2},
{OP_Ne, 2, ADDR(8), 1},
{OP_String8, 0, 1, 0}, /* 4: "trigger" */
{OP_Column, 0, 0, 2},
{OP_Ne, 2, ADDR(8), 1},
{OP_Delete, 0, 0, 0},
{OP_Next, 0, ADDR(1), 0}, /* 8 */
};
sqlite3BeginWriteOperation(pParse, 0, iDb);
sqlite3OpenMasterTable(pParse, iDb);
base = sqlite3VdbeAddOpList(v, ArraySize(dropTrigger), dropTrigger);
sqlite3VdbeChangeP4(v, base + 1, pTrigger->name, 0);
sqlite3VdbeChangeP4(v, base + 4, "trigger", P4_STATIC);
sqlite3ChangeCookie(pParse, iDb);
sqlite3VdbeAddOp2(v, OP_Close, 0, 0);
sqlite3VdbeAddOp4(v, OP_DropTrigger, iDb, 0, 0, pTrigger->name, 0);
}
}
/*
** Remove a trigger from the hash tables of the sqlite* pointer.
*/
SQLITE_PRIVATE void
sqlite3UnlinkAndDeleteTrigger(sqlite3 * db, int iDb, const char *zName)
{
Trigger *pTrigger;
int nName = strlen(zName);
pTrigger = sqlite3HashInsert(&(db->aDb[iDb].pSchema->trigHash), zName, nName, 0);
if(pTrigger)
{
Table *pTable = tableOfTrigger(pTrigger);
assert(pTable != 0);
if(pTable->pTrigger == pTrigger)
{
pTable->pTrigger = pTrigger->pNext;
}
else
{
Trigger *cc = pTable->pTrigger;
while (cc)
{
if(cc->pNext == pTrigger)
{
cc->pNext = cc->pNext->pNext;
break;
}
cc = cc->pNext;
}
assert(cc);
}
sqlite3DeleteTrigger(pTrigger);
db->flags |= SQLITE_InternChanges;
}
}
/*
** pEList is the SET clause of an UPDATE statement. Each entry
** in pEList is of the format <id>=<expr>. If any of the entries
** in pEList have an <id> which matches an identifier in pIdList,
** then return TRUE. If pIdList==NULL, then it is considered a
** wildcard that matches anything. Likewise if pEList==NULL then
** it matches anything so always return true. Return false only
** if there is no match.
*/
static int
checkColumnOverLap(IdList * pIdList, ExprList * pEList)
{
int e;
if(!pIdList || !pEList)
return 1;
for (e = 0; e < pEList->nExpr; e++)
{
if(sqlite3IdListIndex(pIdList, pEList->a[e].zName) >= 0)
return 1;
}
return 0;
}
/*
** Return a bit vector to indicate what kind of triggers exist for operation
** "op" on table pTab. If pChanges is not NULL then it is a list of columns
** that are being updated. Triggers only match if the ON clause of the
** trigger definition overlaps the set of columns being updated.
**
** The returned bit vector is some combination of TRIGGER_BEFORE and
** TRIGGER_AFTER.
*/
SQLITE_PRIVATE int
sqlite3TriggersExist(Parse * pParse, /* Used to check for recursive triggers */
Table * pTab, /* The table the contains the triggers */
int op, /* one of TK_DELETE, TK_INSERT, TK_UPDATE */
ExprList * pChanges /* Columns that change in an UPDATE statement */
)
{
Trigger *pTrigger;
int mask = 0;
pTrigger = IsVirtual(pTab) ? 0 : pTab->pTrigger;
while (pTrigger)
{
if(pTrigger->op == op && checkColumnOverLap(pTrigger->pColumns, pChanges))
{
mask |= pTrigger->tr_tm;
}
pTrigger = pTrigger->pNext;
}
return mask;
}
/*
** Convert the pStep->target token into a SrcList and return a pointer
** to that SrcList.
**
** This routine adds a specific database name, if needed, to the target when
** forming the SrcList. This prevents a trigger in one database from
** referring to a target in another database. An exception is when the
** trigger is in TEMP in which case it can refer to any other database it
** wants.
*/
static SrcList *
targetSrcList(Parse * pParse, /* The parsing context */
TriggerStep * pStep /* The trigger containing the target token */
)
{
Token sDb; /* Dummy database name token */
int iDb; /* Index of the database to use */
SrcList *pSrc; /* SrcList to be returned */
iDb = sqlite3SchemaToIndex(pParse->db, pStep->pTrig->pSchema);
if(iDb == 0 || iDb >= 2)
{
assert(iDb < pParse->db->nDb);
sDb.z = (u8 *) pParse->db->aDb[iDb].zName;
sDb.n = strlen((char *) sDb.z);
pSrc = sqlite3SrcListAppend(pParse->db, 0, &sDb, &pStep->target);
}
else
{
pSrc = sqlite3SrcListAppend(pParse->db, 0, &pStep->target, 0);
}
return pSrc;
}
/*
** Generate VDBE code for zero or more statements inside the body of a
** trigger.
*/
static int
codeTriggerProgram(Parse * pParse, /* The parser context */
TriggerStep * pStepList, /* List of statements inside the trigger body */
int orconfin /* Conflict algorithm. (OE_Abort, etc) */
)
{
TriggerStep *pTriggerStep = pStepList;
int orconf;
Vdbe *v = pParse->pVdbe;
sqlite3 *db = pParse->db;
assert(pTriggerStep != 0);
assert(v != 0);
sqlite3VdbeAddOp2(v, OP_ContextPush, 0, 0);
VdbeComment((v, "begin trigger %s", pStepList->pTrig->name));
while (pTriggerStep)
{
orconf = (orconfin == OE_Default) ? pTriggerStep->orconf : orconfin;
pParse->trigStack->orconf = orconf;
switch (pTriggerStep->op)
{
case TK_SELECT:
{
Select *ss = sqlite3SelectDup(db, pTriggerStep->pSelect);
if(ss)
{
SelectDest dest;
sqlite3SelectDestInit(&dest, SRT_Discard, 0);
sqlite3SelectResolve(pParse, ss, 0);
sqlite3Select(pParse, ss, &dest, 0, 0, 0, 0);
sqlite3SelectDelete(ss);
}
break;
}
case TK_UPDATE:
{
SrcList *pSrc;
pSrc = targetSrcList(pParse, pTriggerStep);
sqlite3VdbeAddOp2(v, OP_ResetCount, 0, 0);
sqlite3Update(pParse, pSrc,
sqlite3ExprListDup(db, pTriggerStep->pExprList),
sqlite3ExprDup(db, pTriggerStep->pWhere), orconf);
sqlite3VdbeAddOp2(v, OP_ResetCount, 1, 0);
break;
}
case TK_INSERT:
{
SrcList *pSrc;
pSrc = targetSrcList(pParse, pTriggerStep);
sqlite3VdbeAddOp2(v, OP_ResetCount, 0, 0);
sqlite3Insert(pParse, pSrc,
sqlite3ExprListDup(db, pTriggerStep->pExprList),
sqlite3SelectDup(db, pTriggerStep->pSelect),
sqlite3IdListDup(db, pTriggerStep->pIdList), orconf);
sqlite3VdbeAddOp2(v, OP_ResetCount, 1, 0);
break;
}
case TK_DELETE:
{
SrcList *pSrc;
sqlite3VdbeAddOp2(v, OP_ResetCount, 0, 0);
pSrc = targetSrcList(pParse, pTriggerStep);
sqlite3DeleteFrom(pParse, pSrc,
sqlite3ExprDup(db, pTriggerStep->pWhere));
sqlite3VdbeAddOp2(v, OP_ResetCount, 1, 0);
break;
}
default:
assert(0);
}
pTriggerStep = pTriggerStep->pNext;
}
sqlite3VdbeAddOp2(v, OP_ContextPop, 0, 0);
VdbeComment((v, "end trigger %s", pStepList->pTrig->name));
return 0;
}
/*
** This is called to code FOR EACH ROW triggers.
**
** When the code that this function generates is executed, the following
** must be true:
**
** 1. No cursors may be open in the main database. (But newIdx and oldIdx
** can be indices of cursors in temporary tables. See below.)
**
** 2. If the triggers being coded are ON INSERT or ON UPDATE triggers, then
** a temporary vdbe cursor (index newIdx) must be open and pointing at
** a row containing values to be substituted for new.* expressions in the
** trigger program(s).
**
** 3. If the triggers being coded are ON DELETE or ON UPDATE triggers, then
** a temporary vdbe cursor (index oldIdx) must be open and pointing at
** a row containing values to be substituted for old.* expressions in the
** trigger program(s).
**
** If they are not NULL, the piOldColMask and piNewColMask output variables
** are set to values that describe the columns used by the trigger program
** in the OLD.* and NEW.* tables respectively. If column N of the
** pseudo-table is read at least once, the corresponding bit of the output
** mask is set. If a column with an index greater than 32 is read, the
** output mask is set to the special value 0xffffffff.
**
*/
SQLITE_PRIVATE int
sqlite3CodeRowTrigger(Parse * pParse, /* Parse context */
int op, /* One of TK_UPDATE, TK_INSERT, TK_DELETE */
ExprList * pChanges, /* Changes list for any UPDATE OF triggers */
int tr_tm, /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
Table * pTab, /* The table to code triggers from */
int newIdx, /* The indice of the "new" row to access */
int oldIdx, /* The indice of the "old" row to access */
int orconf, /* ON CONFLICT policy */
int ignoreJump, /* Instruction to jump to for RAISE(IGNORE) */
u32 * piOldColMask, /* OUT: Mask of columns used from the OLD.* table */
u32 * piNewColMask /* OUT: Mask of columns used from the NEW.* table */
)
{
Trigger *p;
sqlite3 *db = pParse->db;
TriggerStack trigStackEntry;
trigStackEntry.oldColMask = 0;
trigStackEntry.newColMask = 0;
assert(op == TK_UPDATE || op == TK_INSERT || op == TK_DELETE);
assert(tr_tm == TRIGGER_BEFORE || tr_tm == TRIGGER_AFTER);
assert(newIdx != -1 || oldIdx != -1);
for (p = pTab->pTrigger; p; p = p->pNext)
{
int fire_this = 0;
/* Determine whether we should code this trigger */
if(p->op == op &&
p->tr_tm == tr_tm &&
(p->pSchema == p->pTabSchema || p->pSchema == db->aDb[1].pSchema) &&
(op != TK_UPDATE || !p->pColumns || checkColumnOverLap(p->pColumns, pChanges)))
{
TriggerStack *pS; /* Pointer to trigger-stack entry */
for (pS = pParse->trigStack; pS && p != pS->pTrigger; pS = pS->pNext)
{
}
if(!pS)
{
fire_this = 1;
}
#if 0 /* Give no warning for recursive triggers. Just do not do them */
else
{
sqlite3ErrorMsg(pParse, "recursive triggers not supported (%s)",
p->name);
return SQLITE_ERROR;
}
#endif
}
if(fire_this)
{
int endTrigger;
Expr *whenExpr;
AuthContext sContext;
NameContext sNC;
#ifndef SQLITE_OMIT_TRACE
sqlite3VdbeAddOp4(pParse->pVdbe, OP_Trace, 0, 0, 0,
sqlite3MPrintf(db, "-- TRIGGER %s", p->name), P4_DYNAMIC);
#endif
memset(&sNC, 0, sizeof(sNC));
sNC.pParse = pParse;
/* Push an entry on to the trigger stack */
trigStackEntry.pTrigger = p;
trigStackEntry.newIdx = newIdx;
trigStackEntry.oldIdx = oldIdx;
trigStackEntry.pTab = pTab;
trigStackEntry.pNext = pParse->trigStack;
trigStackEntry.ignoreJump = ignoreJump;
pParse->trigStack = &trigStackEntry;
sqlite3AuthContextPush(pParse, &sContext, p->name);
/* code the WHEN clause */
endTrigger = sqlite3VdbeMakeLabel(pParse->pVdbe);
whenExpr = sqlite3ExprDup(db, p->pWhen);
if(db->mallocFailed || sqlite3ExprResolveNames(&sNC, whenExpr))
{
pParse->trigStack = trigStackEntry.pNext;
sqlite3ExprDelete(whenExpr);
return 1;
}
sqlite3ExprIfFalse(pParse, whenExpr, endTrigger, SQLITE_JUMPIFNULL);
sqlite3ExprDelete(whenExpr);
codeTriggerProgram(pParse, p->step_list, orconf);
/* Pop the entry off the trigger stack */
pParse->trigStack = trigStackEntry.pNext;
sqlite3AuthContextPop(&sContext);
sqlite3VdbeResolveLabel(pParse->pVdbe, endTrigger);
}
}
if(piOldColMask)
*piOldColMask |= trigStackEntry.oldColMask;
if(piNewColMask)
*piNewColMask |= trigStackEntry.newColMask;
return 0;
}
#endif /* !defined(SQLITE_OMIT_TRIGGER) */
/************** End of trigger.c *********************************************/
/************** Begin file update.c ******************************************/
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle UPDATE statements.
**
*/
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Forward declaration */
static void updateVirtualTable(Parse * pParse, /* The parsing context */
SrcList * pSrc, /* The virtual table to be modified */
Table * pTab, /* The virtual table */
ExprList * pChanges, /* The columns to change in the UPDATE statement */
Expr * pRowidExpr, /* Expression used to recompute the rowid */
int *aXRef, /* Mapping from columns of pTab to entries in pChanges */
Expr * pWhere /* WHERE clause of the UPDATE statement */
);
#endif /* SQLITE_OMIT_VIRTUALTABLE */
/*
** The most recently coded instruction was an OP_Column to retrieve the
** i-th column of table pTab. This routine sets the P4 parameter of the
** OP_Column to the default value, if any.
**
** The default value of a column is specified by a DEFAULT clause in the
** column definition. This was either supplied by the user when the table
** was created, or added later to the table definition by an ALTER TABLE
** command. If the latter, then the row-records in the table btree on disk
** may not contain a value for the column and the default value, taken
** from the P4 parameter of the OP_Column instruction, is returned instead.
** If the former, then all row-records are guaranteed to include a value
** for the column and the P4 value is not required.
**
** Column definitions created by an ALTER TABLE command may only have
** literal default values specified: a number, null or a string. (If a more
** complicated default expression value was provided, it is evaluated
** when the ALTER TABLE is executed and one of the literal values written
** into the sqlite_master table.)
**
** Therefore, the P4 parameter is only required if the default value for
** the column is a literal number, string or null. The sqlite3ValueFromExpr()
** function is capable of transforming these types of expressions into
** sqlite3_value objects.
*/
SQLITE_PRIVATE void
sqlite3ColumnDefault(Vdbe * v, Table * pTab, int i)
{
if(pTab && !pTab->pSelect)
{
sqlite3_value *pValue;
u8 enc = ENC(sqlite3VdbeDb(v));
Column *pCol = &pTab->aCol[i];
VdbeComment((v, "%s.%s", pTab->zName, pCol->zName));
assert(i < pTab->nCol);
sqlite3ValueFromExpr(sqlite3VdbeDb(v), pCol->pDflt, enc, pCol->affinity, &pValue);
if(pValue)
{
sqlite3VdbeChangeP4(v, -1, (const char *) pValue, P4_MEM);
}
}
}
/*
** Process an UPDATE statement.
**
** UPDATE OR IGNORE table_wxyz SET a=b, c=d WHERE e<5 AND f NOT NULL;
** \_______/ \________/ \______/ \________________/
* onError pTabList pChanges pWhere
*/
SQLITE_PRIVATE void
sqlite3Update(Parse * pParse, /* The parser context */
SrcList * pTabList, /* The table in which we should change things */
ExprList * pChanges, /* Things to be changed */
Expr * pWhere, /* The WHERE clause. May be null */
int onError /* How to handle constraint errors */
)
{
int i, j; /* Loop counters */
Table *pTab; /* The table to be updated */
int addr = 0; /* VDBE instruction address of the start of the loop */
WhereInfo *pWInfo; /* Information about the WHERE clause */
Vdbe *v; /* The virtual database engine */
Index *pIdx; /* For looping over indices */
int nIdx; /* Number of indices that need updating */
int iCur; /* VDBE Cursor number of pTab */
sqlite3 *db; /* The database structure */
int *aRegIdx = 0; /* One register assigned to each index to be updated */
int *aXRef = 0; /* aXRef[i] is the index in pChanges->a[] of the
** an expression for the i-th column of the table.
** aXRef[i]==-1 if the i-th column is not changed. */
int chngRowid; /* True if the record number is being changed */
Expr *pRowidExpr = 0; /* Expression defining the new record number */
int openAll = 0; /* True if all indices need to be opened */
AuthContext sContext; /* The authorization context */
NameContext sNC; /* The name-context to resolve expressions in */
int iDb; /* Database containing the table being updated */
int j1; /* Addresses of jump instructions */
int okOnePass; /* True for one-pass algorithm without the FIFO */
#ifndef SQLITE_OMIT_TRIGGER
int isView; /* Trying to update a view */
int triggers_exist = 0; /* True if any row triggers exist */
#endif
int iBeginAfterTrigger; /* Address of after trigger program */
int iEndAfterTrigger; /* Exit of after trigger program */
int iBeginBeforeTrigger; /* Address of before trigger program */
int iEndBeforeTrigger; /* Exit of before trigger program */
u32 old_col_mask = 0; /* Mask of OLD.* columns in use */
u32 new_col_mask = 0; /* Mask of NEW.* columns in use */
int newIdx = -1; /* index of trigger "new" temp table */
int oldIdx = -1; /* index of trigger "old" temp table */
/* Register Allocations */
int regRowCount = 0; /* A count of rows changed */
int regOldRowid; /* The old rowid */
int regNewRowid; /* The new rowid */
int regData; /* New data for the row */
sContext.pParse = 0;
db = pParse->db;
if(pParse->nErr || db->mallocFailed)
{
goto update_cleanup;
}
assert(pTabList->nSrc == 1);
/* Locate the table which we want to update.
*/
pTab = sqlite3SrcListLookup(pParse, pTabList);
if(pTab == 0)
goto update_cleanup;
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
/* Figure out if we have any triggers and if the table being
** updated is a view
*/
#ifndef SQLITE_OMIT_TRIGGER
triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_UPDATE, pChanges);
isView = pTab->pSelect != 0;
#else
# define triggers_exist 0
# define isView 0
#endif
#ifdef SQLITE_OMIT_VIEW
# undef isView
# define isView 0
#endif
if(sqlite3IsReadOnly(pParse, pTab, triggers_exist))
{
goto update_cleanup;
}
if(sqlite3ViewGetColumnNames(pParse, pTab))
{
goto update_cleanup;
}
aXRef = sqlite3DbMallocRaw(db, sizeof(int) * pTab->nCol);
if(aXRef == 0)
goto update_cleanup;
for (i = 0; i < pTab->nCol; i++)
aXRef[i] = -1;
/* If there are FOR EACH ROW triggers, allocate cursors for the
** special OLD and NEW tables
*/
if(triggers_exist)
{
newIdx = pParse->nTab++;
oldIdx = pParse->nTab++;
}
/* Allocate a cursors for the main database table and for all indices.
** The index cursors might not be used, but if they are used they
** need to occur right after the database cursor. So go ahead and
** allocate enough space, just in case.
*/
pTabList->a[0].iCursor = iCur = pParse->nTab++;
for (pIdx = pTab->pIndex; pIdx; pIdx = pIdx->pNext)
{
pParse->nTab++;
}
/* Initialize the name-context */
memset(&sNC, 0, sizeof(sNC));
sNC.pParse = pParse;
sNC.pSrcList = pTabList;
/* Resolve the column names in all the expressions of the
** of the UPDATE statement. Also find the column index
** for each column to be updated in the pChanges array. For each
** column to be updated, make sure we have authorization to change
** that column.
*/
chngRowid = 0;
for (i = 0; i < pChanges->nExpr; i++)
{
if(sqlite3ExprResolveNames(&sNC, pChanges->a[i].pExpr))
{
goto update_cleanup;
}
for (j = 0; j < pTab->nCol; j++)
{
if(sqlite3StrICmp(pTab->aCol[j].zName, pChanges->a[i].zName) == 0)
{
if(j == pTab->iPKey)
{
chngRowid = 1;
pRowidExpr = pChanges->a[i].pExpr;
}
aXRef[j] = i;
break;
}
}
if(j >= pTab->nCol)
{
if(sqlite3IsRowid(pChanges->a[i].zName))
{
chngRowid = 1;
pRowidExpr = pChanges->a[i].pExpr;
}
else
{
sqlite3ErrorMsg(pParse, "no such column: %s", pChanges->a[i].zName);
goto update_cleanup;
}
}
#ifndef SQLITE_OMIT_AUTHORIZATION
{
int rc;
rc = sqlite3AuthCheck(pParse, SQLITE_UPDATE, pTab->zName,
pTab->aCol[j].zName, db->aDb[iDb].zName);
if(rc == SQLITE_DENY)
{
goto update_cleanup;
}
else if(rc == SQLITE_IGNORE)
{
aXRef[j] = -1;
}
}
#endif
}
/* Allocate memory for the array aRegIdx[]. There is one entry in the
** array for each index associated with table being updated. Fill in
** the value with a register number for indices that are to be used
** and with zero for unused indices.
*/
for (nIdx = 0, pIdx = pTab->pIndex; pIdx; pIdx = pIdx->pNext, nIdx++)
{
}
if(nIdx > 0)
{
aRegIdx = sqlite3DbMallocRaw(db, sizeof(Index *) * nIdx);
if(aRegIdx == 0)
goto update_cleanup;
}
for (j = 0, pIdx = pTab->pIndex; pIdx; pIdx = pIdx->pNext, j++)
{
int reg;
if(chngRowid)
{
reg = ++pParse->nMem;
}
else
{
reg = 0;
for (i = 0; i < pIdx->nColumn; i++)
{
if(aXRef[pIdx->aiColumn[i]] >= 0)
{
reg = ++pParse->nMem;
break;
}
}
}
aRegIdx[j] = reg;
}
/* Allocate a block of register used to store the change record
** sent to sqlite3GenerateConstraintChecks(). There are either
** one or two registers for holding the rowid. One rowid register
** is used if chngRowid is false and two are used if chngRowid is
** true. Following these are pTab->nCol register holding column
** data.
*/
regOldRowid = regNewRowid = pParse->nMem + 1;
pParse->nMem += pTab->nCol + 1;
if(chngRowid)
{
regNewRowid++;
pParse->nMem++;
}
regData = regNewRowid + 1;
/* Begin generating code.
*/
v = sqlite3GetVdbe(pParse);
if(v == 0)
goto update_cleanup;
if(pParse->nested == 0)
sqlite3VdbeCountChanges(v);
sqlite3BeginWriteOperation(pParse, 1, iDb);
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Virtual tables must be handled separately */
if(IsVirtual(pTab))
{
updateVirtualTable(pParse, pTabList, pTab, pChanges, pRowidExpr, aXRef, pWhere);
pWhere = 0;
pTabList = 0;
goto update_cleanup;
}
#endif
/* Start the view context
*/
if(isView)
{
sqlite3AuthContextPush(pParse, &sContext, pTab->zName);
}
/* Generate the code for triggers.
*/
if(triggers_exist)
{
int iGoto;
/* Create pseudo-tables for NEW and OLD
*/
sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pTab->nCol);
sqlite3VdbeAddOp2(v, OP_OpenPseudo, oldIdx, 0);
sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pTab->nCol);
sqlite3VdbeAddOp2(v, OP_OpenPseudo, newIdx, 0);
iGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
addr = sqlite3VdbeMakeLabel(v);
iBeginBeforeTrigger = sqlite3VdbeCurrentAddr(v);
if(sqlite3CodeRowTrigger(pParse, TK_UPDATE, pChanges, TRIGGER_BEFORE, pTab,
newIdx, oldIdx, onError, addr, &old_col_mask,
&new_col_mask))
{
goto update_cleanup;
}
iEndBeforeTrigger = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
iBeginAfterTrigger = sqlite3VdbeCurrentAddr(v);
if(sqlite3CodeRowTrigger(pParse, TK_UPDATE, pChanges, TRIGGER_AFTER, pTab,
newIdx, oldIdx, onError, addr, &old_col_mask,
&new_col_mask))
{
goto update_cleanup;
}
iEndAfterTrigger = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
sqlite3VdbeJumpHere(v, iGoto);
}
/* If we are trying to update a view, realize that view into
** a ephemeral table.
*/
if(isView)
{
sqlite3MaterializeView(pParse, pTab->pSelect, pWhere, iCur);
}
/* Resolve the column names in all the expressions in the
** WHERE clause.
*/
if(sqlite3ExprResolveNames(&sNC, pWhere))
{
goto update_cleanup;
}
/* Begin the database scan
*/
sqlite3VdbeAddOp2(v, OP_Null, 0, regOldRowid);
pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0, WHERE_ONEPASS_DESIRED);
if(pWInfo == 0)
goto update_cleanup;
okOnePass = pWInfo->okOnePass;
/* Remember the rowid of every item to be updated.
*/
sqlite3VdbeAddOp2(v, IsVirtual(pTab) ? OP_VRowid : OP_Rowid, iCur, regOldRowid);
if(!okOnePass)
sqlite3VdbeAddOp2(v, OP_FifoWrite, regOldRowid, 0);
/* End the database scan loop.
*/
sqlite3WhereEnd(pWInfo);
/* Initialize the count of updated rows
*/
if(db->flags & SQLITE_CountRows && !pParse->trigStack)
{
regRowCount = ++pParse->nMem;
sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
}
if(!isView && !IsVirtual(pTab))
{
/*
** Open every index that needs updating. Note that if any
** index could potentially invoke a REPLACE conflict resolution
** action, then we need to open all indices because we might need
** to be deleting some records.
*/
if(!okOnePass)
sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenWrite);
if(onError == OE_Replace)
{
openAll = 1;
}
else
{
openAll = 0;
for (pIdx = pTab->pIndex; pIdx; pIdx = pIdx->pNext)
{
if(pIdx->onError == OE_Replace)
{
openAll = 1;
break;
}
}
}
for (i = 0, pIdx = pTab->pIndex; pIdx; pIdx = pIdx->pNext, i++)
{
if(openAll || aRegIdx[i] > 0)
{
KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
sqlite3VdbeAddOp4(v, OP_OpenWrite, iCur + i + 1, pIdx->tnum, iDb,
(char *) pKey, P4_KEYINFO_HANDOFF);
assert(pParse->nTab > iCur + i + 1);
}
}
}
/* Jump back to this point if a trigger encounters an IGNORE constraint. */
if(triggers_exist)
{
sqlite3VdbeResolveLabel(v, addr);
}
/* Top of the update loop */
if(okOnePass)
{
int a1 = sqlite3VdbeAddOp1(v, OP_NotNull, regOldRowid);
addr = sqlite3VdbeAddOp0(v, OP_Goto);
sqlite3VdbeJumpHere(v, a1);
}
else
{
addr = sqlite3VdbeAddOp2(v, OP_FifoRead, regOldRowid, 0);
}
if(triggers_exist)
{
int regRowid;
int regRow;
int regCols;
/* Make cursor iCur point to the record that is being updated.
*/
sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addr, regOldRowid);
/* Generate the OLD table
*/
regRowid = sqlite3GetTempReg(pParse);
regRow = sqlite3GetTempReg(pParse);
sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regRowid);
if(!old_col_mask)
{
sqlite3VdbeAddOp2(v, OP_Null, 0, regRow);
}
else
{
sqlite3VdbeAddOp2(v, OP_RowData, iCur, regRow);
}
sqlite3VdbeAddOp3(v, OP_Insert, oldIdx, regRow, regRowid);
/* Generate the NEW table
*/
if(chngRowid)
{
sqlite3ExprCodeAndCache(pParse, pRowidExpr, regRowid);
}
else
{
sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regRowid);
}
regCols = sqlite3GetTempRange(pParse, pTab->nCol);
for (i = 0; i < pTab->nCol; i++)
{
if(i == pTab->iPKey)
{
sqlite3VdbeAddOp2(v, OP_Null, 0, regCols + i);
continue;
}
j = aXRef[i];
if(new_col_mask & ((u32) 1 << i) || new_col_mask == 0xffffffff)
{
if(j < 0)
{
sqlite3VdbeAddOp3(v, OP_Column, iCur, i, regCols + i);
sqlite3ColumnDefault(v, pTab, i);
}
else
{
sqlite3ExprCodeAndCache(pParse, pChanges->a[j].pExpr,
regCols + i);
}
}
else
{
sqlite3VdbeAddOp2(v, OP_Null, 0, regCols + i);
}
}
sqlite3VdbeAddOp3(v, OP_MakeRecord, regCols, pTab->nCol, regRow);
if(!isView)
{
sqlite3TableAffinityStr(v, pTab);
sqlite3ExprCacheAffinityChange(pParse, regCols, pTab->nCol);
}
sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol);
if(pParse->nErr)
goto update_cleanup;
sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRow, regRowid);
sqlite3ReleaseTempReg(pParse, regRowid);
sqlite3ReleaseTempReg(pParse, regRow);
sqlite3VdbeAddOp2(v, OP_Goto, 0, iBeginBeforeTrigger);
sqlite3VdbeJumpHere(v, iEndBeforeTrigger);
}
if(!isView && !IsVirtual(pTab))
{
/* Loop over every record that needs updating. We have to load
** the old data for each record to be updated because some columns
** might not change and we will need to copy the old value.
** Also, the old data is needed to delete the old index entries.
** So make the cursor point at the old record.
*/
sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addr, regOldRowid);
/* If the record number will change, push the record number as it
** will be after the update. (The old record number is currently
** on top of the stack.)
*/
if(chngRowid)
{
sqlite3ExprCode(pParse, pRowidExpr, regNewRowid);
sqlite3VdbeAddOp1(v, OP_MustBeInt, regNewRowid);
}
/* Compute new data for this record.
*/
for (i = 0; i < pTab->nCol; i++)
{
if(i == pTab->iPKey)
{
sqlite3VdbeAddOp2(v, OP_Null, 0, regData + i);
continue;
}
j = aXRef[i];
if(j < 0)
{
sqlite3VdbeAddOp3(v, OP_Column, iCur, i, regData + i);
sqlite3ColumnDefault(v, pTab, i);
}
else
{
sqlite3ExprCode(pParse, pChanges->a[j].pExpr, regData + i);
}
}
/* Do constraint checks
*/
sqlite3GenerateConstraintChecks(pParse, pTab, iCur, regNewRowid,
aRegIdx, chngRowid, 1, onError, addr);
/* Delete the old indices for the current record.
*/
j1 = sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regOldRowid);
sqlite3GenerateRowIndexDelete(pParse, pTab, iCur, aRegIdx);
/* If changing the record number, delete the old record.
*/
if(chngRowid)
{
sqlite3VdbeAddOp2(v, OP_Delete, iCur, 0);
}
sqlite3VdbeJumpHere(v, j1);
/* Create the new index entries and the new record.
*/
sqlite3CompleteInsertion(pParse, pTab, iCur, regNewRowid,
aRegIdx, chngRowid, 1, -1, 0);
}
/* Increment the row counter
*/
if(db->flags & SQLITE_CountRows && !pParse->trigStack)
{
sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
}
/* If there are triggers, close all the cursors after each iteration
** through the loop. The fire the after triggers.
*/
if(triggers_exist)
{
sqlite3VdbeAddOp2(v, OP_Goto, 0, iBeginAfterTrigger);
sqlite3VdbeJumpHere(v, iEndAfterTrigger);
}
/* Repeat the above with the next record to be updated, until
** all record selected by the WHERE clause have been updated.
*/
sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
sqlite3VdbeJumpHere(v, addr);
/* Close all tables */
for (i = 0, pIdx = pTab->pIndex; pIdx; pIdx = pIdx->pNext, i++)
{
if(openAll || aRegIdx[i] > 0)
{
sqlite3VdbeAddOp2(v, OP_Close, iCur + i + 1, 0);
}
}
sqlite3VdbeAddOp2(v, OP_Close, iCur, 0);
if(triggers_exist)
{
sqlite3VdbeAddOp2(v, OP_Close, newIdx, 0);
sqlite3VdbeAddOp2(v, OP_Close, oldIdx, 0);
}
/*
** Return the number of rows that were changed. If this routine is
** generating code because of a call to sqlite3NestedParse(), do not
** invoke the callback function.
*/
if(db->flags & SQLITE_CountRows && !pParse->trigStack && pParse->nested == 0)
{
sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
sqlite3VdbeSetNumCols(v, 1);
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows updated", P4_STATIC);
}
update_cleanup:
sqlite3AuthContextPop(&sContext);
sqlite3_free(aRegIdx);
sqlite3_free(aXRef);
sqlite3SrcListDelete(pTabList);
sqlite3ExprListDelete(pChanges);
sqlite3ExprDelete(pWhere);
return;
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
** Generate code for an UPDATE of a virtual table.
**
** The strategy is that we create an ephemerial table that contains
** for each row to be changed:
**
** (A) The original rowid of that row.
** (B) The revised rowid for the row. (note1)
** (C) The content of every column in the row.
**
** Then we loop over this ephemeral table and for each row in
** the ephermeral table call VUpdate.
**
** When finished, drop the ephemeral table.
**
** (note1) Actually, if we know in advance that (A) is always the same
** as (B) we only store (A), then duplicate (A) when pulling
** it out of the ephemeral table before calling VUpdate.
*/
static void
updateVirtualTable(Parse * pParse, /* The parsing context */
SrcList * pSrc, /* The virtual table to be modified */
Table * pTab, /* The virtual table */
ExprList * pChanges, /* The columns to change in the UPDATE statement */
Expr * pRowid, /* Expression used to recompute the rowid */
int *aXRef, /* Mapping from columns of pTab to entries in pChanges */
Expr * pWhere /* WHERE clause of the UPDATE statement */
)
{
Vdbe *v = pParse->pVdbe; /* Virtual machine under construction */
ExprList *pEList = 0; /* The result set of the SELECT statement */
Select *pSelect = 0; /* The SELECT statement */
Expr *pExpr; /* Temporary expression */
int ephemTab; /* Table holding the result of the SELECT */
int i; /* Loop counter */
int addr; /* Address of top of loop */
int iReg; /* First register in set passed to OP_VUpdate */
sqlite3 *db = pParse->db; /* Database connection */
const char *pVtab = (const char *) pTab->pVtab;
SelectDest dest;
/* Construct the SELECT statement that will find the new values for
** all updated rows.
*/
pEList = sqlite3ExprListAppend(pParse, 0, sqlite3CreateIdExpr(pParse, "_rowid_"), 0);
if(pRowid)
{
pEList = sqlite3ExprListAppend(pParse, pEList, sqlite3ExprDup(db, pRowid), 0);
}
assert(pTab->iPKey < 0);
for (i = 0; i < pTab->nCol; i++)
{
if(aXRef[i] >= 0)
{
pExpr = sqlite3ExprDup(db, pChanges->a[aXRef[i]].pExpr);
}
else
{
pExpr = sqlite3CreateIdExpr(pParse, pTab->aCol[i].zName);
}
pEList = sqlite3ExprListAppend(pParse, pEList, pExpr, 0);
}
pSelect = sqlite3SelectNew(pParse, pEList, pSrc, pWhere, 0, 0, 0, 0, 0, 0);
/* Create the ephemeral table into which the update results will
** be stored.
*/
assert(v);
ephemTab = pParse->nTab++;
sqlite3VdbeAddOp2(v, OP_OpenEphemeral, ephemTab, pTab->nCol + 1 + (pRowid != 0));
/* fill the ephemeral table
*/
sqlite3SelectDestInit(&dest, SRT_Table, ephemTab);
sqlite3Select(pParse, pSelect, &dest, 0, 0, 0, 0);
/* Generate code to scan the ephemeral table and call VUpdate. */
iReg = ++pParse->nMem;
pParse->nMem += pTab->nCol + 1;
sqlite3VdbeAddOp2(v, OP_Rewind, ephemTab, 0);
addr = sqlite3VdbeCurrentAddr(v);
sqlite3VdbeAddOp3(v, OP_Column, ephemTab, 0, iReg);
sqlite3VdbeAddOp3(v, OP_Column, ephemTab, (pRowid ? 1 : 0), iReg + 1);
for (i = 0; i < pTab->nCol; i++)
{
sqlite3VdbeAddOp3(v, OP_Column, ephemTab, i + 1 + (pRowid != 0), iReg + 2 + i);
}
sqlite3VtabMakeWritable(pParse, pTab);
sqlite3VdbeAddOp4(v, OP_VUpdate, 0, pTab->nCol + 2, iReg, pVtab, P4_VTAB);
sqlite3VdbeAddOp2(v, OP_Next, ephemTab, addr);
sqlite3VdbeJumpHere(v, addr - 1);
sqlite3VdbeAddOp2(v, OP_Close, ephemTab, 0);
/* Cleanup */
sqlite3SelectDelete(pSelect);
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
/* Make sure "isView" gets undefined in case this file becomes part of
** the amalgamation - so that subsequent files do not see isView as a
** macro. */
#undef isView
/************** End of update.c **********************************************/
/************** Begin file vacuum.c ******************************************/
/*
** 2003 April 6
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code used to implement the VACUUM command.
**
** Most of the code in this file may be omitted by defining the
** SQLITE_OMIT_VACUUM macro.
**
*/
#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
/*
** Execute zSql on database db. Return an error code.
*/
static int
execSql(sqlite3 * db, const char *zSql)
{
sqlite3_stmt *pStmt;
if(!zSql)
{
return SQLITE_NOMEM;
}
if(SQLITE_OK != sqlite3_prepare(db, zSql, -1, &pStmt, 0))
{
return sqlite3_errcode(db);
}
while (SQLITE_ROW == sqlite3_step(pStmt))
{
}
return sqlite3_finalize(pStmt);
}
/*
** Execute zSql on database db. The statement returns exactly
** one column. Execute this as SQL on the same database.
*/
static int
execExecSql(sqlite3 * db, const char *zSql)
{
sqlite3_stmt *pStmt;
int rc;
rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
if(rc != SQLITE_OK)
return rc;
while (SQLITE_ROW == sqlite3_step(pStmt))
{
rc = execSql(db, (char *) sqlite3_column_text(pStmt, 0));
if(rc != SQLITE_OK)
{
sqlite3_finalize(pStmt);
return rc;
}
}
return sqlite3_finalize(pStmt);
}
/*
** The non-standard VACUUM command is used to clean up the database,
** collapse free space, etc. It is modelled after the VACUUM command
** in PostgreSQL.
**
** In version 1.0.x of SQLite, the VACUUM command would call
** gdbm_reorganize() on all the database tables. But beginning
** with 2.0.0, SQLite no longer uses GDBM so this command has
** become a no-op.
*/
SQLITE_PRIVATE void
sqlite3Vacuum(Parse * pParse)
{
Vdbe *v = sqlite3GetVdbe(pParse);
if(v)
{
sqlite3VdbeAddOp2(v, OP_Vacuum, 0, 0);
}
return;
}
/*
** This routine implements the OP_Vacuum opcode of the VDBE.
*/
SQLITE_PRIVATE int
sqlite3RunVacuum(char **pzErrMsg, sqlite3 * db)
{
int rc = SQLITE_OK; /* Return code from service routines */
Btree *pMain; /* The database being vacuumed */
Btree *pTemp; /* The temporary database we vacuum into */
char *zSql = 0; /* SQL statements */
int saved_flags; /* Saved value of the db->flags */
Db *pDb = 0; /* Database to detach at end of vacuum */
int nRes;
/* Save the current value of the write-schema flag before setting it. */
saved_flags = db->flags;
db->flags |= SQLITE_WriteSchema | SQLITE_IgnoreChecks;
if(!db->autoCommit)
{
sqlite3SetString(pzErrMsg, "cannot VACUUM from within a transaction", (char *) 0);
rc = SQLITE_ERROR;
goto end_of_vacuum;
}
pMain = db->aDb[0].pBt;
/* Attach the temporary database as 'vacuum_db'. The synchronous pragma
** can be set to 'off' for this file, as it is not recovered if a crash
** occurs anyway. The integrity of the database is maintained by a
** (possibly synchronous) transaction opened on the main database before
** sqlite3BtreeCopyFile() is called.
**
** An optimisation would be to use a non-journaled pager.
** (Later:) I tried setting "PRAGMA vacuum_db.journal_mode=OFF" but
** that actually made the VACUUM run slower. Very little journalling
** actually occurs when doing a vacuum since the vacuum_db is initially
** empty. Only the journal header is written. Apparently it takes more
** time to parse and run the PRAGMA to turn journalling off than it does
** to write the journal header file.
*/
zSql = "ATTACH '' AS vacuum_db;";
rc = execSql(db, zSql);
if(rc != SQLITE_OK)
goto end_of_vacuum;
pDb = &db->aDb[db->nDb - 1];
assert(strcmp(db->aDb[db->nDb - 1].zName, "vacuum_db") == 0);
pTemp = db->aDb[db->nDb - 1].pBt;
nRes = sqlite3BtreeGetReserve(pMain);
if(sqlite3BtreeSetPageSize(pTemp, sqlite3BtreeGetPageSize(pMain), nRes)
|| sqlite3BtreeSetPageSize(pTemp, db->nextPagesize, nRes) || db->mallocFailed)
{
rc = SQLITE_NOMEM;
goto end_of_vacuum;
}
rc = execSql(db, "PRAGMA vacuum_db.synchronous=OFF");
if(rc != SQLITE_OK)
{
goto end_of_vacuum;
}
#ifndef SQLITE_OMIT_AUTOVACUUM
sqlite3BtreeSetAutoVacuum(pTemp, db->nextAutovac >= 0 ? db->nextAutovac :
sqlite3BtreeGetAutoVacuum(pMain));
#endif
/* Begin a transaction */
rc = execSql(db, "BEGIN EXCLUSIVE;");
if(rc != SQLITE_OK)
goto end_of_vacuum;
/* Query the schema of the main database. Create a mirror schema
** in the temporary database.
*/
rc = execExecSql(db,
"SELECT 'CREATE TABLE vacuum_db.' || substr(sql,14) "
" FROM sqlite_master WHERE type='table' AND name!='sqlite_sequence'"
" AND rootpage>0");
if(rc != SQLITE_OK)
goto end_of_vacuum;
rc = execExecSql(db,
"SELECT 'CREATE INDEX vacuum_db.' || substr(sql,14)"
" FROM sqlite_master WHERE sql LIKE 'CREATE INDEX %' ");
if(rc != SQLITE_OK)
goto end_of_vacuum;
rc = execExecSql(db,
"SELECT 'CREATE UNIQUE INDEX vacuum_db.' || substr(sql,21) "
" FROM sqlite_master WHERE sql LIKE 'CREATE UNIQUE INDEX %'");
if(rc != SQLITE_OK)
goto end_of_vacuum;
/* Loop through the tables in the main database. For each, do
** an "INSERT INTO vacuum_db.xxx SELECT * FROM xxx;" to copy
** the contents to the temporary database.
*/
rc = execExecSql(db,
"SELECT 'INSERT INTO vacuum_db.' || quote(name) "
"|| ' SELECT * FROM ' || quote(name) || ';'"
"FROM sqlite_master "
"WHERE type = 'table' AND name!='sqlite_sequence' " " AND rootpage>0");
if(rc != SQLITE_OK)
goto end_of_vacuum;
/* Copy over the sequence table
*/
rc = execExecSql(db,
"SELECT 'DELETE FROM vacuum_db.' || quote(name) || ';' "
"FROM vacuum_db.sqlite_master WHERE name='sqlite_sequence' ");
if(rc != SQLITE_OK)
goto end_of_vacuum;
rc = execExecSql(db,
"SELECT 'INSERT INTO vacuum_db.' || quote(name) "
"|| ' SELECT * FROM ' || quote(name) || ';' "
"FROM vacuum_db.sqlite_master WHERE name=='sqlite_sequence';");
if(rc != SQLITE_OK)
goto end_of_vacuum;
/* Copy the triggers, views, and virtual tables from the main database
** over to the temporary database. None of these objects has any
** associated storage, so all we have to do is copy their entries
** from the SQLITE_MASTER table.
*/
rc = execSql(db,
"INSERT INTO vacuum_db.sqlite_master "
" SELECT type, name, tbl_name, rootpage, sql"
" FROM sqlite_master"
" WHERE type='view' OR type='trigger'"
" OR (type='table' AND rootpage=0)");
if(rc)
goto end_of_vacuum;
/* At this point, unless the main db was completely empty, there is now a
** transaction open on the vacuum database, but not on the main database.
** Open a btree level transaction on the main database. This allows a
** call to sqlite3BtreeCopyFile(). The main database btree level
** transaction is then committed, so the SQL level never knows it was
** opened for writing. This way, the SQL transaction used to create the
** temporary database never needs to be committed.
*/
if(rc == SQLITE_OK)
{
u32 meta;
int i;
/* This array determines which meta meta values are preserved in the
** vacuum. Even entries are the meta value number and odd entries
** are an increment to apply to the meta value after the vacuum.
** The increment is used to increase the schema cookie so that other
** connections to the same database will know to reread the schema.
*/
static const unsigned char aCopy[] = {
1, 1, /* Add one to the old schema cookie */
3, 0, /* Preserve the default page cache size */
5, 0, /* Preserve the default text encoding */
6, 0, /* Preserve the user version */
};
assert(1 == sqlite3BtreeIsInTrans(pTemp));
assert(1 == sqlite3BtreeIsInTrans(pMain));
/* Copy Btree meta values */
for (i = 0; i < sizeof(aCopy) / sizeof(aCopy[0]); i += 2)
{
rc = sqlite3BtreeGetMeta(pMain, aCopy[i], &meta);
if(rc != SQLITE_OK)
goto end_of_vacuum;
rc = sqlite3BtreeUpdateMeta(pTemp, aCopy[i], meta + aCopy[i + 1]);
if(rc != SQLITE_OK)
goto end_of_vacuum;
}
rc = sqlite3BtreeCopyFile(pMain, pTemp);
if(rc != SQLITE_OK)
goto end_of_vacuum;
rc = sqlite3BtreeCommit(pTemp);
if(rc != SQLITE_OK)
goto end_of_vacuum;
rc = sqlite3BtreeCommit(pMain);
}
if(rc == SQLITE_OK)
{
rc = sqlite3BtreeSetPageSize(pMain, sqlite3BtreeGetPageSize(pTemp), nRes);
}
end_of_vacuum:
/* Restore the original value of db->flags */
db->flags = saved_flags;
/* Currently there is an SQL level transaction open on the vacuum
** database. No locks are held on any other files (since the main file
** was committed at the btree level). So it safe to end the transaction
** by manually setting the autoCommit flag to true and detaching the
** vacuum database. The vacuum_db journal file is deleted when the pager
** is closed by the DETACH.
*/
db->autoCommit = 1;
if(pDb)
{
sqlite3BtreeClose(pDb->pBt);
pDb->pBt = 0;
pDb->pSchema = 0;
}
sqlite3ResetInternalSchema(db, 0);
return rc;
}
#endif /* SQLITE_OMIT_VACUUM && SQLITE_OMIT_ATTACH */
/************** End of vacuum.c **********************************************/
/************** Begin file vtab.c ********************************************/
/*
** 2006 June 10
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code used to help implement virtual tables.
**
*/
#ifndef SQLITE_OMIT_VIRTUALTABLE
static int
createModule(sqlite3 * db, /* Database in which module is registered */
const char *zName, /* Name assigned to this module */
const sqlite3_module * pModule, /* The definition of the module */
void *pAux, /* Context pointer for xCreate/xConnect */
void (*xDestroy) (void *) /* Module destructor function */
)
{
int rc, nName;
Module *pMod;
sqlite3_mutex_enter(db->mutex);
nName = strlen(zName);
pMod = (Module *) sqlite3DbMallocRaw(db, sizeof(Module) + nName + 1);
if(pMod)
{
char *zCopy = (char *) (&pMod[1]);
memcpy(zCopy, zName, nName + 1);
pMod->zName = zCopy;
pMod->pModule = pModule;
pMod->pAux = pAux;
pMod->xDestroy = xDestroy;
pMod = (Module *) sqlite3HashInsert(&db->aModule, zCopy, nName, (void *) pMod);
if(pMod && pMod->xDestroy)
{
pMod->xDestroy(pMod->pAux);
}
sqlite3_free(pMod);
sqlite3ResetInternalSchema(db, 0);
}
rc = sqlite3ApiExit(db, SQLITE_OK);
sqlite3_mutex_leave(db->mutex);
return rc;
}
/*
** External API function used to create a new virtual-table module.
*/
SQLITE_API int
sqlite3_create_module(sqlite3 * db, /* Database in which module is registered */
const char *zName, /* Name assigned to this module */
const sqlite3_module * pModule, /* The definition of the module */
void *pAux /* Context pointer for xCreate/xConnect */
)
{
return createModule(db, zName, pModule, pAux, 0);
}
/*
** External API function used to create a new virtual-table module.
*/
SQLITE_API int
sqlite3_create_module_v2(sqlite3 * db, /* Database in which module is registered */
const char *zName, /* Name assigned to this module */
const sqlite3_module * pModule, /* The definition of the module */
void *pAux, /* Context pointer for xCreate/xConnect */
void (*xDestroy) (void *) /* Module destructor function */
)
{
return createModule(db, zName, pModule, pAux, xDestroy);
}
/*
** Lock the virtual table so that it cannot be disconnected.
** Locks nest. Every lock should have a corresponding unlock.
** If an unlock is omitted, resources leaks will occur.
**
** If a disconnect is attempted while a virtual table is locked,
** the disconnect is deferred until all locks have been removed.
*/
SQLITE_PRIVATE void
sqlite3VtabLock(sqlite3_vtab * pVtab)
{
pVtab->nRef++;
}
/*
** Unlock a virtual table. When the last lock is removed,
** disconnect the virtual table.
*/
SQLITE_PRIVATE void
sqlite3VtabUnlock(sqlite3 * db, sqlite3_vtab * pVtab)
{
pVtab->nRef--;
assert(db);
assert(sqlite3SafetyCheckOk(db));
if(pVtab->nRef == 0)
{
if(db->magic == SQLITE_MAGIC_BUSY)
{
(void) sqlite3SafetyOff(db);
pVtab->pModule->xDisconnect(pVtab);
(void) sqlite3SafetyOn(db);
}
else
{
pVtab->pModule->xDisconnect(pVtab);
}
}
}
/*
** Clear any and all virtual-table information from the Table record.
** This routine is called, for example, just before deleting the Table
** record.
*/
SQLITE_PRIVATE void
sqlite3VtabClear(Table * p)
{
sqlite3_vtab *pVtab = p->pVtab;
if(pVtab)
{
assert(p->pMod && p->pMod->pModule);
sqlite3VtabUnlock(p->pSchema->db, pVtab);
p->pVtab = 0;
}
if(p->azModuleArg)
{
int i;
for (i = 0; i < p->nModuleArg; i++)
{
sqlite3_free(p->azModuleArg[i]);
}
sqlite3_free(p->azModuleArg);
}
}
/*
** Add a new module argument to pTable->azModuleArg[].
** The string is not copied - the pointer is stored. The
** string will be freed automatically when the table is
** deleted.
*/
static void
addModuleArgument(sqlite3 * db, Table * pTable, char *zArg)
{
int i = pTable->nModuleArg++;
int nBytes = sizeof(char *) * (1 + pTable->nModuleArg);
char **azModuleArg;
azModuleArg = sqlite3DbRealloc(db, pTable->azModuleArg, nBytes);
if(azModuleArg == 0)
{
int j;
for (j = 0; j < i; j++)
{
sqlite3_free(pTable->azModuleArg[j]);
}
sqlite3_free(zArg);
sqlite3_free(pTable->azModuleArg);
pTable->nModuleArg = 0;
}
else
{
azModuleArg[i] = zArg;
azModuleArg[i + 1] = 0;
}
pTable->azModuleArg = azModuleArg;
}
/*
** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE
** statement. The module name has been parsed, but the optional list
** of parameters that follow the module name are still pending.
*/
SQLITE_PRIVATE void
sqlite3VtabBeginParse(Parse * pParse, /* Parsing context */
Token * pName1, /* Name of new table, or database name */
Token * pName2, /* Name of new table or NULL */
Token * pModuleName /* Name of the module for the virtual table */
)
{
int iDb; /* The database the table is being created in */
Table *pTable; /* The new virtual table */
sqlite3 *db; /* Database connection */
if(pParse->db->flags & SQLITE_SharedCache)
{
sqlite3ErrorMsg(pParse, "Cannot use virtual tables in shared-cache mode");
return;
}
sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, 0);
pTable = pParse->pNewTable;
if(pTable == 0 || pParse->nErr)
return;
assert(0 == pTable->pIndex);
db = pParse->db;
iDb = sqlite3SchemaToIndex(db, pTable->pSchema);
assert(iDb >= 0);
pTable->isVirtual = 1;
pTable->nModuleArg = 0;
addModuleArgument(db, pTable, sqlite3NameFromToken(db, pModuleName));
addModuleArgument(db, pTable, sqlite3DbStrDup(db, db->aDb[iDb].zName));
addModuleArgument(db, pTable, sqlite3DbStrDup(db, pTable->zName));
pParse->sNameToken.n = pModuleName->z + pModuleName->n - pName1->z;
#ifndef SQLITE_OMIT_AUTHORIZATION
/* Creating a virtual table invokes the authorization callback twice.
** The first invocation, to obtain permission to INSERT a row into the
** sqlite_master table, has already been made by sqlite3StartTable().
** The second call, to obtain permission to create the table, is made now.
*/
if(pTable->azModuleArg)
{
sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName,
pTable->azModuleArg[0], pParse->db->aDb[iDb].zName);
}
#endif
}
/*
** This routine takes the module argument that has been accumulating
** in pParse->zArg[] and appends it to the list of arguments on the
** virtual table currently under construction in pParse->pTable.
*/
static void
addArgumentToVtab(Parse * pParse)
{
if(pParse->sArg.z && pParse->pNewTable)
{
const char *z = (const char *) pParse->sArg.z;
int n = pParse->sArg.n;
sqlite3 *db = pParse->db;
addModuleArgument(db, pParse->pNewTable, sqlite3DbStrNDup(db, z, n));
}
}
/*
** The parser calls this routine after the CREATE VIRTUAL TABLE statement
** has been completely parsed.
*/
SQLITE_PRIVATE void
sqlite3VtabFinishParse(Parse * pParse, Token * pEnd)
{
Table *pTab; /* The table being constructed */
sqlite3 *db; /* The database connection */
char *zModule; /* The module name of the table: USING modulename */
Module *pMod = 0;
addArgumentToVtab(pParse);
pParse->sArg.z = 0;
/* Lookup the module name. */
pTab = pParse->pNewTable;
if(pTab == 0)
return;
db = pParse->db;
if(pTab->nModuleArg < 1)
return;
zModule = pTab->azModuleArg[0];
pMod = (Module *) sqlite3HashFind(&db->aModule, zModule, strlen(zModule));
pTab->pMod = pMod;
/* If the CREATE VIRTUAL TABLE statement is being entered for the
** first time (in other words if the virtual table is actually being
** created now instead of just being read out of sqlite_master) then
** do additional initialization work and store the statement text
** in the sqlite_master table.
*/
if(!db->init.busy)
{
char *zStmt;
char *zWhere;
int iDb;
Vdbe *v;
/* Compute the complete text of the CREATE VIRTUAL TABLE statement */
if(pEnd)
{
pParse->sNameToken.n = pEnd->z - pParse->sNameToken.z + pEnd->n;
}
zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken);
/* A slot for the record has already been allocated in the
** SQLITE_MASTER table. We just need to update that slot with all
** the information we've collected.
**
** The VM register number pParse->regRowid holds the rowid of an
** entry in the sqlite_master table tht was created for this vtab
** by sqlite3StartTable().
*/
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
sqlite3NestedParse(pParse,
"UPDATE %Q.%s "
"SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q "
"WHERE rowid=#%d",
db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
pTab->zName, pTab->zName, zStmt, pParse->regRowid);
sqlite3_free(zStmt);
v = sqlite3GetVdbe(pParse);
sqlite3ChangeCookie(pParse, iDb);
sqlite3VdbeAddOp2(v, OP_Expire, 0, 0);
zWhere = sqlite3MPrintf(db, "name='%q'", pTab->zName);
sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 1, 0, zWhere, P4_DYNAMIC);
sqlite3VdbeAddOp4(v, OP_VCreate, iDb, 0, 0, pTab->zName, strlen(pTab->zName) + 1);
}
/* If we are rereading the sqlite_master table create the in-memory
** record of the table. If the module has already been registered,
** also call the xConnect method here.
*/
else
{
Table *pOld;
Schema *pSchema = pTab->pSchema;
const char *zName = pTab->zName;
int nName = strlen(zName) + 1;
pOld = sqlite3HashInsert(&pSchema->tblHash, zName, nName, pTab);
if(pOld)
{
db->mallocFailed = 1;
assert(pTab == pOld); /* Malloc must have failed inside HashInsert() */
return;
}
pSchema->db = pParse->db;
pParse->pNewTable = 0;
}
}
/*
** The parser calls this routine when it sees the first token
** of an argument to the module name in a CREATE VIRTUAL TABLE statement.
*/
SQLITE_PRIVATE void
sqlite3VtabArgInit(Parse * pParse)
{
addArgumentToVtab(pParse);
pParse->sArg.z = 0;
pParse->sArg.n = 0;
}
/*
** The parser calls this routine for each token after the first token
** in an argument to the module name in a CREATE VIRTUAL TABLE statement.
*/
SQLITE_PRIVATE void
sqlite3VtabArgExtend(Parse * pParse, Token * p)
{
Token *pArg = &pParse->sArg;
if(pArg->z == 0)
{
pArg->z = p->z;
pArg->n = p->n;
}
else
{
assert(pArg->z < p->z);
pArg->n = (p->z + p->n - pArg->z);
}
}
/*
** Invoke a virtual table constructor (either xCreate or xConnect). The
** pointer to the function to invoke is passed as the fourth parameter
** to this procedure.
*/
static int
vtabCallConstructor(sqlite3 * db,
Table * pTab,
Module * pMod,
int (*xConstruct) (sqlite3 *, void *, int, const char *const *, sqlite3_vtab **,
char **), char **pzErr)
{
int rc;
int rc2;
sqlite3_vtab *pVtab = 0;
const char *const *azArg = (const char *const *) pTab->azModuleArg;
int nArg = pTab->nModuleArg;
char *zErr = 0;
char *zModuleName = sqlite3MPrintf(db, "%s", pTab->zName);
if(!zModuleName)
{
return SQLITE_NOMEM;
}
assert(!db->pVTab);
assert(xConstruct);
db->pVTab = pTab;
rc = sqlite3SafetyOff(db);
assert(rc == SQLITE_OK);
rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVtab, &zErr);
rc2 = sqlite3SafetyOn(db);
if(rc == SQLITE_OK && pVtab)
{
pVtab->pModule = pMod->pModule;
pVtab->nRef = 1;
pTab->pVtab = pVtab;
}
if(SQLITE_OK != rc)
{
if(zErr == 0)
{
*pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName);
}
else
{
*pzErr = sqlite3MPrintf(db, "%s", zErr);
sqlite3_free(zErr);
}
}
else if(db->pVTab)
{
const char *zFormat = "vtable constructor did not declare schema: %s";
*pzErr = sqlite3MPrintf(db, zFormat, pTab->zName);
rc = SQLITE_ERROR;
}
if(rc == SQLITE_OK)
{
rc = rc2;
}
db->pVTab = 0;
sqlite3_free(zModuleName);
/* If everything went according to plan, loop through the columns
** of the table to see if any of them contain the token "hidden".
** If so, set the Column.isHidden flag and remove the token from
** the type string.
*/
if(rc == SQLITE_OK)
{
int iCol;
for (iCol = 0; iCol < pTab->nCol; iCol++)
{
char *zType = pTab->aCol[iCol].zType;
int nType;
int i = 0;
if(!zType)
continue;
nType = strlen(zType);
if(sqlite3StrNICmp("hidden", zType, 6) || (zType[6] && zType[6] != ' '))
{
for (i = 0; i < nType; i++)
{
if((0 == sqlite3StrNICmp(" hidden", &zType[i], 7))
&& (zType[i + 7] == '\0' || zType[i + 7] == ' '))
{
i++;
break;
}
}
}
if(i < nType)
{
int j;
int nDel = 6 + (zType[i + 6] ? 1 : 0);
for (j = i; (j + nDel) <= nType; j++)
{
zType[j] = zType[j + nDel];
}
if(zType[i] == '\0' && i > 0)
{
assert(zType[i - 1] == ' ');
zType[i - 1] = '\0';
}
pTab->aCol[iCol].isHidden = 1;
}
}
}
return rc;
}
/*
** This function is invoked by the parser to call the xConnect() method
** of the virtual table pTab. If an error occurs, an error code is returned
** and an error left in pParse.
**
** This call is a no-op if table pTab is not a virtual table.
*/
SQLITE_PRIVATE int
sqlite3VtabCallConnect(Parse * pParse, Table * pTab)
{
Module *pMod;
int rc = SQLITE_OK;
if(!pTab || !pTab->isVirtual || pTab->pVtab)
{
return SQLITE_OK;
}
pMod = pTab->pMod;
if(!pMod)
{
const char *zModule = pTab->azModuleArg[0];
sqlite3ErrorMsg(pParse, "no such module: %s", zModule);
rc = SQLITE_ERROR;
}
else
{
char *zErr = 0;
sqlite3 *db = pParse->db;
rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr);
if(rc != SQLITE_OK)
{
sqlite3ErrorMsg(pParse, "%s", zErr);
}
sqlite3_free(zErr);
}
return rc;
}
/*
** Add the virtual table pVtab to the array sqlite3.aVTrans[].
*/
static int
addToVTrans(sqlite3 * db, sqlite3_vtab * pVtab)
{
const int ARRAY_INCR = 5;
/* Grow the sqlite3.aVTrans array if required */
if((db->nVTrans % ARRAY_INCR) == 0)
{
sqlite3_vtab **aVTrans;
int nBytes = sizeof(sqlite3_vtab *) * (db->nVTrans + ARRAY_INCR);
aVTrans = sqlite3DbRealloc(db, (void *) db->aVTrans, nBytes);
if(!aVTrans)
{
return SQLITE_NOMEM;
}
memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *) * ARRAY_INCR);
db->aVTrans = aVTrans;
}
/* Add pVtab to the end of sqlite3.aVTrans */
db->aVTrans[db->nVTrans++] = pVtab;
sqlite3VtabLock(pVtab);
return SQLITE_OK;
}
/*
** This function is invoked by the vdbe to call the xCreate method
** of the virtual table named zTab in database iDb.
**
** If an error occurs, *pzErr is set to point an an English language
** description of the error and an SQLITE_XXX error code is returned.
** In this case the caller must call sqlite3_free() on *pzErr.
*/
SQLITE_PRIVATE int
sqlite3VtabCallCreate(sqlite3 * db, int iDb, const char *zTab, char **pzErr)
{
int rc = SQLITE_OK;
Table *pTab;
Module *pMod;
const char *zModule;
pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName);
assert(pTab && pTab->isVirtual && !pTab->pVtab);
pMod = pTab->pMod;
zModule = pTab->azModuleArg[0];
/* If the module has been registered and includes a Create method,
** invoke it now. If the module has not been registered, return an
** error. Otherwise, do nothing.
*/
if(!pMod)
{
*pzErr = sqlite3MPrintf(db, "no such module: %s", zModule);
rc = SQLITE_ERROR;
}
else
{
rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr);
}
if(rc == SQLITE_OK && pTab->pVtab)
{
rc = addToVTrans(db, pTab->pVtab);
}
return rc;
}
/*
** This function is used to set the schema of a virtual table. It is only
** valid to call this function from within the xCreate() or xConnect() of a
** virtual table module.
*/
SQLITE_API int
sqlite3_declare_vtab(sqlite3 * db, const char *zCreateTable)
{
Parse sParse;
int rc = SQLITE_OK;
Table *pTab;
char *zErr = 0;
sqlite3_mutex_enter(db->mutex);
pTab = db->pVTab;
if(!pTab)
{
sqlite3Error(db, SQLITE_MISUSE, 0);
sqlite3_mutex_leave(db->mutex);
return SQLITE_MISUSE;
}
assert(pTab->isVirtual && pTab->nCol == 0 && pTab->aCol == 0);
memset(&sParse, 0, sizeof(Parse));
sParse.declareVtab = 1;
sParse.db = db;
if(SQLITE_OK == sqlite3RunParser(&sParse, zCreateTable, &zErr) &&
sParse.pNewTable && !sParse.pNewTable->pSelect && !sParse.pNewTable->isVirtual)
{
pTab->aCol = sParse.pNewTable->aCol;
pTab->nCol = sParse.pNewTable->nCol;
sParse.pNewTable->nCol = 0;
sParse.pNewTable->aCol = 0;
db->pVTab = 0;
}
else
{
sqlite3Error(db, SQLITE_ERROR, zErr);
sqlite3_free(zErr);
rc = SQLITE_ERROR;
}
sParse.declareVtab = 0;
sqlite3_finalize((sqlite3_stmt *) sParse.pVdbe);
sqlite3DeleteTable(sParse.pNewTable);
sParse.pNewTable = 0;
assert((rc & 0xff) == rc);
rc = sqlite3ApiExit(db, rc);
sqlite3_mutex_leave(db->mutex);
return rc;
}
/*
** This function is invoked by the vdbe to call the xDestroy method
** of the virtual table named zTab in database iDb. This occurs
** when a DROP TABLE is mentioned.
**
** This call is a no-op if zTab is not a virtual table.
*/
SQLITE_PRIVATE int
sqlite3VtabCallDestroy(sqlite3 * db, int iDb, const char *zTab)
{
int rc = SQLITE_OK;
Table *pTab;
pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName);
assert(pTab);
if(pTab->pVtab)
{
int (*xDestroy) (sqlite3_vtab * pVTab) = pTab->pMod->pModule->xDestroy;
rc = sqlite3SafetyOff(db);
assert(rc == SQLITE_OK);
if(xDestroy)
{
rc = xDestroy(pTab->pVtab);
}
(void) sqlite3SafetyOn(db);
if(rc == SQLITE_OK)
{
int i;
for (i = 0; i < db->nVTrans; i++)
{
if(db->aVTrans[i] == pTab->pVtab)
{
db->aVTrans[i] = db->aVTrans[--db->nVTrans];
break;
}
}
pTab->pVtab = 0;
}
}
return rc;
}
/*
** This function invokes either the xRollback or xCommit method
** of each of the virtual tables in the sqlite3.aVTrans array. The method
** called is identified by the second argument, "offset", which is
** the offset of the method to call in the sqlite3_module structure.
**
** The array is cleared after invoking the callbacks.
*/
static void
callFinaliser(sqlite3 * db, int offset)
{
int i;
if(db->aVTrans)
{
for (i = 0; i < db->nVTrans && db->aVTrans[i]; i++)
{
sqlite3_vtab *pVtab = db->aVTrans[i];
int (*x) (sqlite3_vtab *);
x = *(int (**)(sqlite3_vtab *)) ((char *) pVtab->pModule + offset);
if(x)
x(pVtab);
sqlite3VtabUnlock(db, pVtab);
}
sqlite3_free(db->aVTrans);
db->nVTrans = 0;
db->aVTrans = 0;
}
}
/*
** If argument rc2 is not SQLITE_OK, then return it and do nothing.
** Otherwise, invoke the xSync method of all virtual tables in the
** sqlite3.aVTrans array. Return the error code for the first error
** that occurs, or SQLITE_OK if all xSync operations are successful.
*/
SQLITE_PRIVATE int
sqlite3VtabSync(sqlite3 * db, int rc2)
{
int i;
int rc = SQLITE_OK;
int rcsafety;
sqlite3_vtab **aVTrans = db->aVTrans;
if(rc2 != SQLITE_OK)
return rc2;
rc = sqlite3SafetyOff(db);
db->aVTrans = 0;
for (i = 0; rc == SQLITE_OK && i < db->nVTrans && aVTrans[i]; i++)
{
sqlite3_vtab *pVtab = aVTrans[i];
int (*x) (sqlite3_vtab *);
x = pVtab->pModule->xSync;
if(x)
{
rc = x(pVtab);
}
}
db->aVTrans = aVTrans;
rcsafety = sqlite3SafetyOn(db);
if(rc == SQLITE_OK)
{
rc = rcsafety;
}
return rc;
}
/*
** Invoke the xRollback method of all virtual tables in the
** sqlite3.aVTrans array. Then clear the array itself.
*/
SQLITE_PRIVATE int
sqlite3VtabRollback(sqlite3 * db)
{
callFinaliser(db, offsetof(sqlite3_module, xRollback));
return SQLITE_OK;
}
/*
** Invoke the xCommit method of all virtual tables in the
** sqlite3.aVTrans array. Then clear the array itself.
*/
SQLITE_PRIVATE int
sqlite3VtabCommit(sqlite3 * db)
{
callFinaliser(db, offsetof(sqlite3_module, xCommit));
return SQLITE_OK;
}
/*
** If the virtual table pVtab supports the transaction interface
** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is
** not currently open, invoke the xBegin method now.
**
** If the xBegin call is successful, place the sqlite3_vtab pointer
** in the sqlite3.aVTrans array.
*/
SQLITE_PRIVATE int
sqlite3VtabBegin(sqlite3 * db, sqlite3_vtab * pVtab)
{
int rc = SQLITE_OK;
const sqlite3_module *pModule;
/* Special case: If db->aVTrans is NULL and db->nVTrans is greater
** than zero, then this function is being called from within a
** virtual module xSync() callback. It is illegal to write to
** virtual module tables in this case, so return SQLITE_LOCKED.
*/
if(0 == db->aVTrans && db->nVTrans > 0)
{
return SQLITE_LOCKED;
}
if(!pVtab)
{
return SQLITE_OK;
}
pModule = pVtab->pModule;
if(pModule->xBegin)
{
int i;
/* If pVtab is already in the aVTrans array, return early */
for (i = 0; (i < db->nVTrans) && 0 != db->aVTrans[i]; i++)
{
if(db->aVTrans[i] == pVtab)
{
return SQLITE_OK;
}
}
/* Invoke the xBegin method */
rc = pModule->xBegin(pVtab);
if(rc != SQLITE_OK)
{
return rc;
}
rc = addToVTrans(db, pVtab);
}
return rc;
}
/*
** The first parameter (pDef) is a function implementation. The
** second parameter (pExpr) is the first argument to this function.
** If pExpr is a column in a virtual table, then let the virtual
** table implementation have an opportunity to overload the function.
**
** This routine is used to allow virtual table implementations to
** overload MATCH, LIKE, GLOB, and REGEXP operators.
**
** Return either the pDef argument (indicating no change) or a
** new FuncDef structure that is marked as ephemeral using the
** SQLITE_FUNC_EPHEM flag.
*/
SQLITE_PRIVATE FuncDef *
sqlite3VtabOverloadFunction(sqlite3 * db, /* Database connection for reporting malloc problems */
FuncDef * pDef, /* Function to possibly overload */
int nArg, /* Number of arguments to the function */
Expr * pExpr /* First argument to the function */
)
{
Table *pTab;
sqlite3_vtab *pVtab;
sqlite3_module *pMod;
void (*xFunc) (sqlite3_context *, int, sqlite3_value **);
void *pArg;
FuncDef *pNew;
int rc = 0;
char *zLowerName;
unsigned char *z;
/* Check to see the left operand is a column in a virtual table */
if(pExpr == 0)
return pDef;
if(pExpr->op != TK_COLUMN)
return pDef;
pTab = pExpr->pTab;
if(pTab == 0)
return pDef;
if(!pTab->isVirtual)
return pDef;
pVtab = pTab->pVtab;
assert(pVtab != 0);
assert(pVtab->pModule != 0);
pMod = (sqlite3_module *) pVtab->pModule;
if(pMod->xFindFunction == 0)
return pDef;
/* Call the xFindFunction method on the virtual table implementation
** to see if the implementation wants to overload this function
*/
zLowerName = sqlite3DbStrDup(db, pDef->zName);
if(zLowerName)
{
for (z = (unsigned char *) zLowerName; *z; z++)
{
*z = sqlite3UpperToLower[*z];
}
rc = pMod->xFindFunction(pVtab, nArg, zLowerName, &xFunc, &pArg);
sqlite3_free(zLowerName);
}
if(rc == 0)
{
return pDef;
}
/* Create a new ephemeral function definition for the overloaded
** function */
pNew = sqlite3DbMallocZero(db, sizeof(*pNew) + strlen(pDef->zName));
if(pNew == 0)
{
return pDef;
}
*pNew = *pDef;
memcpy(pNew->zName, pDef->zName, strlen(pDef->zName) + 1);
pNew->xFunc = xFunc;
pNew->pUserData = pArg;
pNew->flags |= SQLITE_FUNC_EPHEM;
return pNew;
}
/*
** Make sure virtual table pTab is contained in the pParse->apVirtualLock[]
** array so that an OP_VBegin will get generated for it. Add pTab to the
** array if it is missing. If pTab is already in the array, this routine
** is a no-op.
*/
SQLITE_PRIVATE void
sqlite3VtabMakeWritable(Parse * pParse, Table * pTab)
{
int i, n;
assert(IsVirtual(pTab));
for (i = 0; i < pParse->nVtabLock; i++)
{
if(pTab == pParse->apVtabLock[i])
return;
}
n = (pParse->nVtabLock + 1) * sizeof(pParse->apVtabLock[0]);
pParse->apVtabLock = sqlite3_realloc(pParse->apVtabLock, n);
if(pParse->apVtabLock)
{
pParse->apVtabLock[pParse->nVtabLock++] = pTab;
}
else
{
pParse->db->mallocFailed = 1;
}
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
/************** End of vtab.c ************************************************/
/************** Begin file where.c *******************************************/
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This module contains C code that generates VDBE code used to process
** the WHERE clause of SQL statements. This module is reponsible for
** generating the code that loops through a table looking for applicable
** rows. Indices are selected and used to speed the search when doing
** so is applicable. Because this module is responsible for selecting
** indices, you might also think of this module as the "query optimizer".
**
*/
/*
** The number of bits in a Bitmask. "BMS" means "BitMask Size".
*/
#define BMS (sizeof(Bitmask)*8)
/*
** Trace output macros
*/
#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
SQLITE_PRIVATE int sqlite3WhereTrace = 0;
# define WHERETRACE(X) if(sqlite3WhereTrace) sqlite3DebugPrintf X
#else
# define WHERETRACE(X)
#endif
/* Forward reference
*/
typedef struct WhereClause WhereClause;
typedef struct ExprMaskSet ExprMaskSet;
/*
** The query generator uses an array of instances of this structure to
** help it analyze the subexpressions of the WHERE clause. Each WHERE
** clause subexpression is separated from the others by an AND operator.
**
** All WhereTerms are collected into a single WhereClause structure.
** The following identity holds:
**
** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm
**
** When a term is of the form:
**
** X <op> <expr>
**
** where X is a column name and <op> is one of certain operators,
** then WhereTerm.leftCursor and WhereTerm.leftColumn record the
** cursor number and column number for X. WhereTerm.operator records
** the <op> using a bitmask encoding defined by WO_xxx below. The
** use of a bitmask encoding for the operator allows us to search
** quickly for terms that match any of several different operators.
**
** prereqRight and prereqAll record sets of cursor numbers,
** but they do so indirectly. A single ExprMaskSet structure translates
** cursor number into bits and the translated bit is stored in the prereq
** fields. The translation is used in order to maximize the number of
** bits that will fit in a Bitmask. The VDBE cursor numbers might be
** spread out over the non-negative integers. For example, the cursor
** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The ExprMaskSet
** translates these sparse cursor numbers into consecutive integers
** beginning with 0 in order to make the best possible use of the available
** bits in the Bitmask. So, in the example above, the cursor numbers
** would be mapped into integers 0 through 7.
*/
typedef struct WhereTerm WhereTerm;
struct WhereTerm
{
Expr *pExpr; /* Pointer to the subexpression */
i16 iParent; /* Disable pWC->a[iParent] when this term disabled */
i16 leftCursor; /* Cursor number of X in "X <op> <expr>" */
i16 leftColumn; /* Column number of X in "X <op> <expr>" */
u16 eOperator; /* A WO_xx value describing <op> */
u8 flags; /* Bit flags. See below */
u8 nChild; /* Number of children that must disable us */
WhereClause *pWC; /* The clause this term is part of */
Bitmask prereqRight; /* Bitmask of tables used by pRight */
Bitmask prereqAll; /* Bitmask of tables referenced by p */
};
/*
** Allowed values of WhereTerm.flags
*/
#define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(pExpr) */
#define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */
#define TERM_CODED 0x04 /* This term is already coded */
#define TERM_COPIED 0x08 /* Has a child */
#define TERM_OR_OK 0x10 /* Used during OR-clause processing */
/*
** An instance of the following structure holds all information about a
** WHERE clause. Mostly this is a container for one or more WhereTerms.
*/
struct WhereClause
{
Parse *pParse; /* The parser context */
ExprMaskSet *pMaskSet; /* Mapping of table indices to bitmasks */
int nTerm; /* Number of terms */
int nSlot; /* Number of entries in a[] */
WhereTerm *a; /* Each a[] describes a term of the WHERE cluase */
WhereTerm aStatic[10]; /* Initial static space for a[] */
};
/*
** An instance of the following structure keeps track of a mapping
** between VDBE cursor numbers and bits of the bitmasks in WhereTerm.
**
** The VDBE cursor numbers are small integers contained in
** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE
** clause, the cursor numbers might not begin with 0 and they might
** contain gaps in the numbering sequence. But we want to make maximum
** use of the bits in our bitmasks. This structure provides a mapping
** from the sparse cursor numbers into consecutive integers beginning
** with 0.
**
** If ExprMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A.
**
** For example, if the WHERE clause expression used these VDBE
** cursors: 4, 5, 8, 29, 57, 73. Then the ExprMaskSet structure
** would map those cursor numbers into bits 0 through 5.
**
** Note that the mapping is not necessarily ordered. In the example
** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0,
** 57->5, 73->4. Or one of 719 other combinations might be used. It
** does not really matter. What is important is that sparse cursor
** numbers all get mapped into bit numbers that begin with 0 and contain
** no gaps.
*/
struct ExprMaskSet
{
int n; /* Number of assigned cursor values */
int ix[sizeof(Bitmask) * 8]; /* Cursor assigned to each bit */
};
/*
** Bitmasks for the operators that indices are able to exploit. An
** OR-ed combination of these values can be used when searching for
** terms in the where clause.
*/
#define WO_IN 1
#define WO_EQ 2
#define WO_LT (WO_EQ<<(TK_LT-TK_EQ))
#define WO_LE (WO_EQ<<(TK_LE-TK_EQ))
#define WO_GT (WO_EQ<<(TK_GT-TK_EQ))
#define WO_GE (WO_EQ<<(TK_GE-TK_EQ))
#define WO_MATCH 64
#define WO_ISNULL 128
/*
** Value for flags returned by bestIndex().
**
** The least significant byte is reserved as a mask for WO_ values above.
** The WhereLevel.flags field is usually set to WO_IN|WO_EQ|WO_ISNULL.
** But if the table is the right table of a left join, WhereLevel.flags
** is set to WO_IN|WO_EQ. The WhereLevel.flags field can then be used as
** the "op" parameter to findTerm when we are resolving equality constraints.
** ISNULL constraints will then not be used on the right table of a left
** join. Tickets #2177 and #2189.
*/
#define WHERE_ROWID_EQ 0x000100 /* rowid=EXPR or rowid IN (...) */
#define WHERE_ROWID_RANGE 0x000200 /* rowid<EXPR and/or rowid>EXPR */
#define WHERE_COLUMN_EQ 0x001000 /* x=EXPR or x IN (...) */
#define WHERE_COLUMN_RANGE 0x002000 /* x<EXPR and/or x>EXPR */
#define WHERE_COLUMN_IN 0x004000 /* x IN (...) */
#define WHERE_TOP_LIMIT 0x010000 /* x<EXPR or x<=EXPR constraint */
#define WHERE_BTM_LIMIT 0x020000 /* x>EXPR or x>=EXPR constraint */
#define WHERE_IDX_ONLY 0x080000 /* Use index only - omit table */
#define WHERE_ORDERBY 0x100000 /* Output will appear in correct order */
#define WHERE_REVERSE 0x200000 /* Scan in reverse order */
#define WHERE_UNIQUE 0x400000 /* Selects no more than one row */
#define WHERE_VIRTUALTABLE 0x800000 /* Use virtual-table processing */
/*
** Initialize a preallocated WhereClause structure.
*/
static void
whereClauseInit(WhereClause * pWC, /* The WhereClause to be initialized */
Parse * pParse, /* The parsing context */
ExprMaskSet * pMaskSet /* Mapping from table indices to bitmasks */
)
{
pWC->pParse = pParse;
pWC->pMaskSet = pMaskSet;
pWC->nTerm = 0;
pWC->nSlot = ArraySize(pWC->aStatic);
pWC->a = pWC->aStatic;
}
/*
** Deallocate a WhereClause structure. The WhereClause structure
** itself is not freed. This routine is the inverse of whereClauseInit().
*/
static void
whereClauseClear(WhereClause * pWC)
{
int i;
WhereTerm *a;
for (i = pWC->nTerm - 1, a = pWC->a; i >= 0; i--, a++)
{
if(a->flags & TERM_DYNAMIC)
{
sqlite3ExprDelete(a->pExpr);
}
}
if(pWC->a != pWC->aStatic)
{
sqlite3_free(pWC->a);
}
}
/*
** Add a new entries to the WhereClause structure. Increase the allocated
** space as necessary.
**
** If the flags argument includes TERM_DYNAMIC, then responsibility
** for freeing the expression p is assumed by the WhereClause object.
**
** WARNING: This routine might reallocate the space used to store
** WhereTerms. All pointers to WhereTerms should be invalided after
** calling this routine. Such pointers may be reinitialized by referencing
** the pWC->a[] array.
*/
static int
whereClauseInsert(WhereClause * pWC, Expr * p, int flags)
{
WhereTerm *pTerm;
int idx;
if(pWC->nTerm >= pWC->nSlot)
{
WhereTerm *pOld = pWC->a;
pWC->a = sqlite3_malloc(sizeof(pWC->a[0]) * pWC->nSlot * 2);
if(pWC->a == 0)
{
pWC->pParse->db->mallocFailed = 1;
if(flags & TERM_DYNAMIC)
{
sqlite3ExprDelete(p);
}
pWC->a = pOld;
return 0;
}
memcpy(pWC->a, pOld, sizeof(pWC->a[0]) * pWC->nTerm);
if(pOld != pWC->aStatic)
{
sqlite3_free(pOld);
}
pWC->nSlot *= 2;
}
pTerm = &pWC->a[idx = pWC->nTerm];
pWC->nTerm++;
pTerm->pExpr = p;
pTerm->flags = flags;
pTerm->pWC = pWC;
pTerm->iParent = -1;
return idx;
}
/*
** This routine identifies subexpressions in the WHERE clause where
** each subexpression is separated by the AND operator or some other
** operator specified in the op parameter. The WhereClause structure
** is filled with pointers to subexpressions. For example:
**
** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
** \________/ \_______________/ \________________/
** slot[0] slot[1] slot[2]
**
** The original WHERE clause in pExpr is unaltered. All this routine
** does is make slot[] entries point to substructure within pExpr.
**
** In the previous sentence and in the diagram, "slot[]" refers to
** the WhereClause.a[] array. This array grows as needed to contain
** all terms of the WHERE clause.
*/
static void
whereSplit(WhereClause * pWC, Expr * pExpr, int op)
{
if(pExpr == 0)
return;
if(pExpr->op != op)
{
whereClauseInsert(pWC, pExpr, 0);
}
else
{
whereSplit(pWC, pExpr->pLeft, op);
whereSplit(pWC, pExpr->pRight, op);
}
}
/*
** Initialize an expression mask set
*/
#define initMaskSet(P) memset(P, 0, sizeof(*P))
/*
** Return the bitmask for the given cursor number. Return 0 if
** iCursor is not in the set.
*/
static Bitmask
getMask(ExprMaskSet * pMaskSet, int iCursor)
{
int i;
for (i = 0; i < pMaskSet->n; i++)
{
if(pMaskSet->ix[i] == iCursor)
{
return ((Bitmask) 1) << i;
}
}
return 0;
}
/*
** Create a new mask for cursor iCursor.
**
** There is one cursor per table in the FROM clause. The number of
** tables in the FROM clause is limited by a test early in the
** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[]
** array will never overflow.
*/
static void
createMask(ExprMaskSet * pMaskSet, int iCursor)
{
assert(pMaskSet->n < ArraySize(pMaskSet->ix));
pMaskSet->ix[pMaskSet->n++] = iCursor;
}
/*
** This routine walks (recursively) an expression tree and generates
** a bitmask indicating which tables are used in that expression
** tree.
**
** In order for this routine to work, the calling function must have
** previously invoked sqlite3ExprResolveNames() on the expression. See
** the header comment on that routine for additional information.
** The sqlite3ExprResolveNames() routines looks for column names and
** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
** the VDBE cursor number of the table. This routine just has to
** translate the cursor numbers into bitmask values and OR all
** the bitmasks together.
*/
static Bitmask exprListTableUsage(ExprMaskSet *, ExprList *);
static Bitmask exprSelectTableUsage(ExprMaskSet *, Select *);
static Bitmask
exprTableUsage(ExprMaskSet * pMaskSet, Expr * p)
{
Bitmask mask = 0;
if(p == 0)
return 0;
if(p->op == TK_COLUMN)
{
mask = getMask(pMaskSet, p->iTable);
return mask;
}
mask = exprTableUsage(pMaskSet, p->pRight);
mask |= exprTableUsage(pMaskSet, p->pLeft);
mask |= exprListTableUsage(pMaskSet, p->pList);
mask |= exprSelectTableUsage(pMaskSet, p->pSelect);
return mask;
}
static Bitmask
exprListTableUsage(ExprMaskSet * pMaskSet, ExprList * pList)
{
int i;
Bitmask mask = 0;
if(pList)
{
for (i = 0; i < pList->nExpr; i++)
{
mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr);
}
}
return mask;
}
static Bitmask
exprSelectTableUsage(ExprMaskSet * pMaskSet, Select * pS)
{
Bitmask mask = 0;
while (pS)
{
mask |= exprListTableUsage(pMaskSet, pS->pEList);
mask |= exprListTableUsage(pMaskSet, pS->pGroupBy);
mask |= exprListTableUsage(pMaskSet, pS->pOrderBy);
mask |= exprTableUsage(pMaskSet, pS->pWhere);
mask |= exprTableUsage(pMaskSet, pS->pHaving);
pS = pS->pPrior;
}
return mask;
}
/*
** Return TRUE if the given operator is one of the operators that is
** allowed for an indexable WHERE clause term. The allowed operators are
** "=", "<", ">", "<=", ">=", and "IN".
*/
static int
allowedOp(int op)
{
assert(TK_GT > TK_EQ && TK_GT < TK_GE);
assert(TK_LT > TK_EQ && TK_LT < TK_GE);
assert(TK_LE > TK_EQ && TK_LE < TK_GE);
assert(TK_GE == TK_EQ + 4);
return op == TK_IN || (op >= TK_EQ && op <= TK_GE) || op == TK_ISNULL;
}
/*
** Swap two objects of type T.
*/
#define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
/*
** Commute a comparision operator. Expressions of the form "X op Y"
** are converted into "Y op X".
**
** If a collation sequence is associated with either the left or right
** side of the comparison, it remains associated with the same side after
** the commutation. So "Y collate NOCASE op X" becomes
** "X collate NOCASE op Y". This is because any collation sequence on
** the left hand side of a comparison overrides any collation sequence
** attached to the right. For the same reason the EP_ExpCollate flag
** is not commuted.
*/
static void
exprCommute(Expr * pExpr)
{
u16 expRight = (pExpr->pRight->flags & EP_ExpCollate);
u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate);
assert(allowedOp(pExpr->op) && pExpr->op != TK_IN);
SWAP(CollSeq *, pExpr->pRight->pColl, pExpr->pLeft->pColl);
pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft;
pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight;
SWAP(Expr *, pExpr->pRight, pExpr->pLeft);
if(pExpr->op >= TK_GT)
{
assert(TK_LT == TK_GT + 2);
assert(TK_GE == TK_LE + 2);
assert(TK_GT > TK_EQ);
assert(TK_GT < TK_LE);
assert(pExpr->op >= TK_GT && pExpr->op <= TK_GE);
pExpr->op = ((pExpr->op - TK_GT) ^ 2) + TK_GT;
}
}
/*
** Translate from TK_xx operator to WO_xx bitmask.
*/
static int
operatorMask(int op)
{
int c;
assert(allowedOp(op));
if(op == TK_IN)
{
c = WO_IN;
}
else if(op == TK_ISNULL)
{
c = WO_ISNULL;
}
else
{
c = WO_EQ << (op - TK_EQ);
}
assert(op != TK_ISNULL || c == WO_ISNULL);
assert(op != TK_IN || c == WO_IN);
assert(op != TK_EQ || c == WO_EQ);
assert(op != TK_LT || c == WO_LT);
assert(op != TK_LE || c == WO_LE);
assert(op != TK_GT || c == WO_GT);
assert(op != TK_GE || c == WO_GE);
return c;
}
/*
** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
** where X is a reference to the iColumn of table iCur and <op> is one of
** the WO_xx operator codes specified by the op parameter.
** Return a pointer to the term. Return 0 if not found.
*/
static WhereTerm *
findTerm(WhereClause * pWC, /* The WHERE clause to be searched */
int iCur, /* Cursor number of LHS */
int iColumn, /* Column number of LHS */
Bitmask notReady, /* RHS must not overlap with this mask */
u16 op, /* Mask of WO_xx values describing operator */
Index * pIdx /* Must be compatible with this index, if not NULL */
)
{
WhereTerm *pTerm;
int k;
for (pTerm = pWC->a, k = pWC->nTerm; k; k--, pTerm++)
{
if(pTerm->leftCursor == iCur
&& (pTerm->prereqRight & notReady) == 0
&& pTerm->leftColumn == iColumn && (pTerm->eOperator & op) != 0)
{
if(iCur >= 0 && pIdx && pTerm->eOperator != WO_ISNULL)
{
Expr *pX = pTerm->pExpr;
CollSeq *pColl;
char idxaff;
int j;
Parse *pParse = pWC->pParse;
idxaff = pIdx->pTable->aCol[iColumn].affinity;
if(!sqlite3IndexAffinityOk(pX, idxaff))
continue;
/* Figure out the collation sequence required from an index for
** it to be useful for optimising expression pX. Store this
** value in variable pColl.
*/
assert(pX->pLeft);
pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
if(!pColl)
{
pColl = pParse->db->pDfltColl;
}
for (j = 0; j < pIdx->nColumn && pIdx->aiColumn[j] != iColumn; j++)
{
}
assert(j < pIdx->nColumn);
if(sqlite3StrICmp(pColl->zName, pIdx->azColl[j]))
continue;
}
return pTerm;
}
}
return 0;
}
/* Forward reference */
static void exprAnalyze(SrcList *, WhereClause *, int);
/*
** Call exprAnalyze on all terms in a WHERE clause.
**
**
*/
static void
exprAnalyzeAll(SrcList * pTabList, /* the FROM clause */
WhereClause * pWC /* the WHERE clause to be analyzed */
)
{
int i;
for (i = pWC->nTerm - 1; i >= 0; i--)
{
exprAnalyze(pTabList, pWC, i);
}
}
#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
/*
** Check to see if the given expression is a LIKE or GLOB operator that
** can be optimized using inequality constraints. Return TRUE if it is
** so and false if not.
**
** In order for the operator to be optimizible, the RHS must be a string
** literal that does not begin with a wildcard.
*/
static int
isLikeOrGlob(sqlite3 * db, /* The database */
Expr * pExpr, /* Test this expression */
int *pnPattern, /* Number of non-wildcard prefix characters */
int *pisComplete, /* True if the only wildcard is % in the last character */
int *pnoCase /* True if uppercase is equivalent to lowercase */
)
{
const char *z;
Expr *pRight, *pLeft;
ExprList *pList;
int c, cnt;
char wc[3];
CollSeq *pColl;
if(!sqlite3IsLikeFunction(db, pExpr, pnoCase, wc))
{
return 0;
}
#ifdef SQLITE_EBCDIC
if(*pnoCase)
return 0;
#endif
pList = pExpr->pList;
pRight = pList->a[0].pExpr;
if(pRight->op != TK_STRING && (pRight->op != TK_REGISTER || pRight->iColumn != TK_STRING))
{
return 0;
}
pLeft = pList->a[1].pExpr;
if(pLeft->op != TK_COLUMN)
{
return 0;
}
pColl = pLeft->pColl;
assert(pColl != 0 || pLeft->iColumn == -1);
if(pColl == 0)
{
/* No collation is defined for the ROWID. Use the default. */
pColl = db->pDfltColl;
}
if((pColl->type != SQLITE_COLL_BINARY || *pnoCase) &&
(pColl->type != SQLITE_COLL_NOCASE || !*pnoCase))
{
return 0;
}
sqlite3DequoteExpr(db, pRight);
z = (char *) pRight->token.z;
cnt = 0;
if(z)
{
while ((c = z[cnt]) != 0 && c != wc[0] && c != wc[1] && c != wc[2])
{
cnt++;
}
}
if(cnt == 0 || 255 == (u8) z[cnt])
{
return 0;
}
*pisComplete = z[cnt] == wc[0] && z[cnt + 1] == 0;
*pnPattern = cnt;
return 1;
}
#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
** Check to see if the given expression is of the form
**
** column MATCH expr
**
** If it is then return TRUE. If not, return FALSE.
*/
static int
isMatchOfColumn(Expr * pExpr /* Test this expression */
)
{
ExprList *pList;
if(pExpr->op != TK_FUNCTION)
{
return 0;
}
if(pExpr->token.n != 5 || sqlite3StrNICmp((const char *) pExpr->token.z, "match", 5) != 0)
{
return 0;
}
pList = pExpr->pList;
if(pList->nExpr != 2)
{
return 0;
}
if(pList->a[1].pExpr->op != TK_COLUMN)
{
return 0;
}
return 1;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
/*
** If the pBase expression originated in the ON or USING clause of
** a join, then transfer the appropriate markings over to derived.
*/
static void
transferJoinMarkings(Expr * pDerived, Expr * pBase)
{
pDerived->flags |= pBase->flags & EP_FromJoin;
pDerived->iRightJoinTable = pBase->iRightJoinTable;
}
#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
/*
** Return TRUE if the given term of an OR clause can be converted
** into an IN clause. The iCursor and iColumn define the left-hand
** side of the IN clause.
**
** The context is that we have multiple OR-connected equality terms
** like this:
**
** a=<expr1> OR a=<expr2> OR b=<expr3> OR ...
**
** The pOrTerm input to this routine corresponds to a single term of
** this OR clause. In order for the term to be a condidate for
** conversion to an IN operator, the following must be true:
**
** * The left-hand side of the term must be the column which
** is identified by iCursor and iColumn.
**
** * If the right-hand side is also a column, then the affinities
** of both right and left sides must be such that no type
** conversions are required on the right. (Ticket #2249)
**
** If both of these conditions are true, then return true. Otherwise
** return false.
*/
static int
orTermIsOptCandidate(WhereTerm * pOrTerm, int iCursor, int iColumn)
{
int affLeft, affRight;
assert(pOrTerm->eOperator == WO_EQ);
if(pOrTerm->leftCursor != iCursor)
{
return 0;
}
if(pOrTerm->leftColumn != iColumn)
{
return 0;
}
affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
if(affRight == 0)
{
return 1;
}
affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
if(affRight != affLeft)
{
return 0;
}
return 1;
}
/*
** Return true if the given term of an OR clause can be ignored during
** a check to make sure all OR terms are candidates for optimization.
** In other words, return true if a call to the orTermIsOptCandidate()
** above returned false but it is not necessary to disqualify the
** optimization.
**
** Suppose the original OR phrase was this:
**
** a=4 OR a=11 OR a=b
**
** During analysis, the third term gets flipped around and duplicate
** so that we are left with this:
**
** a=4 OR a=11 OR a=b OR b=a
**
** Since the last two terms are duplicates, only one of them
** has to qualify in order for the whole phrase to qualify. When
** this routine is called, we know that pOrTerm did not qualify.
** This routine merely checks to see if pOrTerm has a duplicate that
** might qualify. If there is a duplicate that has not yet been
** disqualified, then return true. If there are no duplicates, or
** the duplicate has also been disqualifed, return false.
*/
static int
orTermHasOkDuplicate(WhereClause * pOr, WhereTerm * pOrTerm)
{
if(pOrTerm->flags & TERM_COPIED)
{
/* This is the original term. The duplicate is to the left had
** has not yet been analyzed and thus has not yet been disqualified. */
return 1;
}
if((pOrTerm->flags & TERM_VIRTUAL) != 0
&& (pOr->a[pOrTerm->iParent].flags & TERM_OR_OK) != 0)
{
/* This is a duplicate term. The original qualified so this one
** does not have to. */
return 1;
}
/* This is either a singleton term or else it is a duplicate for
** which the original did not qualify. Either way we are done for. */
return 0;
}
#endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
/*
** The input to this routine is an WhereTerm structure with only the
** "pExpr" field filled in. The job of this routine is to analyze the
** subexpression and populate all the other fields of the WhereTerm
** structure.
**
** If the expression is of the form "<expr> <op> X" it gets commuted
** to the standard form of "X <op> <expr>". If the expression is of
** the form "X <op> Y" where both X and Y are columns, then the original
** expression is unchanged and a new virtual expression of the form
** "Y <op> X" is added to the WHERE clause and analyzed separately.
*/
static void
exprAnalyze(SrcList * pSrc, /* the FROM clause */
WhereClause * pWC, /* the WHERE clause */
int idxTerm /* Index of the term to be analyzed */
)
{
WhereTerm *pTerm;
ExprMaskSet *pMaskSet;
Expr *pExpr;
Bitmask prereqLeft;
Bitmask prereqAll;
Bitmask extraRight = 0;
int nPattern;
int isComplete;
int noCase;
int op;
Parse *pParse = pWC->pParse;
sqlite3 *db = pParse->db;
if(db->mallocFailed)
{
return;
}
pTerm = &pWC->a[idxTerm];
pMaskSet = pWC->pMaskSet;
pExpr = pTerm->pExpr;
prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
op = pExpr->op;
if(op == TK_IN)
{
assert(pExpr->pRight == 0);
pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->pList)
| exprSelectTableUsage(pMaskSet, pExpr->pSelect);
}
else if(op == TK_ISNULL)
{
pTerm->prereqRight = 0;
}
else
{
pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
}
prereqAll = exprTableUsage(pMaskSet, pExpr);
if(ExprHasProperty(pExpr, EP_FromJoin))
{
Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable);
prereqAll |= x;
extraRight = x - 1; /* ON clause terms may not be used with an index
** on left table of a LEFT JOIN. Ticket #3015 */
}
pTerm->prereqAll = prereqAll;
pTerm->leftCursor = -1;
pTerm->iParent = -1;
pTerm->eOperator = 0;
if(allowedOp(op) && (pTerm->prereqRight & prereqLeft) == 0)
{
Expr *pLeft = pExpr->pLeft;
Expr *pRight = pExpr->pRight;
if(pLeft->op == TK_COLUMN)
{
pTerm->leftCursor = pLeft->iTable;
pTerm->leftColumn = pLeft->iColumn;
pTerm->eOperator = operatorMask(op);
}
if(pRight && pRight->op == TK_COLUMN)
{
WhereTerm *pNew;
Expr *pDup;
if(pTerm->leftCursor >= 0)
{
int idxNew;
pDup = sqlite3ExprDup(db, pExpr);
if(db->mallocFailed)
{
sqlite3ExprDelete(pDup);
return;
}
idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL | TERM_DYNAMIC);
if(idxNew == 0)
return;
pNew = &pWC->a[idxNew];
pNew->iParent = idxTerm;
pTerm = &pWC->a[idxTerm];
pTerm->nChild = 1;
pTerm->flags |= TERM_COPIED;
}
else
{
pDup = pExpr;
pNew = pTerm;
}
exprCommute(pDup);
pLeft = pDup->pLeft;
pNew->leftCursor = pLeft->iTable;
pNew->leftColumn = pLeft->iColumn;
pNew->prereqRight = prereqLeft;
pNew->prereqAll = prereqAll;
pNew->eOperator = operatorMask(pDup->op);
}
}
#ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
/* If a term is the BETWEEN operator, create two new virtual terms
** that define the range that the BETWEEN implements.
*/
else if(pExpr->op == TK_BETWEEN)
{
ExprList *pList = pExpr->pList;
int i;
static const u8 ops[] = { TK_GE, TK_LE };
assert(pList != 0);
assert(pList->nExpr == 2);
for (i = 0; i < 2; i++)
{
Expr *pNewExpr;
int idxNew;
pNewExpr = sqlite3Expr(db, ops[i], sqlite3ExprDup(db, pExpr->pLeft),
sqlite3ExprDup(db, pList->a[i].pExpr), 0);
idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL | TERM_DYNAMIC);
exprAnalyze(pSrc, pWC, idxNew);
pTerm = &pWC->a[idxTerm];
pWC->a[idxNew].iParent = idxTerm;
}
pTerm->nChild = 2;
}
#endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
/* Attempt to convert OR-connected terms into an IN operator so that
** they can make use of indices. Example:
**
** x = expr1 OR expr2 = x OR x = expr3
**
** is converted into
**
** x IN (expr1,expr2,expr3)
**
** This optimization must be omitted if OMIT_SUBQUERY is defined because
** the compiler for the the IN operator is part of sub-queries.
*/
else if(pExpr->op == TK_OR)
{
int ok;
int i, j;
int iColumn, iCursor;
WhereClause sOr;
WhereTerm *pOrTerm;
assert((pTerm->flags & TERM_DYNAMIC) == 0);
whereClauseInit(&sOr, pWC->pParse, pMaskSet);
whereSplit(&sOr, pExpr, TK_OR);
exprAnalyzeAll(pSrc, &sOr);
assert(sOr.nTerm >= 2);
j = 0;
if(db->mallocFailed)
goto or_not_possible;
do
{
assert(j < sOr.nTerm);
iColumn = sOr.a[j].leftColumn;
iCursor = sOr.a[j].leftCursor;
ok = iCursor >= 0;
for (i = sOr.nTerm - 1, pOrTerm = sOr.a; i >= 0 && ok; i--, pOrTerm++)
{
if(pOrTerm->eOperator != WO_EQ)
{
goto or_not_possible;
}
if(orTermIsOptCandidate(pOrTerm, iCursor, iColumn))
{
pOrTerm->flags |= TERM_OR_OK;
}
else if(orTermHasOkDuplicate(&sOr, pOrTerm))
{
pOrTerm->flags &= ~TERM_OR_OK;
}
else
{
ok = 0;
}
}
}
while (!ok && (sOr.a[j++].flags & TERM_COPIED) != 0 && j < 2);
if(ok)
{
ExprList *pList = 0;
Expr *pNew, *pDup;
Expr *pLeft = 0;
for (i = sOr.nTerm - 1, pOrTerm = sOr.a; i >= 0 && ok; i--, pOrTerm++)
{
if((pOrTerm->flags & TERM_OR_OK) == 0)
continue;
pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight);
pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup, 0);
pLeft = pOrTerm->pExpr->pLeft;
}
assert(pLeft != 0);
pDup = sqlite3ExprDup(db, pLeft);
pNew = sqlite3Expr(db, TK_IN, pDup, 0, 0);
if(pNew)
{
int idxNew;
transferJoinMarkings(pNew, pExpr);
pNew->pList = pList;
idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL | TERM_DYNAMIC);
exprAnalyze(pSrc, pWC, idxNew);
pTerm = &pWC->a[idxTerm];
pWC->a[idxNew].iParent = idxTerm;
pTerm->nChild = 1;
}
else
{
sqlite3ExprListDelete(pList);
}
}
or_not_possible:
whereClauseClear(&sOr);
}
#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
/* Add constraints to reduce the search space on a LIKE or GLOB
** operator.
**
** A like pattern of the form "x LIKE 'abc%'" is changed into constraints
**
** x>='abc' AND x<'abd' AND x LIKE 'abc%'
**
** The last character of the prefix "abc" is incremented to form the
** termination condidtion "abd". This trick of incrementing the last
** is not 255 and if the character set is not EBCDIC.
*/
if(isLikeOrGlob(db, pExpr, &nPattern, &isComplete, &noCase))
{
Expr *pLeft, *pRight;
Expr *pStr1, *pStr2;
Expr *pNewExpr1, *pNewExpr2;
int idxNew1, idxNew2;
pLeft = pExpr->pList->a[1].pExpr;
pRight = pExpr->pList->a[0].pExpr;
pStr1 = sqlite3PExpr(pParse, TK_STRING, 0, 0, 0);
if(pStr1)
{
sqlite3TokenCopy(db, &pStr1->token, &pRight->token);
pStr1->token.n = nPattern;
pStr1->flags = EP_Dequoted;
}
pStr2 = sqlite3ExprDup(db, pStr1);
if(!db->mallocFailed)
{
u8 c, *pC;
assert(pStr2->token.dyn);
pC = (u8 *) & pStr2->token.z[nPattern - 1];
c = *pC;
if(noCase)
c = sqlite3UpperToLower[c];
*pC = c + 1;
}
pNewExpr1 = sqlite3PExpr(pParse, TK_GE, sqlite3ExprDup(db, pLeft), pStr1, 0);
idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL | TERM_DYNAMIC);
exprAnalyze(pSrc, pWC, idxNew1);
pNewExpr2 = sqlite3PExpr(pParse, TK_LT, sqlite3ExprDup(db, pLeft), pStr2, 0);
idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL | TERM_DYNAMIC);
exprAnalyze(pSrc, pWC, idxNew2);
pTerm = &pWC->a[idxTerm];
if(isComplete)
{
pWC->a[idxNew1].iParent = idxTerm;
pWC->a[idxNew2].iParent = idxTerm;
pTerm->nChild = 2;
}
}
#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Add a WO_MATCH auxiliary term to the constraint set if the
** current expression is of the form: column MATCH expr.
** This information is used by the xBestIndex methods of
** virtual tables. The native query optimizer does not attempt
** to do anything with MATCH functions.
*/
if(isMatchOfColumn(pExpr))
{
int idxNew;
Expr *pRight, *pLeft;
WhereTerm *pNewTerm;
Bitmask prereqColumn, prereqExpr;
pRight = pExpr->pList->a[0].pExpr;
pLeft = pExpr->pList->a[1].pExpr;
prereqExpr = exprTableUsage(pMaskSet, pRight);
prereqColumn = exprTableUsage(pMaskSet, pLeft);
if((prereqExpr & prereqColumn) == 0)
{
Expr *pNewExpr;
pNewExpr = sqlite3Expr(db, TK_MATCH, 0, sqlite3ExprDup(db, pRight), 0);
idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL | TERM_DYNAMIC);
pNewTerm = &pWC->a[idxNew];
pNewTerm->prereqRight = prereqExpr;
pNewTerm->leftCursor = pLeft->iTable;
pNewTerm->leftColumn = pLeft->iColumn;
pNewTerm->eOperator = WO_MATCH;
pNewTerm->iParent = idxTerm;
pTerm = &pWC->a[idxTerm];
pTerm->nChild = 1;
pTerm->flags |= TERM_COPIED;
pNewTerm->prereqAll = pTerm->prereqAll;
}
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
/* Prevent ON clause terms of a LEFT JOIN from being used to drive
** an index for tables to the left of the join.
*/
pTerm->prereqRight |= extraRight;
}
/*
** Return TRUE if any of the expressions in pList->a[iFirst...] contain
** a reference to any table other than the iBase table.
*/
static int
referencesOtherTables(ExprList * pList, /* Search expressions in ths list */
ExprMaskSet * pMaskSet, /* Mapping from tables to bitmaps */
int iFirst, /* Be searching with the iFirst-th expression */
int iBase /* Ignore references to this table */
)
{
Bitmask allowed = ~getMask(pMaskSet, iBase);
while (iFirst < pList->nExpr)
{
if((exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr) & allowed) != 0)
{
return 1;
}
}
return 0;
}
/*
** This routine decides if pIdx can be used to satisfy the ORDER BY
** clause. If it can, it returns 1. If pIdx cannot satisfy the
** ORDER BY clause, this routine returns 0.
**
** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the
** left-most table in the FROM clause of that same SELECT statement and
** the table has a cursor number of "base". pIdx is an index on pTab.
**
** nEqCol is the number of columns of pIdx that are used as equality
** constraints. Any of these columns may be missing from the ORDER BY
** clause and the match can still be a success.
**
** All terms of the ORDER BY that match against the index must be either
** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE
** index do not need to satisfy this constraint.) The *pbRev value is
** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if
** the ORDER BY clause is all ASC.
*/
static int
isSortingIndex(Parse * pParse, /* Parsing context */
ExprMaskSet * pMaskSet, /* Mapping from table indices to bitmaps */
Index * pIdx, /* The index we are testing */
int base, /* Cursor number for the table to be sorted */
ExprList * pOrderBy, /* The ORDER BY clause */
int nEqCol, /* Number of index columns with == constraints */
int *pbRev /* Set to 1 if ORDER BY is DESC */
)
{
int i, j; /* Loop counters */
int sortOrder = 0; /* XOR of index and ORDER BY sort direction */
int nTerm; /* Number of ORDER BY terms */
struct ExprList_item *pTerm; /* A term of the ORDER BY clause */
sqlite3 *db = pParse->db;
assert(pOrderBy != 0);
nTerm = pOrderBy->nExpr;
assert(nTerm > 0);
/* Match terms of the ORDER BY clause against columns of
** the index.
**
** Note that indices have pIdx->nColumn regular columns plus
** one additional column containing the rowid. The rowid column
** of the index is also allowed to match against the ORDER BY
** clause.
*/
for (i = j = 0, pTerm = pOrderBy->a; j < nTerm && i <= pIdx->nColumn; i++)
{
Expr *pExpr; /* The expression of the ORDER BY pTerm */
CollSeq *pColl; /* The collating sequence of pExpr */
int termSortOrder; /* Sort order for this term */
int iColumn; /* The i-th column of the index. -1 for rowid */
int iSortOrder; /* 1 for DESC, 0 for ASC on the i-th index term */
const char *zColl; /* Name of the collating sequence for i-th index term */
pExpr = pTerm->pExpr;
if(pExpr->op != TK_COLUMN || pExpr->iTable != base)
{
/* Can not use an index sort on anything that is not a column in the
** left-most table of the FROM clause */
break;
}
pColl = sqlite3ExprCollSeq(pParse, pExpr);
if(!pColl)
{
pColl = db->pDfltColl;
}
if(i < pIdx->nColumn)
{
iColumn = pIdx->aiColumn[i];
if(iColumn == pIdx->pTable->iPKey)
{
iColumn = -1;
}
iSortOrder = pIdx->aSortOrder[i];
zColl = pIdx->azColl[i];
}
else
{
iColumn = -1;
iSortOrder = 0;
zColl = pColl->zName;
}
if(pExpr->iColumn != iColumn || sqlite3StrICmp(pColl->zName, zColl))
{
/* Term j of the ORDER BY clause does not match column i of the index */
if(i < nEqCol)
{
/* If an index column that is constrained by == fails to match an
** ORDER BY term, that is OK. Just ignore that column of the index
*/
continue;
}
else
{
/* If an index column fails to match and is not constrained by ==
** then the index cannot satisfy the ORDER BY constraint.
*/
return 0;
}
}
assert(pIdx->aSortOrder != 0);
assert(pTerm->sortOrder == 0 || pTerm->sortOrder == 1);
assert(iSortOrder == 0 || iSortOrder == 1);
termSortOrder = iSortOrder ^ pTerm->sortOrder;
if(i > nEqCol)
{
if(termSortOrder != sortOrder)
{
/* Indices can only be used if all ORDER BY terms past the
** equality constraints are all either DESC or ASC. */
return 0;
}
}
else
{
sortOrder = termSortOrder;
}
j++;
pTerm++;
if(iColumn < 0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base))
{
/* If the indexed column is the primary key and everything matches
** so far and none of the ORDER BY terms to the right reference other
** tables in the join, then we are assured that the index can be used
** to sort because the primary key is unique and so none of the other
** columns will make any difference
*/
j = nTerm;
}
}
*pbRev = sortOrder != 0;
if(j >= nTerm)
{
/* All terms of the ORDER BY clause are covered by this index so
** this index can be used for sorting. */
return 1;
}
if(pIdx->onError != OE_None && i == pIdx->nColumn
&& !referencesOtherTables(pOrderBy, pMaskSet, j, base))
{
/* All terms of this index match some prefix of the ORDER BY clause
** and the index is UNIQUE and no terms on the tail of the ORDER BY
** clause reference other tables in a join. If this is all true then
** the order by clause is superfluous. */
return 1;
}
return 0;
}
/*
** Check table to see if the ORDER BY clause in pOrderBy can be satisfied
** by sorting in order of ROWID. Return true if so and set *pbRev to be
** true for reverse ROWID and false for forward ROWID order.
*/
static int
sortableByRowid(int base, /* Cursor number for table to be sorted */
ExprList * pOrderBy, /* The ORDER BY clause */
ExprMaskSet * pMaskSet, /* Mapping from tables to bitmaps */
int *pbRev /* Set to 1 if ORDER BY is DESC */
)
{
Expr *p;
assert(pOrderBy != 0);
assert(pOrderBy->nExpr > 0);
p = pOrderBy->a[0].pExpr;
if(p->op == TK_COLUMN && p->iTable == base && p->iColumn == -1
&& !referencesOtherTables(pOrderBy, pMaskSet, 1, base))
{
*pbRev = pOrderBy->a[0].sortOrder;
return 1;
}
return 0;
}
/*
** Prepare a crude estimate of the logarithm of the input value.
** The results need not be exact. This is only used for estimating
** the total cost of performing operatings with O(logN) or O(NlogN)
** complexity. Because N is just a guess, it is no great tragedy if
** logN is a little off.
*/
static double
estLog(double N)
{
double logN = 1;
double x = 10;
while (N > x)
{
logN += 1;
x *= 10;
}
return logN;
}
/*
** Two routines for printing the content of an sqlite3_index_info
** structure. Used for testing and debugging only. If neither
** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
** are no-ops.
*/
#if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG)
static void
TRACE_IDX_INPUTS(sqlite3_index_info * p)
{
int i;
if(!sqlite3WhereTrace)
return;
for (i = 0; i < p->nConstraint; i++)
{
sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
i,
p->aConstraint[i].iColumn,
p->aConstraint[i].iTermOffset,
p->aConstraint[i].op, p->aConstraint[i].usable);
}
for (i = 0; i < p->nOrderBy; i++)
{
sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n",
i, p->aOrderBy[i].iColumn, p->aOrderBy[i].desc);
}
}
static void
TRACE_IDX_OUTPUTS(sqlite3_index_info * p)
{
int i;
if(!sqlite3WhereTrace)
return;
for (i = 0; i < p->nConstraint; i++)
{
sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n",
i,
p->aConstraintUsage[i].argvIndex, p->aConstraintUsage[i].omit);
}
sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum);
sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr);
sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed);
sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost);
}
#else
#define TRACE_IDX_INPUTS(A)
#define TRACE_IDX_OUTPUTS(A)
#endif
#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
** Compute the best index for a virtual table.
**
** The best index is computed by the xBestIndex method of the virtual
** table module. This routine is really just a wrapper that sets up
** the sqlite3_index_info structure that is used to communicate with
** xBestIndex.
**
** In a join, this routine might be called multiple times for the
** same virtual table. The sqlite3_index_info structure is created
** and initialized on the first invocation and reused on all subsequent
** invocations. The sqlite3_index_info structure is also used when
** code is generated to access the virtual table. The whereInfoDelete()
** routine takes care of freeing the sqlite3_index_info structure after
** everybody has finished with it.
*/
static double
bestVirtualIndex(Parse * pParse, /* The parsing context */
WhereClause * pWC, /* The WHERE clause */
struct SrcList_item *pSrc, /* The FROM clause term to search */
Bitmask notReady, /* Mask of cursors that are not available */
ExprList * pOrderBy, /* The order by clause */
int orderByUsable, /* True if we can potential sort */
sqlite3_index_info ** ppIdxInfo /* Index information passed to xBestIndex */
)
{
Table *pTab = pSrc->pTab;
sqlite3_index_info *pIdxInfo;
struct sqlite3_index_constraint *pIdxCons;
struct sqlite3_index_orderby *pIdxOrderBy;
struct sqlite3_index_constraint_usage *pUsage;
WhereTerm *pTerm;
int i, j;
int nOrderBy;
int rc;
/* If the sqlite3_index_info structure has not been previously
** allocated and initialized for this virtual table, then allocate
** and initialize it now
*/
pIdxInfo = *ppIdxInfo;
if(pIdxInfo == 0)
{
WhereTerm *pTerm;
int nTerm;
WHERETRACE(("Recomputing index info for %s...\n", pTab->zName));
/* Count the number of possible WHERE clause constraints referring
** to this virtual table */
for (i = nTerm = 0, pTerm = pWC->a; i < pWC->nTerm; i++, pTerm++)
{
if(pTerm->leftCursor != pSrc->iCursor)
continue;
if((pTerm->eOperator & (pTerm->eOperator - 1)) == 0);
testcase(pTerm->eOperator == WO_IN);
testcase(pTerm->eOperator == WO_ISNULL);
if(pTerm->eOperator & (WO_IN | WO_ISNULL))
continue;
nTerm++;
}
/* If the ORDER BY clause contains only columns in the current
** virtual table then allocate space for the aOrderBy part of
** the sqlite3_index_info structure.
*/
nOrderBy = 0;
if(pOrderBy)
{
for (i = 0; i < pOrderBy->nExpr; i++)
{
Expr *pExpr = pOrderBy->a[i].pExpr;
if(pExpr->op != TK_COLUMN || pExpr->iTable != pSrc->iCursor)
break;
}
if(i == pOrderBy->nExpr)
{
nOrderBy = pOrderBy->nExpr;
}
}
/* Allocate the sqlite3_index_info structure
*/
pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
+ (sizeof(*pIdxCons) + sizeof(*pUsage)) * nTerm
+ sizeof(*pIdxOrderBy) * nOrderBy);
if(pIdxInfo == 0)
{
sqlite3ErrorMsg(pParse, "out of memory");
return 0.0;
}
*ppIdxInfo = pIdxInfo;
/* Initialize the structure. The sqlite3_index_info structure contains
** many fields that are declared "const" to prevent xBestIndex from
** changing them. We have to do some funky casting in order to
** initialize those fields.
*/
pIdxCons = (struct sqlite3_index_constraint *) &pIdxInfo[1];
pIdxOrderBy = (struct sqlite3_index_orderby *) &pIdxCons[nTerm];
pUsage = (struct sqlite3_index_constraint_usage *) &pIdxOrderBy[nOrderBy];
*(int *) &pIdxInfo->nConstraint = nTerm;
*(int *) &pIdxInfo->nOrderBy = nOrderBy;
*(struct sqlite3_index_constraint **) &pIdxInfo->aConstraint = pIdxCons;
*(struct sqlite3_index_orderby **) &pIdxInfo->aOrderBy = pIdxOrderBy;
*(struct sqlite3_index_constraint_usage **) &pIdxInfo->aConstraintUsage = pUsage;
for (i = j = 0, pTerm = pWC->a; i < pWC->nTerm; i++, pTerm++)
{
if(pTerm->leftCursor != pSrc->iCursor)
continue;
if((pTerm->eOperator & (pTerm->eOperator - 1)) == 0);
testcase(pTerm->eOperator == WO_IN);
testcase(pTerm->eOperator == WO_ISNULL);
if(pTerm->eOperator & (WO_IN | WO_ISNULL))
continue;
pIdxCons[j].iColumn = pTerm->leftColumn;
pIdxCons[j].iTermOffset = i;
pIdxCons[j].op = pTerm->eOperator;
/* The direct assignment in the previous line is possible only because
** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The
** following asserts verify this fact. */
assert(WO_EQ == SQLITE_INDEX_CONSTRAINT_EQ);
assert(WO_LT == SQLITE_INDEX_CONSTRAINT_LT);
assert(WO_LE == SQLITE_INDEX_CONSTRAINT_LE);
assert(WO_GT == SQLITE_INDEX_CONSTRAINT_GT);
assert(WO_GE == SQLITE_INDEX_CONSTRAINT_GE);
assert(WO_MATCH == SQLITE_INDEX_CONSTRAINT_MATCH);
assert(pTerm->
eOperator & (WO_EQ | WO_LT | WO_LE | WO_GT | WO_GE | WO_MATCH));
j++;
}
for (i = 0; i < nOrderBy; i++)
{
Expr *pExpr = pOrderBy->a[i].pExpr;
pIdxOrderBy[i].iColumn = pExpr->iColumn;
pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
}
}
/* At this point, the sqlite3_index_info structure that pIdxInfo points
** to will have been initialized, either during the current invocation or
** during some prior invocation. Now we just have to customize the
** details of pIdxInfo for the current invocation and pass it to
** xBestIndex.
*/
/* The module name must be defined. Also, by this point there must
** be a pointer to an sqlite3_vtab structure. Otherwise
** sqlite3ViewGetColumnNames() would have picked up the error.
*/
assert(pTab->azModuleArg && pTab->azModuleArg[0]);
assert(pTab->pVtab);
#if 0
if(pTab->pVtab == 0)
{
sqlite3ErrorMsg(pParse, "undefined module %s for table %s",
pTab->azModuleArg[0], pTab->zName);
return 0.0;
}
#endif
/* Set the aConstraint[].usable fields and initialize all
** output variables to zero.
**
** aConstraint[].usable is true for constraints where the right-hand
** side contains only references to tables to the left of the current
** table. In other words, if the constraint is of the form:
**
** column = expr
**
** and we are evaluating a join, then the constraint on column is
** only valid if all tables referenced in expr occur to the left
** of the table containing column.
**
** The aConstraints[] array contains entries for all constraints
** on the current table. That way we only have to compute it once
** even though we might try to pick the best index multiple times.
** For each attempt at picking an index, the order of tables in the
** join might be different so we have to recompute the usable flag
** each time.
*/
pIdxCons = *(struct sqlite3_index_constraint **) &pIdxInfo->aConstraint;
pUsage = pIdxInfo->aConstraintUsage;
for (i = 0; i < pIdxInfo->nConstraint; i++, pIdxCons++)
{
j = pIdxCons->iTermOffset;
pTerm = &pWC->a[j];
pIdxCons->usable = (pTerm->prereqRight & notReady) == 0;
}
memset(pUsage, 0, sizeof(pUsage[0]) * pIdxInfo->nConstraint);
if(pIdxInfo->needToFreeIdxStr)
{
sqlite3_free(pIdxInfo->idxStr);
}
pIdxInfo->idxStr = 0;
pIdxInfo->idxNum = 0;
pIdxInfo->needToFreeIdxStr = 0;
pIdxInfo->orderByConsumed = 0;
pIdxInfo->estimatedCost = SQLITE_BIG_DBL / 2.0;
nOrderBy = pIdxInfo->nOrderBy;
if(pIdxInfo->nOrderBy && !orderByUsable)
{
*(int *) &pIdxInfo->nOrderBy = 0;
}
(void) sqlite3SafetyOff(pParse->db);
WHERETRACE(("xBestIndex for %s\n", pTab->zName));
TRACE_IDX_INPUTS(pIdxInfo);
rc = pTab->pVtab->pModule->xBestIndex(pTab->pVtab, pIdxInfo);
TRACE_IDX_OUTPUTS(pIdxInfo);
(void) sqlite3SafetyOn(pParse->db);
for (i = 0; i < pIdxInfo->nConstraint; i++)
{
if(!pIdxInfo->aConstraint[i].usable && pUsage[i].argvIndex > 0)
{
sqlite3ErrorMsg(pParse,
"table %s: xBestIndex returned an invalid plan",
pTab->zName);
return 0.0;
}
}
if(rc != SQLITE_OK)
{
if(rc == SQLITE_NOMEM)
{
pParse->db->mallocFailed = 1;
}
else
{
sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
}
}
*(int *) &pIdxInfo->nOrderBy = nOrderBy;
return pIdxInfo->estimatedCost;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
/*
** Find the best index for accessing a particular table. Return a pointer
** to the index, flags that describe how the index should be used, the
** number of equality constraints, and the "cost" for this index.
**
** The lowest cost index wins. The cost is an estimate of the amount of
** CPU and disk I/O need to process the request using the selected index.
** Factors that influence cost include:
**
** * The estimated number of rows that will be retrieved. (The
** fewer the better.)
**
** * Whether or not sorting must occur.
**
** * Whether or not there must be separate lookups in the
** index and in the main table.
**
*/
static double
bestIndex(Parse * pParse, /* The parsing context */
WhereClause * pWC, /* The WHERE clause */
struct SrcList_item *pSrc, /* The FROM clause term to search */
Bitmask notReady, /* Mask of cursors that are not available */
ExprList * pOrderBy, /* The order by clause */
Index ** ppIndex, /* Make *ppIndex point to the best index */
int *pFlags, /* Put flags describing this choice in *pFlags */
int *pnEq /* Put the number of == or IN constraints here */
)
{
WhereTerm *pTerm;
Index *bestIdx = 0; /* Index that gives the lowest cost */
double lowestCost; /* The cost of using bestIdx */
int bestFlags = 0; /* Flags associated with bestIdx */
int bestNEq = 0; /* Best value for nEq */
int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */
Index *pProbe; /* An index we are evaluating */
int rev; /* True to scan in reverse order */
int flags; /* Flags associated with pProbe */
int nEq; /* Number of == or IN constraints */
int eqTermMask; /* Mask of valid equality operators */
double cost; /* Cost of using pProbe */
WHERETRACE(("bestIndex: tbl=%s notReady=%x\n", pSrc->pTab->zName, notReady));
lowestCost = SQLITE_BIG_DBL;
pProbe = pSrc->pTab->pIndex;
/* If the table has no indices and there are no terms in the where
** clause that refer to the ROWID, then we will never be able to do
** anything other than a full table scan on this table. We might as
** well put it first in the join order. That way, perhaps it can be
** referenced by other tables in the join.
*/
if(pProbe == 0 &&
findTerm(pWC, iCur, -1, 0, WO_EQ | WO_IN | WO_LT | WO_LE | WO_GT | WO_GE, 0) == 0 &&
(pOrderBy == 0 || !sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev)))
{
*pFlags = 0;
*ppIndex = 0;
*pnEq = 0;
return 0.0;
}
/* Check for a rowid=EXPR or rowid IN (...) constraints
*/
pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ | WO_IN, 0);
if(pTerm)
{
Expr *pExpr;
*ppIndex = 0;
bestFlags = WHERE_ROWID_EQ;
if(pTerm->eOperator & WO_EQ)
{
/* Rowid== is always the best pick. Look no further. Because only
** a single row is generated, output is always in sorted order */
*pFlags = WHERE_ROWID_EQ | WHERE_UNIQUE;
*pnEq = 1;
WHERETRACE(("... best is rowid\n"));
return 0.0;
}
else if((pExpr = pTerm->pExpr)->pList != 0)
{
/* Rowid IN (LIST): cost is NlogN where N is the number of list
** elements. */
lowestCost = pExpr->pList->nExpr;
lowestCost *= estLog(lowestCost);
}
else
{
/* Rowid IN (SELECT): cost is NlogN where N is the number of rows
** in the result of the inner select. We have no way to estimate
** that value so make a wild guess. */
lowestCost = 200;
}
WHERETRACE(("... rowid IN cost: %.9g\n", lowestCost));
}
/* Estimate the cost of a table scan. If we do not know how many
** entries are in the table, use 1 million as a guess.
*/
cost = pProbe ? pProbe->aiRowEst[0] : 1000000;
WHERETRACE(("... table scan base cost: %.9g\n", cost));
flags = WHERE_ROWID_RANGE;
/* Check for constraints on a range of rowids in a table scan.
*/
pTerm = findTerm(pWC, iCur, -1, notReady, WO_LT | WO_LE | WO_GT | WO_GE, 0);
if(pTerm)
{
if(findTerm(pWC, iCur, -1, notReady, WO_LT | WO_LE, 0))
{
flags |= WHERE_TOP_LIMIT;
cost /= 3; /* Guess that rowid<EXPR eliminates two-thirds or rows */
}
if(findTerm(pWC, iCur, -1, notReady, WO_GT | WO_GE, 0))
{
flags |= WHERE_BTM_LIMIT;
cost /= 3; /* Guess that rowid>EXPR eliminates two-thirds of rows */
}
WHERETRACE(("... rowid range reduces cost to %.9g\n", cost));
}
else
{
flags = 0;
}
/* If the table scan does not satisfy the ORDER BY clause, increase
** the cost by NlogN to cover the expense of sorting. */
if(pOrderBy)
{
if(sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev))
{
flags |= WHERE_ORDERBY | WHERE_ROWID_RANGE;
if(rev)
{
flags |= WHERE_REVERSE;
}
}
else
{
cost += cost * estLog(cost);
WHERETRACE(("... sorting increases cost to %.9g\n", cost));
}
}
if(cost < lowestCost)
{
lowestCost = cost;
bestFlags = flags;
}
/* If the pSrc table is the right table of a LEFT JOIN then we may not
** use an index to satisfy IS NULL constraints on that table. This is
** because columns might end up being NULL if the table does not match -
** a circumstance which the index cannot help us discover. Ticket #2177.
*/
if((pSrc->jointype & JT_LEFT) != 0)
{
eqTermMask = WO_EQ | WO_IN;
}
else
{
eqTermMask = WO_EQ | WO_IN | WO_ISNULL;
}
/* Look at each index.
*/
for (; pProbe; pProbe = pProbe->pNext)
{
int i; /* Loop counter */
double inMultiplier = 1;
WHERETRACE(("... index %s:\n", pProbe->zName));
/* Count the number of columns in the index that are satisfied
** by x=EXPR constraints or x IN (...) constraints.
*/
flags = 0;
for (i = 0; i < pProbe->nColumn; i++)
{
int j = pProbe->aiColumn[i];
pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pProbe);
if(pTerm == 0)
break;
flags |= WHERE_COLUMN_EQ;
if(pTerm->eOperator & WO_IN)
{
Expr *pExpr = pTerm->pExpr;
flags |= WHERE_COLUMN_IN;
if(pExpr->pSelect != 0)
{
inMultiplier *= 25;
}
else if(pExpr->pList != 0)
{
inMultiplier *= pExpr->pList->nExpr + 1;
}
}
}
cost = pProbe->aiRowEst[i] * inMultiplier * estLog(inMultiplier);
nEq = i;
if(pProbe->onError != OE_None && (flags & WHERE_COLUMN_IN) == 0
&& nEq == pProbe->nColumn)
{
flags |= WHERE_UNIQUE;
}
WHERETRACE(("...... nEq=%d inMult=%.9g cost=%.9g\n", nEq, inMultiplier, cost));
/* Look for range constraints
*/
if(nEq < pProbe->nColumn)
{
int j = pProbe->aiColumn[nEq];
pTerm = findTerm(pWC, iCur, j, notReady, WO_LT | WO_LE | WO_GT | WO_GE,
pProbe);
if(pTerm)
{
flags |= WHERE_COLUMN_RANGE;
if(findTerm(pWC, iCur, j, notReady, WO_LT | WO_LE, pProbe))
{
flags |= WHERE_TOP_LIMIT;
cost /= 3;
}
if(findTerm(pWC, iCur, j, notReady, WO_GT | WO_GE, pProbe))
{
flags |= WHERE_BTM_LIMIT;
cost /= 3;
}
WHERETRACE(("...... range reduces cost to %.9g\n", cost));
}
}
/* Add the additional cost of sorting if that is a factor.
*/
if(pOrderBy)
{
if((flags & WHERE_COLUMN_IN) == 0 &&
isSortingIndex(pParse, pWC->pMaskSet, pProbe, iCur, pOrderBy, nEq, &rev))
{
if(flags == 0)
{
flags = WHERE_COLUMN_RANGE;
}
flags |= WHERE_ORDERBY;
if(rev)
{
flags |= WHERE_REVERSE;
}
}
else
{
cost += cost * estLog(cost);
WHERETRACE(("...... orderby increases cost to %.9g\n", cost));
}
}
/* Check to see if we can get away with using just the index without
** ever reading the table. If that is the case, then halve the
** cost of this index.
*/
if(flags && pSrc->colUsed < (((Bitmask) 1) << (BMS - 1)))
{
Bitmask m = pSrc->colUsed;
int j;
for (j = 0; j < pProbe->nColumn; j++)
{
int x = pProbe->aiColumn[j];
if(x < BMS - 1)
{
m &= ~(((Bitmask) 1) << x);
}
}
if(m == 0)
{
flags |= WHERE_IDX_ONLY;
cost /= 2;
WHERETRACE(("...... idx-only reduces cost to %.9g\n", cost));
}
}
/* If this index has achieved the lowest cost so far, then use it.
*/
if(flags && cost < lowestCost)
{
bestIdx = pProbe;
lowestCost = cost;
bestFlags = flags;
bestNEq = nEq;
}
}
/* Report the best result
*/
*ppIndex = bestIdx;
WHERETRACE(("best index is %s, cost=%.9g, flags=%x, nEq=%d\n",
bestIdx ? bestIdx->zName : "(none)", lowestCost, bestFlags, bestNEq));
*pFlags = bestFlags | eqTermMask;
*pnEq = bestNEq;
return lowestCost;
}
/*
** Disable a term in the WHERE clause. Except, do not disable the term
** if it controls a LEFT OUTER JOIN and it did not originate in the ON
** or USING clause of that join.
**
** Consider the term t2.z='ok' in the following queries:
**
** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
**
** The t2.z='ok' is disabled in the in (2) because it originates
** in the ON clause. The term is disabled in (3) because it is not part
** of a LEFT OUTER JOIN. In (1), the term is not disabled.
**
** Disabling a term causes that term to not be tested in the inner loop
** of the join. Disabling is an optimization. When terms are satisfied
** by indices, we disable them to prevent redundant tests in the inner
** loop. We would get the correct results if nothing were ever disabled,
** but joins might run a little slower. The trick is to disable as much
** as we can without disabling too much. If we disabled in (1), we'd get
** the wrong answer. See ticket #813.
*/
static void
disableTerm(WhereLevel * pLevel, WhereTerm * pTerm)
{
if(pTerm
&& (pTerm->flags & TERM_CODED) == 0
&& (pLevel->iLeftJoin == 0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)))
{
pTerm->flags |= TERM_CODED;
if(pTerm->iParent >= 0)
{
WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent];
if((--pOther->nChild) == 0)
{
disableTerm(pLevel, pOther);
}
}
}
}
/*
** Apply the affinities associated with the first n columns of index
** pIdx to the values in the n registers starting at base.
*/
static void
codeApplyAffinity(Parse * pParse, int base, int n, Index * pIdx)
{
if(n > 0)
{
Vdbe *v = pParse->pVdbe;
assert(v != 0);
sqlite3VdbeAddOp2(v, OP_Affinity, base, n);
sqlite3IndexAffinityStr(v, pIdx);
sqlite3ExprCacheAffinityChange(pParse, base, n);
}
}
/*
** Generate code for a single equality term of the WHERE clause. An equality
** term can be either X=expr or X IN (...). pTerm is the term to be
** coded.
**
** The current value for the constraint is left in register iReg.
**
** For a constraint of the form X=expr, the expression is evaluated and its
** result is left on the stack. For constraints of the form X IN (...)
** this routine sets up a loop that will iterate over all values of X.
*/
static int
codeEqualityTerm(Parse * pParse, /* The parsing context */
WhereTerm * pTerm, /* The term of the WHERE clause to be coded */
WhereLevel * pLevel, /* When level of the FROM clause we are working on */
int iTarget /* Attempt to leave results in this register */
)
{
Expr *pX = pTerm->pExpr;
Vdbe *v = pParse->pVdbe;
int iReg; /* Register holding results */
if(iTarget <= 0)
{
iReg = iTarget = sqlite3GetTempReg(pParse);
}
if(pX->op == TK_EQ)
{
iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
}
else if(pX->op == TK_ISNULL)
{
iReg = iTarget;
sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
#ifndef SQLITE_OMIT_SUBQUERY
}
else
{
int eType;
int iTab;
struct InLoop *pIn;
assert(pX->op == TK_IN);
iReg = iTarget;
eType = sqlite3FindInIndex(pParse, pX, 1);
iTab = pX->iTable;
sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
VdbeComment((v, "%.*s", pX->span.n, pX->span.z));
if(pLevel->nIn == 0)
{
pLevel->nxt = sqlite3VdbeMakeLabel(v);
}
pLevel->nIn++;
pLevel->aInLoop = sqlite3DbReallocOrFree(pParse->db, pLevel->aInLoop,
sizeof(pLevel->aInLoop[0]) * pLevel->nIn);
pIn = pLevel->aInLoop;
if(pIn)
{
pIn += pLevel->nIn - 1;
pIn->iCur = iTab;
if(eType == IN_INDEX_ROWID)
{
pIn->topAddr = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg);
}
else
{
pIn->topAddr = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg);
}
sqlite3VdbeAddOp1(v, OP_IsNull, iReg);
}
else
{
pLevel->nIn = 0;
}
#endif
}
disableTerm(pLevel, pTerm);
return iReg;
}
/*
** Generate code that will evaluate all == and IN constraints for an
** index. The values for all constraints are left on the stack.
**
** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10
** The index has as many as three equality constraints, but in this
** example, the third "c" value is an inequality. So only two
** constraints are coded. This routine will generate code to evaluate
** a==5 and b IN (1,2,3). The current values for a and b will be left
** on the stack - a is the deepest and b the shallowest.
**
** In the example above nEq==2. But this subroutine works for any value
** of nEq including 0. If nEq==0, this routine is nearly a no-op.
** The only thing it does is allocate the pLevel->iMem memory cell.
**
** This routine always allocates at least one memory cell and puts
** the address of that memory cell in pLevel->iMem. The code that
** calls this routine will use pLevel->iMem to store the termination
** key value of the loop. If one or more IN operators appear, then
** this routine allocates an additional nEq memory cells for internal
** use.
*/
static int
codeAllEqualityTerms(Parse * pParse, /* Parsing context */
WhereLevel * pLevel, /* Which nested loop of the FROM we are coding */
WhereClause * pWC, /* The WHERE clause */
Bitmask notReady, /* Which parts of FROM have not yet been coded */
int nExtraReg /* Number of extra registers to allocate */
)
{
int nEq = pLevel->nEq; /* The number of == or IN constraints to code */
Vdbe *v = pParse->pVdbe; /* The virtual machine under construction */
Index *pIdx = pLevel->pIdx; /* The index being used for this loop */
int iCur = pLevel->iTabCur; /* The cursor of the table */
WhereTerm *pTerm; /* A single constraint term */
int j; /* Loop counter */
int regBase; /* Base register */
/* Figure out how many memory cells we will need then allocate them.
** We always need at least one used to store the loop terminator
** value. If there are IN operators we'll need one for each == or
** IN constraint.
*/
pLevel->iMem = pParse->nMem + 1;
regBase = pParse->nMem + 2;
pParse->nMem += pLevel->nEq + 2 + nExtraReg;
/* Evaluate the equality constraints
*/
assert(pIdx->nColumn >= nEq);
for (j = 0; j < nEq; j++)
{
int r1;
int k = pIdx->aiColumn[j];
pTerm = findTerm(pWC, iCur, k, notReady, pLevel->flags, pIdx);
if(pTerm == 0)
break;
assert((pTerm->flags & TERM_CODED) == 0);
r1 = codeEqualityTerm(pParse, pTerm, pLevel, regBase + j);
if(r1 != regBase + j)
{
sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase + j);
}
testcase(pTerm->eOperator & WO_ISNULL);
testcase(pTerm->eOperator & WO_IN);
if((pTerm->eOperator & (WO_ISNULL | WO_IN)) == 0)
{
sqlite3VdbeAddOp2(v, OP_IsNull, regBase + j, pLevel->brk);
}
}
return regBase;
}
#if defined(SQLITE_TEST)
/*
** The following variable holds a text description of query plan generated
** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin
** overwrites the previous. This information is used for testing and
** analysis only.
*/
SQLITE_API char sqlite3_query_plan[BMS * 2 * 40]; /* Text of the join */
static int nQPlan = 0; /* Next free slow in _query_plan[] */
#endif /* SQLITE_TEST */
/*
** Free a WhereInfo structure
*/
static void
whereInfoFree(WhereInfo * pWInfo)
{
if(pWInfo)
{
int i;
for (i = 0; i < pWInfo->nLevel; i++)
{
sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo;
if(pInfo)
{
assert(pInfo->needToFreeIdxStr == 0);
sqlite3_free(pInfo);
}
}
sqlite3_free(pWInfo);
}
}
/*
** Generate the beginning of the loop used for WHERE clause processing.
** The return value is a pointer to an opaque structure that contains
** information needed to terminate the loop. Later, the calling routine
** should invoke sqlite3WhereEnd() with the return value of this function
** in order to complete the WHERE clause processing.
**
** If an error occurs, this routine returns NULL.
**
** The basic idea is to do a nested loop, one loop for each table in
** the FROM clause of a select. (INSERT and UPDATE statements are the
** same as a SELECT with only a single table in the FROM clause.) For
** example, if the SQL is this:
**
** SELECT * FROM t1, t2, t3 WHERE ...;
**
** Then the code generated is conceptually like the following:
**
** foreach row1 in t1 do \ Code generated
** foreach row2 in t2 do |-- by sqlite3WhereBegin()
** foreach row3 in t3 do /
** ...
** end \ Code generated
** end |-- by sqlite3WhereEnd()
** end /
**
** Note that the loops might not be nested in the order in which they
** appear in the FROM clause if a different order is better able to make
** use of indices. Note also that when the IN operator appears in
** the WHERE clause, it might result in additional nested loops for
** scanning through all values on the right-hand side of the IN.
**
** There are Btree cursors associated with each table. t1 uses cursor
** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
** And so forth. This routine generates code to open those VDBE cursors
** and sqlite3WhereEnd() generates the code to close them.
**
** The code that sqlite3WhereBegin() generates leaves the cursors named
** in pTabList pointing at their appropriate entries. The [...] code
** can use OP_Column and OP_Rowid opcodes on these cursors to extract
** data from the various tables of the loop.
**
** If the WHERE clause is empty, the foreach loops must each scan their
** entire tables. Thus a three-way join is an O(N^3) operation. But if
** the tables have indices and there are terms in the WHERE clause that
** refer to those indices, a complete table scan can be avoided and the
** code will run much faster. Most of the work of this routine is checking
** to see if there are indices that can be used to speed up the loop.
**
** Terms of the WHERE clause are also used to limit which rows actually
** make it to the "..." in the middle of the loop. After each "foreach",
** terms of the WHERE clause that use only terms in that loop and outer
** loops are evaluated and if false a jump is made around all subsequent
** inner loops (or around the "..." if the test occurs within the inner-
** most loop)
**
** OUTER JOINS
**
** An outer join of tables t1 and t2 is conceptally coded as follows:
**
** foreach row1 in t1 do
** flag = 0
** foreach row2 in t2 do
** start:
** ...
** flag = 1
** end
** if flag==0 then
** move the row2 cursor to a null row
** goto start
** fi
** end
**
** ORDER BY CLAUSE PROCESSING
**
** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
** if there is one. If there is no ORDER BY clause or if this routine
** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
**
** If an index can be used so that the natural output order of the table
** scan is correct for the ORDER BY clause, then that index is used and
** *ppOrderBy is set to NULL. This is an optimization that prevents an
** unnecessary sort of the result set if an index appropriate for the
** ORDER BY clause already exists.
**
** If the where clause loops cannot be arranged to provide the correct
** output order, then the *ppOrderBy is unchanged.
*/
SQLITE_PRIVATE WhereInfo *
sqlite3WhereBegin(Parse * pParse, /* The parser context */
SrcList * pTabList, /* A list of all tables to be scanned */
Expr * pWhere, /* The WHERE clause */
ExprList ** ppOrderBy, /* An ORDER BY clause, or NULL */
u8 wflags /* One of the WHERE_* flags defined in sqliteInt.h */
)
{
int i; /* Loop counter */
WhereInfo *pWInfo; /* Will become the return value of this function */
Vdbe *v = pParse->pVdbe; /* The virtual database engine */
int brk, cont = 0; /* Addresses used during code generation */
Bitmask notReady; /* Cursors that are not yet positioned */
WhereTerm *pTerm; /* A single term in the WHERE clause */
ExprMaskSet maskSet; /* The expression mask set */
WhereClause wc; /* The WHERE clause is divided into these terms */
struct SrcList_item *pTabItem; /* A single entry from pTabList */
WhereLevel *pLevel; /* A single level in the pWInfo list */
int iFrom; /* First unused FROM clause element */
int andFlags; /* AND-ed combination of all wc.a[].flags */
sqlite3 *db; /* Database connection */
ExprList *pOrderBy = 0;
/* The number of tables in the FROM clause is limited by the number of
** bits in a Bitmask
*/
if(pTabList->nSrc > BMS)
{
sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
return 0;
}
if(ppOrderBy)
{
pOrderBy = *ppOrderBy;
}
/* Split the WHERE clause into separate subexpressions where each
** subexpression is separated by an AND operator.
*/
initMaskSet(&maskSet);
whereClauseInit(&wc, pParse, &maskSet);
sqlite3ExprCodeConstants(pParse, pWhere);
whereSplit(&wc, pWhere, TK_AND);
/* Allocate and initialize the WhereInfo structure that will become the
** return value.
*/
db = pParse->db;
pWInfo = sqlite3DbMallocZero(db, sizeof(WhereInfo) + pTabList->nSrc * sizeof(WhereLevel));
if(db->mallocFailed)
{
goto whereBeginNoMem;
}
pWInfo->nLevel = pTabList->nSrc;
pWInfo->pParse = pParse;
pWInfo->pTabList = pTabList;
pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
/* Special case: a WHERE clause that is constant. Evaluate the
** expression and either jump over all of the code or fall thru.
*/
if(pWhere && (pTabList->nSrc == 0 || sqlite3ExprIsConstantNotJoin(pWhere)))
{
sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL);
pWhere = 0;
}
/* Assign a bit from the bitmask to every term in the FROM clause.
**
** When assigning bitmask values to FROM clause cursors, it must be
** the case that if X is the bitmask for the N-th FROM clause term then
** the bitmask for all FROM clause terms to the left of the N-th term
** is (X-1). An expression from the ON clause of a LEFT JOIN can use
** its Expr.iRightJoinTable value to find the bitmask of the right table
** of the join. Subtracting one from the right table bitmask gives a
** bitmask for all tables to the left of the join. Knowing the bitmask
** for all tables to the left of a left join is important. Ticket #3015.
*/
for (i = 0; i < pTabList->nSrc; i++)
{
createMask(&maskSet, pTabList->a[i].iCursor);
}
#ifndef NDEBUG
{
Bitmask toTheLeft = 0;
for (i = 0; i < pTabList->nSrc; i++)
{
Bitmask m = getMask(&maskSet, pTabList->a[i].iCursor);
assert((m - 1) == toTheLeft);
toTheLeft |= m;
}
}
#endif
/* Analyze all of the subexpressions. Note that exprAnalyze() might
** add new virtual terms onto the end of the WHERE clause. We do not
** want to analyze these virtual terms, so start analyzing at the end
** and work forward so that the added virtual terms are never processed.
*/
exprAnalyzeAll(pTabList, &wc);
if(db->mallocFailed)
{
goto whereBeginNoMem;
}
/* Chose the best index to use for each table in the FROM clause.
**
** This loop fills in the following fields:
**
** pWInfo->a[].pIdx The index to use for this level of the loop.
** pWInfo->a[].flags WHERE_xxx flags associated with pIdx
** pWInfo->a[].nEq The number of == and IN constraints
** pWInfo->a[].iFrom When term of the FROM clause is being coded
** pWInfo->a[].iTabCur The VDBE cursor for the database table
** pWInfo->a[].iIdxCur The VDBE cursor for the index
**
** This loop also figures out the nesting order of tables in the FROM
** clause.
*/
notReady = ~(Bitmask) 0;
pTabItem = pTabList->a;
pLevel = pWInfo->a;
andFlags = ~0;
WHERETRACE(("*** Optimizer Start ***\n"));
for (i = iFrom = 0, pLevel = pWInfo->a; i < pTabList->nSrc; i++, pLevel++)
{
Index *pIdx; /* Index for FROM table at pTabItem */
int flags; /* Flags asssociated with pIdx */
int nEq; /* Number of == or IN constraints */
double cost; /* The cost for pIdx */
int j; /* For looping over FROM tables */
Index *pBest = 0; /* The best index seen so far */
int bestFlags = 0; /* Flags associated with pBest */
int bestNEq = 0; /* nEq associated with pBest */
double lowestCost; /* Cost of the pBest */
int bestJ = 0; /* The value of j */
Bitmask m; /* Bitmask value for j or bestJ */
int once = 0; /* True when first table is seen */
sqlite3_index_info *pIndex; /* Current virtual index */
lowestCost = SQLITE_BIG_DBL;
for (j = iFrom, pTabItem = &pTabList->a[j]; j < pTabList->nSrc; j++, pTabItem++)
{
int doNotReorder; /* True if this table should not be reordered */
doNotReorder = (pTabItem->jointype & (JT_LEFT | JT_CROSS)) != 0;
if(once && doNotReorder)
break;
m = getMask(&maskSet, pTabItem->iCursor);
if((m & notReady) == 0)
{
if(j == iFrom)
iFrom++;
continue;
}
assert(pTabItem->pTab);
#ifndef SQLITE_OMIT_VIRTUALTABLE
if(IsVirtual(pTabItem->pTab))
{
sqlite3_index_info **ppIdxInfo = &pWInfo->a[j].pIdxInfo;
cost = bestVirtualIndex(pParse, &wc, pTabItem, notReady,
ppOrderBy ? *ppOrderBy : 0, i == 0,
ppIdxInfo);
flags = WHERE_VIRTUALTABLE;
pIndex = *ppIdxInfo;
if(pIndex && pIndex->orderByConsumed)
{
flags = WHERE_VIRTUALTABLE | WHERE_ORDERBY;
}
pIdx = 0;
nEq = 0;
if((SQLITE_BIG_DBL / 2.0) < cost)
{
/* The cost is not allowed to be larger than SQLITE_BIG_DBL (the
** inital value of lowestCost in this loop. If it is, then
** the (cost<lowestCost) test below will never be true and
** pLevel->pBestIdx never set.
*/
cost = (SQLITE_BIG_DBL / 2.0);
}
}
else
#endif
{
cost = bestIndex(pParse, &wc, pTabItem, notReady,
(i == 0 && ppOrderBy) ? *ppOrderBy : 0,
&pIdx, &flags, &nEq);
pIndex = 0;
}
if(cost < lowestCost)
{
once = 1;
lowestCost = cost;
pBest = pIdx;
bestFlags = flags;
bestNEq = nEq;
bestJ = j;
pLevel->pBestIdx = pIndex;
}
if(doNotReorder)
break;
}
WHERETRACE(("*** Optimizer choose table %d for loop %d\n", bestJ,
pLevel - pWInfo->a));
if((bestFlags & WHERE_ORDERBY) != 0)
{
*ppOrderBy = 0;
}
andFlags &= bestFlags;
pLevel->flags = bestFlags;
pLevel->pIdx = pBest;
pLevel->nEq = bestNEq;
pLevel->aInLoop = 0;
pLevel->nIn = 0;
if(pBest)
{
pLevel->iIdxCur = pParse->nTab++;
}
else
{
pLevel->iIdxCur = -1;
}
notReady &= ~getMask(&maskSet, pTabList->a[bestJ].iCursor);
pLevel->iFrom = bestJ;
}
WHERETRACE(("*** Optimizer Finished ***\n"));
/* If the total query only selects a single row, then the ORDER BY
** clause is irrelevant.
*/
if((andFlags & WHERE_UNIQUE) != 0 && ppOrderBy)
{
*ppOrderBy = 0;
}
/* If the caller is an UPDATE or DELETE statement that is requesting
** to use a one-pass algorithm, determine if this is appropriate.
** The one-pass algorithm only works if the WHERE clause constraints
** the statement to update a single row.
*/
assert((wflags & WHERE_ONEPASS_DESIRED) == 0 || pWInfo->nLevel == 1);
if((wflags & WHERE_ONEPASS_DESIRED) != 0 && (andFlags & WHERE_UNIQUE) != 0)
{
pWInfo->okOnePass = 1;
pWInfo->a[0].flags &= ~WHERE_IDX_ONLY;
}
/* Open all tables in the pTabList and any indices selected for
** searching those tables.
*/
sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
for (i = 0, pLevel = pWInfo->a; i < pTabList->nSrc; i++, pLevel++)
{
Table *pTab; /* Table to open */
Index *pIx; /* Index used to access pTab (if any) */
int iDb; /* Index of database containing table/index */
int iIdxCur = pLevel->iIdxCur;
#ifndef SQLITE_OMIT_EXPLAIN
if(pParse->explain == 2)
{
char *zMsg;
struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
zMsg = sqlite3MPrintf(db, "TABLE %s", pItem->zName);
if(pItem->zAlias)
{
zMsg = sqlite3MPrintf(db, "%z AS %s", zMsg, pItem->zAlias);
}
if((pIx = pLevel->pIdx) != 0)
{
zMsg = sqlite3MPrintf(db, "%z WITH INDEX %s", zMsg, pIx->zName);
}
else if(pLevel->flags & (WHERE_ROWID_EQ | WHERE_ROWID_RANGE))
{
zMsg = sqlite3MPrintf(db, "%z USING PRIMARY KEY", zMsg);
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
else if(pLevel->pBestIdx)
{
sqlite3_index_info *pBestIdx = pLevel->pBestIdx;
zMsg = sqlite3MPrintf(db, "%z VIRTUAL TABLE INDEX %d:%s", zMsg,
pBestIdx->idxNum, pBestIdx->idxStr);
}
#endif
if(pLevel->flags & WHERE_ORDERBY)
{
zMsg = sqlite3MPrintf(db, "%z ORDER BY", zMsg);
}
sqlite3VdbeAddOp4(v, OP_Explain, i, pLevel->iFrom, 0, zMsg, P4_DYNAMIC);
}
#endif /* SQLITE_OMIT_EXPLAIN */
pTabItem = &pTabList->a[pLevel->iFrom];
pTab = pTabItem->pTab;
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
if(pTab->isEphem || pTab->pSelect)
continue;
#ifndef SQLITE_OMIT_VIRTUALTABLE
if(pLevel->pBestIdx)
{
int iCur = pTabItem->iCursor;
sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0,
(const char *) pTab->pVtab, P4_VTAB);
}
else
#endif
if((pLevel->flags & WHERE_IDX_ONLY) == 0)
{
int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead;
sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
if(!pWInfo->okOnePass && pTab->nCol < (sizeof(Bitmask) * 8))
{
Bitmask b = pTabItem->colUsed;
int n = 0;
for (; b; b = b >> 1, n++)
{
}
sqlite3VdbeChangeP2(v, sqlite3VdbeCurrentAddr(v) - 2, n);
assert(n <= pTab->nCol);
}
}
else
{
sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
}
pLevel->iTabCur = pTabItem->iCursor;
if((pIx = pLevel->pIdx) != 0)
{
KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);
assert(pIx->pSchema == pTab->pSchema);
sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pIx->nColumn + 1);
sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIx->tnum, iDb,
(char *) pKey, P4_KEYINFO_HANDOFF);
VdbeComment((v, "%s", pIx->zName));
}
sqlite3CodeVerifySchema(pParse, iDb);
}
pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
/* Generate the code to do the search. Each iteration of the for
** loop below generates code for a single nested loop of the VM
** program.
*/
notReady = ~(Bitmask) 0;
for (i = 0, pLevel = pWInfo->a; i < pTabList->nSrc; i++, pLevel++)
{
int j;
int iCur = pTabItem->iCursor; /* The VDBE cursor for the table */
Index *pIdx; /* The index we will be using */
int nxt; /* Where to jump to continue with the next IN case */
int iIdxCur; /* The VDBE cursor for the index */
int omitTable; /* True if we use the index only */
int bRev; /* True if we need to scan in reverse order */
pTabItem = &pTabList->a[pLevel->iFrom];
iCur = pTabItem->iCursor;
pIdx = pLevel->pIdx;
iIdxCur = pLevel->iIdxCur;
bRev = (pLevel->flags & WHERE_REVERSE) != 0;
omitTable = (pLevel->flags & WHERE_IDX_ONLY) != 0;
/* Create labels for the "break" and "continue" instructions
** for the current loop. Jump to brk to break out of a loop.
** Jump to cont to go immediately to the next iteration of the
** loop.
**
** When there is an IN operator, we also have a "nxt" label that
** means to continue with the next IN value combination. When
** there are no IN operators in the constraints, the "nxt" label
** is the same as "brk".
*/
brk = pLevel->brk = pLevel->nxt = sqlite3VdbeMakeLabel(v);
cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
/* If this is the right table of a LEFT OUTER JOIN, allocate and
** initialize a memory cell that records if this table matches any
** row of the left table of the join.
*/
if(pLevel->iFrom > 0 && (pTabItem[0].jointype & JT_LEFT) != 0)
{
pLevel->iLeftJoin = ++pParse->nMem;
sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
VdbeComment((v, "init LEFT JOIN no-match flag"));
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
if(pLevel->pBestIdx)
{
/* Case 0: The table is a virtual-table. Use the VFilter and VNext
** to access the data.
*/
int j;
int iReg; /* P3 Value for OP_VFilter */
sqlite3_index_info *pBestIdx = pLevel->pBestIdx;
int nConstraint = pBestIdx->nConstraint;
struct sqlite3_index_constraint_usage *aUsage = pBestIdx->aConstraintUsage;
const struct sqlite3_index_constraint *aConstraint = pBestIdx->aConstraint;
iReg = sqlite3GetTempRange(pParse, nConstraint + 2);
for (j = 1; j <= nConstraint; j++)
{
int k;
for (k = 0; k < nConstraint; k++)
{
if(aUsage[k].argvIndex == j)
{
int iTerm = aConstraint[k].iTermOffset;
sqlite3ExprCode(pParse, wc.a[iTerm].pExpr->pRight,
iReg + j + 1);
break;
}
}
if(k == nConstraint)
break;
}
sqlite3VdbeAddOp2(v, OP_Integer, pBestIdx->idxNum, iReg);
sqlite3VdbeAddOp2(v, OP_Integer, j - 1, iReg + 1);
sqlite3VdbeAddOp4(v, OP_VFilter, iCur, brk, iReg, pBestIdx->idxStr,
pBestIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC);
sqlite3ReleaseTempRange(pParse, iReg, nConstraint + 2);
pBestIdx->needToFreeIdxStr = 0;
for (j = 0; j < pBestIdx->nConstraint; j++)
{
if(aUsage[j].omit)
{
int iTerm = aConstraint[j].iTermOffset;
disableTerm(pLevel, &wc.a[iTerm]);
}
}
pLevel->op = OP_VNext;
pLevel->p1 = iCur;
pLevel->p2 = sqlite3VdbeCurrentAddr(v);
}
else
#endif /* SQLITE_OMIT_VIRTUALTABLE */
if(pLevel->flags & WHERE_ROWID_EQ)
{
/* Case 1: We can directly reference a single row using an
** equality comparison against the ROWID field. Or
** we reference multiple rows using a "rowid IN (...)"
** construct.
*/
int r1;
pTerm = findTerm(&wc, iCur, -1, notReady, WO_EQ | WO_IN, 0);
assert(pTerm != 0);
assert(pTerm->pExpr != 0);
assert(pTerm->leftCursor == iCur);
assert(omitTable == 0);
r1 = codeEqualityTerm(pParse, pTerm, pLevel, 0);
nxt = pLevel->nxt;
sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, nxt);
sqlite3VdbeAddOp3(v, OP_NotExists, iCur, nxt, r1);
VdbeComment((v, "pk"));
pLevel->op = OP_Noop;
}
else if(pLevel->flags & WHERE_ROWID_RANGE)
{
/* Case 2: We have an inequality comparison against the ROWID field.
*/
int testOp = OP_Noop;
int start;
WhereTerm *pStart, *pEnd;
assert(omitTable == 0);
pStart = findTerm(&wc, iCur, -1, notReady, WO_GT | WO_GE, 0);
pEnd = findTerm(&wc, iCur, -1, notReady, WO_LT | WO_LE, 0);
if(bRev)
{
pTerm = pStart;
pStart = pEnd;
pEnd = pTerm;
}
if(pStart)
{
Expr *pX;
int r1, regFree1;
pX = pStart->pExpr;
assert(pX != 0);
assert(pStart->leftCursor == iCur);
r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &regFree1);
sqlite3VdbeAddOp3(v, OP_ForceInt, r1, brk,
pX->op == TK_LE || pX->op == TK_GT);
sqlite3VdbeAddOp3(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk, r1);
VdbeComment((v, "pk"));
sqlite3ReleaseTempReg(pParse, regFree1);
disableTerm(pLevel, pStart);
}
else
{
sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, brk);
}
if(pEnd)
{
Expr *pX;
pX = pEnd->pExpr;
assert(pX != 0);
assert(pEnd->leftCursor == iCur);
pLevel->iMem = ++pParse->nMem;
sqlite3ExprCode(pParse, pX->pRight, pLevel->iMem);
if(pX->op == TK_LT || pX->op == TK_GT)
{
testOp = bRev ? OP_Le : OP_Ge;
}
else
{
testOp = bRev ? OP_Lt : OP_Gt;
}
disableTerm(pLevel, pEnd);
}
start = sqlite3VdbeCurrentAddr(v);
pLevel->op = bRev ? OP_Prev : OP_Next;
pLevel->p1 = iCur;
pLevel->p2 = start;
if(testOp != OP_Noop)
{
int r1 = sqlite3GetTempReg(pParse);
sqlite3VdbeAddOp2(v, OP_Rowid, iCur, r1);
/* sqlite3VdbeAddOp2(v, OP_SCopy, pLevel->iMem, 0); */
sqlite3VdbeAddOp3(v, testOp, pLevel->iMem, brk, r1);
sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
sqlite3ReleaseTempReg(pParse, r1);
}
}
else if(pLevel->flags & (WHERE_COLUMN_RANGE | WHERE_COLUMN_EQ))
{
/* Case 3: A scan using an index.
**
** The WHERE clause may contain zero or more equality
** terms ("==" or "IN" operators) that refer to the N
** left-most columns of the index. It may also contain
** inequality constraints (>, <, >= or <=) on the indexed
** column that immediately follows the N equalities. Only
** the right-most column can be an inequality - the rest must
** use the "==" and "IN" operators. For example, if the
** index is on (x,y,z), then the following clauses are all
** optimized:
**
** x=5
** x=5 AND y=10
** x=5 AND y<10
** x=5 AND y>5 AND y<10
** x=5 AND y=5 AND z<=10
**
** The z<10 term of the following cannot be used, only
** the x=5 term:
**
** x=5 AND z<10
**
** N may be zero if there are inequality constraints.
** If there are no inequality constraints, then N is at
** least one.
**
** This case is also used when there are no WHERE clause
** constraints but an index is selected anyway, in order
** to force the output order to conform to an ORDER BY.
*/
int aStartOp[] = {
0,
0,
OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */
OP_Last, /* 3: (!start_constraints && startEq && bRev) */
OP_MoveGt, /* 4: (start_constraints && !startEq && !bRev) */
OP_MoveLt, /* 5: (start_constraints && !startEq && bRev) */
OP_MoveGe, /* 6: (start_constraints && startEq && !bRev) */
OP_MoveLe /* 7: (start_constraints && startEq && bRev) */
};
int aEndOp[] = {
OP_Noop, /* 0: (!end_constraints) */
OP_IdxGE, /* 1: (end_constraints && !bRev) */
OP_IdxLT /* 2: (end_constraints && bRev) */
};
int nEq = pLevel->nEq;
int isMinQuery = 0; /* If this is an optimized SELECT min(x).. */
int regBase; /* Base register holding constraint values */
int r1; /* Temp register */
WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */
WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */
int startEq; /* True if range start uses ==, >= or <= */
int endEq; /* True if range end uses ==, >= or <= */
int start_constraints; /* Start of range is constrained */
int k = pIdx->aiColumn[nEq]; /* Column for inequality constraints */
int nConstraint; /* Number of constraint terms */
int op;
/* Generate code to evaluate all constraint terms using == or IN
** and store the values of those terms in an array of registers
** starting at regBase.
*/
regBase = codeAllEqualityTerms(pParse, pLevel, &wc, notReady, 2);
nxt = pLevel->nxt;
/* If this loop satisfies a sort order (pOrderBy) request that
** was passed to this function to implement a "SELECT min(x) ..."
** query, then the caller will only allow the loop to run for
** a single iteration. This means that the first row returned
** should not have a NULL value stored in 'x'. If column 'x' is
** the first one after the nEq equality constraints in the index,
** this requires some special handling.
*/
if((wflags & WHERE_ORDERBY_MIN) != 0
&& (pLevel->flags & WHERE_ORDERBY)
&& (pIdx->nColumn > nEq)
&& (pOrderBy->a[0].pExpr->iColumn == pIdx->aiColumn[nEq]))
{
isMinQuery = 1;
}
/* Find any inequality constraint terms for the start and end
** of the range.
*/
if(pLevel->flags & WHERE_TOP_LIMIT)
{
pRangeEnd = findTerm(&wc, iCur, k, notReady, (WO_LT | WO_LE), pIdx);
}
if(pLevel->flags & WHERE_BTM_LIMIT)
{
pRangeStart =
findTerm(&wc, iCur, k, notReady, (WO_GT | WO_GE), pIdx);
}
/* If we are doing a reverse order scan on an ascending index, or
** a forward order scan on a descending index, interchange the
** start and end terms (pRangeStart and pRangeEnd).
*/
if(bRev == (pIdx->aSortOrder[nEq] == SQLITE_SO_ASC))
{
SWAP(WhereTerm *, pRangeEnd, pRangeStart);
}
testcase(pRangeStart && pRangeStart->eOperator & WO_LE);
testcase(pRangeStart && pRangeStart->eOperator & WO_GE);
testcase(pRangeEnd && pRangeEnd->eOperator & WO_LE);
testcase(pRangeEnd && pRangeEnd->eOperator & WO_GE);
startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE | WO_GE);
endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE | WO_GE);
start_constraints = pRangeStart || nEq > 0;
/* Seek the index cursor to the start of the range. */
nConstraint = nEq;
if(pRangeStart)
{
int dcc = pParse->disableColCache;
if(pRangeEnd)
{
pParse->disableColCache = 1;
}
sqlite3ExprCode(pParse, pRangeStart->pExpr->pRight, regBase + nEq);
pParse->disableColCache = dcc;
sqlite3VdbeAddOp2(v, OP_IsNull, regBase + nEq, nxt);
nConstraint++;
}
else if(isMinQuery)
{
sqlite3VdbeAddOp2(v, OP_Null, 0, regBase + nEq);
nConstraint++;
startEq = 0;
start_constraints = 1;
}
codeApplyAffinity(pParse, regBase, nConstraint, pIdx);
op = aStartOp[(start_constraints << 2) + (startEq << 1) + bRev];
assert(op != 0);
testcase(op == OP_Rewind);
testcase(op == OP_Last);
testcase(op == OP_MoveGt);
testcase(op == OP_MoveGe);
testcase(op == OP_MoveLe);
testcase(op == OP_MoveLt);
sqlite3VdbeAddOp4(v, op, iIdxCur, nxt, regBase,
(char *) (long)nConstraint, P4_INT32);
/* Load the value for the inequality constraint at the end of the
** range (if any).
*/
nConstraint = nEq;
if(pRangeEnd)
{
sqlite3ExprCode(pParse, pRangeEnd->pExpr->pRight, regBase + nEq);
sqlite3VdbeAddOp2(v, OP_IsNull, regBase + nEq, nxt);
codeApplyAffinity(pParse, regBase, nEq + 1, pIdx);
nConstraint++;
}
/* Top of the loop body */
pLevel->p2 = sqlite3VdbeCurrentAddr(v);
/* Check if the index cursor is past the end of the range. */
op = aEndOp[(pRangeEnd || nEq) * (1 + bRev)];
testcase(op == OP_Noop);
testcase(op == OP_IdxGE);
testcase(op == OP_IdxLT);
sqlite3VdbeAddOp4(v, op, iIdxCur, nxt, regBase,
(char *) (long)nConstraint, P4_INT32);
sqlite3VdbeChangeP5(v, endEq != bRev);
/* If there are inequality constraints, check that the value
** of the table column that the inequality contrains is not NULL.
** If it is, jump to the next iteration of the loop.
*/
r1 = sqlite3GetTempReg(pParse);
testcase(pLevel->flags & WHERE_BTM_LIMIT);
testcase(pLevel->flags & WHERE_TOP_LIMIT);
if(pLevel->flags & (WHERE_BTM_LIMIT | WHERE_TOP_LIMIT))
{
sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1);
sqlite3VdbeAddOp2(v, OP_IsNull, r1, cont);
}
/* Seek the table cursor, if required */
if(!omitTable)
{
sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, r1);
sqlite3VdbeAddOp3(v, OP_MoveGe, iCur, 0, r1); /* Deferred seek */
}
sqlite3ReleaseTempReg(pParse, r1);
/* Record the instruction used to terminate the loop. Disable
** WHERE clause terms made redundant by the index range scan.
*/
pLevel->op = bRev ? OP_Prev : OP_Next;
pLevel->p1 = iIdxCur;
disableTerm(pLevel, pRangeStart);
disableTerm(pLevel, pRangeEnd);
}
else
{
/* Case 4: There is no usable index. We must do a complete
** scan of the entire table.
*/
assert(omitTable == 0);
assert(bRev == 0);
pLevel->op = OP_Next;
pLevel->p1 = iCur;
pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, OP_Rewind, iCur, brk);
}
notReady &= ~getMask(&maskSet, iCur);
/* Insert code to test every subexpression that can be completely
** computed using the current set of tables.
*/
for (pTerm = wc.a, j = wc.nTerm; j > 0; j--, pTerm++)
{
Expr *pE;
testcase(pTerm->flags & TERM_VIRTUAL);
testcase(pTerm->flags & TERM_CODED);
if(pTerm->flags & (TERM_VIRTUAL | TERM_CODED))
continue;
if((pTerm->prereqAll & notReady) != 0)
continue;
pE = pTerm->pExpr;
assert(pE != 0);
if(pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin))
{
continue;
}
sqlite3ExprIfFalse(pParse, pE, cont, SQLITE_JUMPIFNULL);
pTerm->flags |= TERM_CODED;
}
/* For a LEFT OUTER JOIN, generate code that will record the fact that
** at least one row of the right table has matched the left table.
*/
if(pLevel->iLeftJoin)
{
pLevel->top = sqlite3VdbeCurrentAddr(v);
sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
VdbeComment((v, "record LEFT JOIN hit"));
sqlite3ExprClearColumnCache(pParse, pLevel->iTabCur);
sqlite3ExprClearColumnCache(pParse, pLevel->iIdxCur);
for (pTerm = wc.a, j = 0; j < wc.nTerm; j++, pTerm++)
{
testcase(pTerm->flags & TERM_VIRTUAL);
testcase(pTerm->flags & TERM_CODED);
if(pTerm->flags & (TERM_VIRTUAL | TERM_CODED))
continue;
if((pTerm->prereqAll & notReady) != 0)
continue;
assert(pTerm->pExpr);
sqlite3ExprIfFalse(pParse, pTerm->pExpr, cont, SQLITE_JUMPIFNULL);
pTerm->flags |= TERM_CODED;
}
}
}
#ifdef SQLITE_TEST /* For testing and debugging use only */
/* Record in the query plan information about the current table
** and the index used to access it (if any). If the table itself
** is not used, its name is just '{}'. If no index is used
** the index is listed as "{}". If the primary key is used the
** index name is '*'.
*/
for (i = 0; i < pTabList->nSrc; i++)
{
char *z;
int n;
pLevel = &pWInfo->a[i];
pTabItem = &pTabList->a[pLevel->iFrom];
z = pTabItem->zAlias;
if(z == 0)
z = pTabItem->pTab->zName;
n = strlen(z);
if(n + nQPlan < sizeof(sqlite3_query_plan) - 10)
{
if(pLevel->flags & WHERE_IDX_ONLY)
{
memcpy(&sqlite3_query_plan[nQPlan], "{}", 2);
nQPlan += 2;
}
else
{
memcpy(&sqlite3_query_plan[nQPlan], z, n);
nQPlan += n;
}
sqlite3_query_plan[nQPlan++] = ' ';
}
testcase(pLevel->flags & WHERE_ROWID_EQ);
testcase(pLevel->flags & WHERE_ROWID_RANGE);
if(pLevel->flags & (WHERE_ROWID_EQ | WHERE_ROWID_RANGE))
{
memcpy(&sqlite3_query_plan[nQPlan], "* ", 2);
nQPlan += 2;
}
else if(pLevel->pIdx == 0)
{
memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3);
nQPlan += 3;
}
else
{
n = strlen(pLevel->pIdx->zName);
if(n + nQPlan < sizeof(sqlite3_query_plan) - 2)
{
memcpy(&sqlite3_query_plan[nQPlan], pLevel->pIdx->zName, n);
nQPlan += n;
sqlite3_query_plan[nQPlan++] = ' ';
}
}
}
while (nQPlan > 0 && sqlite3_query_plan[nQPlan - 1] == ' ')
{
sqlite3_query_plan[--nQPlan] = 0;
}
sqlite3_query_plan[nQPlan] = 0;
nQPlan = 0;
#endif /* SQLITE_TEST // Testing and debugging use only */
/* Record the continuation address in the WhereInfo structure. Then
** clean up and return.
*/
pWInfo->iContinue = cont;
whereClauseClear(&wc);
return pWInfo;
/* Jump here if malloc fails */
whereBeginNoMem:
whereClauseClear(&wc);
whereInfoFree(pWInfo);
return 0;
}
/*
** Generate the end of the WHERE loop. See comments on
** sqlite3WhereBegin() for additional information.
*/
SQLITE_PRIVATE void
sqlite3WhereEnd(WhereInfo * pWInfo)
{
Vdbe *v = pWInfo->pParse->pVdbe;
int i;
WhereLevel *pLevel;
SrcList *pTabList = pWInfo->pTabList;
/* Generate loop termination code.
*/
sqlite3ExprClearColumnCache(pWInfo->pParse, -1);
for (i = pTabList->nSrc - 1; i >= 0; i--)
{
pLevel = &pWInfo->a[i];
sqlite3VdbeResolveLabel(v, pLevel->cont);
if(pLevel->op != OP_Noop)
{
sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2);
}
if(pLevel->nIn)
{
struct InLoop *pIn;
int j;
sqlite3VdbeResolveLabel(v, pLevel->nxt);
for (j = pLevel->nIn, pIn = &pLevel->aInLoop[j - 1]; j > 0; j--, pIn--)
{
sqlite3VdbeJumpHere(v, pIn->topAddr + 1);
sqlite3VdbeAddOp2(v, OP_Next, pIn->iCur, pIn->topAddr);
sqlite3VdbeJumpHere(v, pIn->topAddr - 1);
}
sqlite3_free(pLevel->aInLoop);
}
sqlite3VdbeResolveLabel(v, pLevel->brk);
if(pLevel->iLeftJoin)
{
int addr;
addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin);
sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
if(pLevel->iIdxCur >= 0)
{
sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
}
sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->top);
sqlite3VdbeJumpHere(v, addr);
}
}
/* The "break" point is here, just past the end of the outer loop.
** Set it.
*/
sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
/* Close all of the cursors that were opened by sqlite3WhereBegin.
*/
for (i = 0, pLevel = pWInfo->a; i < pTabList->nSrc; i++, pLevel++)
{
struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
Table *pTab = pTabItem->pTab;
assert(pTab != 0);
if(pTab->isEphem || pTab->pSelect)
continue;
if(!pWInfo->okOnePass && (pLevel->flags & WHERE_IDX_ONLY) == 0)
{
sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
}
if(pLevel->pIdx != 0)
{
sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
}
/* If this scan uses an index, make code substitutions to read data
** from the index in preference to the table. Sometimes, this means
** the table need never be read from. This is a performance boost,
** as the vdbe level waits until the table is read before actually
** seeking the table cursor to the record corresponding to the current
** position in the index.
**
** Calls to the code generator in between sqlite3WhereBegin and
** sqlite3WhereEnd will have created code that references the table
** directly. This loop scans all that code looking for opcodes
** that reference the table and converts them into opcodes that
** reference the index.
*/
if(pLevel->pIdx)
{
int k, j, last;
VdbeOp *pOp;
Index *pIdx = pLevel->pIdx;
int useIndexOnly = pLevel->flags & WHERE_IDX_ONLY;
assert(pIdx != 0);
pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
last = sqlite3VdbeCurrentAddr(v);
for (k = pWInfo->iTop; k < last; k++, pOp++)
{
if(pOp->p1 != pLevel->iTabCur)
continue;
if(pOp->opcode == OP_Column)
{
for (j = 0; j < pIdx->nColumn; j++)
{
if(pOp->p2 == pIdx->aiColumn[j])
{
pOp->p2 = j;
pOp->p1 = pLevel->iIdxCur;
break;
}
}
assert(!useIndexOnly || j < pIdx->nColumn);
}
else if(pOp->opcode == OP_Rowid)
{
pOp->p1 = pLevel->iIdxCur;
pOp->opcode = OP_IdxRowid;
}
else if(pOp->opcode == OP_NullRow && useIndexOnly)
{
pOp->opcode = OP_Noop;
}
}
}
}
/* Final cleanup
*/
whereInfoFree(pWInfo);
return;
}
/************** End of where.c ***********************************************/
/************** Begin file parse.c *******************************************/
/* Driver template for the LEMON parser generator.
** The author disclaims copyright to this source code.
*/
/* First off, code is include which follows the "include" declaration
** in the input file. */
/*
** An instance of this structure holds information about the
** LIMIT clause of a SELECT statement.
*/
struct LimitVal
{
Expr *pLimit; /* The LIMIT expression. NULL if there is no limit */
Expr *pOffset; /* The OFFSET expression. NULL if there is none */
};
/*
** An instance of this structure is used to store the LIKE,
** GLOB, NOT LIKE, and NOT GLOB operators.
*/
struct LikeOp
{
Token eOperator; /* "like" or "glob" or "regexp" */
int not; /* True if the NOT keyword is present */
};
/*
** An instance of the following structure describes the event of a
** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT,
** TK_DELETE, or TK_INSTEAD. If the event is of the form
**
** UPDATE ON (a,b,c)
**
** Then the "b" IdList records the list "a,b,c".
*/
struct TrigEvent
{
int a;
IdList *b;
};
/*
** An instance of this structure holds the ATTACH key and the key type.
*/
struct AttachKey
{
int type;
Token key;
};
/* Next is all token values, in a form suitable for use by makeheaders.
** This section will be null unless lemon is run with the -m switch.
*/
/*
** These constants (all generated automatically by the parser generator)
** specify the various kinds of tokens (terminals) that the parser
** understands.
**
** Each symbol here is a terminal symbol in the grammar.
*/
/* Make sure the INTERFACE macro is defined.
*/
#ifndef INTERFACE
# define INTERFACE 1
#endif
/* The next thing included is series of defines which control
** various aspects of the generated parser.
** YYCODETYPE is the data type used for storing terminal
** and nonterminal numbers. "unsigned char" is
** used if there are fewer than 250 terminals
** and nonterminals. "int" is used otherwise.
** YYNOCODE is a number of type YYCODETYPE which corresponds
** to no legal terminal or nonterminal number. This
** number is used to fill in empty slots of the hash
** table.
** YYFALLBACK If defined, this indicates that one or more tokens
** have fall-back values which should be used if the
** original value of the token will not parse.
** YYACTIONTYPE is the data type used for storing terminal
** and nonterminal numbers. "unsigned char" is
** used if there are fewer than 250 rules and
** states combined. "int" is used otherwise.
** sqlite3ParserTOKENTYPE is the data type used for minor tokens given
** directly to the parser from the tokenizer.
** YYMINORTYPE is the data type used for all minor tokens.
** This is typically a union of many types, one of
** which is sqlite3ParserTOKENTYPE. The entry in the union
** for base tokens is called "yy0".
** YYSTACKDEPTH is the maximum depth of the parser's stack. If
** zero the stack is dynamically sized using realloc()
** sqlite3ParserARG_SDECL A static variable declaration for the %extra_argument
** sqlite3ParserARG_PDECL A parameter declaration for the %extra_argument
** sqlite3ParserARG_STORE Code to store %extra_argument into yypParser
** sqlite3ParserARG_FETCH Code to extract %extra_argument from yypParser
** YYNSTATE the combined number of states.
** YYNRULE the number of rules in the grammar
** YYERRORSYMBOL is the code number of the error symbol. If not
** defined, then do no error processing.
*/
#define YYCODETYPE unsigned char
#define YYNOCODE 248
#define YYACTIONTYPE unsigned short int
#define YYWILDCARD 59
#define sqlite3ParserTOKENTYPE Token
typedef union
{
sqlite3ParserTOKENTYPE yy0;
int yy46;
struct LikeOp yy72;
Expr *yy172;
ExprList *yy174;
Select *yy219;
struct LimitVal yy234;
TriggerStep *yy243;
struct TrigEvent yy370;
SrcList *yy373;
struct
{
int value;
int mask;
} yy405;
Token yy410;
IdList *yy432;
} YYMINORTYPE;
#ifndef YYSTACKDEPTH
#define YYSTACKDEPTH 100
#endif
#define sqlite3ParserARG_SDECL Parse *pParse;
#define sqlite3ParserARG_PDECL ,Parse *pParse
#define sqlite3ParserARG_FETCH Parse *pParse = yypParser->pParse
#define sqlite3ParserARG_STORE yypParser->pParse = pParse
#define YYNSTATE 589
#define YYNRULE 313
#define YYFALLBACK 1
#define YY_NO_ACTION (YYNSTATE+YYNRULE+2)
#define YY_ACCEPT_ACTION (YYNSTATE+YYNRULE+1)
#define YY_ERROR_ACTION (YYNSTATE+YYNRULE)
/* The yyzerominor constant is used to initialize instances of
** YYMINORTYPE objects to zero. */
static const YYMINORTYPE yyzerominor;
/* Next are that tables used to determine what action to take based on the
** current state and lookahead token. These tables are used to implement
** functions that take a state number and lookahead value and return an
** action integer.
**
** Suppose the action integer is N. Then the action is determined as
** follows
**
** 0 <= N < YYNSTATE Shift N. That is, push the lookahead
** token onto the stack and goto state N.
**
** YYNSTATE <= N < YYNSTATE+YYNRULE Reduce by rule N-YYNSTATE.
**
** N == YYNSTATE+YYNRULE A syntax error has occurred.
**
** N == YYNSTATE+YYNRULE+1 The parser accepts its input.
**
** N == YYNSTATE+YYNRULE+2 No such action. Denotes unused
** slots in the yy_action[] table.
**
** The action table is constructed as a single large table named yy_action[].
** Given state S and lookahead X, the action is computed as
**
** yy_action[ yy_shift_ofst[S] + X ]
**
** If the index value yy_shift_ofst[S]+X is out of range or if the value
** yy_lookahead[yy_shift_ofst[S]+X] is not equal to X or if yy_shift_ofst[S]
** is equal to YY_SHIFT_USE_DFLT, it means that the action is not in the table
** and that yy_default[S] should be used instead.
**
** The formula above is for computing the action when the lookahead is
** a terminal symbol. If the lookahead is a non-terminal (as occurs after
** a reduce action) then the yy_reduce_ofst[] array is used in place of
** the yy_shift_ofst[] array and YY_REDUCE_USE_DFLT is used in place of
** YY_SHIFT_USE_DFLT.
**
** The following are the tables generated in this section:
**
** yy_action[] A single table containing all actions.
** yy_lookahead[] A table containing the lookahead for each entry in
** yy_action. Used to detect hash collisions.
** yy_shift_ofst[] For each state, the offset into yy_action for
** shifting terminals.
** yy_reduce_ofst[] For each state, the offset into yy_action for
** shifting non-terminals after a reduce.
** yy_default[] Default action for each state.
*/
static const YYACTIONTYPE yy_action[] = {
/* 0 */ 292, 903, 124, 588, 409, 172, 2, 418, 61, 61,
/* 10 */ 61, 61, 519, 63, 63, 63, 63, 64, 64, 65,
/* 20 */ 65, 65, 66, 210, 447, 212, 425, 431, 68, 63,
/* 30 */ 63, 63, 63, 64, 64, 65, 65, 65, 66, 210,
/* 40 */ 391, 388, 396, 451, 60, 59, 297, 435, 436, 432,
/* 50 */ 432, 62, 62, 61, 61, 61, 61, 263, 63, 63,
/* 60 */ 63, 63, 64, 64, 65, 65, 65, 66, 210, 292,
/* 70 */ 493, 494, 418, 489, 208, 82, 67, 420, 69, 154,
/* 80 */ 63, 63, 63, 63, 64, 64, 65, 65, 65, 66,
/* 90 */ 210, 67, 462, 69, 154, 425, 431, 574, 264, 58,
/* 100 */ 64, 64, 65, 65, 65, 66, 210, 397, 398, 422,
/* 110 */ 422, 422, 292, 60, 59, 297, 435, 436, 432, 432,
/* 120 */ 62, 62, 61, 61, 61, 61, 317, 63, 63, 63,
/* 130 */ 63, 64, 64, 65, 65, 65, 66, 210, 425, 431,
/* 140 */ 94, 65, 65, 65, 66, 210, 396, 210, 414, 34,
/* 150 */ 56, 298, 442, 443, 410, 418, 60, 59, 297, 435,
/* 160 */ 436, 432, 432, 62, 62, 61, 61, 61, 61, 208,
/* 170 */ 63, 63, 63, 63, 64, 64, 65, 65, 65, 66,
/* 180 */ 210, 292, 372, 524, 295, 572, 113, 408, 522, 451,
/* 190 */ 331, 317, 407, 20, 244, 340, 519, 396, 478, 531,
/* 200 */ 505, 447, 212, 571, 570, 245, 530, 425, 431, 149,
/* 210 */ 150, 397, 398, 414, 41, 211, 151, 533, 488, 489,
/* 220 */ 418, 568, 569, 420, 292, 60, 59, 297, 435, 436,
/* 230 */ 432, 432, 62, 62, 61, 61, 61, 61, 317, 63,
/* 240 */ 63, 63, 63, 64, 64, 65, 65, 65, 66, 210,
/* 250 */ 425, 431, 447, 333, 215, 422, 422, 422, 363, 299,
/* 260 */ 414, 41, 397, 398, 366, 567, 211, 292, 60, 59,
/* 270 */ 297, 435, 436, 432, 432, 62, 62, 61, 61, 61,
/* 280 */ 61, 396, 63, 63, 63, 63, 64, 64, 65, 65,
/* 290 */ 65, 66, 210, 425, 431, 491, 300, 524, 474, 66,
/* 300 */ 210, 214, 474, 229, 411, 286, 534, 20, 449, 523,
/* 310 */ 168, 60, 59, 297, 435, 436, 432, 432, 62, 62,
/* 320 */ 61, 61, 61, 61, 474, 63, 63, 63, 63, 64,
/* 330 */ 64, 65, 65, 65, 66, 210, 209, 480, 317, 77,
/* 340 */ 292, 239, 300, 55, 484, 490, 397, 398, 181, 547,
/* 350 */ 494, 345, 348, 349, 67, 152, 69, 154, 339, 524,
/* 360 */ 414, 35, 350, 241, 221, 370, 425, 431, 579, 20,
/* 370 */ 164, 118, 243, 343, 248, 344, 176, 322, 442, 443,
/* 380 */ 414, 3, 80, 252, 60, 59, 297, 435, 436, 432,
/* 390 */ 432, 62, 62, 61, 61, 61, 61, 174, 63, 63,
/* 400 */ 63, 63, 64, 64, 65, 65, 65, 66, 210, 292,
/* 410 */ 221, 550, 236, 487, 510, 353, 317, 118, 243, 343,
/* 420 */ 248, 344, 176, 181, 317, 532, 345, 348, 349, 252,
/* 430 */ 223, 415, 155, 464, 511, 425, 431, 350, 414, 34,
/* 440 */ 465, 211, 177, 175, 160, 525, 414, 34, 338, 549,
/* 450 */ 449, 323, 168, 60, 59, 297, 435, 436, 432, 432,
/* 460 */ 62, 62, 61, 61, 61, 61, 415, 63, 63, 63,
/* 470 */ 63, 64, 64, 65, 65, 65, 66, 210, 292, 542,
/* 480 */ 335, 517, 504, 541, 456, 572, 302, 19, 331, 144,
/* 490 */ 317, 390, 317, 330, 2, 362, 457, 294, 483, 373,
/* 500 */ 269, 268, 252, 571, 425, 431, 589, 391, 388, 458,
/* 510 */ 208, 495, 414, 49, 414, 49, 303, 586, 894, 230,
/* 520 */ 894, 496, 60, 59, 297, 435, 436, 432, 432, 62,
/* 530 */ 62, 61, 61, 61, 61, 201, 63, 63, 63, 63,
/* 540 */ 64, 64, 65, 65, 65, 66, 210, 292, 317, 181,
/* 550 */ 439, 255, 345, 348, 349, 370, 153, 583, 308, 251,
/* 560 */ 309, 452, 76, 350, 78, 382, 211, 426, 427, 415,
/* 570 */ 414, 27, 319, 425, 431, 440, 1, 22, 586, 893,
/* 580 */ 396, 893, 544, 478, 320, 263, 438, 438, 429, 430,
/* 590 */ 415, 60, 59, 297, 435, 436, 432, 432, 62, 62,
/* 600 */ 61, 61, 61, 61, 237, 63, 63, 63, 63, 64,
/* 610 */ 64, 65, 65, 65, 66, 210, 292, 428, 583, 374,
/* 620 */ 224, 93, 517, 9, 159, 396, 557, 396, 456, 67,
/* 630 */ 396, 69, 154, 399, 400, 401, 320, 328, 438, 438,
/* 640 */ 457, 336, 425, 431, 361, 397, 398, 320, 433, 438,
/* 650 */ 438, 582, 291, 458, 238, 327, 318, 222, 546, 292,
/* 660 */ 60, 59, 297, 435, 436, 432, 432, 62, 62, 61,
/* 670 */ 61, 61, 61, 225, 63, 63, 63, 63, 64, 64,
/* 680 */ 65, 65, 65, 66, 210, 425, 431, 482, 313, 392,
/* 690 */ 397, 398, 397, 398, 207, 397, 398, 825, 273, 517,
/* 700 */ 251, 200, 292, 60, 59, 297, 435, 436, 432, 432,
/* 710 */ 62, 62, 61, 61, 61, 61, 470, 63, 63, 63,
/* 720 */ 63, 64, 64, 65, 65, 65, 66, 210, 425, 431,
/* 730 */ 171, 160, 263, 263, 304, 415, 276, 395, 274, 263,
/* 740 */ 517, 517, 263, 517, 192, 292, 60, 70, 297, 435,
/* 750 */ 436, 432, 432, 62, 62, 61, 61, 61, 61, 379,
/* 760 */ 63, 63, 63, 63, 64, 64, 65, 65, 65, 66,
/* 770 */ 210, 425, 431, 384, 559, 305, 306, 251, 415, 320,
/* 780 */ 560, 438, 438, 561, 540, 360, 540, 387, 292, 196,
/* 790 */ 59, 297, 435, 436, 432, 432, 62, 62, 61, 61,
/* 800 */ 61, 61, 371, 63, 63, 63, 63, 64, 64, 65,
/* 810 */ 65, 65, 66, 210, 425, 431, 396, 275, 251, 251,
/* 820 */ 172, 250, 418, 415, 386, 367, 178, 179, 180, 469,
/* 830 */ 311, 123, 156, 5, 297, 435, 436, 432, 432, 62,
/* 840 */ 62, 61, 61, 61, 61, 317, 63, 63, 63, 63,
/* 850 */ 64, 64, 65, 65, 65, 66, 210, 72, 324, 194,
/* 860 */ 4, 317, 263, 317, 296, 263, 415, 414, 28, 317,
/* 870 */ 257, 317, 321, 72, 324, 317, 4, 119, 165, 177,
/* 880 */ 296, 397, 398, 414, 23, 414, 32, 418, 321, 326,
/* 890 */ 421, 414, 53, 414, 52, 317, 158, 414, 98, 451,
/* 900 */ 317, 263, 317, 277, 317, 326, 378, 471, 261, 317,
/* 910 */ 259, 18, 478, 445, 445, 451, 317, 414, 96, 75,
/* 920 */ 74, 469, 414, 101, 414, 102, 414, 112, 73, 315,
/* 930 */ 316, 414, 114, 420, 294, 75, 74, 481, 414, 16,
/* 940 */ 381, 317, 279, 467, 73, 315, 316, 72, 324, 420,
/* 950 */ 4, 208, 317, 183, 296, 317, 186, 128, 84, 208,
/* 960 */ 8, 341, 321, 414, 99, 422, 422, 422, 423, 424,
/* 970 */ 11, 623, 380, 307, 414, 33, 413, 414, 97, 326,
/* 980 */ 412, 422, 422, 422, 423, 424, 11, 415, 413, 451,
/* 990 */ 415, 162, 412, 317, 499, 500, 226, 227, 228, 104,
/* 1000 */ 448, 476, 317, 173, 507, 317, 509, 508, 317, 75,
/* 1010 */ 74, 329, 205, 21, 281, 414, 24, 418, 73, 315,
/* 1020 */ 316, 282, 317, 420, 414, 54, 460, 414, 115, 317,
/* 1030 */ 414, 116, 502, 203, 147, 549, 514, 468, 128, 202,
/* 1040 */ 317, 473, 204, 317, 414, 117, 317, 477, 317, 584,
/* 1050 */ 317, 414, 25, 317, 249, 422, 422, 422, 423, 424,
/* 1060 */ 11, 506, 414, 36, 512, 414, 37, 317, 414, 26,
/* 1070 */ 414, 38, 414, 39, 526, 414, 40, 317, 254, 317,
/* 1080 */ 128, 317, 418, 317, 256, 377, 278, 268, 585, 414,
/* 1090 */ 42, 293, 317, 352, 317, 128, 208, 513, 258, 414,
/* 1100 */ 43, 414, 44, 414, 29, 414, 30, 545, 260, 128,
/* 1110 */ 317, 553, 317, 173, 414, 45, 414, 46, 317, 262,
/* 1120 */ 383, 554, 317, 91, 564, 317, 91, 317, 581, 189,
/* 1130 */ 290, 357, 414, 47, 414, 48, 267, 365, 368, 369,
/* 1140 */ 414, 31, 270, 271, 414, 10, 272, 414, 50, 414,
/* 1150 */ 51, 556, 566, 280, 283, 284, 578, 146, 419, 405,
/* 1160 */ 231, 505, 444, 325, 516, 463, 163, 446, 552, 394,
/* 1170 */ 466, 563, 246, 515, 518, 520, 402, 403, 404, 7,
/* 1180 */ 314, 84, 232, 334, 347, 83, 332, 57, 170, 79,
/* 1190 */ 213, 461, 125, 85, 337, 342, 492, 502, 497, 301,
/* 1200 */ 498, 416, 105, 219, 247, 218, 503, 501, 233, 220,
/* 1210 */ 287, 234, 527, 528, 235, 529, 417, 521, 354, 288,
/* 1220 */ 184, 121, 185, 240, 535, 475, 242, 356, 187, 479,
/* 1230 */ 188, 358, 537, 88, 190, 548, 364, 193, 132, 376,
/* 1240 */ 555, 375, 133, 134, 135, 310, 562, 138, 136, 575,
/* 1250 */ 576, 577, 580, 100, 393, 406, 217, 142, 624, 625,
/* 1260 */ 103, 141, 265, 166, 167, 434, 71, 453, 441, 437,
/* 1270 */ 450, 143, 538, 157, 120, 454, 161, 472, 455, 169,
/* 1280 */ 459, 81, 6, 12, 13, 92, 95, 126, 216, 127,
/* 1290 */ 111, 485, 486, 17, 86, 346, 106, 122, 253, 107,
/* 1300 */ 87, 108, 182, 245, 355, 145, 351, 536, 129, 359,
/* 1310 */ 312, 130, 543, 173, 539, 266, 191, 109, 289, 551,
/* 1320 */ 195, 14, 131, 198, 197, 558, 137, 199, 139, 140,
/* 1330 */ 15, 565, 89, 90, 573, 110, 385, 206, 148, 389,
/* 1340 */ 285, 587,
};
static const YYCODETYPE yy_lookahead[] = {
/* 0 */ 16, 139, 140, 141, 168, 21, 144, 23, 69, 70,
/* 10 */ 71, 72, 176, 74, 75, 76, 77, 78, 79, 80,
/* 20 */ 81, 82, 83, 84, 78, 79, 42, 43, 73, 74,
/* 30 */ 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
/* 40 */ 1, 2, 23, 58, 60, 61, 62, 63, 64, 65,
/* 50 */ 66, 67, 68, 69, 70, 71, 72, 147, 74, 75,
/* 60 */ 76, 77, 78, 79, 80, 81, 82, 83, 84, 16,
/* 70 */ 185, 186, 88, 88, 110, 22, 217, 92, 219, 220,
/* 80 */ 74, 75, 76, 77, 78, 79, 80, 81, 82, 83,
/* 90 */ 84, 217, 218, 219, 220, 42, 43, 238, 188, 46,
/* 100 */ 78, 79, 80, 81, 82, 83, 84, 88, 89, 124,
/* 110 */ 125, 126, 16, 60, 61, 62, 63, 64, 65, 66,
/* 120 */ 67, 68, 69, 70, 71, 72, 147, 74, 75, 76,
/* 130 */ 77, 78, 79, 80, 81, 82, 83, 84, 42, 43,
/* 140 */ 44, 80, 81, 82, 83, 84, 23, 84, 169, 170,
/* 150 */ 19, 164, 165, 166, 23, 23, 60, 61, 62, 63,
/* 160 */ 64, 65, 66, 67, 68, 69, 70, 71, 72, 110,
/* 170 */ 74, 75, 76, 77, 78, 79, 80, 81, 82, 83,
/* 180 */ 84, 16, 123, 147, 150, 147, 21, 167, 168, 58,
/* 190 */ 211, 147, 156, 157, 92, 216, 176, 23, 147, 176,
/* 200 */ 177, 78, 79, 165, 166, 103, 183, 42, 43, 78,
/* 210 */ 79, 88, 89, 169, 170, 228, 180, 181, 169, 88,
/* 220 */ 88, 98, 99, 92, 16, 60, 61, 62, 63, 64,
/* 230 */ 65, 66, 67, 68, 69, 70, 71, 72, 147, 74,
/* 240 */ 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
/* 250 */ 42, 43, 78, 209, 210, 124, 125, 126, 224, 208,
/* 260 */ 169, 170, 88, 89, 230, 227, 228, 16, 60, 61,
/* 270 */ 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
/* 280 */ 72, 23, 74, 75, 76, 77, 78, 79, 80, 81,
/* 290 */ 82, 83, 84, 42, 43, 160, 16, 147, 161, 83,
/* 300 */ 84, 210, 161, 153, 169, 158, 156, 157, 161, 162,
/* 310 */ 163, 60, 61, 62, 63, 64, 65, 66, 67, 68,
/* 320 */ 69, 70, 71, 72, 161, 74, 75, 76, 77, 78,
/* 330 */ 79, 80, 81, 82, 83, 84, 192, 200, 147, 131,
/* 340 */ 16, 200, 16, 199, 20, 169, 88, 89, 90, 185,
/* 350 */ 186, 93, 94, 95, 217, 22, 219, 220, 147, 147,
/* 360 */ 169, 170, 104, 200, 84, 147, 42, 43, 156, 157,
/* 370 */ 90, 91, 92, 93, 94, 95, 96, 164, 165, 166,
/* 380 */ 169, 170, 131, 103, 60, 61, 62, 63, 64, 65,
/* 390 */ 66, 67, 68, 69, 70, 71, 72, 155, 74, 75,
/* 400 */ 76, 77, 78, 79, 80, 81, 82, 83, 84, 16,
/* 410 */ 84, 11, 221, 20, 30, 16, 147, 91, 92, 93,
/* 420 */ 94, 95, 96, 90, 147, 181, 93, 94, 95, 103,
/* 430 */ 212, 189, 155, 27, 50, 42, 43, 104, 169, 170,
/* 440 */ 34, 228, 43, 201, 202, 181, 169, 170, 206, 49,
/* 450 */ 161, 162, 163, 60, 61, 62, 63, 64, 65, 66,
/* 460 */ 67, 68, 69, 70, 71, 72, 189, 74, 75, 76,
/* 470 */ 77, 78, 79, 80, 81, 82, 83, 84, 16, 25,
/* 480 */ 211, 147, 20, 29, 12, 147, 102, 19, 211, 21,
/* 490 */ 147, 141, 147, 216, 144, 41, 24, 98, 20, 99,
/* 500 */ 100, 101, 103, 165, 42, 43, 0, 1, 2, 37,
/* 510 */ 110, 39, 169, 170, 169, 170, 182, 19, 20, 190,
/* 520 */ 22, 49, 60, 61, 62, 63, 64, 65, 66, 67,
/* 530 */ 68, 69, 70, 71, 72, 155, 74, 75, 76, 77,
/* 540 */ 78, 79, 80, 81, 82, 83, 84, 16, 147, 90,
/* 550 */ 20, 20, 93, 94, 95, 147, 155, 59, 215, 225,
/* 560 */ 215, 20, 130, 104, 132, 227, 228, 42, 43, 189,
/* 570 */ 169, 170, 16, 42, 43, 20, 19, 22, 19, 20,
/* 580 */ 23, 22, 18, 147, 106, 147, 108, 109, 63, 64,
/* 590 */ 189, 60, 61, 62, 63, 64, 65, 66, 67, 68,
/* 600 */ 69, 70, 71, 72, 147, 74, 75, 76, 77, 78,
/* 610 */ 79, 80, 81, 82, 83, 84, 16, 92, 59, 55,
/* 620 */ 212, 21, 147, 19, 147, 23, 188, 23, 12, 217,
/* 630 */ 23, 219, 220, 7, 8, 9, 106, 186, 108, 109,
/* 640 */ 24, 147, 42, 43, 208, 88, 89, 106, 92, 108,
/* 650 */ 109, 244, 245, 37, 147, 39, 147, 182, 94, 16,
/* 660 */ 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
/* 670 */ 70, 71, 72, 145, 74, 75, 76, 77, 78, 79,
/* 680 */ 80, 81, 82, 83, 84, 42, 43, 80, 142, 143,
/* 690 */ 88, 89, 88, 89, 148, 88, 89, 133, 14, 147,
/* 700 */ 225, 155, 16, 60, 61, 62, 63, 64, 65, 66,
/* 710 */ 67, 68, 69, 70, 71, 72, 114, 74, 75, 76,
/* 720 */ 77, 78, 79, 80, 81, 82, 83, 84, 42, 43,
/* 730 */ 201, 202, 147, 147, 182, 189, 52, 147, 54, 147,
/* 740 */ 147, 147, 147, 147, 155, 16, 60, 61, 62, 63,
/* 750 */ 64, 65, 66, 67, 68, 69, 70, 71, 72, 213,
/* 760 */ 74, 75, 76, 77, 78, 79, 80, 81, 82, 83,
/* 770 */ 84, 42, 43, 188, 188, 182, 182, 225, 189, 106,
/* 780 */ 188, 108, 109, 188, 99, 100, 101, 241, 16, 155,
/* 790 */ 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,
/* 800 */ 71, 72, 213, 74, 75, 76, 77, 78, 79, 80,
/* 810 */ 81, 82, 83, 84, 42, 43, 23, 133, 225, 225,
/* 820 */ 21, 225, 23, 189, 239, 236, 99, 100, 101, 22,
/* 830 */ 242, 243, 155, 191, 62, 63, 64, 65, 66, 67,
/* 840 */ 68, 69, 70, 71, 72, 147, 74, 75, 76, 77,
/* 850 */ 78, 79, 80, 81, 82, 83, 84, 16, 17, 22,
/* 860 */ 19, 147, 147, 147, 23, 147, 189, 169, 170, 147,
/* 870 */ 14, 147, 31, 16, 17, 147, 19, 147, 19, 43,
/* 880 */ 23, 88, 89, 169, 170, 169, 170, 88, 31, 48,
/* 890 */ 147, 169, 170, 169, 170, 147, 89, 169, 170, 58,
/* 900 */ 147, 147, 147, 188, 147, 48, 188, 114, 52, 147,
/* 910 */ 54, 19, 147, 124, 125, 58, 147, 169, 170, 78,
/* 920 */ 79, 114, 169, 170, 169, 170, 169, 170, 87, 88,
/* 930 */ 89, 169, 170, 92, 98, 78, 79, 80, 169, 170,
/* 940 */ 91, 147, 188, 22, 87, 88, 89, 16, 17, 92,
/* 950 */ 19, 110, 147, 155, 23, 147, 155, 22, 121, 110,
/* 960 */ 68, 80, 31, 169, 170, 124, 125, 126, 127, 128,
/* 970 */ 129, 112, 123, 208, 169, 170, 107, 169, 170, 48,
/* 980 */ 111, 124, 125, 126, 127, 128, 129, 189, 107, 58,
/* 990 */ 189, 5, 111, 147, 7, 8, 10, 11, 12, 13,
/* 1000 */ 161, 20, 147, 22, 178, 147, 91, 92, 147, 78,
/* 1010 */ 79, 147, 26, 19, 28, 169, 170, 23, 87, 88,
/* 1020 */ 89, 35, 147, 92, 169, 170, 147, 169, 170, 147,
/* 1030 */ 169, 170, 97, 47, 113, 49, 20, 203, 22, 53,
/* 1040 */ 147, 147, 56, 147, 169, 170, 147, 147, 147, 20,
/* 1050 */ 147, 169, 170, 147, 147, 124, 125, 126, 127, 128,
/* 1060 */ 129, 147, 169, 170, 178, 169, 170, 147, 169, 170,
/* 1070 */ 169, 170, 169, 170, 147, 169, 170, 147, 20, 147,
/* 1080 */ 22, 147, 88, 147, 147, 99, 100, 101, 59, 169,
/* 1090 */ 170, 105, 147, 20, 147, 22, 110, 178, 147, 169,
/* 1100 */ 170, 169, 170, 169, 170, 169, 170, 20, 147, 22,
/* 1110 */ 147, 20, 147, 22, 169, 170, 169, 170, 147, 147,
/* 1120 */ 134, 20, 147, 22, 20, 147, 22, 147, 20, 232,
/* 1130 */ 22, 233, 169, 170, 169, 170, 147, 147, 147, 147,
/* 1140 */ 169, 170, 147, 147, 169, 170, 147, 169, 170, 169,
/* 1150 */ 170, 147, 147, 147, 147, 147, 147, 191, 161, 149,
/* 1160 */ 193, 177, 229, 223, 161, 172, 6, 229, 194, 146,
/* 1170 */ 172, 194, 172, 172, 172, 161, 146, 146, 146, 22,
/* 1180 */ 154, 121, 194, 118, 173, 119, 116, 120, 112, 130,
/* 1190 */ 222, 152, 152, 98, 115, 98, 171, 97, 171, 40,
/* 1200 */ 179, 189, 19, 84, 171, 226, 171, 173, 195, 226,
/* 1210 */ 174, 196, 171, 171, 197, 171, 198, 179, 15, 174,
/* 1220 */ 151, 60, 151, 204, 152, 205, 204, 152, 151, 205,
/* 1230 */ 152, 38, 152, 130, 151, 184, 152, 184, 19, 15,
/* 1240 */ 194, 152, 187, 187, 187, 152, 194, 184, 187, 33,
/* 1250 */ 152, 152, 137, 159, 1, 20, 175, 214, 112, 112,
/* 1260 */ 175, 214, 234, 112, 112, 92, 19, 11, 20, 107,
/* 1270 */ 20, 19, 235, 19, 32, 20, 112, 114, 20, 22,
/* 1280 */ 20, 22, 117, 22, 117, 237, 237, 19, 44, 20,
/* 1290 */ 240, 20, 20, 231, 19, 44, 19, 243, 20, 19,
/* 1300 */ 19, 19, 96, 103, 16, 21, 44, 17, 98, 36,
/* 1310 */ 246, 45, 45, 22, 51, 133, 98, 19, 5, 1,
/* 1320 */ 122, 19, 102, 14, 113, 17, 113, 115, 102, 122,
/* 1330 */ 19, 123, 68, 68, 20, 14, 57, 135, 19, 3,
/* 1340 */ 136, 4,
};
#define YY_SHIFT_USE_DFLT (-62)
#define YY_SHIFT_MAX 389
static const short yy_shift_ofst[] = {
/* 0 */ 39, 841, 986, -16, 841, 931, 931, 258, 123, -36,
/* 10 */ 96, 931, 931, 931, 931, 931, -45, 400, 174, 19,
/* 20 */ 132, -54, -54, 53, 165, 208, 251, 324, 393, 462,
/* 30 */ 531, 600, 643, 686, 643, 643, 643, 643, 643, 643,
/* 40 */ 643, 643, 643, 643, 643, 643, 643, 643, 643, 643,
/* 50 */ 643, 643, 729, 772, 772, 857, 931, 931, 931, 931,
/* 60 */ 931, 931, 931, 931, 931, 931, 931, 931, 931, 931,
/* 70 */ 931, 931, 931, 931, 931, 931, 931, 931, 931, 931,
/* 80 */ 931, 931, 931, 931, 931, 931, 931, 931, 931, 931,
/* 90 */ 931, 931, 931, 931, 931, 931, -61, -61, 6, 6,
/* 100 */ 280, 22, 61, 399, 564, 19, 19, 19, 19, 19,
/* 110 */ 19, 19, 216, 132, 63, -62, -62, -62, 131, 326,
/* 120 */ 472, 472, 498, 559, 506, 799, 19, 799, 19, 19,
/* 130 */ 19, 19, 19, 19, 19, 19, 19, 19, 19, 19,
/* 140 */ 19, 849, 59, -36, -36, -36, -62, -62, -62, -15,
/* 150 */ -15, 333, 459, 478, 557, 530, 541, 616, 602, 793,
/* 160 */ 604, 607, 626, 19, 19, 881, 19, 19, 994, 19,
/* 170 */ 19, 807, 19, 19, 673, 807, 19, 19, 384, 384,
/* 180 */ 384, 19, 19, 673, 19, 19, 673, 19, 454, 685,
/* 190 */ 19, 19, 673, 19, 19, 19, 673, 19, 19, 19,
/* 200 */ 673, 673, 19, 19, 19, 19, 19, 468, 869, 921,
/* 210 */ 132, 789, 789, 432, 406, 406, 406, 836, 406, 132,
/* 220 */ 406, 132, 935, 837, 837, 1160, 1160, 1160, 1160, 1157,
/* 230 */ -36, 1060, 1065, 1066, 1070, 1067, 1059, 1076, 1076, 1095,
/* 240 */ 1079, 1095, 1079, 1097, 1097, 1159, 1097, 1100, 1097, 1183,
/* 250 */ 1119, 1119, 1159, 1097, 1097, 1097, 1183, 1203, 1076, 1203,
/* 260 */ 1076, 1203, 1076, 1076, 1193, 1103, 1203, 1076, 1161, 1161,
/* 270 */ 1219, 1060, 1076, 1224, 1224, 1224, 1224, 1060, 1161, 1219,
/* 280 */ 1076, 1216, 1216, 1076, 1076, 1115, -62, -62, -62, -62,
/* 290 */ -62, -62, 525, 684, 727, 856, 859, 556, 555, 981,
/* 300 */ 102, 987, 915, 1016, 1058, 1073, 1087, 1091, 1101, 1104,
/* 310 */ 892, 1108, 1029, 1253, 1235, 1146, 1147, 1151, 1152, 1173,
/* 320 */ 1162, 1247, 1248, 1250, 1252, 1256, 1254, 1255, 1257, 1258,
/* 330 */ 1260, 1259, 1165, 1261, 1167, 1259, 1163, 1268, 1269, 1164,
/* 340 */ 1271, 1272, 1242, 1244, 1275, 1251, 1277, 1278, 1280, 1281,
/* 350 */ 1262, 1282, 1206, 1200, 1288, 1290, 1284, 1210, 1273, 1263,
/* 360 */ 1266, 1291, 1267, 1182, 1218, 1298, 1313, 1318, 1220, 1264,
/* 370 */ 1265, 1198, 1302, 1211, 1309, 1212, 1308, 1213, 1226, 1207,
/* 380 */ 1311, 1208, 1314, 1321, 1279, 1202, 1204, 1319, 1336, 1337,
};
#define YY_REDUCE_USE_DFLT (-165)
#define YY_REDUCE_MAX 291
static const short yy_reduce_ofst[] = {
/* 0 */ -138, 277, 546, 137, 401, -21, 44, 36, 38, 242,
/* 10 */ -141, 191, 91, 269, 343, 345, -126, 589, 338, 150,
/* 20 */ 147, -13, 213, 412, 412, 412, 412, 412, 412, 412,
/* 30 */ 412, 412, 412, 412, 412, 412, 412, 412, 412, 412,
/* 40 */ 412, 412, 412, 412, 412, 412, 412, 412, 412, 412,
/* 50 */ 412, 412, 412, 412, 412, 211, 698, 714, 716, 722,
/* 60 */ 724, 728, 748, 753, 755, 757, 762, 769, 794, 805,
/* 70 */ 808, 846, 855, 858, 861, 875, 882, 893, 896, 899,
/* 80 */ 901, 903, 906, 920, 930, 932, 934, 936, 945, 947,
/* 90 */ 963, 965, 971, 975, 978, 980, 412, 412, 412, 412,
/* 100 */ 20, 412, 412, 23, 34, 334, 475, 552, 593, 594,
/* 110 */ 585, 212, 412, 289, 412, 412, 412, 412, 135, -164,
/* 120 */ -115, 164, 407, 407, 350, 141, 51, 163, 596, -90,
/* 130 */ 436, 218, 765, 438, 586, 592, 595, 715, 718, 408,
/* 140 */ 754, 380, 634, 677, 798, 801, 144, 529, 588, 49,
/* 150 */ 176, 244, 264, 329, 457, 329, 329, 451, 477, 494,
/* 160 */ 507, 509, 528, 590, 730, 642, 509, 743, 839, 864,
/* 170 */ 879, 834, 894, 900, 329, 834, 907, 914, 826, 886,
/* 180 */ 919, 927, 937, 329, 951, 961, 329, 972, 897, 898,
/* 190 */ 989, 990, 329, 991, 992, 995, 329, 996, 999, 1004,
/* 200 */ 329, 329, 1005, 1006, 1007, 1008, 1009, 1010, 966, 967,
/* 210 */ 997, 933, 938, 940, 993, 998, 1000, 984, 1001, 1003,
/* 220 */ 1002, 1014, 1011, 974, 977, 1023, 1030, 1031, 1032, 1026,
/* 230 */ 1012, 988, 1013, 1015, 1017, 1018, 968, 1039, 1040, 1019,
/* 240 */ 1020, 1022, 1024, 1025, 1027, 1021, 1033, 1034, 1035, 1036,
/* 250 */ 979, 983, 1038, 1041, 1042, 1044, 1045, 1069, 1072, 1071,
/* 260 */ 1075, 1077, 1078, 1080, 1028, 1037, 1083, 1084, 1051, 1053,
/* 270 */ 1043, 1046, 1089, 1055, 1056, 1057, 1061, 1052, 1063, 1047,
/* 280 */ 1093, 1048, 1049, 1098, 1099, 1050, 1094, 1081, 1085, 1062,
/* 290 */ 1054, 1064,
};
static const YYACTIONTYPE yy_default[] = {
/* 0 */ 595, 820, 902, 710, 902, 820, 902, 902, 848, 714,
/* 10 */ 877, 818, 902, 902, 902, 902, 792, 902, 848, 902,
/* 20 */ 626, 848, 848, 743, 902, 902, 902, 902, 902, 902,
/* 30 */ 902, 902, 744, 902, 822, 817, 813, 815, 814, 821,
/* 40 */ 745, 734, 741, 748, 726, 861, 750, 751, 757, 758,
/* 50 */ 878, 876, 780, 779, 798, 902, 902, 902, 902, 902,
/* 60 */ 902, 902, 902, 902, 902, 902, 902, 902, 902, 902,
/* 70 */ 902, 902, 902, 902, 902, 902, 902, 902, 902, 902,
/* 80 */ 902, 902, 902, 902, 902, 902, 902, 902, 902, 902,
/* 90 */ 902, 902, 902, 902, 902, 902, 782, 804, 781, 791,
/* 100 */ 619, 783, 784, 679, 614, 902, 902, 902, 902, 902,
/* 110 */ 902, 902, 785, 902, 786, 799, 800, 801, 902, 902,
/* 120 */ 902, 902, 902, 902, 595, 710, 902, 710, 902, 902,
/* 130 */ 902, 902, 902, 902, 902, 902, 902, 902, 902, 902,
/* 140 */ 902, 902, 902, 902, 902, 902, 704, 714, 895, 902,
/* 150 */ 902, 670, 902, 902, 902, 902, 902, 902, 902, 902,
/* 160 */ 902, 902, 602, 600, 902, 702, 902, 902, 628, 902,
/* 170 */ 902, 712, 902, 902, 717, 718, 902, 902, 902, 902,
/* 180 */ 902, 902, 902, 616, 902, 902, 691, 902, 854, 902,
/* 190 */ 902, 902, 868, 902, 902, 902, 866, 902, 902, 902,
/* 200 */ 693, 753, 834, 902, 881, 883, 902, 902, 702, 711,
/* 210 */ 902, 902, 902, 816, 737, 737, 737, 649, 737, 902,
/* 220 */ 737, 902, 652, 747, 747, 599, 599, 599, 599, 669,
/* 230 */ 902, 747, 738, 740, 730, 742, 902, 719, 719, 727,
/* 240 */ 729, 727, 729, 681, 681, 666, 681, 652, 681, 826,
/* 250 */ 831, 831, 666, 681, 681, 681, 826, 611, 719, 611,
/* 260 */ 719, 611, 719, 719, 858, 860, 611, 719, 683, 683,
/* 270 */ 759, 747, 719, 690, 690, 690, 690, 747, 683, 759,
/* 280 */ 719, 880, 880, 719, 719, 888, 636, 654, 654, 863,
/* 290 */ 895, 900, 902, 902, 902, 902, 766, 902, 902, 902,
/* 300 */ 902, 902, 902, 902, 902, 902, 902, 902, 902, 902,
/* 310 */ 841, 902, 902, 902, 902, 771, 767, 902, 768, 902,
/* 320 */ 696, 902, 902, 902, 902, 902, 902, 902, 902, 902,
/* 330 */ 902, 819, 902, 731, 902, 739, 902, 902, 902, 902,
/* 340 */ 902, 902, 902, 902, 902, 902, 902, 902, 902, 902,
/* 350 */ 902, 902, 902, 902, 902, 902, 902, 902, 902, 902,
/* 360 */ 856, 857, 902, 902, 902, 902, 902, 902, 902, 902,
/* 370 */ 902, 902, 902, 902, 902, 902, 902, 902, 902, 902,
/* 380 */ 902, 902, 902, 902, 887, 902, 902, 890, 596, 902,
/* 390 */ 590, 593, 592, 594, 598, 601, 623, 624, 625, 603,
/* 400 */ 604, 605, 606, 607, 608, 609, 615, 617, 635, 637,
/* 410 */ 621, 639, 700, 701, 763, 694, 695, 699, 622, 774,
/* 420 */ 765, 769, 770, 772, 773, 787, 788, 790, 796, 803,
/* 430 */ 806, 789, 794, 795, 797, 802, 805, 697, 698, 809,
/* 440 */ 629, 630, 633, 634, 844, 846, 845, 847, 632, 631,
/* 450 */ 775, 778, 811, 812, 869, 870, 871, 872, 873, 807,
/* 460 */ 720, 810, 793, 732, 735, 736, 733, 703, 713, 722,
/* 470 */ 723, 724, 725, 708, 709, 715, 728, 761, 762, 716,
/* 480 */ 705, 706, 707, 808, 764, 776, 777, 640, 641, 771,
/* 490 */ 642, 643, 644, 682, 685, 686, 687, 645, 664, 667,
/* 500 */ 668, 646, 653, 647, 648, 655, 656, 657, 660, 661,
/* 510 */ 662, 663, 658, 659, 827, 828, 832, 830, 829, 650,
/* 520 */ 651, 665, 638, 627, 620, 671, 674, 675, 676, 677,
/* 530 */ 678, 680, 672, 673, 618, 610, 612, 721, 850, 859,
/* 540 */ 855, 851, 852, 853, 613, 823, 824, 684, 755, 756,
/* 550 */ 849, 862, 864, 760, 865, 867, 892, 688, 689, 692,
/* 560 */ 833, 874, 746, 749, 752, 754, 835, 836, 837, 838,
/* 570 */ 839, 842, 843, 840, 875, 879, 882, 884, 885, 886,
/* 580 */ 889, 891, 896, 897, 898, 901, 899, 597, 591,
};
#define YY_SZ_ACTTAB (int)(sizeof(yy_action)/sizeof(yy_action[0]))
/* The next table maps tokens into fallback tokens. If a construct
** like the following:
**
** %fallback ID X Y Z.
**
** appears in the grammer, then ID becomes a fallback token for X, Y,
** and Z. Whenever one of the tokens X, Y, or Z is input to the parser
** but it does not parse, the type of the token is changed to ID and
** the parse is retried before an error is thrown.
*/
#ifdef YYFALLBACK
static const YYCODETYPE yyFallback[] = {
0, /* $ => nothing */
0, /* SEMI => nothing */
23, /* EXPLAIN => ID */
23, /* QUERY => ID */
23, /* PLAN => ID */
23, /* BEGIN => ID */
0, /* TRANSACTION => nothing */
23, /* DEFERRED => ID */
23, /* IMMEDIATE => ID */
23, /* EXCLUSIVE => ID */
0, /* COMMIT => nothing */
23, /* END => ID */
0, /* ROLLBACK => nothing */
0, /* CREATE => nothing */
0, /* TABLE => nothing */
23, /* IF => ID */
0, /* NOT => nothing */
0, /* EXISTS => nothing */
23, /* TEMP => ID */
0, /* LP => nothing */
0, /* RP => nothing */
0, /* AS => nothing */
0, /* COMMA => nothing */
0, /* ID => nothing */
23, /* ABORT => ID */
23, /* AFTER => ID */
23, /* ANALYZE => ID */
23, /* ASC => ID */
23, /* ATTACH => ID */
23, /* BEFORE => ID */
23, /* CASCADE => ID */
23, /* CAST => ID */
23, /* CONFLICT => ID */
23, /* DATABASE => ID */
23, /* DESC => ID */
23, /* DETACH => ID */
23, /* EACH => ID */
23, /* FAIL => ID */
23, /* FOR => ID */
23, /* IGNORE => ID */
23, /* INITIALLY => ID */
23, /* INSTEAD => ID */
23, /* LIKE_KW => ID */
23, /* MATCH => ID */
23, /* KEY => ID */
23, /* OF => ID */
23, /* OFFSET => ID */
23, /* PRAGMA => ID */
23, /* RAISE => ID */
23, /* REPLACE => ID */
23, /* RESTRICT => ID */
23, /* ROW => ID */
23, /* TRIGGER => ID */
23, /* VACUUM => ID */
23, /* VIEW => ID */
23, /* VIRTUAL => ID */
23, /* REINDEX => ID */
23, /* RENAME => ID */
23, /* CTIME_KW => ID */
0, /* ANY => nothing */
0, /* OR => nothing */
0, /* AND => nothing */
0, /* IS => nothing */
0, /* BETWEEN => nothing */
0, /* IN => nothing */
0, /* ISNULL => nothing */
0, /* NOTNULL => nothing */
0, /* NE => nothing */
0, /* EQ => nothing */
0, /* GT => nothing */
0, /* LE => nothing */
0, /* LT => nothing */
0, /* GE => nothing */
0, /* ESCAPE => nothing */
0, /* BITAND => nothing */
0, /* BITOR => nothing */
0, /* LSHIFT => nothing */
0, /* RSHIFT => nothing */
0, /* PLUS => nothing */
0, /* MINUS => nothing */
0, /* STAR => nothing */
0, /* SLASH => nothing */
0, /* REM => nothing */
0, /* CONCAT => nothing */
0, /* COLLATE => nothing */
0, /* UMINUS => nothing */
0, /* UPLUS => nothing */
0, /* BITNOT => nothing */
0, /* STRING => nothing */
0, /* JOIN_KW => nothing */
0, /* CONSTRAINT => nothing */
0, /* DEFAULT => nothing */
0, /* NULL => nothing */
0, /* PRIMARY => nothing */
0, /* UNIQUE => nothing */
0, /* CHECK => nothing */
0, /* REFERENCES => nothing */
0, /* AUTOINCR => nothing */
0, /* ON => nothing */
0, /* DELETE => nothing */
0, /* UPDATE => nothing */
0, /* INSERT => nothing */
0, /* SET => nothing */
0, /* DEFERRABLE => nothing */
0, /* FOREIGN => nothing */
0, /* DROP => nothing */
0, /* UNION => nothing */
0, /* ALL => nothing */
0, /* EXCEPT => nothing */
0, /* INTERSECT => nothing */
0, /* SELECT => nothing */
0, /* DISTINCT => nothing */
0, /* DOT => nothing */
0, /* FROM => nothing */
0, /* JOIN => nothing */
0, /* USING => nothing */
0, /* ORDER => nothing */
0, /* BY => nothing */
0, /* GROUP => nothing */
0, /* HAVING => nothing */
0, /* LIMIT => nothing */
0, /* WHERE => nothing */
0, /* INTO => nothing */
0, /* VALUES => nothing */
0, /* INTEGER => nothing */
0, /* FLOAT => nothing */
0, /* BLOB => nothing */
0, /* REGISTER => nothing */
0, /* VARIABLE => nothing */
0, /* CASE => nothing */
0, /* WHEN => nothing */
0, /* THEN => nothing */
0, /* ELSE => nothing */
0, /* INDEX => nothing */
0, /* ALTER => nothing */
0, /* TO => nothing */
0, /* ADD => nothing */
0, /* COLUMNKW => nothing */
};
#endif /* YYFALLBACK */
/* The following structure represents a single element of the
** parser's stack. Information stored includes:
**
** + The state number for the parser at this level of the stack.
**
** + The value of the token stored at this level of the stack.
** (In other words, the "major" token.)
**
** + The semantic value stored at this level of the stack. This is
** the information used by the action routines in the grammar.
** It is sometimes called the "minor" token.
*/
struct yyStackEntry
{
int stateno; /* The state-number */
int major; /* The major token value. This is the code
** number for the token at this stack level */
YYMINORTYPE minor; /* The user-supplied minor token value. This
** is the value of the token */
};
typedef struct yyStackEntry yyStackEntry;
/* The state of the parser is completely contained in an instance of
** the following structure */
struct yyParser
{
int yyidx; /* Index of top element in stack */
int yyerrcnt; /* Shifts left before out of the error */
sqlite3ParserARG_SDECL /* A place to hold %extra_argument */
#if YYSTACKDEPTH<=0
int yystksz; /* Current side of the stack */
yyStackEntry *yystack; /* The parser's stack */
#else
yyStackEntry yystack[YYSTACKDEPTH]; /* The parser's stack */
#endif
};
typedef struct yyParser yyParser;
#ifndef NDEBUG
static FILE *yyTraceFILE = 0;
static char *yyTracePrompt = 0;
#endif /* NDEBUG */
#ifndef NDEBUG
/*
** Turn parser tracing on by giving a stream to which to write the trace
** and a prompt to preface each trace message. Tracing is turned off
** by making either argument NULL
**
** Inputs:
** <ul>
** <li> A FILE* to which trace output should be written.
** If NULL, then tracing is turned off.
** <li> A prefix string written at the beginning of every
** line of trace output. If NULL, then tracing is
** turned off.
** </ul>
**
** Outputs:
** None.
*/
SQLITE_PRIVATE void
sqlite3ParserTrace(FILE * TraceFILE, char *zTracePrompt)
{
yyTraceFILE = TraceFILE;
yyTracePrompt = zTracePrompt;
if(yyTraceFILE == 0)
yyTracePrompt = 0;
else if(yyTracePrompt == 0)
yyTraceFILE = 0;
}
#endif /* NDEBUG */
#ifndef NDEBUG
/* For tracing shifts, the names of all terminals and nonterminals
** are required. The following table supplies these names */
static const char *const yyTokenName[] = {
"$", "SEMI", "EXPLAIN", "QUERY",
"PLAN", "BEGIN", "TRANSACTION", "DEFERRED",
"IMMEDIATE", "EXCLUSIVE", "COMMIT", "END",
"ROLLBACK", "CREATE", "TABLE", "IF",
"NOT", "EXISTS", "TEMP", "LP",
"RP", "AS", "COMMA", "ID",
"ABORT", "AFTER", "ANALYZE", "ASC",
"ATTACH", "BEFORE", "CASCADE", "CAST",
"CONFLICT", "DATABASE", "DESC", "DETACH",
"EACH", "FAIL", "FOR", "IGNORE",
"INITIALLY", "INSTEAD", "LIKE_KW", "MATCH",
"KEY", "OF", "OFFSET", "PRAGMA",
"RAISE", "REPLACE", "RESTRICT", "ROW",
"TRIGGER", "VACUUM", "VIEW", "VIRTUAL",
"REINDEX", "RENAME", "CTIME_KW", "ANY",
"OR", "AND", "IS", "BETWEEN",
"IN", "ISNULL", "NOTNULL", "NE",
"EQ", "GT", "LE", "LT",
"GE", "ESCAPE", "BITAND", "BITOR",
"LSHIFT", "RSHIFT", "PLUS", "MINUS",
"STAR", "SLASH", "REM", "CONCAT",
"COLLATE", "UMINUS", "UPLUS", "BITNOT",
"STRING", "JOIN_KW", "CONSTRAINT", "DEFAULT",
"NULL", "PRIMARY", "UNIQUE", "CHECK",
"REFERENCES", "AUTOINCR", "ON", "DELETE",
"UPDATE", "INSERT", "SET", "DEFERRABLE",
"FOREIGN", "DROP", "UNION", "ALL",
"EXCEPT", "INTERSECT", "SELECT", "DISTINCT",
"DOT", "FROM", "JOIN", "USING",
"ORDER", "BY", "GROUP", "HAVING",
"LIMIT", "WHERE", "INTO", "VALUES",
"INTEGER", "FLOAT", "BLOB", "REGISTER",
"VARIABLE", "CASE", "WHEN", "THEN",
"ELSE", "INDEX", "ALTER", "TO",
"ADD", "COLUMNKW", "error", "input",
"cmdlist", "ecmd", "cmdx", "cmd",
"explain", "transtype", "trans_opt", "nm",
"create_table", "create_table_args", "temp", "ifnotexists",
"dbnm", "columnlist", "conslist_opt", "select",
"column", "columnid", "type", "carglist",
"id", "ids", "typetoken", "typename",
"signed", "plus_num", "minus_num", "carg",
"ccons", "term", "expr", "onconf",
"sortorder", "autoinc", "idxlist_opt", "refargs",
"defer_subclause", "refarg", "refact", "init_deferred_pred_opt",
"conslist", "tcons", "idxlist", "defer_subclause_opt",
"orconf", "resolvetype", "raisetype", "ifexists",
"fullname", "oneselect", "multiselect_op", "distinct",
"selcollist", "from", "where_opt", "groupby_opt",
"having_opt", "orderby_opt", "limit_opt", "sclp",
"as", "seltablist", "stl_prefix", "joinop",
"on_opt", "using_opt", "seltablist_paren", "joinop2",
"inscollist", "sortlist", "sortitem", "nexprlist",
"setlist", "insert_cmd", "inscollist_opt", "itemlist",
"exprlist", "likeop", "escape", "between_op",
"in_op", "case_operand", "case_exprlist", "case_else",
"uniqueflag", "idxitem", "collate", "nmnum",
"plus_opt", "number", "trigger_decl", "trigger_cmd_list",
"trigger_time", "trigger_event", "foreach_clause", "when_clause",
"trigger_cmd", "database_kw_opt", "key_opt", "add_column_fullname",
"kwcolumn_opt", "create_vtab", "vtabarglist", "vtabarg",
"vtabargtoken", "lp", "anylist",
};
#endif /* NDEBUG */
#ifndef NDEBUG
/* For tracing reduce actions, the names of all rules are required.
*/
static const char *const yyRuleName[] = {
/* 0 */ "input ::= cmdlist",
/* 1 */ "cmdlist ::= cmdlist ecmd",
/* 2 */ "cmdlist ::= ecmd",
/* 3 */ "cmdx ::= cmd",
/* 4 */ "ecmd ::= SEMI",
/* 5 */ "ecmd ::= explain cmdx SEMI",
/* 6 */ "explain ::=",
/* 7 */ "explain ::= EXPLAIN",
/* 8 */ "explain ::= EXPLAIN QUERY PLAN",
/* 9 */ "cmd ::= BEGIN transtype trans_opt",
/* 10 */ "trans_opt ::=",
/* 11 */ "trans_opt ::= TRANSACTION",
/* 12 */ "trans_opt ::= TRANSACTION nm",
/* 13 */ "transtype ::=",
/* 14 */ "transtype ::= DEFERRED",
/* 15 */ "transtype ::= IMMEDIATE",
/* 16 */ "transtype ::= EXCLUSIVE",
/* 17 */ "cmd ::= COMMIT trans_opt",
/* 18 */ "cmd ::= END trans_opt",
/* 19 */ "cmd ::= ROLLBACK trans_opt",
/* 20 */ "cmd ::= create_table create_table_args",
/* 21 */ "create_table ::= CREATE temp TABLE ifnotexists nm dbnm",
/* 22 */ "ifnotexists ::=",
/* 23 */ "ifnotexists ::= IF NOT EXISTS",
/* 24 */ "temp ::= TEMP",
/* 25 */ "temp ::=",
/* 26 */ "create_table_args ::= LP columnlist conslist_opt RP",
/* 27 */ "create_table_args ::= AS select",
/* 28 */ "columnlist ::= columnlist COMMA column",
/* 29 */ "columnlist ::= column",
/* 30 */ "column ::= columnid type carglist",
/* 31 */ "columnid ::= nm",
/* 32 */ "id ::= ID",
/* 33 */ "ids ::= ID|STRING",
/* 34 */ "nm ::= ID",
/* 35 */ "nm ::= STRING",
/* 36 */ "nm ::= JOIN_KW",
/* 37 */ "type ::=",
/* 38 */ "type ::= typetoken",
/* 39 */ "typetoken ::= typename",
/* 40 */ "typetoken ::= typename LP signed RP",
/* 41 */ "typetoken ::= typename LP signed COMMA signed RP",
/* 42 */ "typename ::= ids",
/* 43 */ "typename ::= typename ids",
/* 44 */ "signed ::= plus_num",
/* 45 */ "signed ::= minus_num",
/* 46 */ "carglist ::= carglist carg",
/* 47 */ "carglist ::=",
/* 48 */ "carg ::= CONSTRAINT nm ccons",
/* 49 */ "carg ::= ccons",
/* 50 */ "ccons ::= DEFAULT term",
/* 51 */ "ccons ::= DEFAULT LP expr RP",
/* 52 */ "ccons ::= DEFAULT PLUS term",
/* 53 */ "ccons ::= DEFAULT MINUS term",
/* 54 */ "ccons ::= DEFAULT id",
/* 55 */ "ccons ::= NULL onconf",
/* 56 */ "ccons ::= NOT NULL onconf",
/* 57 */ "ccons ::= PRIMARY KEY sortorder onconf autoinc",
/* 58 */ "ccons ::= UNIQUE onconf",
/* 59 */ "ccons ::= CHECK LP expr RP",
/* 60 */ "ccons ::= REFERENCES nm idxlist_opt refargs",
/* 61 */ "ccons ::= defer_subclause",
/* 62 */ "ccons ::= COLLATE ids",
/* 63 */ "autoinc ::=",
/* 64 */ "autoinc ::= AUTOINCR",
/* 65 */ "refargs ::=",
/* 66 */ "refargs ::= refargs refarg",
/* 67 */ "refarg ::= MATCH nm",
/* 68 */ "refarg ::= ON DELETE refact",
/* 69 */ "refarg ::= ON UPDATE refact",
/* 70 */ "refarg ::= ON INSERT refact",
/* 71 */ "refact ::= SET NULL",
/* 72 */ "refact ::= SET DEFAULT",
/* 73 */ "refact ::= CASCADE",
/* 74 */ "refact ::= RESTRICT",
/* 75 */ "defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt",
/* 76 */ "defer_subclause ::= DEFERRABLE init_deferred_pred_opt",
/* 77 */ "init_deferred_pred_opt ::=",
/* 78 */ "init_deferred_pred_opt ::= INITIALLY DEFERRED",
/* 79 */ "init_deferred_pred_opt ::= INITIALLY IMMEDIATE",
/* 80 */ "conslist_opt ::=",
/* 81 */ "conslist_opt ::= COMMA conslist",
/* 82 */ "conslist ::= conslist COMMA tcons",
/* 83 */ "conslist ::= conslist tcons",
/* 84 */ "conslist ::= tcons",
/* 85 */ "tcons ::= CONSTRAINT nm",
/* 86 */ "tcons ::= PRIMARY KEY LP idxlist autoinc RP onconf",
/* 87 */ "tcons ::= UNIQUE LP idxlist RP onconf",
/* 88 */ "tcons ::= CHECK LP expr RP onconf",
/* 89 */
"tcons ::= FOREIGN KEY LP idxlist RP REFERENCES nm idxlist_opt refargs defer_subclause_opt",
/* 90 */ "defer_subclause_opt ::=",
/* 91 */ "defer_subclause_opt ::= defer_subclause",
/* 92 */ "onconf ::=",
/* 93 */ "onconf ::= ON CONFLICT resolvetype",
/* 94 */ "orconf ::=",
/* 95 */ "orconf ::= OR resolvetype",
/* 96 */ "resolvetype ::= raisetype",
/* 97 */ "resolvetype ::= IGNORE",
/* 98 */ "resolvetype ::= REPLACE",
/* 99 */ "cmd ::= DROP TABLE ifexists fullname",
/* 100 */ "ifexists ::= IF EXISTS",
/* 101 */ "ifexists ::=",
/* 102 */ "cmd ::= CREATE temp VIEW ifnotexists nm dbnm AS select",
/* 103 */ "cmd ::= DROP VIEW ifexists fullname",
/* 104 */ "cmd ::= select",
/* 105 */ "select ::= oneselect",
/* 106 */ "select ::= select multiselect_op oneselect",
/* 107 */ "multiselect_op ::= UNION",
/* 108 */ "multiselect_op ::= UNION ALL",
/* 109 */ "multiselect_op ::= EXCEPT|INTERSECT",
/* 110 */
"oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt",
/* 111 */ "distinct ::= DISTINCT",
/* 112 */ "distinct ::= ALL",
/* 113 */ "distinct ::=",
/* 114 */ "sclp ::= selcollist COMMA",
/* 115 */ "sclp ::=",
/* 116 */ "selcollist ::= sclp expr as",
/* 117 */ "selcollist ::= sclp STAR",
/* 118 */ "selcollist ::= sclp nm DOT STAR",
/* 119 */ "as ::= AS nm",
/* 120 */ "as ::= ids",
/* 121 */ "as ::=",
/* 122 */ "from ::=",
/* 123 */ "from ::= FROM seltablist",
/* 124 */ "stl_prefix ::= seltablist joinop",
/* 125 */ "stl_prefix ::=",
/* 126 */ "seltablist ::= stl_prefix nm dbnm as on_opt using_opt",
/* 127 */ "seltablist ::= stl_prefix LP seltablist_paren RP as on_opt using_opt",
/* 128 */ "seltablist_paren ::= select",
/* 129 */ "seltablist_paren ::= seltablist",
/* 130 */ "dbnm ::=",
/* 131 */ "dbnm ::= DOT nm",
/* 132 */ "fullname ::= nm dbnm",
/* 133 */ "joinop ::= COMMA|JOIN",
/* 134 */ "joinop ::= JOIN_KW JOIN",
/* 135 */ "joinop ::= JOIN_KW nm JOIN",
/* 136 */ "joinop ::= JOIN_KW nm nm JOIN",
/* 137 */ "on_opt ::= ON expr",
/* 138 */ "on_opt ::=",
/* 139 */ "using_opt ::= USING LP inscollist RP",
/* 140 */ "using_opt ::=",
/* 141 */ "orderby_opt ::=",
/* 142 */ "orderby_opt ::= ORDER BY sortlist",
/* 143 */ "sortlist ::= sortlist COMMA sortitem sortorder",
/* 144 */ "sortlist ::= sortitem sortorder",
/* 145 */ "sortitem ::= expr",
/* 146 */ "sortorder ::= ASC",
/* 147 */ "sortorder ::= DESC",
/* 148 */ "sortorder ::=",
/* 149 */ "groupby_opt ::=",
/* 150 */ "groupby_opt ::= GROUP BY nexprlist",
/* 151 */ "having_opt ::=",
/* 152 */ "having_opt ::= HAVING expr",
/* 153 */ "limit_opt ::=",
/* 154 */ "limit_opt ::= LIMIT expr",
/* 155 */ "limit_opt ::= LIMIT expr OFFSET expr",
/* 156 */ "limit_opt ::= LIMIT expr COMMA expr",
/* 157 */ "cmd ::= DELETE FROM fullname where_opt",
/* 158 */ "where_opt ::=",
/* 159 */ "where_opt ::= WHERE expr",
/* 160 */ "cmd ::= UPDATE orconf fullname SET setlist where_opt",
/* 161 */ "setlist ::= setlist COMMA nm EQ expr",
/* 162 */ "setlist ::= nm EQ expr",
/* 163 */ "cmd ::= insert_cmd INTO fullname inscollist_opt VALUES LP itemlist RP",
/* 164 */ "cmd ::= insert_cmd INTO fullname inscollist_opt select",
/* 165 */ "cmd ::= insert_cmd INTO fullname inscollist_opt DEFAULT VALUES",
/* 166 */ "insert_cmd ::= INSERT orconf",
/* 167 */ "insert_cmd ::= REPLACE",
/* 168 */ "itemlist ::= itemlist COMMA expr",
/* 169 */ "itemlist ::= expr",
/* 170 */ "inscollist_opt ::=",
/* 171 */ "inscollist_opt ::= LP inscollist RP",
/* 172 */ "inscollist ::= inscollist COMMA nm",
/* 173 */ "inscollist ::= nm",
/* 174 */ "expr ::= term",
/* 175 */ "expr ::= LP expr RP",
/* 176 */ "term ::= NULL",
/* 177 */ "expr ::= ID",
/* 178 */ "expr ::= JOIN_KW",
/* 179 */ "expr ::= nm DOT nm",
/* 180 */ "expr ::= nm DOT nm DOT nm",
/* 181 */ "term ::= INTEGER|FLOAT|BLOB",
/* 182 */ "term ::= STRING",
/* 183 */ "expr ::= REGISTER",
/* 184 */ "expr ::= VARIABLE",
/* 185 */ "expr ::= expr COLLATE ids",
/* 186 */ "expr ::= CAST LP expr AS typetoken RP",
/* 187 */ "expr ::= ID LP distinct exprlist RP",
/* 188 */ "expr ::= ID LP STAR RP",
/* 189 */ "term ::= CTIME_KW",
/* 190 */ "expr ::= expr AND expr",
/* 191 */ "expr ::= expr OR expr",
/* 192 */ "expr ::= expr LT|GT|GE|LE expr",
/* 193 */ "expr ::= expr EQ|NE expr",
/* 194 */ "expr ::= expr BITAND|BITOR|LSHIFT|RSHIFT expr",
/* 195 */ "expr ::= expr PLUS|MINUS expr",
/* 196 */ "expr ::= expr STAR|SLASH|REM expr",
/* 197 */ "expr ::= expr CONCAT expr",
/* 198 */ "likeop ::= LIKE_KW",
/* 199 */ "likeop ::= NOT LIKE_KW",
/* 200 */ "likeop ::= MATCH",
/* 201 */ "likeop ::= NOT MATCH",
/* 202 */ "escape ::= ESCAPE expr",
/* 203 */ "escape ::=",
/* 204 */ "expr ::= expr likeop expr escape",
/* 205 */ "expr ::= expr ISNULL|NOTNULL",
/* 206 */ "expr ::= expr IS NULL",
/* 207 */ "expr ::= expr NOT NULL",
/* 208 */ "expr ::= expr IS NOT NULL",
/* 209 */ "expr ::= NOT expr",
/* 210 */ "expr ::= BITNOT expr",
/* 211 */ "expr ::= MINUS expr",
/* 212 */ "expr ::= PLUS expr",
/* 213 */ "between_op ::= BETWEEN",
/* 214 */ "between_op ::= NOT BETWEEN",
/* 215 */ "expr ::= expr between_op expr AND expr",
/* 216 */ "in_op ::= IN",
/* 217 */ "in_op ::= NOT IN",
/* 218 */ "expr ::= expr in_op LP exprlist RP",
/* 219 */ "expr ::= LP select RP",
/* 220 */ "expr ::= expr in_op LP select RP",
/* 221 */ "expr ::= expr in_op nm dbnm",
/* 222 */ "expr ::= EXISTS LP select RP",
/* 223 */ "expr ::= CASE case_operand case_exprlist case_else END",
/* 224 */ "case_exprlist ::= case_exprlist WHEN expr THEN expr",
/* 225 */ "case_exprlist ::= WHEN expr THEN expr",
/* 226 */ "case_else ::= ELSE expr",
/* 227 */ "case_else ::=",
/* 228 */ "case_operand ::= expr",
/* 229 */ "case_operand ::=",
/* 230 */ "exprlist ::= nexprlist",
/* 231 */ "exprlist ::=",
/* 232 */ "nexprlist ::= nexprlist COMMA expr",
/* 233 */ "nexprlist ::= expr",
/* 234 */ "cmd ::= CREATE uniqueflag INDEX ifnotexists nm dbnm ON nm LP idxlist RP",
/* 235 */ "uniqueflag ::= UNIQUE",
/* 236 */ "uniqueflag ::=",
/* 237 */ "idxlist_opt ::=",
/* 238 */ "idxlist_opt ::= LP idxlist RP",
/* 239 */ "idxlist ::= idxlist COMMA idxitem collate sortorder",
/* 240 */ "idxlist ::= idxitem collate sortorder",
/* 241 */ "idxitem ::= nm",
/* 242 */ "collate ::=",
/* 243 */ "collate ::= COLLATE ids",
/* 244 */ "cmd ::= DROP INDEX ifexists fullname",
/* 245 */ "cmd ::= VACUUM",
/* 246 */ "cmd ::= VACUUM nm",
/* 247 */ "cmd ::= PRAGMA nm dbnm EQ nmnum",
/* 248 */ "cmd ::= PRAGMA nm dbnm EQ ON",
/* 249 */ "cmd ::= PRAGMA nm dbnm EQ DELETE",
/* 250 */ "cmd ::= PRAGMA nm dbnm EQ minus_num",
/* 251 */ "cmd ::= PRAGMA nm dbnm LP nmnum RP",
/* 252 */ "cmd ::= PRAGMA nm dbnm",
/* 253 */ "nmnum ::= plus_num",
/* 254 */ "nmnum ::= nm",
/* 255 */ "plus_num ::= plus_opt number",
/* 256 */ "minus_num ::= MINUS number",
/* 257 */ "number ::= INTEGER|FLOAT",
/* 258 */ "plus_opt ::= PLUS",
/* 259 */ "plus_opt ::=",
/* 260 */ "cmd ::= CREATE trigger_decl BEGIN trigger_cmd_list END",
/* 261 */
"trigger_decl ::= temp TRIGGER ifnotexists nm dbnm trigger_time trigger_event ON fullname foreach_clause when_clause",
/* 262 */ "trigger_time ::= BEFORE",
/* 263 */ "trigger_time ::= AFTER",
/* 264 */ "trigger_time ::= INSTEAD OF",
/* 265 */ "trigger_time ::=",
/* 266 */ "trigger_event ::= DELETE|INSERT",
/* 267 */ "trigger_event ::= UPDATE",
/* 268 */ "trigger_event ::= UPDATE OF inscollist",
/* 269 */ "foreach_clause ::=",
/* 270 */ "foreach_clause ::= FOR EACH ROW",
/* 271 */ "when_clause ::=",
/* 272 */ "when_clause ::= WHEN expr",
/* 273 */ "trigger_cmd_list ::= trigger_cmd_list trigger_cmd SEMI",
/* 274 */ "trigger_cmd_list ::=",
/* 275 */ "trigger_cmd ::= UPDATE orconf nm SET setlist where_opt",
/* 276 */ "trigger_cmd ::= insert_cmd INTO nm inscollist_opt VALUES LP itemlist RP",
/* 277 */ "trigger_cmd ::= insert_cmd INTO nm inscollist_opt select",
/* 278 */ "trigger_cmd ::= DELETE FROM nm where_opt",
/* 279 */ "trigger_cmd ::= select",
/* 280 */ "expr ::= RAISE LP IGNORE RP",
/* 281 */ "expr ::= RAISE LP raisetype COMMA nm RP",
/* 282 */ "raisetype ::= ROLLBACK",
/* 283 */ "raisetype ::= ABORT",
/* 284 */ "raisetype ::= FAIL",
/* 285 */ "cmd ::= DROP TRIGGER ifexists fullname",
/* 286 */ "cmd ::= ATTACH database_kw_opt expr AS expr key_opt",
/* 287 */ "cmd ::= DETACH database_kw_opt expr",
/* 288 */ "key_opt ::=",
/* 289 */ "key_opt ::= KEY expr",
/* 290 */ "database_kw_opt ::= DATABASE",
/* 291 */ "database_kw_opt ::=",
/* 292 */ "cmd ::= REINDEX",
/* 293 */ "cmd ::= REINDEX nm dbnm",
/* 294 */ "cmd ::= ANALYZE",
/* 295 */ "cmd ::= ANALYZE nm dbnm",
/* 296 */ "cmd ::= ALTER TABLE fullname RENAME TO nm",
/* 297 */ "cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column",
/* 298 */ "add_column_fullname ::= fullname",
/* 299 */ "kwcolumn_opt ::=",
/* 300 */ "kwcolumn_opt ::= COLUMNKW",
/* 301 */ "cmd ::= create_vtab",
/* 302 */ "cmd ::= create_vtab LP vtabarglist RP",
/* 303 */ "create_vtab ::= CREATE VIRTUAL TABLE nm dbnm USING nm",
/* 304 */ "vtabarglist ::= vtabarg",
/* 305 */ "vtabarglist ::= vtabarglist COMMA vtabarg",
/* 306 */ "vtabarg ::=",
/* 307 */ "vtabarg ::= vtabarg vtabargtoken",
/* 308 */ "vtabargtoken ::= ANY",
/* 309 */ "vtabargtoken ::= lp anylist RP",
/* 310 */ "lp ::= LP",
/* 311 */ "anylist ::=",
/* 312 */ "anylist ::= anylist ANY",
};
#endif /* NDEBUG */
#if YYSTACKDEPTH<=0
/*
** Try to increase the size of the parser stack.
*/
static void
yyGrowStack(yyParser * p)
{
int newSize;
yyStackEntry *pNew;
newSize = p->yystksz * 2 + 100;
pNew = realloc(p->yystack, newSize * sizeof(pNew[0]));
if(pNew)
{
p->yystack = pNew;
p->yystksz = newSize;
#ifndef NDEBUG
if(yyTraceFILE)
{
fprintf(yyTraceFILE, "%sStack grows to %d entries!\n",
yyTracePrompt, p->yystksz);
}
#endif
}
}
#endif
/*
** This function allocates a new parser.
** The only argument is a pointer to a function which works like
** malloc.
**
** Inputs:
** A pointer to the function used to allocate memory.
**
** Outputs:
** A pointer to a parser. This pointer is used in subsequent calls
** to sqlite3Parser and sqlite3ParserFree.
*/
SQLITE_PRIVATE void *
sqlite3ParserAlloc(void *(*mallocProc) (size_t))
{
yyParser *pParser;
pParser = (yyParser *) (*mallocProc) ((size_t) sizeof(yyParser));
if(pParser)
{
pParser->yyidx = -1;
#if YYSTACKDEPTH<=0
yyGrowStack(pParser);
#endif
}
return pParser;
}
/* The following function deletes the value associated with a
** symbol. The symbol can be either a terminal or nonterminal.
** "yymajor" is the symbol code, and "yypminor" is a pointer to
** the value.
*/
static void
yy_destructor(YYCODETYPE yymajor, YYMINORTYPE * yypminor)
{
switch (yymajor)
{
/* Here is inserted the actions which take place when a
** terminal or non-terminal is destroyed. This can happen
** when the symbol is popped from the stack during a
** reduce or during error processing or when a parser is
** being destroyed before it is finished parsing.
**
** Note: during a reduce, the only symbols destroyed are those
** which appear on the RHS of the rule, but which are not used
** inside the C code.
*/
case 155: /* select */
{
sqlite3SelectDelete((yypminor->yy219));
}
break;
case 169: /* term */
{
sqlite3ExprDelete((yypminor->yy172));
}
break;
case 170: /* expr */
{
sqlite3ExprDelete((yypminor->yy172));
}
break;
case 174: /* idxlist_opt */
{
sqlite3ExprListDelete((yypminor->yy174));
}
break;
case 182: /* idxlist */
{
sqlite3ExprListDelete((yypminor->yy174));
}
break;
case 188: /* fullname */
{
sqlite3SrcListDelete((yypminor->yy373));
}
break;
case 189: /* oneselect */
{
sqlite3SelectDelete((yypminor->yy219));
}
break;
case 192: /* selcollist */
{
sqlite3ExprListDelete((yypminor->yy174));
}
break;
case 193: /* from */
{
sqlite3SrcListDelete((yypminor->yy373));
}
break;
case 194: /* where_opt */
{
sqlite3ExprDelete((yypminor->yy172));
}
break;
case 195: /* groupby_opt */
{
sqlite3ExprListDelete((yypminor->yy174));
}
break;
case 196: /* having_opt */
{
sqlite3ExprDelete((yypminor->yy172));
}
break;
case 197: /* orderby_opt */
{
sqlite3ExprListDelete((yypminor->yy174));
}
break;
case 199: /* sclp */
{
sqlite3ExprListDelete((yypminor->yy174));
}
break;
case 201: /* seltablist */
{
sqlite3SrcListDelete((yypminor->yy373));
}
break;
case 202: /* stl_prefix */
{
sqlite3SrcListDelete((yypminor->yy373));
}
break;
case 204: /* on_opt */
{
sqlite3ExprDelete((yypminor->yy172));
}
break;
case 205: /* using_opt */
{
sqlite3IdListDelete((yypminor->yy432));
}
break;
case 206: /* seltablist_paren */
{
sqlite3SelectDelete((yypminor->yy219));
}
break;
case 208: /* inscollist */
{
sqlite3IdListDelete((yypminor->yy432));
}
break;
case 209: /* sortlist */
{
sqlite3ExprListDelete((yypminor->yy174));
}
break;
case 210: /* sortitem */
{
sqlite3ExprDelete((yypminor->yy172));
}
break;
case 211: /* nexprlist */
{
sqlite3ExprListDelete((yypminor->yy174));
}
break;
case 212: /* setlist */
{
sqlite3ExprListDelete((yypminor->yy174));
}
break;
case 214: /* inscollist_opt */
{
sqlite3IdListDelete((yypminor->yy432));
}
break;
case 215: /* itemlist */
{
sqlite3ExprListDelete((yypminor->yy174));
}
break;
case 216: /* exprlist */
{
sqlite3ExprListDelete((yypminor->yy174));
}
break;
case 218: /* escape */
{
sqlite3ExprDelete((yypminor->yy172));
}
break;
case 221: /* case_operand */
{
sqlite3ExprDelete((yypminor->yy172));
}
break;
case 222: /* case_exprlist */
{
sqlite3ExprListDelete((yypminor->yy174));
}
break;
case 223: /* case_else */
{
sqlite3ExprDelete((yypminor->yy172));
}
break;
case 231: /* trigger_cmd_list */
{
sqlite3DeleteTriggerStep((yypminor->yy243));
}
break;
case 233: /* trigger_event */
{
sqlite3IdListDelete((yypminor->yy370).b);
}
break;
case 235: /* when_clause */
{
sqlite3ExprDelete((yypminor->yy172));
}
break;
case 236: /* trigger_cmd */
{
sqlite3DeleteTriggerStep((yypminor->yy243));
}
break;
case 238: /* key_opt */
{
sqlite3ExprDelete((yypminor->yy172));
}
break;
default:
break; /* If no destructor action specified: do nothing */
}
}
/*
** Pop the parser's stack once.
**
** If there is a destructor routine associated with the token which
** is popped from the stack, then call it.
**
** Return the major token number for the symbol popped.
*/
static int
yy_pop_parser_stack(yyParser * pParser)
{
YYCODETYPE yymajor;
yyStackEntry *yytos = &pParser->yystack[pParser->yyidx];
if(pParser->yyidx < 0)
return 0;
#ifndef NDEBUG
if(yyTraceFILE && pParser->yyidx >= 0)
{
fprintf(yyTraceFILE, "%sPopping %s\n", yyTracePrompt, yyTokenName[yytos->major]);
}
#endif
yymajor = yytos->major;
yy_destructor(yymajor, &yytos->minor);
pParser->yyidx--;
return yymajor;
}
/*
** Deallocate and destroy a parser. Destructors are all called for
** all stack elements before shutting the parser down.
**
** Inputs:
** <ul>
** <li> A pointer to the parser. This should be a pointer
** obtained from sqlite3ParserAlloc.
** <li> A pointer to a function used to reclaim memory obtained
** from malloc.
** </ul>
*/
SQLITE_PRIVATE void
sqlite3ParserFree(void *p, /* The parser to be deleted */
void (*freeProc) (void *) /* Function used to reclaim memory */
)
{
yyParser *pParser = (yyParser *) p;
if(pParser == 0)
return;
while (pParser->yyidx >= 0)
yy_pop_parser_stack(pParser);
#if YYSTACKDEPTH<=0
free(pParser->yystack);
#endif
(*freeProc) ((void *) pParser);
}
/*
** Find the appropriate action for a parser given the terminal
** look-ahead token iLookAhead.
**
** If the look-ahead token is YYNOCODE, then check to see if the action is
** independent of the look-ahead. If it is, return the action, otherwise
** return YY_NO_ACTION.
*/
static int
yy_find_shift_action(yyParser * pParser, /* The parser */
YYCODETYPE iLookAhead /* The look-ahead token */
)
{
int i;
int stateno = pParser->yystack[pParser->yyidx].stateno;
if(stateno > YY_SHIFT_MAX || (i = yy_shift_ofst[stateno]) == YY_SHIFT_USE_DFLT)
{
return yy_default[stateno];
}
assert(iLookAhead != YYNOCODE);
i += iLookAhead;
if(i < 0 || i >= YY_SZ_ACTTAB || yy_lookahead[i] != iLookAhead)
{
if(iLookAhead > 0)
{
#ifdef YYFALLBACK
int iFallback; /* Fallback token */
if(iLookAhead < sizeof(yyFallback) / sizeof(yyFallback[0])
&& (iFallback = yyFallback[iLookAhead]) != 0)
{
#ifndef NDEBUG
if(yyTraceFILE)
{
fprintf(yyTraceFILE, "%sFALLBACK %s => %s\n",
yyTracePrompt, yyTokenName[iLookAhead],
yyTokenName[iFallback]);
}
#endif
return yy_find_shift_action(pParser, iFallback);
}
#endif
#ifdef YYWILDCARD
{
int j = i - iLookAhead + YYWILDCARD;
if(j >= 0 && j < YY_SZ_ACTTAB && yy_lookahead[j] == YYWILDCARD)
{
#ifndef NDEBUG
if(yyTraceFILE)
{
fprintf(yyTraceFILE, "%sWILDCARD %s => %s\n",
yyTracePrompt, yyTokenName[iLookAhead],
yyTokenName[YYWILDCARD]);
}
#endif /* NDEBUG */
return yy_action[j];
}
}
#endif /* YYWILDCARD */
}
return yy_default[stateno];
}
else
{
return yy_action[i];
}
}
/*
** Find the appropriate action for a parser given the non-terminal
** look-ahead token iLookAhead.
**
** If the look-ahead token is YYNOCODE, then check to see if the action is
** independent of the look-ahead. If it is, return the action, otherwise
** return YY_NO_ACTION.
*/
static int
yy_find_reduce_action(int stateno, /* Current state number */
YYCODETYPE iLookAhead /* The look-ahead token */
)
{
int i;
#ifdef YYERRORSYMBOL
if(stateno > YY_REDUCE_MAX)
{
return yy_default[stateno];
}
#else
assert(stateno <= YY_REDUCE_MAX);
#endif
i = yy_reduce_ofst[stateno];
assert(i != YY_REDUCE_USE_DFLT);
assert(iLookAhead != YYNOCODE);
i += iLookAhead;
#ifdef YYERRORSYMBOL
if(i < 0 || i >= YY_SZ_ACTTAB || yy_lookahead[i] != iLookAhead)
{
return yy_default[stateno];
}
#else
assert(i >= 0 && i < YY_SZ_ACTTAB);
assert(yy_lookahead[i] == iLookAhead);
#endif
return yy_action[i];
}
/*
** The following routine is called if the stack overflows.
*/
static void
yyStackOverflow(yyParser * yypParser, YYMINORTYPE * yypMinor)
{
sqlite3ParserARG_FETCH;
yypParser->yyidx--;
#ifndef NDEBUG
if(yyTraceFILE)
{
fprintf(yyTraceFILE, "%sStack Overflow!\n", yyTracePrompt);
}
#endif
while (yypParser->yyidx >= 0)
yy_pop_parser_stack(yypParser);
/* Here code is inserted which will execute if the parser
** stack every overflows */
sqlite3ErrorMsg(pParse, "parser stack overflow");
pParse->parseError = 1;
sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument var */
}
/*
** Perform a shift action.
*/
static void
yy_shift(yyParser * yypParser, /* The parser to be shifted */
int yyNewState, /* The new state to shift in */
int yyMajor, /* The major token to shift in */
YYMINORTYPE * yypMinor /* Pointer ot the minor token to shift in */
)
{
yyStackEntry *yytos;
yypParser->yyidx++;
#if YYSTACKDEPTH>0
if(yypParser->yyidx >= YYSTACKDEPTH)
{
yyStackOverflow(yypParser, yypMinor);
return;
}
#else
if(yypParser->yyidx >= yypParser->yystksz)
{
yyGrowStack(yypParser);
if(yypParser->yyidx >= yypParser->yystksz)
{
yyStackOverflow(yypParser, yypMinor);
return;
}
}
#endif
yytos = &yypParser->yystack[yypParser->yyidx];
yytos->stateno = yyNewState;
yytos->major = yyMajor;
yytos->minor = *yypMinor;
#ifndef NDEBUG
if(yyTraceFILE && yypParser->yyidx > 0)
{
int i;
fprintf(yyTraceFILE, "%sShift %d\n", yyTracePrompt, yyNewState);
fprintf(yyTraceFILE, "%sStack:", yyTracePrompt);
for (i = 1; i <= yypParser->yyidx; i++)
fprintf(yyTraceFILE, " %s", yyTokenName[yypParser->yystack[i].major]);
fprintf(yyTraceFILE, "\n");
}
#endif
}
/* The following table contains information about every rule that
** is used during the reduce.
*/
static const struct
{
YYCODETYPE lhs; /* Symbol on the left-hand side of the rule */
unsigned char nrhs; /* Number of right-hand side symbols in the rule */
} yyRuleInfo[] =
{
{
139, 1},
{
140, 2},
{
140, 1},
{
142, 1},
{
141, 1},
{
141, 3},
{
144, 0},
{
144, 1},
{
144, 3},
{
143, 3},
{
146, 0},
{
146, 1},
{
146, 2},
{
145, 0},
{
145, 1},
{
145, 1},
{
145, 1},
{
143, 2},
{
143, 2},
{
143, 2},
{
143, 2},
{
148, 6},
{
151, 0},
{
151, 3},
{
150, 1},
{
150, 0},
{
149, 4},
{
149, 2},
{
153, 3},
{
153, 1},
{
156, 3},
{
157, 1},
{
160, 1},
{
161, 1},
{
147, 1},
{
147, 1},
{
147, 1},
{
158, 0},
{
158, 1},
{
162, 1},
{
162, 4},
{
162, 6},
{
163, 1},
{
163, 2},
{
164, 1},
{
164, 1},
{
159, 2},
{
159, 0},
{
167, 3},
{
167, 1},
{
168, 2},
{
168, 4},
{
168, 3},
{
168, 3},
{
168, 2},
{
168, 2},
{
168, 3},
{
168, 5},
{
168, 2},
{
168, 4},
{
168, 4},
{
168, 1},
{
168, 2},
{
173, 0},
{
173, 1},
{
175, 0},
{
175, 2},
{
177, 2},
{
177, 3},
{
177, 3},
{
177, 3},
{
178, 2},
{
178, 2},
{
178, 1},
{
178, 1},
{
176, 3},
{
176, 2},
{
179, 0},
{
179, 2},
{
179, 2},
{
154, 0},
{
154, 2},
{
180, 3},
{
180, 2},
{
180, 1},
{
181, 2},
{
181, 7},
{
181, 5},
{
181, 5},
{
181, 10},
{
183, 0},
{
183, 1},
{
171, 0},
{
171, 3},
{
184, 0},
{
184, 2},
{
185, 1},
{
185, 1},
{
185, 1},
{
143, 4},
{
187, 2},
{
187, 0},
{
143, 8},
{
143, 4},
{
143, 1},
{
155, 1},
{
155, 3},
{
190, 1},
{
190, 2},
{
190, 1},
{
189, 9},
{
191, 1},
{
191, 1},
{
191, 0},
{
199, 2},
{
199, 0},
{
192, 3},
{
192, 2},
{
192, 4},
{
200, 2},
{
200, 1},
{
200, 0},
{
193, 0},
{
193, 2},
{
202, 2},
{
202, 0},
{
201, 6},
{
201, 7},
{
206, 1},
{
206, 1},
{
152, 0},
{
152, 2},
{
188, 2},
{
203, 1},
{
203, 2},
{
203, 3},
{
203, 4},
{
204, 2},
{
204, 0},
{
205, 4},
{
205, 0},
{
197, 0},
{
197, 3},
{
209, 4},
{
209, 2},
{
210, 1},
{
172, 1},
{
172, 1},
{
172, 0},
{
195, 0},
{
195, 3},
{
196, 0},
{
196, 2},
{
198, 0},
{
198, 2},
{
198, 4},
{
198, 4},
{
143, 4},
{
194, 0},
{
194, 2},
{
143, 6},
{
212, 5},
{
212, 3},
{
143, 8},
{
143, 5},
{
143, 6},
{
213, 2},
{
213, 1},
{
215, 3},
{
215, 1},
{
214, 0},
{
214, 3},
{
208, 3},
{
208, 1},
{
170, 1},
{
170, 3},
{
169, 1},
{
170, 1},
{
170, 1},
{
170, 3},
{
170, 5},
{
169, 1},
{
169, 1},
{
170, 1},
{
170, 1},
{
170, 3},
{
170, 6},
{
170, 5},
{
170, 4},
{
169, 1},
{
170, 3},
{
170, 3},
{
170, 3},
{
170, 3},
{
170, 3},
{
170, 3},
{
170, 3},
{
170, 3},
{
217, 1},
{
217, 2},
{
217, 1},
{
217, 2},
{
218, 2},
{
218, 0},
{
170, 4},
{
170, 2},
{
170, 3},
{
170, 3},
{
170, 4},
{
170, 2},
{
170, 2},
{
170, 2},
{
170, 2},
{
219, 1},
{
219, 2},
{
170, 5},
{
220, 1},
{
220, 2},
{
170, 5},
{
170, 3},
{
170, 5},
{
170, 4},
{
170, 4},
{
170, 5},
{
222, 5},
{
222, 4},
{
223, 2},
{
223, 0},
{
221, 1},
{
221, 0},
{
216, 1},
{
216, 0},
{
211, 3},
{
211, 1},
{
143, 11},
{
224, 1},
{
224, 0},
{
174, 0},
{
174, 3},
{
182, 5},
{
182, 3},
{
225, 1},
{
226, 0},
{
226, 2},
{
143, 4},
{
143, 1},
{
143, 2},
{
143, 5},
{
143, 5},
{
143, 5},
{
143, 5},
{
143, 6},
{
143, 3},
{
227, 1},
{
227, 1},
{
165, 2},
{
166, 2},
{
229, 1},
{
228, 1},
{
228, 0},
{
143, 5},
{
230, 11},
{
232, 1},
{
232, 1},
{
232, 2},
{
232, 0},
{
233, 1},
{
233, 1},
{
233, 3},
{
234, 0},
{
234, 3},
{
235, 0},
{
235, 2},
{
231, 3},
{
231, 0},
{
236, 6},
{
236, 8},
{
236, 5},
{
236, 4},
{
236, 1},
{
170, 4},
{
170, 6},
{
186, 1},
{
186, 1},
{
186, 1},
{
143, 4},
{
143, 6},
{
143, 3},
{
238, 0},
{
238, 2},
{
237, 1},
{
237, 0},
{
143, 1},
{
143, 3},
{
143, 1},
{
143, 3},
{
143, 6},
{
143, 6},
{
239, 1},
{
240, 0},
{
240, 1},
{
143, 1},
{
143, 4},
{
241, 7},
{
242, 1},
{
242, 3},
{
243, 0},
{
243, 2},
{
244, 1},
{
244, 3},
{
245, 1},
{
246, 0},
{
246, 2},};
static void yy_accept(yyParser *); /* Forward Declaration */
/*
** Perform a reduce action and the shift that must immediately
** follow the reduce.
*/
static void
yy_reduce(yyParser * yypParser, /* The parser */
int yyruleno /* Number of the rule by which to reduce */
)
{
int yygoto; /* The next state */
int yyact; /* The next action */
YYMINORTYPE yygotominor; /* The LHS of the rule reduced */
yyStackEntry *yymsp; /* The top of the parser's stack */
int yysize; /* Amount to pop the stack */
sqlite3ParserARG_FETCH;
yymsp = &yypParser->yystack[yypParser->yyidx];
#ifndef NDEBUG
if(yyTraceFILE && yyruleno >= 0
&& yyruleno < (int) (sizeof(yyRuleName) / sizeof(yyRuleName[0])))
{
fprintf(yyTraceFILE, "%sReduce [%s].\n", yyTracePrompt, yyRuleName[yyruleno]);
}
#endif /* NDEBUG */
/* Silence complaints from purify about yygotominor being uninitialized
** in some cases when it is copied into the stack after the following
** switch. yygotominor is uninitialized when a rule reduces that does
** not set the value of its left-hand side nonterminal. Leaving the
** value of the nonterminal uninitialized is utterly harmless as long
** as the value is never used. So really the only thing this code
** accomplishes is to quieten purify.
**
** 2007-01-16: The wireshark project (www.wireshark.org) reports that
** without this code, their parser segfaults. I'm not sure what there
** parser is doing to make this happen. This is the second bug report
** from wireshark this week. Clearly they are stressing Lemon in ways
** that it has not been previously stressed... (SQLite ticket #2172)
*/
/*memset(&yygotominor, 0, sizeof(yygotominor)); */
yygotominor = yyzerominor;
switch (yyruleno)
{
/* Beginning here are the reduction cases. A typical example
** follows:
** case 0:
** #line <lineno> <grammarfile>
** { ... } // User supplied code
** #line <lineno> <thisfile>
** break;
*/
case 0: /* input ::= cmdlist */
case 1: /* cmdlist ::= cmdlist ecmd */
case 2: /* cmdlist ::= ecmd */
case 4: /* ecmd ::= SEMI */
case 5: /* ecmd ::= explain cmdx SEMI */
case 10: /* trans_opt ::= */
case 11: /* trans_opt ::= TRANSACTION */
case 12: /* trans_opt ::= TRANSACTION nm */
case 20: /* cmd ::= create_table create_table_args */
case 28: /* columnlist ::= columnlist COMMA column */
case 29: /* columnlist ::= column */
case 37: /* type ::= */
case 44: /* signed ::= plus_num */
case 45: /* signed ::= minus_num */
case 46: /* carglist ::= carglist carg */
case 47: /* carglist ::= */
case 48: /* carg ::= CONSTRAINT nm ccons */
case 49: /* carg ::= ccons */
case 55: /* ccons ::= NULL onconf */
case 82: /* conslist ::= conslist COMMA tcons */
case 83: /* conslist ::= conslist tcons */
case 84: /* conslist ::= tcons */
case 85: /* tcons ::= CONSTRAINT nm */
case 258: /* plus_opt ::= PLUS */
case 259: /* plus_opt ::= */
case 269: /* foreach_clause ::= */
case 270: /* foreach_clause ::= FOR EACH ROW */
case 290: /* database_kw_opt ::= DATABASE */
case 291: /* database_kw_opt ::= */
case 299: /* kwcolumn_opt ::= */
case 300: /* kwcolumn_opt ::= COLUMNKW */
case 304: /* vtabarglist ::= vtabarg */
case 305: /* vtabarglist ::= vtabarglist COMMA vtabarg */
case 307: /* vtabarg ::= vtabarg vtabargtoken */
case 311: /* anylist ::= */
{
}
break;
case 3: /* cmdx ::= cmd */
{
sqlite3FinishCoding(pParse);
}
break;
case 6: /* explain ::= */
{
sqlite3BeginParse(pParse, 0);
}
break;
case 7: /* explain ::= EXPLAIN */
{
sqlite3BeginParse(pParse, 1);
}
break;
case 8: /* explain ::= EXPLAIN QUERY PLAN */
{
sqlite3BeginParse(pParse, 2);
}
break;
case 9: /* cmd ::= BEGIN transtype trans_opt */
{
sqlite3BeginTransaction(pParse, yymsp[-1].minor.yy46);
}
break;
case 13: /* transtype ::= */
{
yygotominor.yy46 = TK_DEFERRED;
}
break;
case 14: /* transtype ::= DEFERRED */
case 15: /* transtype ::= IMMEDIATE */
case 16: /* transtype ::= EXCLUSIVE */
case 107: /* multiselect_op ::= UNION */
case 109: /* multiselect_op ::= EXCEPT|INTERSECT */
{
yygotominor.yy46 = yymsp[0].major;
}
break;
case 17: /* cmd ::= COMMIT trans_opt */
case 18: /* cmd ::= END trans_opt */
{
sqlite3CommitTransaction(pParse);
}
break;
case 19: /* cmd ::= ROLLBACK trans_opt */
{
sqlite3RollbackTransaction(pParse);
}
break;
case 21: /* create_table ::= CREATE temp TABLE ifnotexists nm dbnm */
{
sqlite3StartTable(pParse, &yymsp[-1].minor.yy410, &yymsp[0].minor.yy410,
yymsp[-4].minor.yy46, 0, 0, yymsp[-2].minor.yy46);
}
break;
case 22: /* ifnotexists ::= */
case 25: /* temp ::= */
case 63: /* autoinc ::= */
case 77: /* init_deferred_pred_opt ::= */
case 79: /* init_deferred_pred_opt ::= INITIALLY IMMEDIATE */
case 90: /* defer_subclause_opt ::= */
case 101: /* ifexists ::= */
case 112: /* distinct ::= ALL */
case 113: /* distinct ::= */
case 213: /* between_op ::= BETWEEN */
case 216: /* in_op ::= IN */
{
yygotominor.yy46 = 0;
}
break;
case 23: /* ifnotexists ::= IF NOT EXISTS */
case 24: /* temp ::= TEMP */
case 64: /* autoinc ::= AUTOINCR */
case 78: /* init_deferred_pred_opt ::= INITIALLY DEFERRED */
case 100: /* ifexists ::= IF EXISTS */
case 111: /* distinct ::= DISTINCT */
case 214: /* between_op ::= NOT BETWEEN */
case 217: /* in_op ::= NOT IN */
{
yygotominor.yy46 = 1;
}
break;
case 26: /* create_table_args ::= LP columnlist conslist_opt RP */
{
sqlite3EndTable(pParse, &yymsp[-1].minor.yy410, &yymsp[0].minor.yy0, 0);
}
break;
case 27: /* create_table_args ::= AS select */
{
sqlite3EndTable(pParse, 0, 0, yymsp[0].minor.yy219);
sqlite3SelectDelete(yymsp[0].minor.yy219);
}
break;
case 30: /* column ::= columnid type carglist */
{
yygotominor.yy410.z = yymsp[-2].minor.yy410.z;
yygotominor.yy410.n =
(pParse->sLastToken.z - yymsp[-2].minor.yy410.z) +
pParse->sLastToken.n;
}
break;
case 31: /* columnid ::= nm */
{
sqlite3AddColumn(pParse, &yymsp[0].minor.yy410);
yygotominor.yy410 = yymsp[0].minor.yy410;
}
break;
case 32: /* id ::= ID */
case 33: /* ids ::= ID|STRING */
case 34: /* nm ::= ID */
case 35: /* nm ::= STRING */
case 36: /* nm ::= JOIN_KW */
case 257: /* number ::= INTEGER|FLOAT */
{
yygotominor.yy410 = yymsp[0].minor.yy0;
}
break;
case 38: /* type ::= typetoken */
{
sqlite3AddColumnType(pParse, &yymsp[0].minor.yy410);
}
break;
case 39: /* typetoken ::= typename */
case 42: /* typename ::= ids */
case 119: /* as ::= AS nm */
case 120: /* as ::= ids */
case 131: /* dbnm ::= DOT nm */
case 241: /* idxitem ::= nm */
case 243: /* collate ::= COLLATE ids */
case 253: /* nmnum ::= plus_num */
case 254: /* nmnum ::= nm */
case 255: /* plus_num ::= plus_opt number */
case 256: /* minus_num ::= MINUS number */
{
yygotominor.yy410 = yymsp[0].minor.yy410;
}
break;
case 40: /* typetoken ::= typename LP signed RP */
{
yygotominor.yy410.z = yymsp[-3].minor.yy410.z;
yygotominor.yy410.n =
&yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n] -
yymsp[-3].minor.yy410.z;
}
break;
case 41: /* typetoken ::= typename LP signed COMMA signed RP */
{
yygotominor.yy410.z = yymsp[-5].minor.yy410.z;
yygotominor.yy410.n =
&yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n] -
yymsp[-5].minor.yy410.z;
}
break;
case 43: /* typename ::= typename ids */
{
yygotominor.yy410.z = yymsp[-1].minor.yy410.z;
yygotominor.yy410.n =
yymsp[0].minor.yy410.n + (yymsp[0].minor.yy410.z -
yymsp[-1].minor.yy410.z);
}
break;
case 50: /* ccons ::= DEFAULT term */
case 52: /* ccons ::= DEFAULT PLUS term */
{
sqlite3AddDefaultValue(pParse, yymsp[0].minor.yy172);
}
break;
case 51: /* ccons ::= DEFAULT LP expr RP */
{
sqlite3AddDefaultValue(pParse, yymsp[-1].minor.yy172);
}
break;
case 53: /* ccons ::= DEFAULT MINUS term */
{
Expr *p = sqlite3PExpr(pParse, TK_UMINUS, yymsp[0].minor.yy172, 0, 0);
sqlite3AddDefaultValue(pParse, p);
}
break;
case 54: /* ccons ::= DEFAULT id */
{
Expr *p = sqlite3PExpr(pParse, TK_STRING, 0, 0, &yymsp[0].minor.yy410);
sqlite3AddDefaultValue(pParse, p);
}
break;
case 56: /* ccons ::= NOT NULL onconf */
{
sqlite3AddNotNull(pParse, yymsp[0].minor.yy46);
}
break;
case 57: /* ccons ::= PRIMARY KEY sortorder onconf autoinc */
{
sqlite3AddPrimaryKey(pParse, 0, yymsp[-1].minor.yy46, yymsp[0].minor.yy46,
yymsp[-2].minor.yy46);
}
break;
case 58: /* ccons ::= UNIQUE onconf */
{
sqlite3CreateIndex(pParse, 0, 0, 0, 0, yymsp[0].minor.yy46, 0, 0, 0, 0);
}
break;
case 59: /* ccons ::= CHECK LP expr RP */
{
sqlite3AddCheckConstraint(pParse, yymsp[-1].minor.yy172);
}
break;
case 60: /* ccons ::= REFERENCES nm idxlist_opt refargs */
{
sqlite3CreateForeignKey(pParse, 0, &yymsp[-2].minor.yy410,
yymsp[-1].minor.yy174, yymsp[0].minor.yy46);
}
break;
case 61: /* ccons ::= defer_subclause */
{
sqlite3DeferForeignKey(pParse, yymsp[0].minor.yy46);
}
break;
case 62: /* ccons ::= COLLATE ids */
{
sqlite3AddCollateType(pParse, &yymsp[0].minor.yy410);
}
break;
case 65: /* refargs ::= */
{
yygotominor.yy46 = OE_Restrict * 0x010101;
}
break;
case 66: /* refargs ::= refargs refarg */
{
yygotominor.yy46 =
(yymsp[-1].minor.yy46 & yymsp[0].minor.yy405.mask) | yymsp[0].minor.
yy405.value;
}
break;
case 67: /* refarg ::= MATCH nm */
{
yygotominor.yy405.value = 0;
yygotominor.yy405.mask = 0x000000;
}
break;
case 68: /* refarg ::= ON DELETE refact */
{
yygotominor.yy405.value = yymsp[0].minor.yy46;
yygotominor.yy405.mask = 0x0000ff;
}
break;
case 69: /* refarg ::= ON UPDATE refact */
{
yygotominor.yy405.value = yymsp[0].minor.yy46 << 8;
yygotominor.yy405.mask = 0x00ff00;
}
break;
case 70: /* refarg ::= ON INSERT refact */
{
yygotominor.yy405.value = yymsp[0].minor.yy46 << 16;
yygotominor.yy405.mask = 0xff0000;
}
break;
case 71: /* refact ::= SET NULL */
{
yygotominor.yy46 = OE_SetNull;
}
break;
case 72: /* refact ::= SET DEFAULT */
{
yygotominor.yy46 = OE_SetDflt;
}
break;
case 73: /* refact ::= CASCADE */
{
yygotominor.yy46 = OE_Cascade;
}
break;
case 74: /* refact ::= RESTRICT */
{
yygotominor.yy46 = OE_Restrict;
}
break;
case 75: /* defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt */
case 76: /* defer_subclause ::= DEFERRABLE init_deferred_pred_opt */
case 91: /* defer_subclause_opt ::= defer_subclause */
case 93: /* onconf ::= ON CONFLICT resolvetype */
case 95: /* orconf ::= OR resolvetype */
case 96: /* resolvetype ::= raisetype */
case 166: /* insert_cmd ::= INSERT orconf */
{
yygotominor.yy46 = yymsp[0].minor.yy46;
}
break;
case 80: /* conslist_opt ::= */
{
yygotominor.yy410.n = 0;
yygotominor.yy410.z = 0;
}
break;
case 81: /* conslist_opt ::= COMMA conslist */
{
yygotominor.yy410 = yymsp[-1].minor.yy0;
}
break;
case 86: /* tcons ::= PRIMARY KEY LP idxlist autoinc RP onconf */
{
sqlite3AddPrimaryKey(pParse, yymsp[-3].minor.yy174, yymsp[0].minor.yy46,
yymsp[-2].minor.yy46, 0);
}
break;
case 87: /* tcons ::= UNIQUE LP idxlist RP onconf */
{
sqlite3CreateIndex(pParse, 0, 0, 0, yymsp[-2].minor.yy174,
yymsp[0].minor.yy46, 0, 0, 0, 0);
}
break;
case 88: /* tcons ::= CHECK LP expr RP onconf */
{
sqlite3AddCheckConstraint(pParse, yymsp[-2].minor.yy172);
}
break;
case 89: /* tcons ::= FOREIGN KEY LP idxlist RP REFERENCES nm idxlist_opt refargs defer_subclause_opt */
{
sqlite3CreateForeignKey(pParse, yymsp[-6].minor.yy174,
&yymsp[-3].minor.yy410, yymsp[-2].minor.yy174,
yymsp[-1].minor.yy46);
sqlite3DeferForeignKey(pParse, yymsp[0].minor.yy46);
}
break;
case 92: /* onconf ::= */
case 94: /* orconf ::= */
{
yygotominor.yy46 = OE_Default;
}
break;
case 97: /* resolvetype ::= IGNORE */
{
yygotominor.yy46 = OE_Ignore;
}
break;
case 98: /* resolvetype ::= REPLACE */
case 167: /* insert_cmd ::= REPLACE */
{
yygotominor.yy46 = OE_Replace;
}
break;
case 99: /* cmd ::= DROP TABLE ifexists fullname */
{
sqlite3DropTable(pParse, yymsp[0].minor.yy373, 0, yymsp[-1].minor.yy46);
}
break;
case 102: /* cmd ::= CREATE temp VIEW ifnotexists nm dbnm AS select */
{
sqlite3CreateView(pParse, &yymsp[-7].minor.yy0, &yymsp[-3].minor.yy410,
&yymsp[-2].minor.yy410, yymsp[0].minor.yy219,
yymsp[-6].minor.yy46, yymsp[-4].minor.yy46);
}
break;
case 103: /* cmd ::= DROP VIEW ifexists fullname */
{
sqlite3DropTable(pParse, yymsp[0].minor.yy373, 1, yymsp[-1].minor.yy46);
}
break;
case 104: /* cmd ::= select */
{
SelectDest dest = { SRT_Callback, 0, 0, 0, 0 };
sqlite3Select(pParse, yymsp[0].minor.yy219, &dest, 0, 0, 0, 0);
sqlite3SelectDelete(yymsp[0].minor.yy219);
}
break;
case 105: /* select ::= oneselect */
case 128: /* seltablist_paren ::= select */
{
yygotominor.yy219 = yymsp[0].minor.yy219;
}
break;
case 106: /* select ::= select multiselect_op oneselect */
{
if(yymsp[0].minor.yy219)
{
yymsp[0].minor.yy219->op = yymsp[-1].minor.yy46;
yymsp[0].minor.yy219->pPrior = yymsp[-2].minor.yy219;
}
else
{
sqlite3SelectDelete(yymsp[-2].minor.yy219);
}
yygotominor.yy219 = yymsp[0].minor.yy219;
}
break;
case 108: /* multiselect_op ::= UNION ALL */
{
yygotominor.yy46 = TK_ALL;
}
break;
case 110: /* oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt */
{
yygotominor.yy219 =
sqlite3SelectNew(pParse, yymsp[-6].minor.yy174,
yymsp[-5].minor.yy373, yymsp[-4].minor.yy172,
yymsp[-3].minor.yy174, yymsp[-2].minor.yy172,
yymsp[-1].minor.yy174, yymsp[-7].minor.yy46,
yymsp[0].minor.yy234.pLimit,
yymsp[0].minor.yy234.pOffset);
}
break;
case 114: /* sclp ::= selcollist COMMA */
case 238: /* idxlist_opt ::= LP idxlist RP */
{
yygotominor.yy174 = yymsp[-1].minor.yy174;
}
break;
case 115: /* sclp ::= */
case 141: /* orderby_opt ::= */
case 149: /* groupby_opt ::= */
case 231: /* exprlist ::= */
case 237: /* idxlist_opt ::= */
{
yygotominor.yy174 = 0;
}
break;
case 116: /* selcollist ::= sclp expr as */
{
yygotominor.yy174 =
sqlite3ExprListAppend(pParse, yymsp[-2].minor.yy174,
yymsp[-1].minor.yy172,
yymsp[0].minor.yy410.n ? &yymsp[0].minor.
yy410 : 0);
}
break;
case 117: /* selcollist ::= sclp STAR */
{
Expr *p = sqlite3PExpr(pParse, TK_ALL, 0, 0, 0);
yygotominor.yy174 =
sqlite3ExprListAppend(pParse, yymsp[-1].minor.yy174, p, 0);
}
break;
case 118: /* selcollist ::= sclp nm DOT STAR */
{
Expr *pRight = sqlite3PExpr(pParse, TK_ALL, 0, 0, 0);
Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-2].minor.yy410);
Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
yygotominor.yy174 =
sqlite3ExprListAppend(pParse, yymsp[-3].minor.yy174, pDot, 0);
}
break;
case 121: /* as ::= */
{
yygotominor.yy410.n = 0;
}
break;
case 122: /* from ::= */
{
yygotominor.yy373 =
sqlite3DbMallocZero(pParse->db, sizeof(*yygotominor.yy373));
}
break;
case 123: /* from ::= FROM seltablist */
{
yygotominor.yy373 = yymsp[0].minor.yy373;
sqlite3SrcListShiftJoinType(yygotominor.yy373);
}
break;
case 124: /* stl_prefix ::= seltablist joinop */
{
yygotominor.yy373 = yymsp[-1].minor.yy373;
if(yygotominor.yy373 && yygotominor.yy373->nSrc > 0)
yygotominor.yy373->a[yygotominor.yy373->nSrc - 1].jointype =
yymsp[0].minor.yy46;
}
break;
case 125: /* stl_prefix ::= */
{
yygotominor.yy373 = 0;
}
break;
case 126: /* seltablist ::= stl_prefix nm dbnm as on_opt using_opt */
{
yygotominor.yy373 =
sqlite3SrcListAppendFromTerm(pParse, yymsp[-5].minor.yy373,
&yymsp[-4].minor.yy410,
&yymsp[-3].minor.yy410,
&yymsp[-2].minor.yy410, 0,
yymsp[-1].minor.yy172,
yymsp[0].minor.yy432);
}
break;
case 127: /* seltablist ::= stl_prefix LP seltablist_paren RP as on_opt using_opt */
{
yygotominor.yy373 =
sqlite3SrcListAppendFromTerm(pParse, yymsp[-6].minor.yy373, 0, 0,
&yymsp[-2].minor.yy410,
yymsp[-4].minor.yy219,
yymsp[-1].minor.yy172,
yymsp[0].minor.yy432);
}
break;
case 129: /* seltablist_paren ::= seltablist */
{
sqlite3SrcListShiftJoinType(yymsp[0].minor.yy373);
yygotominor.yy219 =
sqlite3SelectNew(pParse, 0, yymsp[0].minor.yy373, 0, 0, 0, 0, 0, 0,
0);
}
break;
case 130: /* dbnm ::= */
{
yygotominor.yy410.z = 0;
yygotominor.yy410.n = 0;
}
break;
case 132: /* fullname ::= nm dbnm */
{
yygotominor.yy373 =
sqlite3SrcListAppend(pParse->db, 0, &yymsp[-1].minor.yy410,
&yymsp[0].minor.yy410);
}
break;
case 133: /* joinop ::= COMMA|JOIN */
{
yygotominor.yy46 = JT_INNER;
}
break;
case 134: /* joinop ::= JOIN_KW JOIN */
{
yygotominor.yy46 = sqlite3JoinType(pParse, &yymsp[-1].minor.yy0, 0, 0);
}
break;
case 135: /* joinop ::= JOIN_KW nm JOIN */
{
yygotominor.yy46 =
sqlite3JoinType(pParse, &yymsp[-2].minor.yy0,
&yymsp[-1].minor.yy410, 0);
}
break;
case 136: /* joinop ::= JOIN_KW nm nm JOIN */
{
yygotominor.yy46 =
sqlite3JoinType(pParse, &yymsp[-3].minor.yy0,
&yymsp[-2].minor.yy410, &yymsp[-1].minor.yy410);
}
break;
case 137: /* on_opt ::= ON expr */
case 145: /* sortitem ::= expr */
case 152: /* having_opt ::= HAVING expr */
case 159: /* where_opt ::= WHERE expr */
case 174: /* expr ::= term */
case 202: /* escape ::= ESCAPE expr */
case 226: /* case_else ::= ELSE expr */
case 228: /* case_operand ::= expr */
{
yygotominor.yy172 = yymsp[0].minor.yy172;
}
break;
case 138: /* on_opt ::= */
case 151: /* having_opt ::= */
case 158: /* where_opt ::= */
case 203: /* escape ::= */
case 227: /* case_else ::= */
case 229: /* case_operand ::= */
{
yygotominor.yy172 = 0;
}
break;
case 139: /* using_opt ::= USING LP inscollist RP */
case 171: /* inscollist_opt ::= LP inscollist RP */
{
yygotominor.yy432 = yymsp[-1].minor.yy432;
}
break;
case 140: /* using_opt ::= */
case 170: /* inscollist_opt ::= */
{
yygotominor.yy432 = 0;
}
break;
case 142: /* orderby_opt ::= ORDER BY sortlist */
case 150: /* groupby_opt ::= GROUP BY nexprlist */
case 230: /* exprlist ::= nexprlist */
{
yygotominor.yy174 = yymsp[0].minor.yy174;
}
break;
case 143: /* sortlist ::= sortlist COMMA sortitem sortorder */
{
yygotominor.yy174 =
sqlite3ExprListAppend(pParse, yymsp[-3].minor.yy174,
yymsp[-1].minor.yy172, 0);
if(yygotominor.yy174)
yygotominor.yy174->a[yygotominor.yy174->nExpr - 1].sortOrder =
yymsp[0].minor.yy46;
}
break;
case 144: /* sortlist ::= sortitem sortorder */
{
yygotominor.yy174 =
sqlite3ExprListAppend(pParse, 0, yymsp[-1].minor.yy172, 0);
if(yygotominor.yy174 && yygotominor.yy174->a)
yygotominor.yy174->a[0].sortOrder = yymsp[0].minor.yy46;
}
break;
case 146: /* sortorder ::= ASC */
case 148: /* sortorder ::= */
{
yygotominor.yy46 = SQLITE_SO_ASC;
}
break;
case 147: /* sortorder ::= DESC */
{
yygotominor.yy46 = SQLITE_SO_DESC;
}
break;
case 153: /* limit_opt ::= */
{
yygotominor.yy234.pLimit = 0;
yygotominor.yy234.pOffset = 0;
}
break;
case 154: /* limit_opt ::= LIMIT expr */
{
yygotominor.yy234.pLimit = yymsp[0].minor.yy172;
yygotominor.yy234.pOffset = 0;
}
break;
case 155: /* limit_opt ::= LIMIT expr OFFSET expr */
{
yygotominor.yy234.pLimit = yymsp[-2].minor.yy172;
yygotominor.yy234.pOffset = yymsp[0].minor.yy172;
}
break;
case 156: /* limit_opt ::= LIMIT expr COMMA expr */
{
yygotominor.yy234.pOffset = yymsp[-2].minor.yy172;
yygotominor.yy234.pLimit = yymsp[0].minor.yy172;
}
break;
case 157: /* cmd ::= DELETE FROM fullname where_opt */
{
sqlite3DeleteFrom(pParse, yymsp[-1].minor.yy373, yymsp[0].minor.yy172);
}
break;
case 160: /* cmd ::= UPDATE orconf fullname SET setlist where_opt */
{
sqlite3ExprListCheckLength(pParse, yymsp[-1].minor.yy174, "set list");
sqlite3Update(pParse, yymsp[-3].minor.yy373, yymsp[-1].minor.yy174,
yymsp[0].minor.yy172, yymsp[-4].minor.yy46);
}
break;
case 161: /* setlist ::= setlist COMMA nm EQ expr */
{
yygotominor.yy174 =
sqlite3ExprListAppend(pParse, yymsp[-4].minor.yy174,
yymsp[0].minor.yy172, &yymsp[-2].minor.yy410);
}
break;
case 162: /* setlist ::= nm EQ expr */
{
yygotominor.yy174 =
sqlite3ExprListAppend(pParse, 0, yymsp[0].minor.yy172,
&yymsp[-2].minor.yy410);
}
break;
case 163: /* cmd ::= insert_cmd INTO fullname inscollist_opt VALUES LP itemlist RP */
{
sqlite3Insert(pParse, yymsp[-5].minor.yy373, yymsp[-1].minor.yy174, 0,
yymsp[-4].minor.yy432, yymsp[-7].minor.yy46);
}
break;
case 164: /* cmd ::= insert_cmd INTO fullname inscollist_opt select */
{
sqlite3Insert(pParse, yymsp[-2].minor.yy373, 0, yymsp[0].minor.yy219,
yymsp[-1].minor.yy432, yymsp[-4].minor.yy46);
}
break;
case 165: /* cmd ::= insert_cmd INTO fullname inscollist_opt DEFAULT VALUES */
{
sqlite3Insert(pParse, yymsp[-3].minor.yy373, 0, 0, yymsp[-2].minor.yy432,
yymsp[-5].minor.yy46);
}
break;
case 168: /* itemlist ::= itemlist COMMA expr */
case 232: /* nexprlist ::= nexprlist COMMA expr */
{
yygotominor.yy174 =
sqlite3ExprListAppend(pParse, yymsp[-2].minor.yy174,
yymsp[0].minor.yy172, 0);
}
break;
case 169: /* itemlist ::= expr */
case 233: /* nexprlist ::= expr */
{
yygotominor.yy174 =
sqlite3ExprListAppend(pParse, 0, yymsp[0].minor.yy172, 0);
}
break;
case 172: /* inscollist ::= inscollist COMMA nm */
{
yygotominor.yy432 =
sqlite3IdListAppend(pParse->db, yymsp[-2].minor.yy432,
&yymsp[0].minor.yy410);
}
break;
case 173: /* inscollist ::= nm */
{
yygotominor.yy432 =
sqlite3IdListAppend(pParse->db, 0, &yymsp[0].minor.yy410);
}
break;
case 175: /* expr ::= LP expr RP */
{
yygotominor.yy172 = yymsp[-1].minor.yy172;
sqlite3ExprSpan(yygotominor.yy172, &yymsp[-2].minor.yy0,
&yymsp[0].minor.yy0);
}
break;
case 176: /* term ::= NULL */
case 181: /* term ::= INTEGER|FLOAT|BLOB */
case 182: /* term ::= STRING */
{
yygotominor.yy172 =
sqlite3PExpr(pParse, yymsp[0].major, 0, 0, &yymsp[0].minor.yy0);
}
break;
case 177: /* expr ::= ID */
case 178: /* expr ::= JOIN_KW */
{
yygotominor.yy172 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[0].minor.yy0);
}
break;
case 179: /* expr ::= nm DOT nm */
{
Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-2].minor.yy410);
Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[0].minor.yy410);
yygotominor.yy172 = sqlite3PExpr(pParse, TK_DOT, temp1, temp2, 0);
}
break;
case 180: /* expr ::= nm DOT nm DOT nm */
{
Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-4].minor.yy410);
Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-2].minor.yy410);
Expr *temp3 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[0].minor.yy410);
Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3, 0);
yygotominor.yy172 = sqlite3PExpr(pParse, TK_DOT, temp1, temp4, 0);
}
break;
case 183: /* expr ::= REGISTER */
{
yygotominor.yy172 = sqlite3RegisterExpr(pParse, &yymsp[0].minor.yy0);
}
break;
case 184: /* expr ::= VARIABLE */
{
Token *pToken = &yymsp[0].minor.yy0;
Expr *pExpr = yygotominor.yy172 =
sqlite3PExpr(pParse, TK_VARIABLE, 0, 0, pToken);
sqlite3ExprAssignVarNumber(pParse, pExpr);
}
break;
case 185: /* expr ::= expr COLLATE ids */
{
yygotominor.yy172 =
sqlite3ExprSetColl(pParse, yymsp[-2].minor.yy172,
&yymsp[0].minor.yy410);
}
break;
case 186: /* expr ::= CAST LP expr AS typetoken RP */
{
yygotominor.yy172 =
sqlite3PExpr(pParse, TK_CAST, yymsp[-3].minor.yy172, 0,
&yymsp[-1].minor.yy410);
sqlite3ExprSpan(yygotominor.yy172, &yymsp[-5].minor.yy0,
&yymsp[0].minor.yy0);
}
break;
case 187: /* expr ::= ID LP distinct exprlist RP */
{
if(yymsp[-1].minor.yy174
&& yymsp[-1].minor.yy174->nExpr > SQLITE_MAX_FUNCTION_ARG)
{
sqlite3ErrorMsg(pParse, "too many arguments on function %T",
&yymsp[-4].minor.yy0);
}
yygotominor.yy172 =
sqlite3ExprFunction(pParse, yymsp[-1].minor.yy174,
&yymsp[-4].minor.yy0);
sqlite3ExprSpan(yygotominor.yy172, &yymsp[-4].minor.yy0,
&yymsp[0].minor.yy0);
if(yymsp[-2].minor.yy46 && yygotominor.yy172)
{
yygotominor.yy172->flags |= EP_Distinct;
}
}
break;
case 188: /* expr ::= ID LP STAR RP */
{
yygotominor.yy172 = sqlite3ExprFunction(pParse, 0, &yymsp[-3].minor.yy0);
sqlite3ExprSpan(yygotominor.yy172, &yymsp[-3].minor.yy0,
&yymsp[0].minor.yy0);
}
break;
case 189: /* term ::= CTIME_KW */
{
/* The CURRENT_TIME, CURRENT_DATE, and CURRENT_TIMESTAMP values are
** treated as functions that return constants */
yygotominor.yy172 = sqlite3ExprFunction(pParse, 0, &yymsp[0].minor.yy0);
if(yygotominor.yy172)
{
yygotominor.yy172->op = TK_CONST_FUNC;
yygotominor.yy172->span = yymsp[0].minor.yy0;
}
}
break;
case 190: /* expr ::= expr AND expr */
case 191: /* expr ::= expr OR expr */
case 192: /* expr ::= expr LT|GT|GE|LE expr */
case 193: /* expr ::= expr EQ|NE expr */
case 194: /* expr ::= expr BITAND|BITOR|LSHIFT|RSHIFT expr */
case 195: /* expr ::= expr PLUS|MINUS expr */
case 196: /* expr ::= expr STAR|SLASH|REM expr */
case 197: /* expr ::= expr CONCAT expr */
{
yygotominor.yy172 =
sqlite3PExpr(pParse, yymsp[-1].major, yymsp[-2].minor.yy172,
yymsp[0].minor.yy172, 0);
}
break;
case 198: /* likeop ::= LIKE_KW */
case 200: /* likeop ::= MATCH */
{
yygotominor.yy72.eOperator = yymsp[0].minor.yy0;
yygotominor.yy72.not = 0;
}
break;
case 199: /* likeop ::= NOT LIKE_KW */
case 201: /* likeop ::= NOT MATCH */
{
yygotominor.yy72.eOperator = yymsp[0].minor.yy0;
yygotominor.yy72.not = 1;
}
break;
case 204: /* expr ::= expr likeop expr escape */
{
ExprList *pList;
pList = sqlite3ExprListAppend(pParse, 0, yymsp[-1].minor.yy172, 0);
pList = sqlite3ExprListAppend(pParse, pList, yymsp[-3].minor.yy172, 0);
if(yymsp[0].minor.yy172)
{
pList = sqlite3ExprListAppend(pParse, pList, yymsp[0].minor.yy172,
0);
}
yygotominor.yy172 =
sqlite3ExprFunction(pParse, pList, &yymsp[-2].minor.yy72.eOperator);
if(yymsp[-2].minor.yy72.not)
yygotominor.yy172 =
sqlite3PExpr(pParse, TK_NOT, yygotominor.yy172, 0, 0);
sqlite3ExprSpan(yygotominor.yy172, &yymsp[-3].minor.yy172->span,
&yymsp[-1].minor.yy172->span);
if(yygotominor.yy172)
yygotominor.yy172->flags |= EP_InfixFunc;
}
break;
case 205: /* expr ::= expr ISNULL|NOTNULL */
{
yygotominor.yy172 =
sqlite3PExpr(pParse, yymsp[0].major, yymsp[-1].minor.yy172, 0, 0);
sqlite3ExprSpan(yygotominor.yy172, &yymsp[-1].minor.yy172->span,
&yymsp[0].minor.yy0);
}
break;
case 206: /* expr ::= expr IS NULL */
{
yygotominor.yy172 =
sqlite3PExpr(pParse, TK_ISNULL, yymsp[-2].minor.yy172, 0, 0);
sqlite3ExprSpan(yygotominor.yy172, &yymsp[-2].minor.yy172->span,
&yymsp[0].minor.yy0);
}
break;
case 207: /* expr ::= expr NOT NULL */
{
yygotominor.yy172 =
sqlite3PExpr(pParse, TK_NOTNULL, yymsp[-2].minor.yy172, 0, 0);
sqlite3ExprSpan(yygotominor.yy172, &yymsp[-2].minor.yy172->span,
&yymsp[0].minor.yy0);
}
break;
case 208: /* expr ::= expr IS NOT NULL */
{
yygotominor.yy172 =
sqlite3PExpr(pParse, TK_NOTNULL, yymsp[-3].minor.yy172, 0, 0);
sqlite3ExprSpan(yygotominor.yy172, &yymsp[-3].minor.yy172->span,
&yymsp[0].minor.yy0);
}
break;
case 209: /* expr ::= NOT expr */
case 210: /* expr ::= BITNOT expr */
{
yygotominor.yy172 =
sqlite3PExpr(pParse, yymsp[-1].major, yymsp[0].minor.yy172, 0, 0);
sqlite3ExprSpan(yygotominor.yy172, &yymsp[-1].minor.yy0,
&yymsp[0].minor.yy172->span);
}
break;
case 211: /* expr ::= MINUS expr */
{
yygotominor.yy172 =
sqlite3PExpr(pParse, TK_UMINUS, yymsp[0].minor.yy172, 0, 0);
sqlite3ExprSpan(yygotominor.yy172, &yymsp[-1].minor.yy0,
&yymsp[0].minor.yy172->span);
}
break;
case 212: /* expr ::= PLUS expr */
{
yygotominor.yy172 =
sqlite3PExpr(pParse, TK_UPLUS, yymsp[0].minor.yy172, 0, 0);
sqlite3ExprSpan(yygotominor.yy172, &yymsp[-1].minor.yy0,
&yymsp[0].minor.yy172->span);
}
break;
case 215: /* expr ::= expr between_op expr AND expr */
{
ExprList *pList =
sqlite3ExprListAppend(pParse, 0, yymsp[-2].minor.yy172, 0);
pList = sqlite3ExprListAppend(pParse, pList, yymsp[0].minor.yy172, 0);
yygotominor.yy172 =
sqlite3PExpr(pParse, TK_BETWEEN, yymsp[-4].minor.yy172, 0, 0);
if(yygotominor.yy172)
{
yygotominor.yy172->pList = pList;
}
else
{
sqlite3ExprListDelete(pList);
}
if(yymsp[-3].minor.yy46)
yygotominor.yy172 =
sqlite3PExpr(pParse, TK_NOT, yygotominor.yy172, 0, 0);
sqlite3ExprSpan(yygotominor.yy172, &yymsp[-4].minor.yy172->span,
&yymsp[0].minor.yy172->span);
}
break;
case 218: /* expr ::= expr in_op LP exprlist RP */
{
yygotominor.yy172 =
sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy172, 0, 0);
if(yygotominor.yy172)
{
yygotominor.yy172->pList = yymsp[-1].minor.yy174;
sqlite3ExprSetHeight(yygotominor.yy172);
}
else
{
sqlite3ExprListDelete(yymsp[-1].minor.yy174);
}
if(yymsp[-3].minor.yy46)
yygotominor.yy172 =
sqlite3PExpr(pParse, TK_NOT, yygotominor.yy172, 0, 0);
sqlite3ExprSpan(yygotominor.yy172, &yymsp[-4].minor.yy172->span,
&yymsp[0].minor.yy0);
}
break;
case 219: /* expr ::= LP select RP */
{
yygotominor.yy172 = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0);
if(yygotominor.yy172)
{
yygotominor.yy172->pSelect = yymsp[-1].minor.yy219;
sqlite3ExprSetHeight(yygotominor.yy172);
}
else
{
sqlite3SelectDelete(yymsp[-1].minor.yy219);
}
sqlite3ExprSpan(yygotominor.yy172, &yymsp[-2].minor.yy0,
&yymsp[0].minor.yy0);
}
break;
case 220: /* expr ::= expr in_op LP select RP */
{
yygotominor.yy172 =
sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy172, 0, 0);
if(yygotominor.yy172)
{
yygotominor.yy172->pSelect = yymsp[-1].minor.yy219;
sqlite3ExprSetHeight(yygotominor.yy172);
}
else
{
sqlite3SelectDelete(yymsp[-1].minor.yy219);
}
if(yymsp[-3].minor.yy46)
yygotominor.yy172 =
sqlite3PExpr(pParse, TK_NOT, yygotominor.yy172, 0, 0);
sqlite3ExprSpan(yygotominor.yy172, &yymsp[-4].minor.yy172->span,
&yymsp[0].minor.yy0);
}
break;
case 221: /* expr ::= expr in_op nm dbnm */
{
SrcList *pSrc =
sqlite3SrcListAppend(pParse->db, 0, &yymsp[-1].minor.yy410,
&yymsp[0].minor.yy410);
yygotominor.yy172 =
sqlite3PExpr(pParse, TK_IN, yymsp[-3].minor.yy172, 0, 0);
if(yygotominor.yy172)
{
yygotominor.yy172->pSelect =
sqlite3SelectNew(pParse, 0, pSrc, 0, 0, 0, 0, 0, 0, 0);
sqlite3ExprSetHeight(yygotominor.yy172);
}
else
{
sqlite3SrcListDelete(pSrc);
}
if(yymsp[-2].minor.yy46)
yygotominor.yy172 =
sqlite3PExpr(pParse, TK_NOT, yygotominor.yy172, 0, 0);
sqlite3ExprSpan(yygotominor.yy172, &yymsp[-3].minor.yy172->span,
yymsp[0].minor.yy410.z ? &yymsp[0].minor.yy410 : &yymsp[-1].
minor.yy410);
}
break;
case 222: /* expr ::= EXISTS LP select RP */
{
Expr *p = yygotominor.yy172 = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0);
if(p)
{
p->pSelect = yymsp[-1].minor.yy219;
sqlite3ExprSpan(p, &yymsp[-3].minor.yy0, &yymsp[0].minor.yy0);
sqlite3ExprSetHeight(yygotominor.yy172);
}
else
{
sqlite3SelectDelete(yymsp[-1].minor.yy219);
}
}
break;
case 223: /* expr ::= CASE case_operand case_exprlist case_else END */
{
yygotominor.yy172 =
sqlite3PExpr(pParse, TK_CASE, yymsp[-3].minor.yy172,
yymsp[-1].minor.yy172, 0);
if(yygotominor.yy172)
{
yygotominor.yy172->pList = yymsp[-2].minor.yy174;
sqlite3ExprSetHeight(yygotominor.yy172);
}
else
{
sqlite3ExprListDelete(yymsp[-2].minor.yy174);
}
sqlite3ExprSpan(yygotominor.yy172, &yymsp[-4].minor.yy0,
&yymsp[0].minor.yy0);
}
break;
case 224: /* case_exprlist ::= case_exprlist WHEN expr THEN expr */
{
yygotominor.yy174 =
sqlite3ExprListAppend(pParse, yymsp[-4].minor.yy174,
yymsp[-2].minor.yy172, 0);
yygotominor.yy174 =
sqlite3ExprListAppend(pParse, yygotominor.yy174,
yymsp[0].minor.yy172, 0);
}
break;
case 225: /* case_exprlist ::= WHEN expr THEN expr */
{
yygotominor.yy174 =
sqlite3ExprListAppend(pParse, 0, yymsp[-2].minor.yy172, 0);
yygotominor.yy174 =
sqlite3ExprListAppend(pParse, yygotominor.yy174,
yymsp[0].minor.yy172, 0);
}
break;
case 234: /* cmd ::= CREATE uniqueflag INDEX ifnotexists nm dbnm ON nm LP idxlist RP */
{
sqlite3CreateIndex(pParse, &yymsp[-6].minor.yy410, &yymsp[-5].minor.yy410,
sqlite3SrcListAppend(pParse->db, 0,
&yymsp[-3].minor.yy410, 0),
yymsp[-1].minor.yy174, yymsp[-9].minor.yy46,
&yymsp[-10].minor.yy0, &yymsp[0].minor.yy0,
SQLITE_SO_ASC, yymsp[-7].minor.yy46);
}
break;
case 235: /* uniqueflag ::= UNIQUE */
case 283: /* raisetype ::= ABORT */
{
yygotominor.yy46 = OE_Abort;
}
break;
case 236: /* uniqueflag ::= */
{
yygotominor.yy46 = OE_None;
}
break;
case 239: /* idxlist ::= idxlist COMMA idxitem collate sortorder */
{
Expr *p = 0;
if(yymsp[-1].minor.yy410.n > 0)
{
p = sqlite3PExpr(pParse, TK_COLUMN, 0, 0, 0);
sqlite3ExprSetColl(pParse, p, &yymsp[-1].minor.yy410);
}
yygotominor.yy174 =
sqlite3ExprListAppend(pParse, yymsp[-4].minor.yy174, p,
&yymsp[-2].minor.yy410);
sqlite3ExprListCheckLength(pParse, yygotominor.yy174, "index");
if(yygotominor.yy174)
yygotominor.yy174->a[yygotominor.yy174->nExpr - 1].sortOrder =
yymsp[0].minor.yy46;
}
break;
case 240: /* idxlist ::= idxitem collate sortorder */
{
Expr *p = 0;
if(yymsp[-1].minor.yy410.n > 0)
{
p = sqlite3PExpr(pParse, TK_COLUMN, 0, 0, 0);
sqlite3ExprSetColl(pParse, p, &yymsp[-1].minor.yy410);
}
yygotominor.yy174 =
sqlite3ExprListAppend(pParse, 0, p, &yymsp[-2].minor.yy410);
sqlite3ExprListCheckLength(pParse, yygotominor.yy174, "index");
if(yygotominor.yy174)
yygotominor.yy174->a[yygotominor.yy174->nExpr - 1].sortOrder =
yymsp[0].minor.yy46;
}
break;
case 242: /* collate ::= */
{
yygotominor.yy410.z = 0;
yygotominor.yy410.n = 0;
}
break;
case 244: /* cmd ::= DROP INDEX ifexists fullname */
{
sqlite3DropIndex(pParse, yymsp[0].minor.yy373, yymsp[-1].minor.yy46);
}
break;
case 245: /* cmd ::= VACUUM */
case 246: /* cmd ::= VACUUM nm */
{
sqlite3Vacuum(pParse);
}
break;
case 247: /* cmd ::= PRAGMA nm dbnm EQ nmnum */
{
sqlite3Pragma(pParse, &yymsp[-3].minor.yy410, &yymsp[-2].minor.yy410,
&yymsp[0].minor.yy410, 0);
}
break;
case 248: /* cmd ::= PRAGMA nm dbnm EQ ON */
case 249: /* cmd ::= PRAGMA nm dbnm EQ DELETE */
{
sqlite3Pragma(pParse, &yymsp[-3].minor.yy410, &yymsp[-2].minor.yy410,
&yymsp[0].minor.yy0, 0);
}
break;
case 250: /* cmd ::= PRAGMA nm dbnm EQ minus_num */
{
sqlite3Pragma(pParse, &yymsp[-3].minor.yy410, &yymsp[-2].minor.yy410,
&yymsp[0].minor.yy410, 1);
}
break;
case 251: /* cmd ::= PRAGMA nm dbnm LP nmnum RP */
{
sqlite3Pragma(pParse, &yymsp[-4].minor.yy410, &yymsp[-3].minor.yy410,
&yymsp[-1].minor.yy410, 0);
}
break;
case 252: /* cmd ::= PRAGMA nm dbnm */
{
sqlite3Pragma(pParse, &yymsp[-1].minor.yy410, &yymsp[0].minor.yy410, 0, 0);
}
break;
case 260: /* cmd ::= CREATE trigger_decl BEGIN trigger_cmd_list END */
{
Token all;
all.z = yymsp[-3].minor.yy410.z;
all.n = (yymsp[0].minor.yy0.z - yymsp[-3].minor.yy410.z) +
yymsp[0].minor.yy0.n;
sqlite3FinishTrigger(pParse, yymsp[-1].minor.yy243, &all);
}
break;
case 261: /* trigger_decl ::= temp TRIGGER ifnotexists nm dbnm trigger_time trigger_event ON fullname foreach_clause when_clause */
{
sqlite3BeginTrigger(pParse, &yymsp[-7].minor.yy410, &yymsp[-6].minor.yy410,
yymsp[-5].minor.yy46, yymsp[-4].minor.yy370.a,
yymsp[-4].minor.yy370.b, yymsp[-2].minor.yy373,
yymsp[0].minor.yy172, yymsp[-10].minor.yy46,
yymsp[-8].minor.yy46);
yygotominor.yy410 =
(yymsp[-6].minor.yy410.n ==
0 ? yymsp[-7].minor.yy410 : yymsp[-6].minor.yy410);
}
break;
case 262: /* trigger_time ::= BEFORE */
case 265: /* trigger_time ::= */
{
yygotominor.yy46 = TK_BEFORE;
}
break;
case 263: /* trigger_time ::= AFTER */
{
yygotominor.yy46 = TK_AFTER;
}
break;
case 264: /* trigger_time ::= INSTEAD OF */
{
yygotominor.yy46 = TK_INSTEAD;
}
break;
case 266: /* trigger_event ::= DELETE|INSERT */
case 267: /* trigger_event ::= UPDATE */
{
yygotominor.yy370.a = yymsp[0].major;
yygotominor.yy370.b = 0;
}
break;
case 268: /* trigger_event ::= UPDATE OF inscollist */
{
yygotominor.yy370.a = TK_UPDATE;
yygotominor.yy370.b = yymsp[0].minor.yy432;
}
break;
case 271: /* when_clause ::= */
case 288: /* key_opt ::= */
{
yygotominor.yy172 = 0;
}
break;
case 272: /* when_clause ::= WHEN expr */
case 289: /* key_opt ::= KEY expr */
{
yygotominor.yy172 = yymsp[0].minor.yy172;
}
break;
case 273: /* trigger_cmd_list ::= trigger_cmd_list trigger_cmd SEMI */
{
if(yymsp[-2].minor.yy243)
{
yymsp[-2].minor.yy243->pLast->pNext = yymsp[-1].minor.yy243;
}
else
{
yymsp[-2].minor.yy243 = yymsp[-1].minor.yy243;
}
yymsp[-2].minor.yy243->pLast = yymsp[-1].minor.yy243;
yygotominor.yy243 = yymsp[-2].minor.yy243;
}
break;
case 274: /* trigger_cmd_list ::= */
{
yygotominor.yy243 = 0;
}
break;
case 275: /* trigger_cmd ::= UPDATE orconf nm SET setlist where_opt */
{
yygotominor.yy243 =
sqlite3TriggerUpdateStep(pParse->db, &yymsp[-3].minor.yy410,
yymsp[-1].minor.yy174,
yymsp[0].minor.yy172,
yymsp[-4].minor.yy46);
}
break;
case 276: /* trigger_cmd ::= insert_cmd INTO nm inscollist_opt VALUES LP itemlist RP */
{
yygotominor.yy243 =
sqlite3TriggerInsertStep(pParse->db, &yymsp[-5].minor.yy410,
yymsp[-4].minor.yy432,
yymsp[-1].minor.yy174, 0,
yymsp[-7].minor.yy46);
}
break;
case 277: /* trigger_cmd ::= insert_cmd INTO nm inscollist_opt select */
{
yygotominor.yy243 =
sqlite3TriggerInsertStep(pParse->db, &yymsp[-2].minor.yy410,
yymsp[-1].minor.yy432, 0,
yymsp[0].minor.yy219,
yymsp[-4].minor.yy46);
}
break;
case 278: /* trigger_cmd ::= DELETE FROM nm where_opt */
{
yygotominor.yy243 =
sqlite3TriggerDeleteStep(pParse->db, &yymsp[-1].minor.yy410,
yymsp[0].minor.yy172);
}
break;
case 279: /* trigger_cmd ::= select */
{
yygotominor.yy243 =
sqlite3TriggerSelectStep(pParse->db, yymsp[0].minor.yy219);
}
break;
case 280: /* expr ::= RAISE LP IGNORE RP */
{
yygotominor.yy172 = sqlite3PExpr(pParse, TK_RAISE, 0, 0, 0);
if(yygotominor.yy172)
{
yygotominor.yy172->iColumn = OE_Ignore;
sqlite3ExprSpan(yygotominor.yy172, &yymsp[-3].minor.yy0,
&yymsp[0].minor.yy0);
}
}
break;
case 281: /* expr ::= RAISE LP raisetype COMMA nm RP */
{
yygotominor.yy172 =
sqlite3PExpr(pParse, TK_RAISE, 0, 0, &yymsp[-1].minor.yy410);
if(yygotominor.yy172)
{
yygotominor.yy172->iColumn = yymsp[-3].minor.yy46;
sqlite3ExprSpan(yygotominor.yy172, &yymsp[-5].minor.yy0,
&yymsp[0].minor.yy0);
}
}
break;
case 282: /* raisetype ::= ROLLBACK */
{
yygotominor.yy46 = OE_Rollback;
}
break;
case 284: /* raisetype ::= FAIL */
{
yygotominor.yy46 = OE_Fail;
}
break;
case 285: /* cmd ::= DROP TRIGGER ifexists fullname */
{
sqlite3DropTrigger(pParse, yymsp[0].minor.yy373, yymsp[-1].minor.yy46);
}
break;
case 286: /* cmd ::= ATTACH database_kw_opt expr AS expr key_opt */
{
sqlite3Attach(pParse, yymsp[-3].minor.yy172, yymsp[-1].minor.yy172,
yymsp[0].minor.yy172);
}
break;
case 287: /* cmd ::= DETACH database_kw_opt expr */
{
sqlite3Detach(pParse, yymsp[0].minor.yy172);
}
break;
case 292: /* cmd ::= REINDEX */
{
sqlite3Reindex(pParse, 0, 0);
}
break;
case 293: /* cmd ::= REINDEX nm dbnm */
{
sqlite3Reindex(pParse, &yymsp[-1].minor.yy410, &yymsp[0].minor.yy410);
}
break;
case 294: /* cmd ::= ANALYZE */
{
sqlite3Analyze(pParse, 0, 0);
}
break;
case 295: /* cmd ::= ANALYZE nm dbnm */
{
sqlite3Analyze(pParse, &yymsp[-1].minor.yy410, &yymsp[0].minor.yy410);
}
break;
case 296: /* cmd ::= ALTER TABLE fullname RENAME TO nm */
{
sqlite3AlterRenameTable(pParse, yymsp[-3].minor.yy373,
&yymsp[0].minor.yy410);
}
break;
case 297: /* cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column */
{
sqlite3AlterFinishAddColumn(pParse, &yymsp[0].minor.yy410);
}
break;
case 298: /* add_column_fullname ::= fullname */
{
sqlite3AlterBeginAddColumn(pParse, yymsp[0].minor.yy373);
}
break;
case 301: /* cmd ::= create_vtab */
{
sqlite3VtabFinishParse(pParse, 0);
}
break;
case 302: /* cmd ::= create_vtab LP vtabarglist RP */
{
sqlite3VtabFinishParse(pParse, &yymsp[0].minor.yy0);
}
break;
case 303: /* create_vtab ::= CREATE VIRTUAL TABLE nm dbnm USING nm */
{
sqlite3VtabBeginParse(pParse, &yymsp[-3].minor.yy410,
&yymsp[-2].minor.yy410, &yymsp[0].minor.yy410);
}
break;
case 306: /* vtabarg ::= */
{
sqlite3VtabArgInit(pParse);
}
break;
case 308: /* vtabargtoken ::= ANY */
case 309: /* vtabargtoken ::= lp anylist RP */
case 310: /* lp ::= LP */
case 312: /* anylist ::= anylist ANY */
{
sqlite3VtabArgExtend(pParse, &yymsp[0].minor.yy0);
}
break;
};
yygoto = yyRuleInfo[yyruleno].lhs;
yysize = yyRuleInfo[yyruleno].nrhs;
yypParser->yyidx -= yysize;
yyact = yy_find_reduce_action(yymsp[-yysize].stateno, yygoto);
if(yyact < YYNSTATE)
{
#ifdef NDEBUG
/* If we are not debugging and the reduce action popped at least
** one element off the stack, then we can push the new element back
** onto the stack here, and skip the stack overflow test in yy_shift().
** That gives a significant speed improvement. */
if(yysize)
{
yypParser->yyidx++;
yymsp -= yysize - 1;
yymsp->stateno = yyact;
yymsp->major = yygoto;
yymsp->minor = yygotominor;
}
else
#endif
{
yy_shift(yypParser, yyact, yygoto, &yygotominor);
}
}
else
{
assert(yyact == YYNSTATE + YYNRULE + 1);
yy_accept(yypParser);
}
}
/*
** The following code executes when the parse fails
*/
static void
yy_parse_failed(yyParser * yypParser /* The parser */
)
{
sqlite3ParserARG_FETCH;
#ifndef NDEBUG
if(yyTraceFILE)
{
fprintf(yyTraceFILE, "%sFail!\n", yyTracePrompt);
}
#endif
while (yypParser->yyidx >= 0)
yy_pop_parser_stack(yypParser);
/* Here code is inserted which will be executed whenever the
** parser fails */
sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
}
/*
** The following code executes when a syntax error first occurs.
*/
static void
yy_syntax_error(yyParser * yypParser, /* The parser */
int yymajor, /* The major type of the error token */
YYMINORTYPE yyminor /* The minor type of the error token */
)
{
sqlite3ParserARG_FETCH;
#define TOKEN (yyminor.yy0)
assert(TOKEN.z[0]); /* The tokenizer always gives us a token */
sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN);
pParse->parseError = 1;
sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
}
/*
** The following is executed when the parser accepts
*/
static void
yy_accept(yyParser * yypParser /* The parser */
)
{
sqlite3ParserARG_FETCH;
#ifndef NDEBUG
if(yyTraceFILE)
{
fprintf(yyTraceFILE, "%sAccept!\n", yyTracePrompt);
}
#endif
while (yypParser->yyidx >= 0)
yy_pop_parser_stack(yypParser);
/* Here code is inserted which will be executed whenever the
** parser accepts */
sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
}
/* The main parser program.
** The first argument is a pointer to a structure obtained from
** "sqlite3ParserAlloc" which describes the current state of the parser.
** The second argument is the major token number. The third is
** the minor token. The fourth optional argument is whatever the
** user wants (and specified in the grammar) and is available for
** use by the action routines.
**
** Inputs:
** <ul>
** <li> A pointer to the parser (an opaque structure.)
** <li> The major token number.
** <li> The minor token number.
** <li> An option argument of a grammar-specified type.
** </ul>
**
** Outputs:
** None.
*/
SQLITE_PRIVATE void
sqlite3Parser(void *yyp, /* The parser */
int yymajor, /* The major token code number */
sqlite3ParserTOKENTYPE yyminor /* The value for the token */
sqlite3ParserARG_PDECL /* Optional %extra_argument parameter */
)
{
YYMINORTYPE yyminorunion;
int yyact; /* The parser action. */
int yyendofinput; /* True if we are at the end of input */
#ifdef YYERRORSYMBOL
int yyerrorhit = 0; /* True if yymajor has invoked an error */
#endif
yyParser *yypParser; /* The parser */
/* (re)initialize the parser, if necessary */
yypParser = (yyParser *) yyp;
if(yypParser->yyidx < 0)
{
#if YYSTACKDEPTH<=0
if(yypParser->yystksz <= 0)
{
/*memset(&yyminorunion, 0, sizeof(yyminorunion)); */
yyminorunion = yyzerominor;
yyStackOverflow(yypParser, &yyminorunion);
return;
}
#endif
yypParser->yyidx = 0;
yypParser->yyerrcnt = -1;
yypParser->yystack[0].stateno = 0;
yypParser->yystack[0].major = 0;
}
yyminorunion.yy0 = yyminor;
yyendofinput = (yymajor == 0);
sqlite3ParserARG_STORE;
#ifndef NDEBUG
if(yyTraceFILE)
{
fprintf(yyTraceFILE, "%sInput %s\n", yyTracePrompt, yyTokenName[yymajor]);
}
#endif
do
{
yyact = yy_find_shift_action(yypParser, yymajor);
if(yyact < YYNSTATE)
{
assert(!yyendofinput); /* Impossible to shift the $ token */
yy_shift(yypParser, yyact, yymajor, &yyminorunion);
yypParser->yyerrcnt--;
yymajor = YYNOCODE;
}
else if(yyact < YYNSTATE + YYNRULE)
{
yy_reduce(yypParser, yyact - YYNSTATE);
}
else
{
assert(yyact == YY_ERROR_ACTION);
#ifdef YYERRORSYMBOL
int yymx;
#endif
#ifndef NDEBUG
if(yyTraceFILE)
{
fprintf(yyTraceFILE, "%sSyntax Error!\n", yyTracePrompt);
}
#endif
#ifdef YYERRORSYMBOL
/* A syntax error has occurred.
** The response to an error depends upon whether or not the
** grammar defines an error token "ERROR".
**
** This is what we do if the grammar does define ERROR:
**
** * Call the %syntax_error function.
**
** * Begin popping the stack until we enter a state where
** it is legal to shift the error symbol, then shift
** the error symbol.
**
** * Set the error count to three.
**
** * Begin accepting and shifting new tokens. No new error
** processing will occur until three tokens have been
** shifted successfully.
**
*/
if(yypParser->yyerrcnt < 0)
{
yy_syntax_error(yypParser, yymajor, yyminorunion);
}
yymx = yypParser->yystack[yypParser->yyidx].major;
if(yymx == YYERRORSYMBOL || yyerrorhit)
{
#ifndef NDEBUG
if(yyTraceFILE)
{
fprintf(yyTraceFILE, "%sDiscard input token %s\n",
yyTracePrompt, yyTokenName[yymajor]);
}
#endif
yy_destructor(yymajor, &yyminorunion);
yymajor = YYNOCODE;
}
else
{
while (yypParser->yyidx >= 0 &&
yymx != YYERRORSYMBOL &&
(yyact =
yy_find_reduce_action(yypParser->yystack[yypParser->yyidx].
stateno, YYERRORSYMBOL)) >= YYNSTATE)
{
yy_pop_parser_stack(yypParser);
}
if(yypParser->yyidx < 0 || yymajor == 0)
{
yy_destructor(yymajor, &yyminorunion);
yy_parse_failed(yypParser);
yymajor = YYNOCODE;
}
else if(yymx != YYERRORSYMBOL)
{
YYMINORTYPE u2;
u2.YYERRSYMDT = 0;
yy_shift(yypParser, yyact, YYERRORSYMBOL, &u2);
}
}
yypParser->yyerrcnt = 3;
yyerrorhit = 1;
#else /* YYERRORSYMBOL is not defined */
/* This is what we do if the grammar does not define ERROR:
**
** * Report an error message, and throw away the input token.
**
** * If the input token is $, then fail the parse.
**
** As before, subsequent error messages are suppressed until
** three input tokens have been successfully shifted.
*/
if(yypParser->yyerrcnt <= 0)
{
yy_syntax_error(yypParser, yymajor, yyminorunion);
}
yypParser->yyerrcnt = 3;
yy_destructor(yymajor, &yyminorunion);
if(yyendofinput)
{
yy_parse_failed(yypParser);
}
yymajor = YYNOCODE;
#endif
}
}
while (yymajor != YYNOCODE && yypParser->yyidx >= 0);
return;
}
/************** End of parse.c ***********************************************/
/************** Begin file tokenize.c ****************************************/
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** An tokenizer for SQL
**
** This file contains C code that splits an SQL input string up into
** individual tokens and sends those tokens one-by-one over to the
** parser for analysis.
**
*/
/*
** The charMap() macro maps alphabetic characters into their
** lower-case ASCII equivalent. On ASCII machines, this is just
** an upper-to-lower case map. On EBCDIC machines we also need
** to adjust the encoding. Only alphabetic characters and underscores
** need to be translated.
*/
#ifdef SQLITE_ASCII
# define charMap(X) sqlite3UpperToLower[(unsigned char)X]
#endif
#ifdef SQLITE_EBCDIC
# define charMap(X) ebcdicToAscii[(unsigned char)X]
const unsigned char ebcdicToAscii[] = {
/* 0 1 2 3 4 5 6 7 8 9 A B C D E F */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 1x */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 3x */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 4x */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 5x */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 95, 0, 0, /* 6x */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 7x */
0, 97, 98, 99, 100, 101, 102, 103, 104, 105, 0, 0, 0, 0, 0, 0, /* 8x */
0, 106, 107, 108, 109, 110, 111, 112, 113, 114, 0, 0, 0, 0, 0, 0, /* 9x */
0, 0, 115, 116, 117, 118, 119, 120, 121, 122, 0, 0, 0, 0, 0, 0, /* Ax */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Bx */
0, 97, 98, 99, 100, 101, 102, 103, 104, 105, 0, 0, 0, 0, 0, 0, /* Cx */
0, 106, 107, 108, 109, 110, 111, 112, 113, 114, 0, 0, 0, 0, 0, 0, /* Dx */
0, 0, 115, 116, 117, 118, 119, 120, 121, 122, 0, 0, 0, 0, 0, 0, /* Ex */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Fx */
};
#endif
/*
** The sqlite3KeywordCode function looks up an identifier to determine if
** it is a keyword. If it is a keyword, the token code of that keyword is
** returned. If the input is not a keyword, TK_ID is returned.
**
** The implementation of this routine was generated by a program,
** mkkeywordhash.h, located in the tool subdirectory of the distribution.
** The output of the mkkeywordhash.c program is written into a file
** named keywordhash.h and then included into this source file by
** the #include below.
*/
/************** Include keywordhash.h in the middle of tokenize.c ************/
/************** Begin file keywordhash.h *************************************/
/***** This file contains automatically generated code ******
**
** The code in this file has been automatically generated by
**
** $Header: /sqlite/sqlite/tool/mkkeywordhash.c,v 1.31 2007/07/30 18:26:20 rse Exp $
**
** The code in this file implements a function that determines whether
** or not a given identifier is really an SQL keyword. The same thing
** might be implemented more directly using a hand-written hash table.
** But by using this automatically generated code, the size of the code
** is substantially reduced. This is important for embedded applications
** on platforms with limited memory.
*/
/* Hash score: 165 */
static int
keywordCode(const char *z, int n)
{
/* zText[] encodes 775 bytes of keywords in 526 bytes */
static const char zText[526] =
"BEFOREIGNOREGEXPLAINSTEADDESCAPEACHECKEYCONSTRAINTERSECTABLEFT"
"HENDATABASELECTRANSACTIONATURALTERAISELSEXCEPTRIGGEREFERENCES"
"UNIQUERYATTACHAVINGROUPDATEMPORARYBEGINNEREINDEXCLUSIVEXISTSBETWEEN"
"OTNULLIKECASCADEFERRABLECASECOLLATECREATECURRENT_DATEDELETEDETACH"
"IMMEDIATEJOINSERTMATCHPLANALYZEPRAGMABORTVALUESVIRTUALIMITWHEN"
"WHERENAMEAFTEREPLACEANDEFAULTAUTOINCREMENTCASTCOLUMNCOMMITCONFLICT"
"CROSSCURRENT_TIMESTAMPRIMARYDEFERREDISTINCTDROPFAILFROMFULLGLOB"
"YIFINTOFFSETISNULLORDERESTRICTOUTERIGHTROLLBACKROWUNIONUSINGVACUUM"
"VIEWINITIALLY";
static const unsigned char aHash[127] = {
63, 92, 109, 61, 0, 38, 0, 0, 69, 0, 64, 0, 0,
102, 4, 65, 7, 0, 108, 72, 103, 99, 0, 22, 0, 0,
113, 0, 111, 106, 0, 18, 80, 0, 1, 0, 0, 56, 57,
0, 55, 11, 0, 33, 77, 89, 0, 110, 88, 0, 0, 45,
0, 90, 54, 0, 20, 0, 114, 34, 19, 0, 10, 97, 28,
83, 0, 0, 116, 93, 47, 115, 41, 12, 44, 0, 78, 0,
87, 29, 0, 86, 0, 0, 0, 82, 79, 84, 75, 96, 6,
14, 95, 0, 68, 0, 21, 76, 98, 27, 0, 112, 67, 104,
49, 40, 71, 0, 0, 81, 100, 0, 107, 0, 15, 0, 0,
24, 0, 73, 42, 50, 0, 16, 48, 0, 37,
};
static const unsigned char aNext[116] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0,
0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0,
17, 0, 0, 0, 36, 39, 0, 0, 25, 0, 0, 31, 0,
0, 0, 43, 52, 0, 0, 0, 53, 0, 0, 0, 0, 0,
0, 0, 0, 0, 51, 0, 0, 0, 0, 26, 0, 8, 46,
2, 0, 0, 0, 0, 0, 0, 0, 3, 58, 66, 0, 13,
0, 91, 85, 0, 94, 0, 74, 0, 0, 62, 0, 35, 101,
0, 0, 105, 23, 30, 60, 70, 0, 0, 59, 0, 0,
};
static const unsigned char aLen[116] = {
6, 7, 3, 6, 6, 7, 7, 3, 4, 6, 4, 5, 3,
10, 9, 5, 4, 4, 3, 8, 2, 6, 11, 2, 7, 5,
5, 4, 6, 7, 10, 6, 5, 6, 6, 5, 6, 4, 9,
2, 5, 5, 7, 5, 9, 6, 7, 7, 3, 4, 4, 7,
3, 10, 4, 7, 6, 12, 6, 6, 9, 4, 6, 5, 4,
7, 6, 5, 6, 7, 5, 4, 5, 6, 5, 7, 3, 7,
13, 2, 2, 4, 6, 6, 8, 5, 17, 12, 7, 8, 8,
2, 4, 4, 4, 4, 4, 2, 2, 4, 6, 2, 3, 6,
5, 8, 5, 5, 8, 3, 5, 5, 6, 4, 9, 3,
};
static const unsigned short int aOffset[116] = {
0, 2, 2, 6, 10, 13, 18, 23, 25, 26, 31, 33, 37,
40, 47, 55, 58, 61, 63, 65, 70, 71, 76, 85, 86, 91,
95, 99, 102, 107, 113, 123, 126, 131, 136, 141, 144, 148, 148,
152, 157, 160, 164, 166, 169, 177, 183, 189, 189, 192, 195, 199,
200, 204, 214, 218, 225, 231, 243, 249, 255, 264, 266, 272, 277,
279, 286, 291, 296, 302, 308, 313, 317, 320, 326, 330, 337, 339,
346, 348, 350, 359, 363, 369, 375, 383, 388, 388, 404, 411, 418,
419, 426, 430, 434, 438, 442, 445, 447, 449, 452, 452, 455, 458,
464, 468, 476, 480, 485, 493, 496, 501, 506, 512, 516, 521,
};
static const unsigned char aCode[116] = {
TK_BEFORE, TK_FOREIGN, TK_FOR, TK_IGNORE, TK_LIKE_KW,
TK_EXPLAIN, TK_INSTEAD, TK_ADD, TK_DESC, TK_ESCAPE,
TK_EACH, TK_CHECK, TK_KEY, TK_CONSTRAINT, TK_INTERSECT,
TK_TABLE, TK_JOIN_KW, TK_THEN, TK_END, TK_DATABASE,
TK_AS, TK_SELECT, TK_TRANSACTION, TK_ON, TK_JOIN_KW,
TK_ALTER, TK_RAISE, TK_ELSE, TK_EXCEPT, TK_TRIGGER,
TK_REFERENCES, TK_UNIQUE, TK_QUERY, TK_ATTACH, TK_HAVING,
TK_GROUP, TK_UPDATE, TK_TEMP, TK_TEMP, TK_OR,
TK_BEGIN, TK_JOIN_KW, TK_REINDEX, TK_INDEX, TK_EXCLUSIVE,
TK_EXISTS, TK_BETWEEN, TK_NOTNULL, TK_NOT, TK_NULL,
TK_LIKE_KW, TK_CASCADE, TK_ASC, TK_DEFERRABLE, TK_CASE,
TK_COLLATE, TK_CREATE, TK_CTIME_KW, TK_DELETE, TK_DETACH,
TK_IMMEDIATE, TK_JOIN, TK_INSERT, TK_MATCH, TK_PLAN,
TK_ANALYZE, TK_PRAGMA, TK_ABORT, TK_VALUES, TK_VIRTUAL,
TK_LIMIT, TK_WHEN, TK_WHERE, TK_RENAME, TK_AFTER,
TK_REPLACE, TK_AND, TK_DEFAULT, TK_AUTOINCR, TK_TO,
TK_IN, TK_CAST, TK_COLUMNKW, TK_COMMIT, TK_CONFLICT,
TK_JOIN_KW, TK_CTIME_KW, TK_CTIME_KW, TK_PRIMARY, TK_DEFERRED,
TK_DISTINCT, TK_IS, TK_DROP, TK_FAIL, TK_FROM,
TK_JOIN_KW, TK_LIKE_KW, TK_BY, TK_IF, TK_INTO,
TK_OFFSET, TK_OF, TK_SET, TK_ISNULL, TK_ORDER,
TK_RESTRICT, TK_JOIN_KW, TK_JOIN_KW, TK_ROLLBACK, TK_ROW,
TK_UNION, TK_USING, TK_VACUUM, TK_VIEW, TK_INITIALLY,
TK_ALL,
};
int h, i;
if(n < 2)
return TK_ID;
h = ((charMap(z[0]) * 4) ^ (charMap(z[n - 1]) * 3) ^ n) % 127;
for (i = ((int) aHash[h]) - 1; i >= 0; i = ((int) aNext[i]) - 1)
{
if(aLen[i] == n && sqlite3StrNICmp(&zText[aOffset[i]], z, n) == 0)
{
return aCode[i];
}
}
return TK_ID;
}
SQLITE_PRIVATE int
sqlite3KeywordCode(const unsigned char *z, int n)
{
return keywordCode((char *) z, n);
}
/************** End of keywordhash.h *****************************************/
/************** Continuing where we left off in tokenize.c *******************/
/*
** If X is a character that can be used in an identifier then
** IdChar(X) will be true. Otherwise it is false.
**
** For ASCII, any character with the high-order bit set is
** allowed in an identifier. For 7-bit characters,
** sqlite3IsIdChar[X] must be 1.
**
** For EBCDIC, the rules are more complex but have the same
** end result.
**
** Ticket #1066. the SQL standard does not allow '$' in the
** middle of identfiers. But many SQL implementations do.
** SQLite will allow '$' in identifiers for compatibility.
** But the feature is undocumented.
*/
#ifdef SQLITE_ASCII
SQLITE_PRIVATE const char sqlite3IsAsciiIdChar[] = {
/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */
};
#define IdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && sqlite3IsAsciiIdChar[c-0x20]))
#endif
#ifdef SQLITE_EBCDIC
SQLITE_PRIVATE const char sqlite3IsEbcdicIdChar[] = {
/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 4x */
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, /* 5x */
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, /* 6x */
0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, /* 7x */
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, /* 8x */
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, /* 9x */
1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, /* Ax */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Bx */
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Cx */
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Dx */
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Ex */
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, /* Fx */
};
#define IdChar(C) (((c=C)>=0x42 && sqlite3IsEbcdicIdChar[c-0x40]))
#endif
/*
** Return the length of the token that begins at z[0].
** Store the token type in *tokenType before returning.
*/
SQLITE_PRIVATE int
sqlite3GetToken(const unsigned char *z, int *tokenType)
{
int i, c;
switch (*z)
{
case ' ':
case '\t':
case '\n':
case '\f':
case '\r':
{
for (i = 1; isspace(z[i]); i++)
{
}
*tokenType = TK_SPACE;
return i;
}
case '-':
{
if(z[1] == '-')
{
for (i = 2; (c = z[i]) != 0 && c != '\n'; i++)
{
}
*tokenType = TK_COMMENT;
return i;
}
*tokenType = TK_MINUS;
return 1;
}
case '(':
{
*tokenType = TK_LP;
return 1;
}
case ')':
{
*tokenType = TK_RP;
return 1;
}
case ';':
{
*tokenType = TK_SEMI;
return 1;
}
case '+':
{
*tokenType = TK_PLUS;
return 1;
}
case '*':
{
*tokenType = TK_STAR;
return 1;
}
case '/':
{
if(z[1] != '*' || z[2] == 0)
{
*tokenType = TK_SLASH;
return 1;
}
for (i = 3, c = z[2]; (c != '*' || z[i] != '/') && (c = z[i]) != 0; i++)
{
}
if(c)
i++;
*tokenType = TK_COMMENT;
return i;
}
case '%':
{
*tokenType = TK_REM;
return 1;
}
case '=':
{
*tokenType = TK_EQ;
return 1 + (z[1] == '=');
}
case '<':
{
if((c = z[1]) == '=')
{
*tokenType = TK_LE;
return 2;
}
else if(c == '>')
{
*tokenType = TK_NE;
return 2;
}
else if(c == '<')
{
*tokenType = TK_LSHIFT;
return 2;
}
else
{
*tokenType = TK_LT;
return 1;
}
}
case '>':
{
if((c = z[1]) == '=')
{
*tokenType = TK_GE;
return 2;
}
else if(c == '>')
{
*tokenType = TK_RSHIFT;
return 2;
}
else
{
*tokenType = TK_GT;
return 1;
}
}
case '!':
{
if(z[1] != '=')
{
*tokenType = TK_ILLEGAL;
return 2;
}
else
{
*tokenType = TK_NE;
return 2;
}
}
case '|':
{
if(z[1] != '|')
{
*tokenType = TK_BITOR;
return 1;
}
else
{
*tokenType = TK_CONCAT;
return 2;
}
}
case ',':
{
*tokenType = TK_COMMA;
return 1;
}
case '&':
{
*tokenType = TK_BITAND;
return 1;
}
case '~':
{
*tokenType = TK_BITNOT;
return 1;
}
case '`':
case '\'':
case '"':
{
int delim = z[0];
for (i = 1; (c = z[i]) != 0; i++)
{
if(c == delim)
{
if(z[i + 1] == delim)
{
i++;
}
else
{
break;
}
}
}
if(c)
{
*tokenType = TK_STRING;
return i + 1;
}
else
{
*tokenType = TK_ILLEGAL;
return i;
}
}
case '.':
{
#ifndef SQLITE_OMIT_FLOATING_POINT
if(!isdigit(z[1]))
#endif
{
*tokenType = TK_DOT;
return 1;
}
/* If the next character is a digit, this is a floating point
** number that begins with ".". Fall thru into the next case */
}
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
{
*tokenType = TK_INTEGER;
for (i = 0; isdigit(z[i]); i++)
{
}
#ifndef SQLITE_OMIT_FLOATING_POINT
if(z[i] == '.')
{
i++;
while (isdigit(z[i]))
{
i++;
}
*tokenType = TK_FLOAT;
}
if((z[i] == 'e' || z[i] == 'E') &&
(isdigit(z[i + 1])
|| ((z[i + 1] == '+' || z[i + 1] == '-') && isdigit(z[i + 2]))))
{
i += 2;
while (isdigit(z[i]))
{
i++;
}
*tokenType = TK_FLOAT;
}
#endif
while (IdChar(z[i]))
{
*tokenType = TK_ILLEGAL;
i++;
}
return i;
}
case '[':
{
for (i = 1, c = z[0]; c != ']' && (c = z[i]) != 0; i++)
{
}
*tokenType = c == ']' ? TK_ID : TK_ILLEGAL;
return i;
}
case '?':
{
*tokenType = TK_VARIABLE;
for (i = 1; isdigit(z[i]); i++)
{
}
return i;
}
case '#':
{
for (i = 1; isdigit(z[i]); i++)
{
}
if(i > 1)
{
/* Parameters of the form #NNN (where NNN is a number) are used
** internally by sqlite3NestedParse. */
*tokenType = TK_REGISTER;
return i;
}
/* Fall through into the next case if the '#' is not followed by
** a digit. Try to match #AAAA where AAAA is a parameter name. */
}
#ifndef SQLITE_OMIT_TCL_VARIABLE
case '$':
#endif
case '@': /* For compatibility with MS SQL Server */
case ':':
{
int n = 0;
*tokenType = TK_VARIABLE;
for (i = 1; (c = z[i]) != 0; i++)
{
if(IdChar(c))
{
n++;
#ifndef SQLITE_OMIT_TCL_VARIABLE
}
else if(c == '(' && n > 0)
{
do
{
i++;
}
while ((c = z[i]) != 0 && !isspace(c) && c != ')');
if(c == ')')
{
i++;
}
else
{
*tokenType = TK_ILLEGAL;
}
break;
}
else if(c == ':' && z[i + 1] == ':')
{
i++;
#endif
}
else
{
break;
}
}
if(n == 0)
*tokenType = TK_ILLEGAL;
return i;
}
#ifndef SQLITE_OMIT_BLOB_LITERAL
case 'x':
case 'X':
{
if(z[1] == '\'')
{
*tokenType = TK_BLOB;
for (i = 2; (c = z[i]) != 0 && c != '\''; i++)
{
if(!isxdigit(c))
{
*tokenType = TK_ILLEGAL;
}
}
if(i % 2 || !c)
*tokenType = TK_ILLEGAL;
if(c)
i++;
return i;
}
/* Otherwise fall through to the next case */
}
#endif
default:
{
if(!IdChar(*z))
{
break;
}
for (i = 1; IdChar(z[i]); i++)
{
}
*tokenType = keywordCode((char *) z, i);
return i;
}
}
*tokenType = TK_ILLEGAL;
return 1;
}
/*
** Run the parser on the given SQL string. The parser structure is
** passed in. An SQLITE_ status code is returned. If an error occurs
** and pzErrMsg!=NULL then an error message might be written into
** memory obtained from sqlite3_malloc() and *pzErrMsg made to point to that
** error message. Or maybe not.
*/
SQLITE_PRIVATE int
sqlite3RunParser(Parse * pParse, const char *zSql, char **pzErrMsg)
{
int nErr = 0;
int i;
void *pEngine;
int tokenType;
int lastTokenParsed = -1;
sqlite3 *db = pParse->db;
int mxSqlLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];
if(db->activeVdbeCnt == 0)
{
db->u1.isInterrupted = 0;
}
pParse->rc = SQLITE_OK;
pParse->zTail = pParse->zSql = zSql;
i = 0;
pEngine = sqlite3ParserAlloc((void *(*)(size_t)) sqlite3_malloc);
if(pEngine == 0)
{
db->mallocFailed = 1;
return SQLITE_NOMEM;
}
assert(pParse->sLastToken.dyn == 0);
assert(pParse->pNewTable == 0);
assert(pParse->pNewTrigger == 0);
assert(pParse->nVar == 0);
assert(pParse->nVarExpr == 0);
assert(pParse->nVarExprAlloc == 0);
assert(pParse->apVarExpr == 0);
while (!db->mallocFailed && zSql[i] != 0)
{
assert(i >= 0);
pParse->sLastToken.z = (u8 *) & zSql[i];
assert(pParse->sLastToken.dyn == 0);
pParse->sLastToken.n = sqlite3GetToken((unsigned char *) &zSql[i], &tokenType);
i += pParse->sLastToken.n;
if(i > mxSqlLen)
{
pParse->rc = SQLITE_TOOBIG;
break;
}
switch (tokenType)
{
case TK_SPACE:
case TK_COMMENT:
{
if(db->u1.isInterrupted)
{
pParse->rc = SQLITE_INTERRUPT;
sqlite3SetString(pzErrMsg, "interrupt", (char *) 0);
goto abort_parse;
}
break;
}
case TK_ILLEGAL:
{
if(pzErrMsg)
{
sqlite3_free(*pzErrMsg);
*pzErrMsg = sqlite3MPrintf(db, "unrecognized token: \"%T\"",
&pParse->sLastToken);
}
nErr++;
goto abort_parse;
}
case TK_SEMI:
{
pParse->zTail = &zSql[i];
/* Fall thru into the default case */
}
default:
{
sqlite3Parser(pEngine, tokenType, pParse->sLastToken, pParse);
lastTokenParsed = tokenType;
if(pParse->rc != SQLITE_OK)
{
goto abort_parse;
}
break;
}
}
}
abort_parse:
if(zSql[i] == 0 && nErr == 0 && pParse->rc == SQLITE_OK)
{
if(lastTokenParsed != TK_SEMI)
{
sqlite3Parser(pEngine, TK_SEMI, pParse->sLastToken, pParse);
pParse->zTail = &zSql[i];
}
sqlite3Parser(pEngine, 0, pParse->sLastToken, pParse);
}
sqlite3ParserFree(pEngine, sqlite3_free);
if(db->mallocFailed)
{
pParse->rc = SQLITE_NOMEM;
}
if(pParse->rc != SQLITE_OK && pParse->rc != SQLITE_DONE && pParse->zErrMsg == 0)
{
sqlite3SetString(&pParse->zErrMsg, sqlite3ErrStr(pParse->rc), (char *) 0);
}
if(pParse->zErrMsg)
{
if(pzErrMsg && *pzErrMsg == 0)
{
*pzErrMsg = pParse->zErrMsg;
}
else
{
sqlite3_free(pParse->zErrMsg);
}
pParse->zErrMsg = 0;
nErr++;
}
if(pParse->pVdbe && pParse->nErr > 0 && pParse->nested == 0)
{
sqlite3VdbeDelete(pParse->pVdbe);
pParse->pVdbe = 0;
}
#ifndef SQLITE_OMIT_SHARED_CACHE
if(pParse->nested == 0)
{
sqlite3_free(pParse->aTableLock);
pParse->aTableLock = 0;
pParse->nTableLock = 0;
}
#endif
#ifndef SQLITE_OMIT_VIRTUALTABLE
sqlite3_free(pParse->apVtabLock);
#endif
if(!IN_DECLARE_VTAB)
{
/* If the pParse->declareVtab flag is set, do not delete any table
** structure built up in pParse->pNewTable. The calling code (see vtab.c)
** will take responsibility for freeing the Table structure.
*/
sqlite3DeleteTable(pParse->pNewTable);
}
sqlite3DeleteTrigger(pParse->pNewTrigger);
sqlite3_free(pParse->apVarExpr);
if(nErr > 0 && (pParse->rc == SQLITE_OK || pParse->rc == SQLITE_DONE))
{
pParse->rc = SQLITE_ERROR;
}
return nErr;
}
/************** End of tokenize.c ********************************************/
/************** Begin file complete.c ****************************************/
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** An tokenizer for SQL
**
** This file contains C code that implements the sqlite3_complete() API.
** This code used to be part of the tokenizer.c source file. But by
** separating it out, the code will be automatically omitted from
** static links that do not use it.
**
*/
#ifndef SQLITE_OMIT_COMPLETE
/*
** This is defined in tokenize.c. We just have to import the definition.
*/
#ifndef SQLITE_AMALGAMATION
#ifdef SQLITE_ASCII
SQLITE_PRIVATE const char sqlite3IsAsciiIdChar[];
#define IdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && sqlite3IsAsciiIdChar[c-0x20]))
#endif
#ifdef SQLITE_EBCDIC
SQLITE_PRIVATE const char sqlite3IsEbcdicIdChar[];
#define IdChar(C) (((c=C)>=0x42 && sqlite3IsEbcdicIdChar[c-0x40]))
#endif
#endif /* SQLITE_AMALGAMATION */
/*
** Token types used by the sqlite3_complete() routine. See the header
** comments on that procedure for additional information.
*/
#define tkSEMI 0
#define tkWS 1
#define tkOTHER 2
#define tkEXPLAIN 3
#define tkCREATE 4
#define tkTEMP 5
#define tkTRIGGER 6
#define tkEND 7
/*
** Return TRUE if the given SQL string ends in a semicolon.
**
** Special handling is require for CREATE TRIGGER statements.
** Whenever the CREATE TRIGGER keywords are seen, the statement
** must end with ";END;".
**
** This implementation uses a state machine with 7 states:
**
** (0) START At the beginning or end of an SQL statement. This routine
** returns 1 if it ends in the START state and 0 if it ends
** in any other state.
**
** (1) NORMAL We are in the middle of statement which ends with a single
** semicolon.
**
** (2) EXPLAIN The keyword EXPLAIN has been seen at the beginning of
** a statement.
**
** (3) CREATE The keyword CREATE has been seen at the beginning of a
** statement, possibly preceeded by EXPLAIN and/or followed by
** TEMP or TEMPORARY
**
** (4) TRIGGER We are in the middle of a trigger definition that must be
** ended by a semicolon, the keyword END, and another semicolon.
**
** (5) SEMI We've seen the first semicolon in the ";END;" that occurs at
** the end of a trigger definition.
**
** (6) END We've seen the ";END" of the ";END;" that occurs at the end
** of a trigger difinition.
**
** Transitions between states above are determined by tokens extracted
** from the input. The following tokens are significant:
**
** (0) tkSEMI A semicolon.
** (1) tkWS Whitespace
** (2) tkOTHER Any other SQL token.
** (3) tkEXPLAIN The "explain" keyword.
** (4) tkCREATE The "create" keyword.
** (5) tkTEMP The "temp" or "temporary" keyword.
** (6) tkTRIGGER The "trigger" keyword.
** (7) tkEND The "end" keyword.
**
** Whitespace never causes a state transition and is always ignored.
**
** If we compile with SQLITE_OMIT_TRIGGER, all of the computation needed
** to recognize the end of a trigger can be omitted. All we have to do
** is look for a semicolon that is not part of an string or comment.
*/
SQLITE_API int
sqlite3_complete(const char *zSql)
{
u8 state = 0; /* Current state, using numbers defined in header comment */
u8 token; /* Value of the next token */
#ifndef SQLITE_OMIT_TRIGGER
/* A complex statement machine used to detect the end of a CREATE TRIGGER
** statement. This is the normal case.
*/
static const u8 trans[7][8] = {
/* Token: */
/* State: ** SEMI WS OTHER EXPLAIN CREATE TEMP TRIGGER END */
/* 0 START: */ {0, 0, 1, 2, 3, 1, 1, 1,},
/* 1 NORMAL: */ {0, 1, 1, 1, 1, 1, 1, 1,},
/* 2 EXPLAIN: */ {0, 2, 1, 1, 3, 1, 1, 1,},
/* 3 CREATE: */ {0, 3, 1, 1, 1, 3, 4, 1,},
/* 4 TRIGGER: */ {5, 4, 4, 4, 4, 4, 4, 4,},
/* 5 SEMI: */ {5, 5, 4, 4, 4, 4, 4, 6,},
/* 6 END: */ {0, 6, 4, 4, 4, 4, 4, 4,},
};
#else
/* If triggers are not suppored by this compile then the statement machine
** used to detect the end of a statement is much simplier
*/
static const u8 trans[2][3] = {
/* Token: */
/* State: ** SEMI WS OTHER */
/* 0 START: */ {0, 0, 1,},
/* 1 NORMAL: */ {0, 1, 1,},
};
#endif /* SQLITE_OMIT_TRIGGER */
while (*zSql)
{
switch (*zSql)
{
case ';':
{ /* A semicolon */
token = tkSEMI;
break;
}
case ' ':
case '\r':
case '\t':
case '\n':
case '\f':
{ /* White space is ignored */
token = tkWS;
break;
}
case '/':
{ /* C-style comments */
if(zSql[1] != '*')
{
token = tkOTHER;
break;
}
zSql += 2;
while (zSql[0] && (zSql[0] != '*' || zSql[1] != '/'))
{
zSql++;
}
if(zSql[0] == 0)
return 0;
zSql++;
token = tkWS;
break;
}
case '-':
{ /* SQL-style comments from "--" to end of line */
if(zSql[1] != '-')
{
token = tkOTHER;
break;
}
while (*zSql && *zSql != '\n')
{
zSql++;
}
if(*zSql == 0)
return state == 0;
token = tkWS;
break;
}
case '[':
{ /* Microsoft-style identifiers in [...] */
zSql++;
while (*zSql && *zSql != ']')
{
zSql++;
}
if(*zSql == 0)
return 0;
token = tkOTHER;
break;
}
case '`': /* Grave-accent quoted symbols used by MySQL */
case '"': /* single- and double-quoted strings */
case '\'':
{
int c = *zSql;
zSql++;
while (*zSql && *zSql != c)
{
zSql++;
}
if(*zSql == 0)
return 0;
token = tkOTHER;
break;
}
default:
{
int c;
if(IdChar((u8) * zSql))
{
/* Keywords and unquoted identifiers */
int nId;
for (nId = 1; IdChar(zSql[nId]); nId++)
{
}
#ifdef SQLITE_OMIT_TRIGGER
token = tkOTHER;
#else
switch (*zSql)
{
case 'c':
case 'C':
{
if(nId == 6
&& sqlite3StrNICmp(zSql, "create",
6) == 0)
{
token = tkCREATE;
}
else
{
token = tkOTHER;
}
break;
}
case 't':
case 'T':
{
if(nId == 7
&& sqlite3StrNICmp(zSql, "trigger",
7) == 0)
{
token = tkTRIGGER;
}
else if(nId == 4
&& sqlite3StrNICmp(zSql, "temp",
4) == 0)
{
token = tkTEMP;
}
else if(nId == 9
&& sqlite3StrNICmp(zSql,
"temporary",
9) == 0)
{
token = tkTEMP;
}
else
{
token = tkOTHER;
}
break;
}
case 'e':
case 'E':
{
if(nId == 3
&& sqlite3StrNICmp(zSql, "end", 3) == 0)
{
token = tkEND;
}
else
#ifndef SQLITE_OMIT_EXPLAIN
if(nId == 7
&& sqlite3StrNICmp(zSql,
"explain",
7)
== 0)
{
token = tkEXPLAIN;
}
else
#endif
{
token = tkOTHER;
}
break;
}
default:
{
token = tkOTHER;
break;
}
}
#endif /* SQLITE_OMIT_TRIGGER */
zSql += nId - 1;
}
else
{
/* Operators and special symbols */
token = tkOTHER;
}
break;
}
}
state = trans[state][token];
zSql++;
}
return state == 0;
}
#ifndef SQLITE_OMIT_UTF16
/*
** This routine is the same as the sqlite3_complete() routine described
** above, except that the parameter is required to be UTF-16 encoded, not
** UTF-8.
*/
SQLITE_API int
sqlite3_complete16(const void *zSql)
{
sqlite3_value *pVal;
char const *zSql8;
int rc = SQLITE_NOMEM;
pVal = sqlite3ValueNew(0);
sqlite3ValueSetStr(pVal, -1, zSql, SQLITE_UTF16NATIVE, SQLITE_STATIC);
zSql8 = sqlite3ValueText(pVal, SQLITE_UTF8);
if(zSql8)
{
rc = sqlite3_complete(zSql8);
}
sqlite3ValueFree(pVal);
return sqlite3ApiExit(0, rc);
}
#endif /* SQLITE_OMIT_UTF16 */
#endif /* SQLITE_OMIT_COMPLETE */
/************** End of complete.c ********************************************/
/************** Begin file main.c ********************************************/
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** Main file for the SQLite library. The routines in this file
** implement the programmer interface to the library. Routines in
** other files are for internal use by SQLite and should not be
** accessed by users of the library.
**
*/
#ifdef SQLITE_ENABLE_FTS3
/************** Include fts3.h in the middle of main.c ***********************/
/************** Begin file fts3.h ********************************************/
/*
** 2006 Oct 10
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** This header file is used by programs that want to link against the
** FTS3 library. All it does is declare the sqlite3Fts3Init() interface.
*/
#if 0
extern "C"
{
#endif /* __cplusplus */
SQLITE_PRIVATE int sqlite3Fts3Init(sqlite3 * db);
#if 0
} /* extern "C" */
#endif /* __cplusplus */
/************** End of fts3.h ************************************************/
/************** Continuing where we left off in main.c ***********************/
#endif
/*
** The version of the library
*/
SQLITE_API const char sqlite3_version[] = SQLITE_VERSION;
SQLITE_API const char *
sqlite3_libversion(void)
{
return sqlite3_version;
}
SQLITE_API int
sqlite3_libversion_number(void)
{
return SQLITE_VERSION_NUMBER;
}
SQLITE_API int
sqlite3_threadsafe(void)
{
return SQLITE_THREADSAFE;
}
#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
/*
** If the following function pointer is not NULL and if
** SQLITE_ENABLE_IOTRACE is enabled, then messages describing
** I/O active are written using this function. These messages
** are intended for debugging activity only.
*/
SQLITE_PRIVATE void (*sqlite3IoTrace) (const char *, ...) = 0;
#endif
/*
** If the following global variable points to a string which is the
** name of a directory, then that directory will be used to store
** temporary files.
**
** See also the "PRAGMA temp_store_directory" SQL command.
*/
SQLITE_API char *sqlite3_temp_directory = 0;
/*
** Routine needed to support the testcase() macro.
*/
#ifdef SQLITE_COVERAGE_TEST
SQLITE_PRIVATE void
sqlite3Coverage(int x)
{
static int dummy = 0;
dummy += x;
}
#endif
/*
** Return true if the buffer z[0..n-1] contains all spaces.
*/
static int
allSpaces(const char *z, int n)
{
while (n > 0 && z[n - 1] == ' ')
{
n--;
}
return n == 0;
}
/*
** This is the default collating function named "BINARY" which is always
** available.
**
** If the padFlag argument is not NULL then space padding at the end
** of strings is ignored. This implements the RTRIM collation.
*/
static int
binCollFunc(void *padFlag, int nKey1, const void *pKey1, int nKey2, const void *pKey2)
{
int rc, n;
n = nKey1 < nKey2 ? nKey1 : nKey2;
rc = memcmp(pKey1, pKey2, n);
if(rc == 0)
{
if(padFlag
&& allSpaces(((char *) pKey1) + n, nKey1 - n)
&& allSpaces(((char *) pKey2) + n, nKey2 - n))
{
/* Leave rc unchanged at 0 */
}
else
{
rc = nKey1 - nKey2;
}
}
return rc;
}
/*
** Another built-in collating sequence: NOCASE.
**
** This collating sequence is intended to be used for "case independant
** comparison". SQLite's knowledge of upper and lower case equivalents
** extends only to the 26 characters used in the English language.
**
** At the moment there is only a UTF-8 implementation.
*/
static int
nocaseCollatingFunc(void *NotUsed, int nKey1, const void *pKey1, int nKey2, const void *pKey2)
{
int r = sqlite3StrNICmp((const char *) pKey1, (const char *) pKey2,
(nKey1 < nKey2) ? nKey1 : nKey2);
if(0 == r)
{
r = nKey1 - nKey2;
}
return r;
}
/*
** Return the ROWID of the most recent insert
*/
SQLITE_API sqlite_int64
sqlite3_last_insert_rowid(sqlite3 * db)
{
return db->lastRowid;
}
/*
** Return the number of changes in the most recent call to sqlite3_exec().
*/
SQLITE_API int
sqlite3_changes(sqlite3 * db)
{
return db->nChange;
}
/*
** Return the number of changes since the database handle was opened.
*/
SQLITE_API int
sqlite3_total_changes(sqlite3 * db)
{
return db->nTotalChange;
}
/*
** Close an existing SQLite database
*/
SQLITE_API int
sqlite3_close(sqlite3 * db)
{
HashElem *i;
int j;
if(!db)
{
return SQLITE_OK;
}
if(!sqlite3SafetyCheckSickOrOk(db))
{
return SQLITE_MISUSE;
}
sqlite3_mutex_enter(db->mutex);
#ifdef SQLITE_SSE
{
extern void sqlite3SseCleanup(sqlite3 *);
sqlite3SseCleanup(db);
}
#endif
sqlite3ResetInternalSchema(db, 0);
/* If a transaction is open, the ResetInternalSchema() call above
** will not have called the xDisconnect() method on any virtual
** tables in the db->aVTrans[] array. The following sqlite3VtabRollback()
** call will do so. We need to do this before the check for active
** SQL statements below, as the v-table implementation may be storing
** some prepared statements internally.
*/
sqlite3VtabRollback(db);
/* If there are any outstanding VMs, return SQLITE_BUSY. */
if(db->pVdbe)
{
sqlite3Error(db, SQLITE_BUSY, "Unable to close due to unfinalised statements");
sqlite3_mutex_leave(db->mutex);
return SQLITE_BUSY;
}
assert(sqlite3SafetyCheckSickOrOk(db));
for (j = 0; j < db->nDb; j++)
{
struct Db *pDb = &db->aDb[j];
if(pDb->pBt)
{
sqlite3BtreeClose(pDb->pBt);
pDb->pBt = 0;
if(j != 1)
{
pDb->pSchema = 0;
}
}
}
sqlite3ResetInternalSchema(db, 0);
assert(db->nDb <= 2);
assert(db->aDb == db->aDbStatic);
for (i = sqliteHashFirst(&db->aFunc); i; i = sqliteHashNext(i))
{
FuncDef *pFunc, *pNext;
for (pFunc = (FuncDef *) sqliteHashData(i); pFunc; pFunc = pNext)
{
pNext = pFunc->pNext;
sqlite3_free(pFunc);
}
}
for (i = sqliteHashFirst(&db->aCollSeq); i; i = sqliteHashNext(i))
{
CollSeq *pColl = (CollSeq *) sqliteHashData(i);
/* Invoke any destructors registered for collation sequence user data. */
for (j = 0; j < 3; j++)
{
if(pColl[j].xDel)
{
pColl[j].xDel(pColl[j].pUser);
}
}
sqlite3_free(pColl);
}
sqlite3HashClear(&db->aCollSeq);
#ifndef SQLITE_OMIT_VIRTUALTABLE
for (i = sqliteHashFirst(&db->aModule); i; i = sqliteHashNext(i))
{
Module *pMod = (Module *) sqliteHashData(i);
if(pMod->xDestroy)
{
pMod->xDestroy(pMod->pAux);
}
sqlite3_free(pMod);
}
sqlite3HashClear(&db->aModule);
#endif
sqlite3HashClear(&db->aFunc);
sqlite3Error(db, SQLITE_OK, 0); /* Deallocates any cached error strings. */
if(db->pErr)
{
sqlite3ValueFree(db->pErr);
}
sqlite3CloseExtensions(db);
db->magic = SQLITE_MAGIC_ERROR;
/* The temp-database schema is allocated differently from the other schema
** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()).
** So it needs to be freed here. Todo: Why not roll the temp schema into
** the same sqliteMalloc() as the one that allocates the database
** structure?
*/
sqlite3_free(db->aDb[1].pSchema);
sqlite3_mutex_leave(db->mutex);
db->magic = SQLITE_MAGIC_CLOSED;
sqlite3_mutex_free(db->mutex);
sqlite3_free(db);
return SQLITE_OK;
}
/*
** Rollback all database files.
*/
SQLITE_PRIVATE void
sqlite3RollbackAll(sqlite3 * db)
{
int i;
int inTrans = 0;
assert(sqlite3_mutex_held(db->mutex));
sqlite3FaultBeginBenign(SQLITE_FAULTINJECTOR_MALLOC);
for (i = 0; i < db->nDb; i++)
{
if(db->aDb[i].pBt)
{
if(sqlite3BtreeIsInTrans(db->aDb[i].pBt))
{
inTrans = 1;
}
sqlite3BtreeRollback(db->aDb[i].pBt);
db->aDb[i].inTrans = 0;
}
}
sqlite3VtabRollback(db);
sqlite3FaultEndBenign(SQLITE_FAULTINJECTOR_MALLOC);
if(db->flags & SQLITE_InternChanges)
{
sqlite3ExpirePreparedStatements(db);
sqlite3ResetInternalSchema(db, 0);
}
/* If one has been configured, invoke the rollback-hook callback */
if(db->xRollbackCallback && (inTrans || !db->autoCommit))
{
db->xRollbackCallback(db->pRollbackArg);
}
}
/*
** Return a static string that describes the kind of error specified in the
** argument.
*/
SQLITE_PRIVATE const char *
sqlite3ErrStr(int rc)
{
const char *z;
switch (rc & 0xff)
{
case SQLITE_ROW:
case SQLITE_DONE:
case SQLITE_OK:
z = "not an error";
break;
case SQLITE_ERROR:
z = "SQL logic error or missing database";
break;
case SQLITE_PERM:
z = "access permission denied";
break;
case SQLITE_ABORT:
z = "callback requested query abort";
break;
case SQLITE_BUSY:
z = "database is locked";
break;
case SQLITE_LOCKED:
z = "database table is locked";
break;
case SQLITE_NOMEM:
z = "out of memory";
break;
case SQLITE_READONLY:
z = "attempt to write a readonly database";
break;
case SQLITE_INTERRUPT:
z = "interrupted";
break;
case SQLITE_IOERR:
z = "disk I/O error";
break;
case SQLITE_CORRUPT:
z = "database disk image is malformed";
break;
case SQLITE_FULL:
z = "database or disk is full";
break;
case SQLITE_CANTOPEN:
z = "unable to open database file";
break;
case SQLITE_EMPTY:
z = "table contains no data";
break;
case SQLITE_SCHEMA:
z = "database schema has changed";
break;
case SQLITE_TOOBIG:
z = "String or BLOB exceeded size limit";
break;
case SQLITE_CONSTRAINT:
z = "constraint failed";
break;
case SQLITE_MISMATCH:
z = "datatype mismatch";
break;
case SQLITE_MISUSE:
z = "library routine called out of sequence";
break;
case SQLITE_NOLFS:
z = "large file support is disabled";
break;
case SQLITE_AUTH:
z = "authorization denied";
break;
case SQLITE_FORMAT:
z = "auxiliary database format error";
break;
case SQLITE_RANGE:
z = "bind or column index out of range";
break;
case SQLITE_NOTADB:
z = "file is encrypted or is not a database";
break;
default:
z = "unknown error";
break;
}
return z;
}
/*
** This routine implements a busy callback that sleeps and tries
** again until a timeout value is reached. The timeout value is
** an integer number of milliseconds passed in as the first
** argument.
*/
static int
sqliteDefaultBusyCallback(void *ptr, /* Database connection */
int count /* Number of times table has been busy */
)
{
#if OS_WIN || (defined(HAVE_USLEEP) && HAVE_USLEEP)
static const u8 delays[] = { 1, 2, 5, 10, 15, 20, 25, 25, 25, 50, 50, 100 };
static const u8 totals[] = { 0, 1, 3, 8, 18, 33, 53, 78, 103, 128, 178, 228 };
# define NDELAY (sizeof(delays)/sizeof(delays[0]))
sqlite3 *db = (sqlite3 *) ptr;
int timeout = db->busyTimeout;
int delay, prior;
assert(count >= 0);
if(count < NDELAY)
{
delay = delays[count];
prior = totals[count];
}
else
{
delay = delays[NDELAY - 1];
prior = totals[NDELAY - 1] + delay * (count - (NDELAY - 1));
}
if(prior + delay > timeout)
{
delay = timeout - prior;
if(delay <= 0)
return 0;
}
sqlite3OsSleep(db->pVfs, delay * 1000);
return 1;
#else
sqlite3 *db = (sqlite3 *) ptr;
int timeout = ((sqlite3 *) ptr)->busyTimeout;
if((count + 1) * 1000 > timeout)
{
return 0;
}
sqlite3OsSleep(db->pVfs, 1000000);
return 1;
#endif
}
/*
** Invoke the given busy handler.
**
** This routine is called when an operation failed with a lock.
** If this routine returns non-zero, the lock is retried. If it
** returns 0, the operation aborts with an SQLITE_BUSY error.
*/
SQLITE_PRIVATE int
sqlite3InvokeBusyHandler(BusyHandler * p)
{
int rc;
if(p == 0 || p->xFunc == 0 || p->nBusy < 0)
return 0;
rc = p->xFunc(p->pArg, p->nBusy);
if(rc == 0)
{
p->nBusy = -1;
}
else
{
p->nBusy++;
}
return rc;
}
/*
** This routine sets the busy callback for an Sqlite database to the
** given callback function with the given argument.
*/
SQLITE_API int
sqlite3_busy_handler(sqlite3 * db, int (*xBusy) (void *, int), void *pArg)
{
sqlite3_mutex_enter(db->mutex);
db->busyHandler.xFunc = xBusy;
db->busyHandler.pArg = pArg;
db->busyHandler.nBusy = 0;
sqlite3_mutex_leave(db->mutex);
return SQLITE_OK;
}
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
/*
** This routine sets the progress callback for an Sqlite database to the
** given callback function with the given argument. The progress callback will
** be invoked every nOps opcodes.
*/
SQLITE_API void
sqlite3_progress_handler(sqlite3 * db, int nOps, int (*xProgress) (void *), void *pArg)
{
if(sqlite3SafetyCheckOk(db))
{
sqlite3_mutex_enter(db->mutex);
if(nOps > 0)
{
db->xProgress = xProgress;
db->nProgressOps = nOps;
db->pProgressArg = pArg;
}
else
{
db->xProgress = 0;
db->nProgressOps = 0;
db->pProgressArg = 0;
}
sqlite3_mutex_leave(db->mutex);
}
}
#endif
/*
** This routine installs a default busy handler that waits for the
** specified number of milliseconds before returning 0.
*/
SQLITE_API int
sqlite3_busy_timeout(sqlite3 * db, int ms)
{
if(ms > 0)
{
db->busyTimeout = ms;
sqlite3_busy_handler(db, sqliteDefaultBusyCallback, (void *) db);
}
else
{
sqlite3_busy_handler(db, 0, 0);
}
return SQLITE_OK;
}
/*
** Cause any pending operation to stop at its earliest opportunity.
*/
SQLITE_API void
sqlite3_interrupt(sqlite3 * db)
{
if(sqlite3SafetyCheckOk(db))
{
db->u1.isInterrupted = 1;
}
}
/*
** This function is exactly the same as sqlite3_create_function(), except
** that it is designed to be called by internal code. The difference is
** that if a malloc() fails in sqlite3_create_function(), an error code
** is returned and the mallocFailed flag cleared.
*/
SQLITE_PRIVATE int
sqlite3CreateFunc(sqlite3 * db,
const char *zFunctionName,
int nArg,
int enc,
void *pUserData,
void (*xFunc) (sqlite3_context *, int, sqlite3_value **),
void (*xStep) (sqlite3_context *, int, sqlite3_value **),
void (*xFinal) (sqlite3_context *))
{
FuncDef *p;
int nName;
assert(sqlite3_mutex_held(db->mutex));
if(zFunctionName == 0 ||
(xFunc && (xFinal || xStep)) ||
(!xFunc && (xFinal && !xStep)) ||
(!xFunc && (!xFinal && xStep)) ||
(nArg < -1 || nArg > 127) || (255 < (nName = strlen(zFunctionName))))
{
sqlite3Error(db, SQLITE_ERROR, "bad parameters");
return SQLITE_ERROR;
}
#ifndef SQLITE_OMIT_UTF16
/* If SQLITE_UTF16 is specified as the encoding type, transform this
** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the
** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally.
**
** If SQLITE_ANY is specified, add three versions of the function
** to the hash table.
*/
if(enc == SQLITE_UTF16)
{
enc = SQLITE_UTF16NATIVE;
}
else if(enc == SQLITE_ANY)
{
int rc;
rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF8,
pUserData, xFunc, xStep, xFinal);
if(rc == SQLITE_OK)
{
rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF16LE,
pUserData, xFunc, xStep, xFinal);
}
if(rc != SQLITE_OK)
{
return rc;
}
enc = SQLITE_UTF16BE;
}
#else
enc = SQLITE_UTF8;
#endif
/* Check if an existing function is being overridden or deleted. If so,
** and there are active VMs, then return SQLITE_BUSY. If a function
** is being overridden/deleted but there are no active VMs, allow the
** operation to continue but invalidate all precompiled statements.
*/
p = sqlite3FindFunction(db, zFunctionName, nName, nArg, enc, 0);
if(p && p->iPrefEnc == enc && p->nArg == nArg)
{
if(db->activeVdbeCnt)
{
sqlite3Error(db, SQLITE_BUSY,
"Unable to delete/modify user-function due to active statements");
assert(!db->mallocFailed);
return SQLITE_BUSY;
}
else
{
sqlite3ExpirePreparedStatements(db);
}
}
p = sqlite3FindFunction(db, zFunctionName, nName, nArg, enc, 1);
assert(p || db->mallocFailed);
if(!p)
{
return SQLITE_NOMEM;
}
p->flags = 0;
p->xFunc = xFunc;
p->xStep = xStep;
p->xFinalize = xFinal;
p->pUserData = pUserData;
p->nArg = nArg;
return SQLITE_OK;
}
/*
** Create new user functions.
*/
SQLITE_API int
sqlite3_create_function(sqlite3 * db,
const char *zFunctionName,
int nArg,
int enc,
void *p,
void (*xFunc) (sqlite3_context *, int, sqlite3_value **),
void (*xStep) (sqlite3_context *, int, sqlite3_value **),
void (*xFinal) (sqlite3_context *))
{
int rc;
sqlite3_mutex_enter(db->mutex);
rc = sqlite3CreateFunc(db, zFunctionName, nArg, enc, p, xFunc, xStep, xFinal);
rc = sqlite3ApiExit(db, rc);
sqlite3_mutex_leave(db->mutex);
return rc;
}
#ifndef SQLITE_OMIT_UTF16
SQLITE_API int
sqlite3_create_function16(sqlite3 * db,
const void *zFunctionName,
int nArg,
int eTextRep,
void *p,
void (*xFunc) (sqlite3_context *, int, sqlite3_value **),
void (*xStep) (sqlite3_context *, int, sqlite3_value **),
void (*xFinal) (sqlite3_context *))
{
int rc;
char *zFunc8;
sqlite3_mutex_enter(db->mutex);
assert(!db->mallocFailed);
zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1);
rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xFunc, xStep, xFinal);
sqlite3_free(zFunc8);
rc = sqlite3ApiExit(db, rc);
sqlite3_mutex_leave(db->mutex);
return rc;
}
#endif
/*
** Declare that a function has been overloaded by a virtual table.
**
** If the function already exists as a regular global function, then
** this routine is a no-op. If the function does not exist, then create
** a new one that always throws a run-time error.
**
** When virtual tables intend to provide an overloaded function, they
** should call this routine to make sure the global function exists.
** A global function must exist in order for name resolution to work
** properly.
*/
SQLITE_API int
sqlite3_overload_function(sqlite3 * db, const char *zName, int nArg)
{
int nName = strlen(zName);
int rc;
sqlite3_mutex_enter(db->mutex);
if(sqlite3FindFunction(db, zName, nName, nArg, SQLITE_UTF8, 0) == 0)
{
sqlite3CreateFunc(db, zName, nArg, SQLITE_UTF8, 0, sqlite3InvalidFunction, 0, 0);
}
rc = sqlite3ApiExit(db, SQLITE_OK);
sqlite3_mutex_leave(db->mutex);
return rc;
}
#ifndef SQLITE_OMIT_TRACE
/*
** Register a trace function. The pArg from the previously registered trace
** is returned.
**
** A NULL trace function means that no tracing is executes. A non-NULL
** trace is a pointer to a function that is invoked at the start of each
** SQL statement.
*/
SQLITE_API void *
sqlite3_trace(sqlite3 * db, void (*xTrace) (void *, const char *), void *pArg)
{
void *pOld;
sqlite3_mutex_enter(db->mutex);
pOld = db->pTraceArg;
db->xTrace = xTrace;
db->pTraceArg = pArg;
sqlite3_mutex_leave(db->mutex);
return pOld;
}
/*
** Register a profile function. The pArg from the previously registered
** profile function is returned.
**
** A NULL profile function means that no profiling is executes. A non-NULL
** profile is a pointer to a function that is invoked at the conclusion of
** each SQL statement that is run.
*/
SQLITE_API void *
sqlite3_profile(sqlite3 * db, void (*xProfile) (void *, const char *, sqlite_uint64), void *pArg)
{
void *pOld;
sqlite3_mutex_enter(db->mutex);
pOld = db->pProfileArg;
db->xProfile = xProfile;
db->pProfileArg = pArg;
sqlite3_mutex_leave(db->mutex);
return pOld;
}
#endif /* SQLITE_OMIT_TRACE */
/*** EXPERIMENTAL ***
**
** Register a function to be invoked when a transaction comments.
** If the invoked function returns non-zero, then the commit becomes a
** rollback.
*/
SQLITE_API void *
sqlite3_commit_hook(sqlite3 * db, /* Attach the hook to this database */
int (*xCallback) (void *), /* Function to invoke on each commit */
void *pArg /* Argument to the function */
)
{
void *pOld;
sqlite3_mutex_enter(db->mutex);
pOld = db->pCommitArg;
db->xCommitCallback = xCallback;
db->pCommitArg = pArg;
sqlite3_mutex_leave(db->mutex);
return pOld;
}
/*
** Register a callback to be invoked each time a row is updated,
** inserted or deleted using this database connection.
*/
SQLITE_API void *
sqlite3_update_hook(sqlite3 * db, /* Attach the hook to this database */
void (*xCallback) (void *, int, char const *, char const *, sqlite_int64), void *pArg /* Argument to the function */
)
{
void *pRet;
sqlite3_mutex_enter(db->mutex);
pRet = db->pUpdateArg;
db->xUpdateCallback = xCallback;
db->pUpdateArg = pArg;
sqlite3_mutex_leave(db->mutex);
return pRet;
}
/*
** Register a callback to be invoked each time a transaction is rolled
** back by this database connection.
*/
SQLITE_API void *
sqlite3_rollback_hook(sqlite3 * db, /* Attach the hook to this database */
void (*xCallback) (void *), /* Callback function */
void *pArg /* Argument to the function */
)
{
void *pRet;
sqlite3_mutex_enter(db->mutex);
pRet = db->pRollbackArg;
db->xRollbackCallback = xCallback;
db->pRollbackArg = pArg;
sqlite3_mutex_leave(db->mutex);
return pRet;
}
/*
** This routine is called to create a connection to a database BTree
** driver. If zFilename is the name of a file, then that file is
** opened and used. If zFilename is the magic name ":memory:" then
** the database is stored in memory (and is thus forgotten as soon as
** the connection is closed.) If zFilename is NULL then the database
** is a "virtual" database for transient use only and is deleted as
** soon as the connection is closed.
**
** A virtual database can be either a disk file (that is automatically
** deleted when the file is closed) or it an be held entirely in memory,
** depending on the values of the TEMP_STORE compile-time macro and the
** db->temp_store variable, according to the following chart:
**
** TEMP_STORE db->temp_store Location of temporary database
** ---------- -------------- ------------------------------
** 0 any file
** 1 1 file
** 1 2 memory
** 1 0 file
** 2 1 file
** 2 2 memory
** 2 0 memory
** 3 any memory
*/
SQLITE_PRIVATE int
sqlite3BtreeFactory(const sqlite3 * db, /* Main database when opening aux otherwise 0 */
const char *zFilename, /* Name of the file containing the BTree database */
int omitJournal, /* if TRUE then do not journal this file */
int nCache, /* How many pages in the page cache */
int vfsFlags, /* Flags passed through to vfsOpen */
Btree ** ppBtree /* Pointer to new Btree object written here */
)
{
int btFlags = 0;
int rc;
assert(sqlite3_mutex_held(db->mutex));
assert(ppBtree != 0);
if(omitJournal)
{
btFlags |= BTREE_OMIT_JOURNAL;
}
if(db->flags & SQLITE_NoReadlock)
{
btFlags |= BTREE_NO_READLOCK;
}
if(zFilename == 0)
{
#if TEMP_STORE==0
/* Do nothing */
#endif
#ifndef SQLITE_OMIT_MEMORYDB
#if TEMP_STORE==1
if(db->temp_store == 2)
zFilename = ":memory:";
#endif
#if TEMP_STORE==2
if(db->temp_store != 1)
zFilename = ":memory:";
#endif
#if TEMP_STORE==3
zFilename = ":memory:";
#endif
#endif /* SQLITE_OMIT_MEMORYDB */
}
if((vfsFlags & SQLITE_OPEN_MAIN_DB) != 0 && (zFilename == 0 || *zFilename == 0))
{
vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
}
rc = sqlite3BtreeOpen(zFilename, (sqlite3 *) db, ppBtree, btFlags, vfsFlags);
if(rc == SQLITE_OK)
{
sqlite3BtreeSetCacheSize(*ppBtree, nCache);
}
return rc;
}
/*
** Return UTF-8 encoded English language explanation of the most recent
** error.
*/
SQLITE_API const char *
sqlite3_errmsg(sqlite3 * db)
{
const char *z;
if(!db)
{
return sqlite3ErrStr(SQLITE_NOMEM);
}
if(!sqlite3SafetyCheckSickOrOk(db) || db->errCode == SQLITE_MISUSE)
{
return sqlite3ErrStr(SQLITE_MISUSE);
}
sqlite3_mutex_enter(db->mutex);
assert(!db->mallocFailed);
z = (char *) sqlite3_value_text(db->pErr);
if(z == 0)
{
z = sqlite3ErrStr(db->errCode);
}
sqlite3_mutex_leave(db->mutex);
return z;
}
#ifndef SQLITE_OMIT_UTF16
/*
** Return UTF-16 encoded English language explanation of the most recent
** error.
*/
SQLITE_API const void *
sqlite3_errmsg16(sqlite3 * db)
{
/* Because all the characters in the string are in the unicode
** range 0x00-0xFF, if we pad the big-endian string with a
** zero byte, we can obtain the little-endian string with
** &big_endian[1].
*/
static const char outOfMemBe[] = {
0, 'o', 0, 'u', 0, 't', 0, ' ',
0, 'o', 0, 'f', 0, ' ',
0, 'm', 0, 'e', 0, 'm', 0, 'o', 0, 'r', 0, 'y', 0, 0, 0
};
static const char misuseBe[] = {
0, 'l', 0, 'i', 0, 'b', 0, 'r', 0, 'a', 0, 'r', 0, 'y', 0, ' ',
0, 'r', 0, 'o', 0, 'u', 0, 't', 0, 'i', 0, 'n', 0, 'e', 0, ' ',
0, 'c', 0, 'a', 0, 'l', 0, 'l', 0, 'e', 0, 'd', 0, ' ',
0, 'o', 0, 'u', 0, 't', 0, ' ',
0, 'o', 0, 'f', 0, ' ',
0, 's', 0, 'e', 0, 'q', 0, 'u', 0, 'e', 0, 'n', 0, 'c', 0, 'e', 0, 0, 0
};
const void *z;
if(!db)
{
return (void *) (&outOfMemBe[SQLITE_UTF16NATIVE == SQLITE_UTF16LE ? 1 : 0]);
}
if(!sqlite3SafetyCheckSickOrOk(db) || db->errCode == SQLITE_MISUSE)
{
return (void *) (&misuseBe[SQLITE_UTF16NATIVE == SQLITE_UTF16LE ? 1 : 0]);
}
sqlite3_mutex_enter(db->mutex);
assert(!db->mallocFailed);
z = sqlite3_value_text16(db->pErr);
if(z == 0)
{
sqlite3ValueSetStr(db->pErr, -1, sqlite3ErrStr(db->errCode),
SQLITE_UTF8, SQLITE_STATIC);
z = sqlite3_value_text16(db->pErr);
}
sqlite3ApiExit(0, 0);
sqlite3_mutex_leave(db->mutex);
return z;
}
#endif /* SQLITE_OMIT_UTF16 */
/*
** Return the most recent error code generated by an SQLite routine. If NULL is
** passed to this function, we assume a malloc() failed during sqlite3_open().
*/
SQLITE_API int
sqlite3_errcode(sqlite3 * db)
{
if(db && !sqlite3SafetyCheckSickOrOk(db))
{
return SQLITE_MISUSE;
}
if(!db || db->mallocFailed)
{
return SQLITE_NOMEM;
}
return db->errCode & db->errMask;
}
/*
** Create a new collating function for database "db". The name is zName
** and the encoding is enc.
*/
static int
createCollation(sqlite3 * db,
const char *zName,
int enc,
void *pCtx,
int (*xCompare) (void *, int, const void *, int, const void *),
void (*xDel) (void *))
{
CollSeq *pColl;
int enc2;
assert(sqlite3_mutex_held(db->mutex));
/* If SQLITE_UTF16 is specified as the encoding type, transform this
** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the
** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally.
*/
enc2 = enc & ~SQLITE_UTF16_ALIGNED;
if(enc2 == SQLITE_UTF16)
{
enc2 = SQLITE_UTF16NATIVE;
}
if((enc2 & ~3) != 0)
{
sqlite3Error(db, SQLITE_ERROR, "unknown encoding");
return SQLITE_ERROR;
}
/* Check if this call is removing or replacing an existing collation
** sequence. If so, and there are active VMs, return busy. If there
** are no active VMs, invalidate any pre-compiled statements.
*/
pColl = sqlite3FindCollSeq(db, (u8) enc2, zName, strlen(zName), 0);
if(pColl && pColl->xCmp)
{
if(db->activeVdbeCnt)
{
sqlite3Error(db, SQLITE_BUSY,
"Unable to delete/modify collation sequence due to active statements");
return SQLITE_BUSY;
}
sqlite3ExpirePreparedStatements(db);
/* If collation sequence pColl was created directly by a call to
** sqlite3_create_collation, and not generated by synthCollSeq(),
** then any copies made by synthCollSeq() need to be invalidated.
** Also, collation destructor - CollSeq.xDel() - function may need
** to be called.
*/
if((pColl->enc & ~SQLITE_UTF16_ALIGNED) == enc2)
{
CollSeq *aColl = sqlite3HashFind(&db->aCollSeq, zName, strlen(zName));
int j;
for (j = 0; j < 3; j++)
{
CollSeq *p = &aColl[j];
if(p->enc == pColl->enc)
{
if(p->xDel)
{
p->xDel(p->pUser);
}
p->xCmp = 0;
}
}
}
}
pColl = sqlite3FindCollSeq(db, (u8) enc2, zName, strlen(zName), 1);
if(pColl)
{
pColl->xCmp = xCompare;
pColl->pUser = pCtx;
pColl->xDel = xDel;
pColl->enc = enc2 | (enc & SQLITE_UTF16_ALIGNED);
}
sqlite3Error(db, SQLITE_OK, 0);
return SQLITE_OK;
}
/*
** This array defines hard upper bounds on limit values. The
** initializer must be kept in sync with the SQLITE_LIMIT_*
** #defines in sqlite3.h.
*/
static const int aHardLimit[] = {
SQLITE_MAX_LENGTH,
SQLITE_MAX_SQL_LENGTH,
SQLITE_MAX_COLUMN,
SQLITE_MAX_EXPR_DEPTH,
SQLITE_MAX_COMPOUND_SELECT,
SQLITE_MAX_VDBE_OP,
SQLITE_MAX_FUNCTION_ARG,
SQLITE_MAX_ATTACHED,
SQLITE_MAX_LIKE_PATTERN_LENGTH,
SQLITE_MAX_VARIABLE_NUMBER,
};
/*
** Make sure the hard limits are set to reasonable values
*/
#if SQLITE_MAX_LENGTH<100
# error SQLITE_MAX_LENGTH must be at least 100
#endif
#if SQLITE_MAX_SQL_LENGTH<100
# error SQLITE_MAX_SQL_LENGTH must be at least 100
#endif
#if SQLITE_MAX_SQL_LENGTH>SQLITE_MAX_LENGTH
# error SQLITE_MAX_SQL_LENGTH must not be greater than SQLITE_MAX_LENGTH
#endif
#if SQLITE_MAX_COMPOUND_SELECT<2
# error SQLITE_MAX_COMPOUND_SELECT must be at least 2
#endif
#if SQLITE_MAX_VDBE_OP<40
# error SQLITE_MAX_VDBE_OP must be at least 40
#endif
#if SQLITE_MAX_FUNCTION_ARG<0 || SQLITE_MAX_FUNCTION_ARG>255
# error SQLITE_MAX_FUNCTION_ARG must be between 0 and 255
#endif
#if SQLITE_MAX_ATTACH<0 || SQLITE_MAX_ATTACH>30
# error SQLITE_MAX_ATTACH must be between 0 and 30
#endif
#if SQLITE_MAX_LIKE_PATTERN_LENGTH<1
# error SQLITE_MAX_LIKE_PATTERN_LENGTH must be at least 1
#endif
#if SQLITE_MAX_VARIABLE_NUMBER<1
# error SQLITE_MAX_VARIABLE_NUMBER must be at least 1
#endif
/*
** Change the value of a limit. Report the old value.
** If an invalid limit index is supplied, report -1.
** Make no changes but still report the old value if the
** new limit is negative.
**
** A new lower limit does not shrink existing constructs.
** It merely prevents new constructs that exceed the limit
** from forming.
*/
SQLITE_API int
sqlite3_limit(sqlite3 * db, int limitId, int newLimit)
{
int oldLimit;
if(limitId < 0 || limitId >= SQLITE_N_LIMIT)
{
return -1;
}
oldLimit = db->aLimit[limitId];
if(newLimit >= 0)
{
if(newLimit > aHardLimit[limitId])
{
newLimit = aHardLimit[limitId];
}
db->aLimit[limitId] = newLimit;
}
return oldLimit;
}
/*
** This routine does the work of opening a database on behalf of
** sqlite3_open() and sqlite3_open16(). The database filename "zFilename"
** is UTF-8 encoded.
*/
static int
openDatabase(const char *zFilename, /* Database filename UTF-8 encoded */
sqlite3 ** ppDb, /* OUT: Returned database handle */
unsigned flags, /* Operational flags */
const char *zVfs /* Name of the VFS to use */
)
{
sqlite3 *db;
int rc;
CollSeq *pColl;
/* Remove harmful bits from the flags parameter */
flags &= ~(SQLITE_OPEN_DELETEONCLOSE |
SQLITE_OPEN_MAIN_DB |
SQLITE_OPEN_TEMP_DB |
SQLITE_OPEN_TRANSIENT_DB |
SQLITE_OPEN_MAIN_JOURNAL |
SQLITE_OPEN_TEMP_JOURNAL | SQLITE_OPEN_SUBJOURNAL | SQLITE_OPEN_MASTER_JOURNAL);
/* Allocate the sqlite data structure */
db = sqlite3MallocZero(sizeof(sqlite3));
if(db == 0)
goto opendb_out;
db->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_RECURSIVE);
if(db->mutex == 0)
{
sqlite3_free(db);
db = 0;
goto opendb_out;
}
sqlite3_mutex_enter(db->mutex);
db->errMask = 0xff;
db->priorNewRowid = 0;
db->nDb = 2;
db->magic = SQLITE_MAGIC_BUSY;
db->aDb = db->aDbStatic;
assert(sizeof(db->aLimit) == sizeof(aHardLimit));
memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit));
db->autoCommit = 1;
db->nextAutovac = -1;
db->nextPagesize = 0;
db->flags |= SQLITE_ShortColNames
#if SQLITE_DEFAULT_FILE_FORMAT<4
| SQLITE_LegacyFileFmt
#endif
#ifdef SQLITE_ENABLE_LOAD_EXTENSION
| SQLITE_LoadExtension
#endif
;
sqlite3HashInit(&db->aFunc, SQLITE_HASH_STRING, 0);
sqlite3HashInit(&db->aCollSeq, SQLITE_HASH_STRING, 0);
#ifndef SQLITE_OMIT_VIRTUALTABLE
sqlite3HashInit(&db->aModule, SQLITE_HASH_STRING, 0);
#endif
db->pVfs = sqlite3_vfs_find(zVfs);
if(!db->pVfs)
{
rc = SQLITE_ERROR;
db->magic = SQLITE_MAGIC_SICK;
sqlite3Error(db, rc, "no such vfs: %s", zVfs);
goto opendb_out;
}
/* Add the default collation sequence BINARY. BINARY works for both UTF-8
** and UTF-16, so add a version for each to avoid any unnecessary
** conversions. The only error that can occur here is a malloc() failure.
*/
createCollation(db, "BINARY", SQLITE_UTF8, 0, binCollFunc, 0);
createCollation(db, "BINARY", SQLITE_UTF16BE, 0, binCollFunc, 0);
createCollation(db, "BINARY", SQLITE_UTF16LE, 0, binCollFunc, 0);
createCollation(db, "RTRIM", SQLITE_UTF8, (void *) 1, binCollFunc, 0);
if(db->mallocFailed)
{
db->magic = SQLITE_MAGIC_SICK;
goto opendb_out;
}
db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 6, 0);
assert(db->pDfltColl != 0);
/* Also add a UTF-8 case-insensitive collation sequence. */
createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0);
/* Set flags on the built-in collating sequences */
db->pDfltColl->type = SQLITE_COLL_BINARY;
pColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "NOCASE", 6, 0);
if(pColl)
{
pColl->type = SQLITE_COLL_NOCASE;
}
/* Open the backend database driver */
db->openFlags = flags;
rc = sqlite3BtreeFactory(db, zFilename, 0, SQLITE_DEFAULT_CACHE_SIZE,
flags | SQLITE_OPEN_MAIN_DB, &db->aDb[0].pBt);
if(rc != SQLITE_OK)
{
sqlite3Error(db, rc, 0);
db->magic = SQLITE_MAGIC_SICK;
goto opendb_out;
}
db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt);
db->aDb[1].pSchema = sqlite3SchemaGet(db, 0);
/* The default safety_level for the main database is 'full'; for the temp
** database it is 'NONE'. This matches the pager layer defaults.
*/
db->aDb[0].zName = "main";
db->aDb[0].safety_level = 3;
#ifndef SQLITE_OMIT_TEMPDB
db->aDb[1].zName = "temp";
db->aDb[1].safety_level = 1;
#endif
db->magic = SQLITE_MAGIC_OPEN;
if(db->mallocFailed)
{
goto opendb_out;
}
/* Register all built-in functions, but do not attempt to read the
** database schema yet. This is delayed until the first time the database
** is accessed.
*/
sqlite3Error(db, SQLITE_OK, 0);
sqlite3RegisterBuiltinFunctions(db);
/* Load automatic extensions - extensions that have been registered
** using the sqlite3_automatic_extension() API.
*/
(void) sqlite3AutoLoadExtensions(db);
if(sqlite3_errcode(db) != SQLITE_OK)
{
goto opendb_out;
}
#ifdef SQLITE_ENABLE_FTS1
if(!db->mallocFailed)
{
extern int sqlite3Fts1Init(sqlite3 *);
rc = sqlite3Fts1Init(db);
}
#endif
#ifdef SQLITE_ENABLE_FTS2
if(!db->mallocFailed && rc == SQLITE_OK)
{
extern int sqlite3Fts2Init(sqlite3 *);
rc = sqlite3Fts2Init(db);
}
#endif
#ifdef SQLITE_ENABLE_FTS3
if(!db->mallocFailed && rc == SQLITE_OK)
{
rc = sqlite3Fts3Init(db);
}
#endif
#ifdef SQLITE_ENABLE_ICU
if(!db->mallocFailed && rc == SQLITE_OK)
{
extern int sqlite3IcuInit(sqlite3 *);
rc = sqlite3IcuInit(db);
}
#endif
sqlite3Error(db, rc, 0);
/* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking
** mode. -DSQLITE_DEFAULT_LOCKING_MODE=0 make NORMAL the default locking
** mode. Doing nothing at all also makes NORMAL the default.
*/
#ifdef SQLITE_DEFAULT_LOCKING_MODE
db->dfltLockMode = SQLITE_DEFAULT_LOCKING_MODE;
sqlite3PagerLockingMode(sqlite3BtreePager(db->aDb[0].pBt), SQLITE_DEFAULT_LOCKING_MODE);
#endif
opendb_out:
if(db)
{
assert(db->mutex != 0);
sqlite3_mutex_leave(db->mutex);
}
if(SQLITE_NOMEM == (rc = sqlite3_errcode(db)))
{
sqlite3_close(db);
db = 0;
}
*ppDb = db;
return sqlite3ApiExit(0, rc);
}
/*
** Open a new database handle.
*/
SQLITE_API int
sqlite3_open(const char *zFilename, sqlite3 ** ppDb)
{
return openDatabase(zFilename, ppDb, SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0);
}
SQLITE_API int
sqlite3_open_v2(const char *filename, /* Database filename (UTF-8) */
sqlite3 ** ppDb, /* OUT: SQLite db handle */
int flags, /* Flags */
const char *zVfs /* Name of VFS module to use */
)
{
return openDatabase(filename, ppDb, flags, zVfs);
}
#ifndef SQLITE_OMIT_UTF16
/*
** Open a new database handle.
*/
SQLITE_API int
sqlite3_open16(const void *zFilename, sqlite3 ** ppDb)
{
char const *zFilename8; /* zFilename encoded in UTF-8 instead of UTF-16 */
sqlite3_value *pVal;
int rc = SQLITE_NOMEM;
assert(zFilename);
assert(ppDb);
*ppDb = 0;
pVal = sqlite3ValueNew(0);
sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC);
zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8);
if(zFilename8)
{
rc = openDatabase(zFilename8, ppDb, SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0);
assert(*ppDb || rc == SQLITE_NOMEM);
if(rc == SQLITE_OK && !DbHasProperty(*ppDb, 0, DB_SchemaLoaded))
{
ENC(*ppDb) = SQLITE_UTF16NATIVE;
}
}
sqlite3ValueFree(pVal);
return sqlite3ApiExit(0, rc);
}
#endif /* SQLITE_OMIT_UTF16 */
/*
** Register a new collation sequence with the database handle db.
*/
SQLITE_API int
sqlite3_create_collation(sqlite3 * db,
const char *zName,
int enc,
void *pCtx, int (*xCompare) (void *, int, const void *, int, const void *))
{
int rc;
sqlite3_mutex_enter(db->mutex);
assert(!db->mallocFailed);
rc = createCollation(db, zName, enc, pCtx, xCompare, 0);
rc = sqlite3ApiExit(db, rc);
sqlite3_mutex_leave(db->mutex);
return rc;
}
/*
** Register a new collation sequence with the database handle db.
*/
SQLITE_API int
sqlite3_create_collation_v2(sqlite3 * db,
const char *zName,
int enc,
void *pCtx,
int (*xCompare) (void *, int, const void *, int, const void *),
void (*xDel) (void *))
{
int rc;
sqlite3_mutex_enter(db->mutex);
assert(!db->mallocFailed);
rc = createCollation(db, zName, enc, pCtx, xCompare, xDel);
rc = sqlite3ApiExit(db, rc);
sqlite3_mutex_leave(db->mutex);
return rc;
}
#ifndef SQLITE_OMIT_UTF16
/*
** Register a new collation sequence with the database handle db.
*/
SQLITE_API int
sqlite3_create_collation16(sqlite3 * db,
const char *zName,
int enc,
void *pCtx,
int (*xCompare) (void *, int, const void *, int, const void *))
{
int rc = SQLITE_OK;
char *zName8;
sqlite3_mutex_enter(db->mutex);
assert(!db->mallocFailed);
zName8 = sqlite3Utf16to8(db, zName, -1);
if(zName8)
{
rc = createCollation(db, zName8, enc, pCtx, xCompare, 0);
sqlite3_free(zName8);
}
rc = sqlite3ApiExit(db, rc);
sqlite3_mutex_leave(db->mutex);
return rc;
}
#endif /* SQLITE_OMIT_UTF16 */
/*
** Register a collation sequence factory callback with the database handle
** db. Replace any previously installed collation sequence factory.
*/
SQLITE_API int
sqlite3_collation_needed(sqlite3 * db,
void *pCollNeededArg,
void (*xCollNeeded) (void *, sqlite3 *, int eTextRep, const char *))
{
sqlite3_mutex_enter(db->mutex);
db->xCollNeeded = xCollNeeded;
db->xCollNeeded16 = 0;
db->pCollNeededArg = pCollNeededArg;
sqlite3_mutex_leave(db->mutex);
return SQLITE_OK;
}
#ifndef SQLITE_OMIT_UTF16
/*
** Register a collation sequence factory callback with the database handle
** db. Replace any previously installed collation sequence factory.
*/
SQLITE_API int
sqlite3_collation_needed16(sqlite3 * db,
void *pCollNeededArg,
void (*xCollNeeded16) (void *, sqlite3 *, int eTextRep, const void *))
{
sqlite3_mutex_enter(db->mutex);
db->xCollNeeded = 0;
db->xCollNeeded16 = xCollNeeded16;
db->pCollNeededArg = pCollNeededArg;
sqlite3_mutex_leave(db->mutex);
return SQLITE_OK;
}
#endif /* SQLITE_OMIT_UTF16 */
#ifndef SQLITE_OMIT_GLOBALRECOVER
/*
** This function is now an anachronism. It used to be used to recover from a
** malloc() failure, but SQLite now does this automatically.
*/
SQLITE_API int
sqlite3_global_recover(void)
{
return SQLITE_OK;
}
#endif
/*
** Test to see whether or not the database connection is in autocommit
** mode. Return TRUE if it is and FALSE if not. Autocommit mode is on
** by default. Autocommit is disabled by a BEGIN statement and reenabled
** by the next COMMIT or ROLLBACK.
**
******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ******
*/
SQLITE_API int
sqlite3_get_autocommit(sqlite3 * db)
{
return db->autoCommit;
}
#ifdef SQLITE_DEBUG
/*
** The following routine is subtituted for constant SQLITE_CORRUPT in
** debugging builds. This provides a way to set a breakpoint for when
** corruption is first detected.
*/
SQLITE_PRIVATE int
sqlite3Corrupt(void)
{
return SQLITE_CORRUPT;
}
#endif
/*
** This is a convenience routine that makes sure that all thread-specific
** data for this thread has been deallocated.
**
** SQLite no longer uses thread-specific data so this routine is now a
** no-op. It is retained for historical compatibility.
*/
SQLITE_API void
sqlite3_thread_cleanup(void)
{
}
/*
** Return meta information about a specific column of a database table.
** See comment in sqlite3.h (sqlite.h.in) for details.
*/
#ifdef SQLITE_ENABLE_COLUMN_METADATA
SQLITE_API int
sqlite3_table_column_metadata(sqlite3 * db, /* Connection handle */
const char *zDbName, /* Database name or NULL */
const char *zTableName, /* Table name */
const char *zColumnName, /* Column name */
char const **pzDataType, /* OUTPUT: Declared data type */
char const **pzCollSeq, /* OUTPUT: Collation sequence name */
int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */
int *pPrimaryKey, /* OUTPUT: True if column part of PK */
int *pAutoinc /* OUTPUT: True if colums is auto-increment */
)
{
int rc;
char *zErrMsg = 0;
Table *pTab = 0;
Column *pCol = 0;
int iCol;
char const *zDataType = 0;
char const *zCollSeq = 0;
int notnull = 0;
int primarykey = 0;
int autoinc = 0;
/* Ensure the database schema has been loaded */
sqlite3_mutex_enter(db->mutex);
(void) sqlite3SafetyOn(db);
sqlite3BtreeEnterAll(db);
rc = sqlite3Init(db, &zErrMsg);
sqlite3BtreeLeaveAll(db);
if(SQLITE_OK != rc)
{
goto error_out;
}
/* Locate the table in question */
pTab = sqlite3FindTable(db, zTableName, zDbName);
if(!pTab || pTab->pSelect)
{
pTab = 0;
goto error_out;
}
/* Find the column for which info is requested */
if(sqlite3IsRowid(zColumnName))
{
iCol = pTab->iPKey;
if(iCol >= 0)
{
pCol = &pTab->aCol[iCol];
}
}
else
{
for (iCol = 0; iCol < pTab->nCol; iCol++)
{
pCol = &pTab->aCol[iCol];
if(0 == sqlite3StrICmp(pCol->zName, zColumnName))
{
break;
}
}
if(iCol == pTab->nCol)
{
pTab = 0;
goto error_out;
}
}
/* The following block stores the meta information that will be returned
** to the caller in local variables zDataType, zCollSeq, notnull, primarykey
** and autoinc. At this point there are two possibilities:
**
** 1. The specified column name was rowid", "oid" or "_rowid_"
** and there is no explicitly declared IPK column.
**
** 2. The table is not a view and the column name identified an
** explicitly declared column. Copy meta information from *pCol.
*/
if(pCol)
{
zDataType = pCol->zType;
zCollSeq = pCol->zColl;
notnull = (pCol->notNull ? 1 : 0);
primarykey = (pCol->isPrimKey ? 1 : 0);
autoinc = ((pTab->iPKey == iCol && pTab->autoInc) ? 1 : 0);
}
else
{
zDataType = "INTEGER";
primarykey = 1;
}
if(!zCollSeq)
{
zCollSeq = "BINARY";
}
error_out:
(void) sqlite3SafetyOff(db);
/* Whether the function call succeeded or failed, set the output parameters
** to whatever their local counterparts contain. If an error did occur,
** this has the effect of zeroing all output parameters.
*/
if(pzDataType)
*pzDataType = zDataType;
if(pzCollSeq)
*pzCollSeq = zCollSeq;
if(pNotNull)
*pNotNull = notnull;
if(pPrimaryKey)
*pPrimaryKey = primarykey;
if(pAutoinc)
*pAutoinc = autoinc;
if(SQLITE_OK == rc && !pTab)
{
sqlite3SetString(&zErrMsg, "no such table column: ", zTableName, ".",
zColumnName, 0);
rc = SQLITE_ERROR;
}
sqlite3Error(db, rc, (zErrMsg ? "%s" : 0), zErrMsg);
sqlite3_free(zErrMsg);
rc = sqlite3ApiExit(db, rc);
sqlite3_mutex_leave(db->mutex);
return rc;
}
#endif
/*
** Sleep for a little while. Return the amount of time slept.
*/
SQLITE_API int
sqlite3_sleep(int ms)
{
sqlite3_vfs *pVfs;
int rc;
pVfs = sqlite3_vfs_find(0);
/* This function works in milliseconds, but the underlying OsSleep()
** API uses microseconds. Hence the 1000's.
*/
rc = (sqlite3OsSleep(pVfs, 1000 * ms) / 1000);
return rc;
}
/*
** Enable or disable the extended result codes.
*/
SQLITE_API int
sqlite3_extended_result_codes(sqlite3 * db, int onoff)
{
sqlite3_mutex_enter(db->mutex);
db->errMask = onoff ? 0xffffffff : 0xff;
sqlite3_mutex_leave(db->mutex);
return SQLITE_OK;
}
/*
** Invoke the xFileControl method on a particular database.
*/
SQLITE_API int
sqlite3_file_control(sqlite3 * db, const char *zDbName, int op, void *pArg)
{
int rc = SQLITE_ERROR;
int iDb;
sqlite3_mutex_enter(db->mutex);
if(zDbName == 0)
{
iDb = 0;
}
else
{
for (iDb = 0; iDb < db->nDb; iDb++)
{
if(strcmp(db->aDb[iDb].zName, zDbName) == 0)
break;
}
}
if(iDb < db->nDb)
{
Btree *pBtree = db->aDb[iDb].pBt;
if(pBtree)
{
Pager *pPager;
sqlite3_file *fd;
sqlite3BtreeEnter(pBtree);
pPager = sqlite3BtreePager(pBtree);
assert(pPager != 0);
fd = sqlite3PagerFile(pPager);
assert(fd != 0);
if(fd->pMethods)
{
rc = sqlite3OsFileControl(fd, op, pArg);
}
sqlite3BtreeLeave(pBtree);
}
}
sqlite3_mutex_leave(db->mutex);
return rc;
}
/*
** Interface to the testing logic.
*/
SQLITE_API int
sqlite3_test_control(int op, ...)
{
int rc = 0;
#ifndef SQLITE_OMIT_BUILTIN_TEST
va_list ap;
va_start(ap, op);
switch (op)
{
/*
** sqlite3_test_control(FAULT_CONFIG, fault_id, nDelay, nRepeat)
**
** Configure a fault injector. The specific fault injector is
** identified by the fault_id argument. (ex: SQLITE_FAULTINJECTOR_MALLOC)
** The fault will occur after a delay of nDelay calls. The fault
** will repeat nRepeat times.
*/
case SQLITE_TESTCTRL_FAULT_CONFIG:
{
int id = va_arg(ap, int);
int nDelay = va_arg(ap, int);
int nRepeat = va_arg(ap, int);
sqlite3FaultConfig(id, nDelay, nRepeat);
break;
}
/*
** sqlite3_test_control(FAULT_FAILURES, fault_id)
**
** Return the number of faults (both hard and benign faults) that have
** occurred since the injector identified by fault_id) was last configured.
*/
case SQLITE_TESTCTRL_FAULT_FAILURES:
{
int id = va_arg(ap, int);
rc = sqlite3FaultFailures(id);
break;
}
/*
** sqlite3_test_control(FAULT_BENIGN_FAILURES, fault_id)
**
** Return the number of benign faults that have occurred since the
** injector identified by fault_id was last configured.
*/
case SQLITE_TESTCTRL_FAULT_BENIGN_FAILURES:
{
int id = va_arg(ap, int);
rc = sqlite3FaultBenignFailures(id);
break;
}
/*
** sqlite3_test_control(FAULT_PENDING, fault_id)
**
** Return the number of successes that will occur before the next
** scheduled failure on fault injector fault_id.
** If no failures are scheduled, return -1.
*/
case SQLITE_TESTCTRL_FAULT_PENDING:
{
int id = va_arg(ap, int);
rc = sqlite3FaultPending(id);
break;
}
/*
** Save the current state of the PRNG.
*/
case SQLITE_TESTCTRL_PRNG_SAVE:
{
sqlite3PrngSaveState();
break;
}
/*
** Restore the state of the PRNG to the last state saved using
** PRNG_SAVE. If PRNG_SAVE has never before been called, then
** this verb acts like PRNG_RESET.
*/
case SQLITE_TESTCTRL_PRNG_RESTORE:
{
sqlite3PrngRestoreState();
break;
}
/*
** Reset the PRNG back to its uninitialized state. The next call
** to sqlite3_randomness() will reseed the PRNG using a single call
** to the xRandomness method of the default VFS.
*/
case SQLITE_TESTCTRL_PRNG_RESET:
{
sqlite3PrngResetState();
break;
}
/*
** sqlite3_test_control(BITVEC_TEST, size, program)
**
** Run a test against a Bitvec object of size. The program argument
** is an array of integers that defines the test. Return -1 on a
** memory allocation error, 0 on success, or non-zero for an error.
** See the sqlite3BitvecBuiltinTest() for additional information.
*/
case SQLITE_TESTCTRL_BITVEC_TEST:
{
int sz = va_arg(ap, int);
int *aProg = va_arg(ap, int *);
rc = sqlite3BitvecBuiltinTest(sz, aProg);
break;
}
}
va_end(ap);
#endif /* SQLITE_OMIT_BUILTIN_TEST */
return rc;
}
/************** End of main.c ************************************************/
/************** Begin file fts3.c ********************************************/
/*
** 2006 Oct 10
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** This is an SQLite module implementing full-text search.
*/
/*
** The code in this file is only compiled if:
**
** * The FTS3 module is being built as an extension
** (in which case SQLITE_CORE is not defined), or
**
** * The FTS3 module is being built into the core of
** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
*/
/* TODO(shess) Consider exporting this comment to an HTML file or the
** wiki.
*/
/* The full-text index is stored in a series of b+tree (-like)
** structures called segments which map terms to doclists. The
** structures are like b+trees in layout, but are constructed from the
** bottom up in optimal fashion and are not updatable. Since trees
** are built from the bottom up, things will be described from the
** bottom up.
**
**
**** Varints ****
** The basic unit of encoding is a variable-length integer called a
** varint. We encode variable-length integers in little-endian order
** using seven bits * per byte as follows:
**
** KEY:
** A = 0xxxxxxx 7 bits of data and one flag bit
** B = 1xxxxxxx 7 bits of data and one flag bit
**
** 7 bits - A
** 14 bits - BA
** 21 bits - BBA
** and so on.
**
** This is identical to how sqlite encodes varints (see util.c).
**
**
**** Document lists ****
** A doclist (document list) holds a docid-sorted list of hits for a
** given term. Doclists hold docids, and can optionally associate
** token positions and offsets with docids.
**
** A DL_POSITIONS_OFFSETS doclist is stored like this:
**
** array {
** varint docid;
** array { (position list for column 0)
** varint position; (delta from previous position plus POS_BASE)
** varint startOffset; (delta from previous startOffset)
** varint endOffset; (delta from startOffset)
** }
** array {
** varint POS_COLUMN; (marks start of position list for new column)
** varint column; (index of new column)
** array {
** varint position; (delta from previous position plus POS_BASE)
** varint startOffset;(delta from previous startOffset)
** varint endOffset; (delta from startOffset)
** }
** }
** varint POS_END; (marks end of positions for this document.
** }
**
** Here, array { X } means zero or more occurrences of X, adjacent in
** memory. A "position" is an index of a token in the token stream
** generated by the tokenizer, while an "offset" is a byte offset,
** both based at 0. Note that POS_END and POS_COLUMN occur in the
** same logical place as the position element, and act as sentinals
** ending a position list array.
**
** A DL_POSITIONS doclist omits the startOffset and endOffset
** information. A DL_DOCIDS doclist omits both the position and
** offset information, becoming an array of varint-encoded docids.
**
** On-disk data is stored as type DL_DEFAULT, so we don't serialize
** the type. Due to how deletion is implemented in the segmentation
** system, on-disk doclists MUST store at least positions.
**
**
**** Segment leaf nodes ****
** Segment leaf nodes store terms and doclists, ordered by term. Leaf
** nodes are written using LeafWriter, and read using LeafReader (to
** iterate through a single leaf node's data) and LeavesReader (to
** iterate through a segment's entire leaf layer). Leaf nodes have
** the format:
**
** varint iHeight; (height from leaf level, always 0)
** varint nTerm; (length of first term)
** char pTerm[nTerm]; (content of first term)
** varint nDoclist; (length of term's associated doclist)
** char pDoclist[nDoclist]; (content of doclist)
** array {
** (further terms are delta-encoded)
** varint nPrefix; (length of prefix shared with previous term)
** varint nSuffix; (length of unshared suffix)
** char pTermSuffix[nSuffix];(unshared suffix of next term)
** varint nDoclist; (length of term's associated doclist)
** char pDoclist[nDoclist]; (content of doclist)
** }
**
** Here, array { X } means zero or more occurrences of X, adjacent in
** memory.
**
** Leaf nodes are broken into blocks which are stored contiguously in
** the %_segments table in sorted order. This means that when the end
** of a node is reached, the next term is in the node with the next
** greater node id.
**
** New data is spilled to a new leaf node when the current node
** exceeds LEAF_MAX bytes (default 2048). New data which itself is
** larger than STANDALONE_MIN (default 1024) is placed in a standalone
** node (a leaf node with a single term and doclist). The goal of
** these settings is to pack together groups of small doclists while
** making it efficient to directly access large doclists. The
** assumption is that large doclists represent terms which are more
** likely to be query targets.
**
** TODO(shess) It may be useful for blocking decisions to be more
** dynamic. For instance, it may make more sense to have a 2.5k leaf
** node rather than splitting into 2k and .5k nodes. My intuition is
** that this might extend through 2x or 4x the pagesize.
**
**
**** Segment interior nodes ****
** Segment interior nodes store blockids for subtree nodes and terms
** to describe what data is stored by the each subtree. Interior
** nodes are written using InteriorWriter, and read using
** InteriorReader. InteriorWriters are created as needed when
** SegmentWriter creates new leaf nodes, or when an interior node
** itself grows too big and must be split. The format of interior
** nodes:
**
** varint iHeight; (height from leaf level, always >0)
** varint iBlockid; (block id of node's leftmost subtree)
** optional {
** varint nTerm; (length of first term)
** char pTerm[nTerm]; (content of first term)
** array {
** (further terms are delta-encoded)
** varint nPrefix; (length of shared prefix with previous term)
** varint nSuffix; (length of unshared suffix)
** char pTermSuffix[nSuffix]; (unshared suffix of next term)
** }
** }
**
** Here, optional { X } means an optional element, while array { X }
** means zero or more occurrences of X, adjacent in memory.
**
** An interior node encodes n terms separating n+1 subtrees. The
** subtree blocks are contiguous, so only the first subtree's blockid
** is encoded. The subtree at iBlockid will contain all terms less
** than the first term encoded (or all terms if no term is encoded).
** Otherwise, for terms greater than or equal to pTerm[i] but less
** than pTerm[i+1], the subtree for that term will be rooted at
** iBlockid+i. Interior nodes only store enough term data to
** distinguish adjacent children (if the rightmost term of the left
** child is "something", and the leftmost term of the right child is
** "wicked", only "w" is stored).
**
** New data is spilled to a new interior node at the same height when
** the current node exceeds INTERIOR_MAX bytes (default 2048).
** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing
** interior nodes and making the tree too skinny. The interior nodes
** at a given height are naturally tracked by interior nodes at
** height+1, and so on.
**
**
**** Segment directory ****
** The segment directory in table %_segdir stores meta-information for
** merging and deleting segments, and also the root node of the
** segment's tree.
**
** The root node is the top node of the segment's tree after encoding
** the entire segment, restricted to ROOT_MAX bytes (default 1024).
** This could be either a leaf node or an interior node. If the top
** node requires more than ROOT_MAX bytes, it is flushed to %_segments
** and a new root interior node is generated (which should always fit
** within ROOT_MAX because it only needs space for 2 varints, the
** height and the blockid of the previous root).
**
** The meta-information in the segment directory is:
** level - segment level (see below)
** idx - index within level
** - (level,idx uniquely identify a segment)
** start_block - first leaf node
** leaves_end_block - last leaf node
** end_block - last block (including interior nodes)
** root - contents of root node
**
** If the root node is a leaf node, then start_block,
** leaves_end_block, and end_block are all 0.
**
**
**** Segment merging ****
** To amortize update costs, segments are groups into levels and
** merged in matches. Each increase in level represents exponentially
** more documents.
**
** New documents (actually, document updates) are tokenized and
** written individually (using LeafWriter) to a level 0 segment, with
** incrementing idx. When idx reaches MERGE_COUNT (default 16), all
** level 0 segments are merged into a single level 1 segment. Level 1
** is populated like level 0, and eventually MERGE_COUNT level 1
** segments are merged to a single level 2 segment (representing
** MERGE_COUNT^2 updates), and so on.
**
** A segment merge traverses all segments at a given level in
** parallel, performing a straightforward sorted merge. Since segment
** leaf nodes are written in to the %_segments table in order, this
** merge traverses the underlying sqlite disk structures efficiently.
** After the merge, all segment blocks from the merged level are
** deleted.
**
** MERGE_COUNT controls how often we merge segments. 16 seems to be
** somewhat of a sweet spot for insertion performance. 32 and 64 show
** very similar performance numbers to 16 on insertion, though they're
** a tiny bit slower (perhaps due to more overhead in merge-time
** sorting). 8 is about 20% slower than 16, 4 about 50% slower than
** 16, 2 about 66% slower than 16.
**
** At query time, high MERGE_COUNT increases the number of segments
** which need to be scanned and merged. For instance, with 100k docs
** inserted:
**
** MERGE_COUNT segments
** 16 25
** 8 12
** 4 10
** 2 6
**
** This appears to have only a moderate impact on queries for very
** frequent terms (which are somewhat dominated by segment merge
** costs), and infrequent and non-existent terms still seem to be fast
** even with many segments.
**
** TODO(shess) That said, it would be nice to have a better query-side
** argument for MERGE_COUNT of 16. Also, it is possible/likely that
** optimizations to things like doclist merging will swing the sweet
** spot around.
**
**
**
**** Handling of deletions and updates ****
** Since we're using a segmented structure, with no docid-oriented
** index into the term index, we clearly cannot simply update the term
** index when a document is deleted or updated. For deletions, we
** write an empty doclist (varint(docid) varint(POS_END)), for updates
** we simply write the new doclist. Segment merges overwrite older
** data for a particular docid with newer data, so deletes or updates
** will eventually overtake the earlier data and knock it out. The
** query logic likewise merges doclists so that newer data knocks out
** older data.
**
** TODO(shess) Provide a VACUUM type operation to clear out all
** deletions and duplications. This would basically be a forced merge
** into a single segment.
*/
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
#if defined(SQLITE_ENABLE_FTS3) && !defined(SQLITE_CORE)
# define SQLITE_CORE 1
#endif
/************** Include fts3_hash.h in the middle of fts3.c ******************/
/************** Begin file fts3_hash.h ***************************************/
/*
** 2001 September 22
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This is the header file for the generic hash-table implemenation
** used in SQLite. We've modified it slightly to serve as a standalone
** hash table implementation for the full-text indexing module.
**
*/
#ifndef _FTS3_HASH_H_
#define _FTS3_HASH_H_
/* Forward declarations of structures. */
typedef struct fts3Hash fts3Hash;
typedef struct fts3HashElem fts3HashElem;
/* A complete hash table is an instance of the following structure.
** The internals of this structure are intended to be opaque -- client
** code should not attempt to access or modify the fields of this structure
** directly. Change this structure only by using the routines below.
** However, many of the "procedures" and "functions" for modifying and
** accessing this structure are really macros, so we can't really make
** this structure opaque.
*/
struct fts3Hash
{
char keyClass; /* HASH_INT, _POINTER, _STRING, _BINARY */
char copyKey; /* True if copy of key made on insert */
int count; /* Number of entries in this table */
fts3HashElem *first; /* The first element of the array */
int htsize; /* Number of buckets in the hash table */
struct _fts3ht
{ /* the hash table */
int count; /* Number of entries with this hash */
fts3HashElem *chain; /* Pointer to first entry with this hash */
} *ht;
};
/* Each element in the hash table is an instance of the following
** structure. All elements are stored on a single doubly-linked list.
**
** Again, this structure is intended to be opaque, but it can't really
** be opaque because it is used by macros.
*/
struct fts3HashElem
{
fts3HashElem *next, *prev; /* Next and previous elements in the table */
void *data; /* Data associated with this element */
void *pKey;
int nKey; /* Key associated with this element */
};
/*
** There are 2 different modes of operation for a hash table:
**
** FTS3_HASH_STRING pKey points to a string that is nKey bytes long
** (including the null-terminator, if any). Case
** is respected in comparisons.
**
** FTS3_HASH_BINARY pKey points to binary data nKey bytes long.
** memcmp() is used to compare keys.
**
** A copy of the key is made if the copyKey parameter to fts3HashInit is 1.
*/
#define FTS3_HASH_STRING 1
#define FTS3_HASH_BINARY 2
/*
** Access routines. To delete, insert a NULL pointer.
*/
SQLITE_PRIVATE void sqlite3Fts3HashInit(fts3Hash *, int keytype, int copyKey);
SQLITE_PRIVATE void *sqlite3Fts3HashInsert(fts3Hash *, const void *pKey, int nKey, void *pData);
SQLITE_PRIVATE void *sqlite3Fts3HashFind(const fts3Hash *, const void *pKey, int nKey);
SQLITE_PRIVATE void sqlite3Fts3HashClear(fts3Hash *);
/*
** Shorthand for the functions above
*/
#define fts3HashInit sqlite3Fts3HashInit
#define fts3HashInsert sqlite3Fts3HashInsert
#define fts3HashFind sqlite3Fts3HashFind
#define fts3HashClear sqlite3Fts3HashClear
/*
** Macros for looping over all elements of a hash table. The idiom is
** like this:
**
** fts3Hash h;
** fts3HashElem *p;
** ...
** for(p=fts3HashFirst(&h); p; p=fts3HashNext(p)){
** SomeStructure *pData = fts3HashData(p);
** // do something with pData
** }
*/
#define fts3HashFirst(H) ((H)->first)
#define fts3HashNext(E) ((E)->next)
#define fts3HashData(E) ((E)->data)
#define fts3HashKey(E) ((E)->pKey)
#define fts3HashKeysize(E) ((E)->nKey)
/*
** Number of entries in a hash table
*/
#define fts3HashCount(H) ((H)->count)
#endif /* _FTS3_HASH_H_ */
/************** End of fts3_hash.h *******************************************/
/************** Continuing where we left off in fts3.c ***********************/
/************** Include fts3_tokenizer.h in the middle of fts3.c *************/
/************** Begin file fts3_tokenizer.h **********************************/
/*
** 2006 July 10
**
** The author disclaims copyright to this source code.
**
*************************************************************************
** Defines the interface to tokenizers used by fulltext-search. There
** are three basic components:
**
** sqlite3_tokenizer_module is a singleton defining the tokenizer
** interface functions. This is essentially the class structure for
** tokenizers.
**
** sqlite3_tokenizer is used to define a particular tokenizer, perhaps
** including customization information defined at creation time.
**
** sqlite3_tokenizer_cursor is generated by a tokenizer to generate
** tokens from a particular input.
*/
#ifndef _FTS3_TOKENIZER_H_
#define _FTS3_TOKENIZER_H_
/* TODO(shess) Only used for SQLITE_OK and SQLITE_DONE at this time.
** If tokenizers are to be allowed to call sqlite3_*() functions, then
** we will need a way to register the API consistently.
*/
/*
** Structures used by the tokenizer interface. When a new tokenizer
** implementation is registered, the caller provides a pointer to
** an sqlite3_tokenizer_module containing pointers to the callback
** functions that make up an implementation.
**
** When an fts3 table is created, it passes any arguments passed to
** the tokenizer clause of the CREATE VIRTUAL TABLE statement to the
** sqlite3_tokenizer_module.xCreate() function of the requested tokenizer
** implementation. The xCreate() function in turn returns an
** sqlite3_tokenizer structure representing the specific tokenizer to
** be used for the fts3 table (customized by the tokenizer clause arguments).
**
** To tokenize an input buffer, the sqlite3_tokenizer_module.xOpen()
** method is called. It returns an sqlite3_tokenizer_cursor object
** that may be used to tokenize a specific input buffer based on
** the tokenization rules supplied by a specific sqlite3_tokenizer
** object.
*/
typedef struct sqlite3_tokenizer_module sqlite3_tokenizer_module;
typedef struct sqlite3_tokenizer sqlite3_tokenizer;
typedef struct sqlite3_tokenizer_cursor sqlite3_tokenizer_cursor;
struct sqlite3_tokenizer_module
{
/*
** Structure version. Should always be set to 0.
*/
int iVersion;
/*
** Create a new tokenizer. The values in the argv[] array are the
** arguments passed to the "tokenizer" clause of the CREATE VIRTUAL
** TABLE statement that created the fts3 table. For example, if
** the following SQL is executed:
**
** CREATE .. USING fts3( ... , tokenizer <tokenizer-name> arg1 arg2)
**
** then argc is set to 2, and the argv[] array contains pointers
** to the strings "arg1" and "arg2".
**
** This method should return either SQLITE_OK (0), or an SQLite error
** code. If SQLITE_OK is returned, then *ppTokenizer should be set
** to point at the newly created tokenizer structure. The generic
** sqlite3_tokenizer.pModule variable should not be initialised by
** this callback. The caller will do so.
*/
int (*xCreate) (int argc, /* Size of argv array */
const char *const *argv, /* Tokenizer argument strings */
sqlite3_tokenizer ** ppTokenizer /* OUT: Created tokenizer */
);
/*
** Destroy an existing tokenizer. The fts3 module calls this method
** exactly once for each successful call to xCreate().
*/
int (*xDestroy) (sqlite3_tokenizer * pTokenizer);
/*
** Create a tokenizer cursor to tokenize an input buffer. The caller
** is responsible for ensuring that the input buffer remains valid
** until the cursor is closed (using the xClose() method).
*/
int (*xOpen) (sqlite3_tokenizer * pTokenizer, /* Tokenizer object */
const char *pInput, int nBytes, /* Input buffer */
sqlite3_tokenizer_cursor ** ppCursor /* OUT: Created tokenizer cursor */
);
/*
** Destroy an existing tokenizer cursor. The fts3 module calls this
** method exactly once for each successful call to xOpen().
*/
int (*xClose) (sqlite3_tokenizer_cursor * pCursor);
/*
** Retrieve the next token from the tokenizer cursor pCursor. This
** method should either return SQLITE_OK and set the values of the
** "OUT" variables identified below, or SQLITE_DONE to indicate that
** the end of the buffer has been reached, or an SQLite error code.
**
** *ppToken should be set to point at a buffer containing the
** normalized version of the token (i.e. after any case-folding and/or
** stemming has been performed). *pnBytes should be set to the length
** of this buffer in bytes. The input text that generated the token is
** identified by the byte offsets returned in *piStartOffset and
** *piEndOffset.
**
** The buffer *ppToken is set to point at is managed by the tokenizer
** implementation. It is only required to be valid until the next call
** to xNext() or xClose().
*/
/* TODO(shess) current implementation requires pInput to be
** nul-terminated. This should either be fixed, or pInput/nBytes
** should be converted to zInput.
*/
int (*xNext) (sqlite3_tokenizer_cursor * pCursor, /* Tokenizer cursor */
const char **ppToken, int *pnBytes, /* OUT: Normalized text for token */
int *piStartOffset, /* OUT: Byte offset of token in input buffer */
int *piEndOffset, /* OUT: Byte offset of end of token in input buffer */
int *piPosition /* OUT: Number of tokens returned before this one */
);
};
struct sqlite3_tokenizer
{
const sqlite3_tokenizer_module *pModule; /* The module for this tokenizer */
/* Tokenizer implementations will typically add additional fields */
};
struct sqlite3_tokenizer_cursor
{
sqlite3_tokenizer *pTokenizer; /* Tokenizer for this cursor. */
/* Tokenizer implementations will typically add additional fields */
};
#endif /* _FTS3_TOKENIZER_H_ */
/************** End of fts3_tokenizer.h **************************************/
/************** Continuing where we left off in fts3.c ***********************/
#ifndef SQLITE_CORE
SQLITE_EXTENSION_INIT1
#endif
/* TODO(shess) MAN, this thing needs some refactoring. At minimum, it
** would be nice to order the file better, perhaps something along the
** lines of:
**
** - utility functions
** - table setup functions
** - table update functions
** - table query functions
**
** Put the query functions last because they're likely to reference
** typedefs or functions from the table update section.
*/
#if 0
# define FTSTRACE(A) printf A; fflush(stdout)
#else
# define FTSTRACE(A)
#endif
/*
** Default span for NEAR operators.
*/
#define SQLITE_FTS3_DEFAULT_NEAR_PARAM 10
/* It is not safe to call isspace(), tolower(), or isalnum() on
** hi-bit-set characters. This is the same solution used in the
** tokenizer.
*/
/* TODO(shess) The snippet-generation code should be using the
** tokenizer-generated tokens rather than doing its own local
** tokenization.
*/
/* TODO(shess) Is __isascii() a portable version of (c&0x80)==0? */
static int
safe_isspace(char c)
{
return (c & 0x80) == 0 ? isspace(c) : 0;
}
static int
safe_tolower(char c)
{
return (c & 0x80) == 0 ? tolower(c) : c;
}
static int
safe_isalnum(char c)
{
return (c & 0x80) == 0 ? isalnum(c) : 0;
}
typedef enum DocListType
{
DL_DOCIDS, /* docids only */
DL_POSITIONS, /* docids + positions */
DL_POSITIONS_OFFSETS /* docids + positions + offsets */
} DocListType;
/*
** By default, only positions and not offsets are stored in the doclists.
** To change this so that offsets are stored too, compile with
**
** -DDL_DEFAULT=DL_POSITIONS_OFFSETS
**
** If DL_DEFAULT is set to DL_DOCIDS, your table can only be inserted
** into (no deletes or updates).
*/
#ifndef DL_DEFAULT
# define DL_DEFAULT DL_POSITIONS
#endif
enum
{
POS_END = 0, /* end of this position list */
POS_COLUMN, /* followed by new column number */
POS_BASE
};
/* MERGE_COUNT controls how often we merge segments (see comment at
** top of file).
*/
#define MERGE_COUNT 16
/* utility functions */
/* CLEAR() and SCRAMBLE() abstract memset() on a pointer to a single
** record to prevent errors of the form:
**
** my_function(SomeType *b){
** memset(b, '\0', sizeof(b)); // sizeof(b)!=sizeof(*b)
** }
*/
/* TODO(shess) Obvious candidates for a header file. */
#define CLEAR(b) memset(b, '\0', sizeof(*(b)))
#ifndef NDEBUG
# define SCRAMBLE(b) memset(b, 0x55, sizeof(*(b)))
#else
# define SCRAMBLE(b)
#endif
/* We may need up to VARINT_MAX bytes to store an encoded 64-bit integer. */
#define VARINT_MAX 10
/* Write a 64-bit variable-length integer to memory starting at p[0].
* The length of data written will be between 1 and VARINT_MAX bytes.
* The number of bytes written is returned. */
static int
fts3PutVarint(char *p, sqlite_int64 v)
{
unsigned char *q = (unsigned char *) p;
sqlite_uint64 vu = v;
do
{
*q++ = (unsigned char) ((vu & 0x7f) | 0x80);
vu >>= 7;
}
while (vu != 0);
q[-1] &= 0x7f; /* turn off high bit in final byte */
assert(q - (unsigned char *) p <= VARINT_MAX);
return (int) (q - (unsigned char *) p);
}
/* Read a 64-bit variable-length integer from memory starting at p[0].
* Return the number of bytes read, or 0 on error.
* The value is stored in *v. */
static int
fts3GetVarint(const char *p, sqlite_int64 * v)
{
const unsigned char *q = (const unsigned char *) p;
sqlite_uint64 x = 0, y = 1;
while ((*q & 0x80) == 0x80)
{
x += y * (*q++ & 0x7f);
y <<= 7;
if(q - (unsigned char *) p >= VARINT_MAX)
{ /* bad data */
assert(0);
return 0;
}
}
x += y * (*q++);
*v = (sqlite_int64) x;
return (int) (q - (unsigned char *) p);
}
static int
fts3GetVarint32(const char *p, int *pi)
{
sqlite_int64 i;
int ret = fts3GetVarint(p, &i);
*pi = (int) i;
assert(*pi == i);
return ret;
}
/*******************************************************************/
/* DataBuffer is used to collect data into a buffer in piecemeal
** fashion. It implements the usual distinction between amount of
** data currently stored (nData) and buffer capacity (nCapacity).
**
** dataBufferInit - create a buffer with given initial capacity.
** dataBufferReset - forget buffer's data, retaining capacity.
** dataBufferDestroy - free buffer's data.
** dataBufferSwap - swap contents of two buffers.
** dataBufferExpand - expand capacity without adding data.
** dataBufferAppend - append data.
** dataBufferAppend2 - append two pieces of data at once.
** dataBufferReplace - replace buffer's data.
*/
typedef struct DataBuffer
{
char *pData; /* Pointer to malloc'ed buffer. */
int nCapacity; /* Size of pData buffer. */
int nData; /* End of data loaded into pData. */
} DataBuffer;
static void
dataBufferInit(DataBuffer * pBuffer, int nCapacity)
{
assert(nCapacity >= 0);
pBuffer->nData = 0;
pBuffer->nCapacity = nCapacity;
pBuffer->pData = nCapacity == 0 ? NULL : sqlite3_malloc(nCapacity);
}
static void
dataBufferReset(DataBuffer * pBuffer)
{
pBuffer->nData = 0;
}
static void
dataBufferDestroy(DataBuffer * pBuffer)
{
if(pBuffer->pData != NULL)
sqlite3_free(pBuffer->pData);
SCRAMBLE(pBuffer);
}
static void
dataBufferSwap(DataBuffer * pBuffer1, DataBuffer * pBuffer2)
{
DataBuffer tmp = *pBuffer1;
*pBuffer1 = *pBuffer2;
*pBuffer2 = tmp;
}
static void
dataBufferExpand(DataBuffer * pBuffer, int nAddCapacity)
{
assert(nAddCapacity > 0);
/* TODO(shess) Consider expanding more aggressively. Note that the
** underlying malloc implementation may take care of such things for
** us already.
*/
if(pBuffer->nData + nAddCapacity > pBuffer->nCapacity)
{
pBuffer->nCapacity = pBuffer->nData + nAddCapacity;
pBuffer->pData = sqlite3_realloc(pBuffer->pData, pBuffer->nCapacity);
}
}
static void
dataBufferAppend(DataBuffer * pBuffer, const char *pSource, int nSource)
{
assert(nSource > 0 && pSource != NULL);
dataBufferExpand(pBuffer, nSource);
memcpy(pBuffer->pData + pBuffer->nData, pSource, nSource);
pBuffer->nData += nSource;
}
static void
dataBufferAppend2(DataBuffer * pBuffer,
const char *pSource1, int nSource1, const char *pSource2, int nSource2)
{
assert(nSource1 > 0 && pSource1 != NULL);
assert(nSource2 > 0 && pSource2 != NULL);
dataBufferExpand(pBuffer, nSource1 + nSource2);
memcpy(pBuffer->pData + pBuffer->nData, pSource1, nSource1);
memcpy(pBuffer->pData + pBuffer->nData + nSource1, pSource2, nSource2);
pBuffer->nData += nSource1 + nSource2;
}
static void
dataBufferReplace(DataBuffer * pBuffer, const char *pSource, int nSource)
{
dataBufferReset(pBuffer);
dataBufferAppend(pBuffer, pSource, nSource);
}
/* StringBuffer is a null-terminated version of DataBuffer. */
typedef struct StringBuffer
{
DataBuffer b; /* Includes null terminator. */
} StringBuffer;
static void
initStringBuffer(StringBuffer * sb)
{
dataBufferInit(&sb->b, 100);
dataBufferReplace(&sb->b, "", 1);
}
static int
stringBufferLength(StringBuffer * sb)
{
return sb->b.nData - 1;
}
static char *
stringBufferData(StringBuffer * sb)
{
return sb->b.pData;
}
static void
stringBufferDestroy(StringBuffer * sb)
{
dataBufferDestroy(&sb->b);
}
static void
nappend(StringBuffer * sb, const char *zFrom, int nFrom)
{
assert(sb->b.nData > 0);
if(nFrom > 0)
{
sb->b.nData--;
dataBufferAppend2(&sb->b, zFrom, nFrom, "", 1);
}
}
static void
append(StringBuffer * sb, const char *zFrom)
{
nappend(sb, zFrom, strlen(zFrom));
}
/* Append a list of strings separated by commas. */
static void
appendList(StringBuffer * sb, int nString, char **azString)
{
int i;
for (i = 0; i < nString; ++i)
{
if(i > 0)
append(sb, ", ");
append(sb, azString[i]);
}
}
static int
endsInWhiteSpace(StringBuffer * p)
{
return stringBufferLength(p) > 0 &&
safe_isspace(stringBufferData(p)[stringBufferLength(p) - 1]);
}
/* If the StringBuffer ends in something other than white space, add a
** single space character to the end.
*/
static void
appendWhiteSpace(StringBuffer * p)
{
if(stringBufferLength(p) == 0)
return;
if(!endsInWhiteSpace(p))
append(p, " ");
}
/* Remove white space from the end of the StringBuffer */
static void
trimWhiteSpace(StringBuffer * p)
{
while (endsInWhiteSpace(p))
{
p->b.pData[--p->b.nData - 1] = '\0';
}
}
/*******************************************************************/
/* DLReader is used to read document elements from a doclist. The
** current docid is cached, so dlrDocid() is fast. DLReader does not
** own the doclist buffer.
**
** dlrAtEnd - true if there's no more data to read.
** dlrDocid - docid of current document.
** dlrDocData - doclist data for current document (including docid).
** dlrDocDataBytes - length of same.
** dlrAllDataBytes - length of all remaining data.
** dlrPosData - position data for current document.
** dlrPosDataLen - length of pos data for current document (incl POS_END).
** dlrStep - step to current document.
** dlrInit - initial for doclist of given type against given data.
** dlrDestroy - clean up.
**
** Expected usage is something like:
**
** DLReader reader;
** dlrInit(&reader, pData, nData);
** while( !dlrAtEnd(&reader) ){
** // calls to dlrDocid() and kin.
** dlrStep(&reader);
** }
** dlrDestroy(&reader);
*/
typedef struct DLReader
{
DocListType iType;
const char *pData;
int nData;
sqlite_int64 iDocid;
int nElement;
} DLReader;
static int
dlrAtEnd(DLReader * pReader)
{
assert(pReader->nData >= 0);
return pReader->nData == 0;
}
static sqlite_int64
dlrDocid(DLReader * pReader)
{
assert(!dlrAtEnd(pReader));
return pReader->iDocid;
}
static const char *
dlrDocData(DLReader * pReader)
{
assert(!dlrAtEnd(pReader));
return pReader->pData;
}
static int
dlrDocDataBytes(DLReader * pReader)
{
assert(!dlrAtEnd(pReader));
return pReader->nElement;
}
static int
dlrAllDataBytes(DLReader * pReader)
{
assert(!dlrAtEnd(pReader));
return pReader->nData;
}
/* TODO(shess) Consider adding a field to track iDocid varint length
** to make these two functions faster. This might matter (a tiny bit)
** for queries.
*/
static const char *
dlrPosData(DLReader * pReader)
{
sqlite_int64 iDummy;
int n = fts3GetVarint(pReader->pData, &iDummy);
assert(!dlrAtEnd(pReader));
return pReader->pData + n;
}
static int
dlrPosDataLen(DLReader * pReader)
{
sqlite_int64 iDummy;
int n = fts3GetVarint(pReader->pData, &iDummy);
assert(!dlrAtEnd(pReader));
return pReader->nElement - n;
}
static void
dlrStep(DLReader * pReader)
{
assert(!dlrAtEnd(pReader));
/* Skip past current doclist element. */
assert(pReader->nElement <= pReader->nData);
pReader->pData += pReader->nElement;
pReader->nData -= pReader->nElement;
/* If there is more data, read the next doclist element. */
if(pReader->nData != 0)
{
sqlite_int64 iDocidDelta;
int iDummy, n = fts3GetVarint(pReader->pData, &iDocidDelta);
pReader->iDocid += iDocidDelta;
if(pReader->iType >= DL_POSITIONS)
{
assert(n < pReader->nData);
while (1)
{
n += fts3GetVarint32(pReader->pData + n, &iDummy);
assert(n <= pReader->nData);
if(iDummy == POS_END)
break;
if(iDummy == POS_COLUMN)
{
n += fts3GetVarint32(pReader->pData + n, &iDummy);
assert(n < pReader->nData);
}
else if(pReader->iType == DL_POSITIONS_OFFSETS)
{
n += fts3GetVarint32(pReader->pData + n, &iDummy);
n += fts3GetVarint32(pReader->pData + n, &iDummy);
assert(n < pReader->nData);
}
}
}
pReader->nElement = n;
assert(pReader->nElement <= pReader->nData);
}
}
static void
dlrInit(DLReader * pReader, DocListType iType, const char *pData, int nData)
{
assert(pData != NULL && nData != 0);
pReader->iType = iType;
pReader->pData = pData;
pReader->nData = nData;
pReader->nElement = 0;
pReader->iDocid = 0;
/* Load the first element's data. There must be a first element. */
dlrStep(pReader);
}
static void
dlrDestroy(DLReader * pReader)
{
SCRAMBLE(pReader);
}
#ifndef NDEBUG
/* Verify that the doclist can be validly decoded. Also returns the
** last docid found because it is convenient in other assertions for
** DLWriter.
*/
static void
docListValidate(DocListType iType, const char *pData, int nData, sqlite_int64 * pLastDocid)
{
sqlite_int64 iPrevDocid = 0;
assert(nData > 0);
assert(pData != 0);
assert(pData + nData > pData);
while (nData != 0)
{
sqlite_int64 iDocidDelta;
int n = fts3GetVarint(pData, &iDocidDelta);
iPrevDocid += iDocidDelta;
if(iType > DL_DOCIDS)
{
int iDummy;
while (1)
{
n += fts3GetVarint32(pData + n, &iDummy);
if(iDummy == POS_END)
break;
if(iDummy == POS_COLUMN)
{
n += fts3GetVarint32(pData + n, &iDummy);
}
else if(iType > DL_POSITIONS)
{
n += fts3GetVarint32(pData + n, &iDummy);
n += fts3GetVarint32(pData + n, &iDummy);
}
assert(n <= nData);
}
}
assert(n <= nData);
pData += n;
nData -= n;
}
if(pLastDocid)
*pLastDocid = iPrevDocid;
}
#define ASSERT_VALID_DOCLIST(i, p, n, o) docListValidate(i, p, n, o)
#else
#define ASSERT_VALID_DOCLIST(i, p, n, o) assert( 1 )
#endif
/*******************************************************************/
/* DLWriter is used to write doclist data to a DataBuffer. DLWriter
** always appends to the buffer and does not own it.
**
** dlwInit - initialize to write a given type doclistto a buffer.
** dlwDestroy - clear the writer's memory. Does not free buffer.
** dlwAppend - append raw doclist data to buffer.
** dlwCopy - copy next doclist from reader to writer.
** dlwAdd - construct doclist element and append to buffer.
** Only apply dlwAdd() to DL_DOCIDS doclists (else use PLWriter).
*/
typedef struct DLWriter
{
DocListType iType;
DataBuffer *b;
sqlite_int64 iPrevDocid;
#ifndef NDEBUG
int has_iPrevDocid;
#endif
} DLWriter;
static void
dlwInit(DLWriter * pWriter, DocListType iType, DataBuffer * b)
{
pWriter->b = b;
pWriter->iType = iType;
pWriter->iPrevDocid = 0;
#ifndef NDEBUG
pWriter->has_iPrevDocid = 0;
#endif
}
static void
dlwDestroy(DLWriter * pWriter)
{
SCRAMBLE(pWriter);
}
/* iFirstDocid is the first docid in the doclist in pData. It is
** needed because pData may point within a larger doclist, in which
** case the first item would be delta-encoded.
**
** iLastDocid is the final docid in the doclist in pData. It is
** needed to create the new iPrevDocid for future delta-encoding. The
** code could decode the passed doclist to recreate iLastDocid, but
** the only current user (docListMerge) already has decoded this
** information.
*/
/* TODO(shess) This has become just a helper for docListMerge.
** Consider a refactor to make this cleaner.
*/
static void
dlwAppend(DLWriter * pWriter,
const char *pData, int nData, sqlite_int64 iFirstDocid, sqlite_int64 iLastDocid)
{
sqlite_int64 iDocid = 0;
char c[VARINT_MAX];
int nFirstOld, nFirstNew; /* Old and new varint len of first docid. */
#ifndef NDEBUG
sqlite_int64 iLastDocidDelta;
#endif
/* Recode the initial docid as delta from iPrevDocid. */
nFirstOld = fts3GetVarint(pData, &iDocid);
assert(nFirstOld < nData || (nFirstOld == nData && pWriter->iType == DL_DOCIDS));
nFirstNew = fts3PutVarint(c, iFirstDocid - pWriter->iPrevDocid);
/* Verify that the incoming doclist is valid AND that it ends with
** the expected docid. This is essential because we'll trust this
** docid in future delta-encoding.
*/
ASSERT_VALID_DOCLIST(pWriter->iType, pData, nData, &iLastDocidDelta);
assert(iLastDocid == iFirstDocid - iDocid + iLastDocidDelta);
/* Append recoded initial docid and everything else. Rest of docids
** should have been delta-encoded from previous initial docid.
*/
if(nFirstOld < nData)
{
dataBufferAppend2(pWriter->b, c, nFirstNew, pData + nFirstOld, nData - nFirstOld);
}
else
{
dataBufferAppend(pWriter->b, c, nFirstNew);
}
pWriter->iPrevDocid = iLastDocid;
}
static void
dlwCopy(DLWriter * pWriter, DLReader * pReader)
{
dlwAppend(pWriter, dlrDocData(pReader), dlrDocDataBytes(pReader),
dlrDocid(pReader), dlrDocid(pReader));
}
static void
dlwAdd(DLWriter * pWriter, sqlite_int64 iDocid)
{
char c[VARINT_MAX];
int n = fts3PutVarint(c, iDocid - pWriter->iPrevDocid);
/* Docids must ascend. */
assert(!pWriter->has_iPrevDocid || iDocid > pWriter->iPrevDocid);
assert(pWriter->iType == DL_DOCIDS);
dataBufferAppend(pWriter->b, c, n);
pWriter->iPrevDocid = iDocid;
#ifndef NDEBUG
pWriter->has_iPrevDocid = 1;
#endif
}
/*******************************************************************/
/* PLReader is used to read data from a document's position list. As
** the caller steps through the list, data is cached so that varints
** only need to be decoded once.
**
** plrInit, plrDestroy - create/destroy a reader.
** plrColumn, plrPosition, plrStartOffset, plrEndOffset - accessors
** plrAtEnd - at end of stream, only call plrDestroy once true.
** plrStep - step to the next element.
*/
typedef struct PLReader
{
/* These refer to the next position's data. nData will reach 0 when
** reading the last position, so plrStep() signals EOF by setting
** pData to NULL.
*/
const char *pData;
int nData;
DocListType iType;
int iColumn; /* the last column read */
int iPosition; /* the last position read */
int iStartOffset; /* the last start offset read */
int iEndOffset; /* the last end offset read */
} PLReader;
static int
plrAtEnd(PLReader * pReader)
{
return pReader->pData == NULL;
}
static int
plrColumn(PLReader * pReader)
{
assert(!plrAtEnd(pReader));
return pReader->iColumn;
}
static int
plrPosition(PLReader * pReader)
{
assert(!plrAtEnd(pReader));
return pReader->iPosition;
}
static int
plrStartOffset(PLReader * pReader)
{
assert(!plrAtEnd(pReader));
return pReader->iStartOffset;
}
static int
plrEndOffset(PLReader * pReader)
{
assert(!plrAtEnd(pReader));
return pReader->iEndOffset;
}
static void
plrStep(PLReader * pReader)
{
int i, n;
assert(!plrAtEnd(pReader));
if(pReader->nData == 0)
{
pReader->pData = NULL;
return;
}
n = fts3GetVarint32(pReader->pData, &i);
if(i == POS_COLUMN)
{
n += fts3GetVarint32(pReader->pData + n, &pReader->iColumn);
pReader->iPosition = 0;
pReader->iStartOffset = 0;
n += fts3GetVarint32(pReader->pData + n, &i);
}
/* Should never see adjacent column changes. */
assert(i != POS_COLUMN);
if(i == POS_END)
{
pReader->nData = 0;
pReader->pData = NULL;
return;
}
pReader->iPosition += i - POS_BASE;
if(pReader->iType == DL_POSITIONS_OFFSETS)
{
n += fts3GetVarint32(pReader->pData + n, &i);
pReader->iStartOffset += i;
n += fts3GetVarint32(pReader->pData + n, &i);
pReader->iEndOffset = pReader->iStartOffset + i;
}
assert(n <= pReader->nData);
pReader->pData += n;
pReader->nData -= n;
}
static void
plrInit(PLReader * pReader, DLReader * pDLReader)
{
pReader->pData = dlrPosData(pDLReader);
pReader->nData = dlrPosDataLen(pDLReader);
pReader->iType = pDLReader->iType;
pReader->iColumn = 0;
pReader->iPosition = 0;
pReader->iStartOffset = 0;
pReader->iEndOffset = 0;
plrStep(pReader);
}
static void
plrDestroy(PLReader * pReader)
{
SCRAMBLE(pReader);
}
/*******************************************************************/
/* PLWriter is used in constructing a document's position list. As a
** convenience, if iType is DL_DOCIDS, PLWriter becomes a no-op.
** PLWriter writes to the associated DLWriter's buffer.
**
** plwInit - init for writing a document's poslist.
** plwDestroy - clear a writer.
** plwAdd - append position and offset information.
** plwCopy - copy next position's data from reader to writer.
** plwTerminate - add any necessary doclist terminator.
**
** Calling plwAdd() after plwTerminate() may result in a corrupt
** doclist.
*/
/* TODO(shess) Until we've written the second item, we can cache the
** first item's information. Then we'd have three states:
**
** - initialized with docid, no positions.
** - docid and one position.
** - docid and multiple positions.
**
** Only the last state needs to actually write to dlw->b, which would
** be an improvement in the DLCollector case.
*/
typedef struct PLWriter
{
DLWriter *dlw;
int iColumn; /* the last column written */
int iPos; /* the last position written */
int iOffset; /* the last start offset written */
} PLWriter;
/* TODO(shess) In the case where the parent is reading these values
** from a PLReader, we could optimize to a copy if that PLReader has
** the same type as pWriter.
*/
static void
plwAdd(PLWriter * pWriter, int iColumn, int iPos, int iStartOffset, int iEndOffset)
{
/* Worst-case space for POS_COLUMN, iColumn, iPosDelta,
** iStartOffsetDelta, and iEndOffsetDelta.
*/
char c[5 * VARINT_MAX];
int n = 0;
/* Ban plwAdd() after plwTerminate(). */
assert(pWriter->iPos != -1);
if(pWriter->dlw->iType == DL_DOCIDS)
return;
if(iColumn != pWriter->iColumn)
{
n += fts3PutVarint(c + n, POS_COLUMN);
n += fts3PutVarint(c + n, iColumn);
pWriter->iColumn = iColumn;
pWriter->iPos = 0;
pWriter->iOffset = 0;
}
assert(iPos >= pWriter->iPos);
n += fts3PutVarint(c + n, POS_BASE + (iPos - pWriter->iPos));
pWriter->iPos = iPos;
if(pWriter->dlw->iType == DL_POSITIONS_OFFSETS)
{
assert(iStartOffset >= pWriter->iOffset);
n += fts3PutVarint(c + n, iStartOffset - pWriter->iOffset);
pWriter->iOffset = iStartOffset;
assert(iEndOffset >= iStartOffset);
n += fts3PutVarint(c + n, iEndOffset - iStartOffset);
}
dataBufferAppend(pWriter->dlw->b, c, n);
}
static void
plwCopy(PLWriter * pWriter, PLReader * pReader)
{
plwAdd(pWriter, plrColumn(pReader), plrPosition(pReader),
plrStartOffset(pReader), plrEndOffset(pReader));
}
static void
plwInit(PLWriter * pWriter, DLWriter * dlw, sqlite_int64 iDocid)
{
char c[VARINT_MAX];
int n;
pWriter->dlw = dlw;
/* Docids must ascend. */
assert(!pWriter->dlw->has_iPrevDocid || iDocid > pWriter->dlw->iPrevDocid);
n = fts3PutVarint(c, iDocid - pWriter->dlw->iPrevDocid);
dataBufferAppend(pWriter->dlw->b, c, n);
pWriter->dlw->iPrevDocid = iDocid;
#ifndef NDEBUG
pWriter->dlw->has_iPrevDocid = 1;
#endif
pWriter->iColumn = 0;
pWriter->iPos = 0;
pWriter->iOffset = 0;
}
/* TODO(shess) Should plwDestroy() also terminate the doclist? But
** then plwDestroy() would no longer be just a destructor, it would
** also be doing work, which isn't consistent with the overall idiom.
** Another option would be for plwAdd() to always append any necessary
** terminator, so that the output is always correct. But that would
** add incremental work to the common case with the only benefit being
** API elegance. Punt for now.
*/
static void
plwTerminate(PLWriter * pWriter)
{
if(pWriter->dlw->iType > DL_DOCIDS)
{
char c[VARINT_MAX];
int n = fts3PutVarint(c, POS_END);
dataBufferAppend(pWriter->dlw->b, c, n);
}
#ifndef NDEBUG
/* Mark as terminated for assert in plwAdd(). */
pWriter->iPos = -1;
#endif
}
static void
plwDestroy(PLWriter * pWriter)
{
SCRAMBLE(pWriter);
}
/*******************************************************************/
/* DLCollector wraps PLWriter and DLWriter to provide a
** dynamically-allocated doclist area to use during tokenization.
**
** dlcNew - malloc up and initialize a collector.
** dlcDelete - destroy a collector and all contained items.
** dlcAddPos - append position and offset information.
** dlcAddDoclist - add the collected doclist to the given buffer.
** dlcNext - terminate the current document and open another.
*/
typedef struct DLCollector
{
DataBuffer b;
DLWriter dlw;
PLWriter plw;
} DLCollector;
/* TODO(shess) This could also be done by calling plwTerminate() and
** dataBufferAppend(). I tried that, expecting nominal performance
** differences, but it seemed to pretty reliably be worth 1% to code
** it this way. I suspect it is the incremental malloc overhead (some
** percentage of the plwTerminate() calls will cause a realloc), so
** this might be worth revisiting if the DataBuffer implementation
** changes.
*/
static void
dlcAddDoclist(DLCollector * pCollector, DataBuffer * b)
{
if(pCollector->dlw.iType > DL_DOCIDS)
{
char c[VARINT_MAX];
int n = fts3PutVarint(c, POS_END);
dataBufferAppend2(b, pCollector->b.pData, pCollector->b.nData, c, n);
}
else
{
dataBufferAppend(b, pCollector->b.pData, pCollector->b.nData);
}
}
static void
dlcNext(DLCollector * pCollector, sqlite_int64 iDocid)
{
plwTerminate(&pCollector->plw);
plwDestroy(&pCollector->plw);
plwInit(&pCollector->plw, &pCollector->dlw, iDocid);
}
static void
dlcAddPos(DLCollector * pCollector, int iColumn, int iPos, int iStartOffset, int iEndOffset)
{
plwAdd(&pCollector->plw, iColumn, iPos, iStartOffset, iEndOffset);
}
static DLCollector *
dlcNew(sqlite_int64 iDocid, DocListType iType)
{
DLCollector *pCollector = sqlite3_malloc(sizeof(DLCollector));
dataBufferInit(&pCollector->b, 0);
dlwInit(&pCollector->dlw, iType, &pCollector->b);
plwInit(&pCollector->plw, &pCollector->dlw, iDocid);
return pCollector;
}
static void
dlcDelete(DLCollector * pCollector)
{
plwDestroy(&pCollector->plw);
dlwDestroy(&pCollector->dlw);
dataBufferDestroy(&pCollector->b);
SCRAMBLE(pCollector);
sqlite3_free(pCollector);
}
/* Copy the doclist data of iType in pData/nData into *out, trimming
** unnecessary data as we go. Only columns matching iColumn are
** copied, all columns copied if iColumn is -1. Elements with no
** matching columns are dropped. The output is an iOutType doclist.
*/
/* NOTE(shess) This code is only valid after all doclists are merged.
** If this is run before merges, then doclist items which represent
** deletion will be trimmed, and will thus not effect a deletion
** during the merge.
*/
static void
docListTrim(DocListType iType, const char *pData, int nData,
int iColumn, DocListType iOutType, DataBuffer * out)
{
DLReader dlReader;
DLWriter dlWriter;
assert(iOutType <= iType);
dlrInit(&dlReader, iType, pData, nData);
dlwInit(&dlWriter, iOutType, out);
while (!dlrAtEnd(&dlReader))
{
PLReader plReader;
PLWriter plWriter;
int match = 0;
plrInit(&plReader, &dlReader);
while (!plrAtEnd(&plReader))
{
if(iColumn == -1 || plrColumn(&plReader) == iColumn)
{
if(!match)
{
plwInit(&plWriter, &dlWriter, dlrDocid(&dlReader));
match = 1;
}
plwAdd(&plWriter, plrColumn(&plReader), plrPosition(&plReader),
plrStartOffset(&plReader), plrEndOffset(&plReader));
}
plrStep(&plReader);
}
if(match)
{
plwTerminate(&plWriter);
plwDestroy(&plWriter);
}
plrDestroy(&plReader);
dlrStep(&dlReader);
}
dlwDestroy(&dlWriter);
dlrDestroy(&dlReader);
}
/* Used by docListMerge() to keep doclists in the ascending order by
** docid, then ascending order by age (so the newest comes first).
*/
typedef struct OrderedDLReader
{
DLReader *pReader;
/* TODO(shess) If we assume that docListMerge pReaders is ordered by
** age (which we do), then we could use pReader comparisons to break
** ties.
*/
int idx;
} OrderedDLReader;
/* Order eof to end, then by docid asc, idx desc. */
static int
orderedDLReaderCmp(OrderedDLReader * r1, OrderedDLReader * r2)
{
if(dlrAtEnd(r1->pReader))
{
if(dlrAtEnd(r2->pReader))
return 0; /* Both atEnd(). */
return 1; /* Only r1 atEnd(). */
}
if(dlrAtEnd(r2->pReader))
return -1; /* Only r2 atEnd(). */
if(dlrDocid(r1->pReader) < dlrDocid(r2->pReader))
return -1;
if(dlrDocid(r1->pReader) > dlrDocid(r2->pReader))
return 1;
/* Descending on idx. */
return r2->idx - r1->idx;
}
/* Bubble p[0] to appropriate place in p[1..n-1]. Assumes that
** p[1..n-1] is already sorted.
*/
/* TODO(shess) Is this frequent enough to warrant a binary search?
** Before implementing that, instrument the code to check. In most
** current usage, I expect that p[0] will be less than p[1] a very
** high proportion of the time.
*/
static void
orderedDLReaderReorder(OrderedDLReader * p, int n)
{
while (n > 1 && orderedDLReaderCmp(p, p + 1) > 0)
{
OrderedDLReader tmp = p[0];
p[0] = p[1];
p[1] = tmp;
n--;
p++;
}
}
/* Given an array of doclist readers, merge their doclist elements
** into out in sorted order (by docid), dropping elements from older
** readers when there is a duplicate docid. pReaders is assumed to be
** ordered by age, oldest first.
*/
/* TODO(shess) nReaders must be <= MERGE_COUNT. This should probably
** be fixed.
*/
static void
docListMerge(DataBuffer * out, DLReader * pReaders, int nReaders)
{
OrderedDLReader readers[MERGE_COUNT];
DLWriter writer;
int i, n;
const char *pStart = 0;
int nStart = 0;
sqlite_int64 iFirstDocid = 0, iLastDocid = 0;
assert(nReaders > 0);
if(nReaders == 1)
{
dataBufferAppend(out, dlrDocData(pReaders), dlrAllDataBytes(pReaders));
return;
}
assert(nReaders <= MERGE_COUNT);
n = 0;
for (i = 0; i < nReaders; i++)
{
assert(pReaders[i].iType == pReaders[0].iType);
readers[i].pReader = pReaders + i;
readers[i].idx = i;
n += dlrAllDataBytes(&pReaders[i]);
}
/* Conservatively size output to sum of inputs. Output should end
** up strictly smaller than input.
*/
dataBufferExpand(out, n);
/* Get the readers into sorted order. */
while (i-- > 0)
{
orderedDLReaderReorder(readers + i, nReaders - i);
}
dlwInit(&writer, pReaders[0].iType, out);
while (!dlrAtEnd(readers[0].pReader))
{
sqlite_int64 iDocid = dlrDocid(readers[0].pReader);
/* If this is a continuation of the current buffer to copy, extend
** that buffer. memcpy() seems to be more efficient if it has a
** lots of data to copy.
*/
if(dlrDocData(readers[0].pReader) == pStart + nStart)
{
nStart += dlrDocDataBytes(readers[0].pReader);
}
else
{
if(pStart != 0)
{
dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid);
}
pStart = dlrDocData(readers[0].pReader);
nStart = dlrDocDataBytes(readers[0].pReader);
iFirstDocid = iDocid;
}
iLastDocid = iDocid;
dlrStep(readers[0].pReader);
/* Drop all of the older elements with the same docid. */
for (i = 1; i < nReaders &&
!dlrAtEnd(readers[i].pReader) && dlrDocid(readers[i].pReader) == iDocid; i++)
{
dlrStep(readers[i].pReader);
}
/* Get the readers back into order. */
while (i-- > 0)
{
orderedDLReaderReorder(readers + i, nReaders - i);
}
}
/* Copy over any remaining elements. */
if(nStart > 0)
dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid);
dlwDestroy(&writer);
}
/* Helper function for posListUnion(). Compares the current position
** between left and right, returning as standard C idiom of <0 if
** left<right, >0 if left>right, and 0 if left==right. "End" always
** compares greater.
*/
static int
posListCmp(PLReader * pLeft, PLReader * pRight)
{
assert(pLeft->iType == pRight->iType);
if(pLeft->iType == DL_DOCIDS)
return 0;
if(plrAtEnd(pLeft))
return plrAtEnd(pRight) ? 0 : 1;
if(plrAtEnd(pRight))
return -1;
if(plrColumn(pLeft) < plrColumn(pRight))
return -1;
if(plrColumn(pLeft) > plrColumn(pRight))
return 1;
if(plrPosition(pLeft) < plrPosition(pRight))
return -1;
if(plrPosition(pLeft) > plrPosition(pRight))
return 1;
if(pLeft->iType == DL_POSITIONS)
return 0;
if(plrStartOffset(pLeft) < plrStartOffset(pRight))
return -1;
if(plrStartOffset(pLeft) > plrStartOffset(pRight))
return 1;
if(plrEndOffset(pLeft) < plrEndOffset(pRight))
return -1;
if(plrEndOffset(pLeft) > plrEndOffset(pRight))
return 1;
return 0;
}
/* Write the union of position lists in pLeft and pRight to pOut.
** "Union" in this case meaning "All unique position tuples". Should
** work with any doclist type, though both inputs and the output
** should be the same type.
*/
static void
posListUnion(DLReader * pLeft, DLReader * pRight, DLWriter * pOut)
{
PLReader left, right;
PLWriter writer;
assert(dlrDocid(pLeft) == dlrDocid(pRight));
assert(pLeft->iType == pRight->iType);
assert(pLeft->iType == pOut->iType);
plrInit(&left, pLeft);
plrInit(&right, pRight);
plwInit(&writer, pOut, dlrDocid(pLeft));
while (!plrAtEnd(&left) || !plrAtEnd(&right))
{
int c = posListCmp(&left, &right);
if(c < 0)
{
plwCopy(&writer, &left);
plrStep(&left);
}
else if(c > 0)
{
plwCopy(&writer, &right);
plrStep(&right);
}
else
{
plwCopy(&writer, &left);
plrStep(&left);
plrStep(&right);
}
}
plwTerminate(&writer);
plwDestroy(&writer);
plrDestroy(&left);
plrDestroy(&right);
}
/* Write the union of doclists in pLeft and pRight to pOut. For
** docids in common between the inputs, the union of the position
** lists is written. Inputs and outputs are always type DL_DEFAULT.
*/
static void
docListUnion(const char *pLeft, int nLeft, const char *pRight, int nRight, DataBuffer * pOut /* Write the combined doclist here */
)
{
DLReader left, right;
DLWriter writer;
if(nLeft == 0)
{
if(nRight != 0)
dataBufferAppend(pOut, pRight, nRight);
return;
}
if(nRight == 0)
{
dataBufferAppend(pOut, pLeft, nLeft);
return;
}
dlrInit(&left, DL_DEFAULT, pLeft, nLeft);
dlrInit(&right, DL_DEFAULT, pRight, nRight);
dlwInit(&writer, DL_DEFAULT, pOut);
while (!dlrAtEnd(&left) || !dlrAtEnd(&right))
{
if(dlrAtEnd(&right))
{
dlwCopy(&writer, &left);
dlrStep(&left);
}
else if(dlrAtEnd(&left))
{
dlwCopy(&writer, &right);
dlrStep(&right);
}
else if(dlrDocid(&left) < dlrDocid(&right))
{
dlwCopy(&writer, &left);
dlrStep(&left);
}
else if(dlrDocid(&left) > dlrDocid(&right))
{
dlwCopy(&writer, &right);
dlrStep(&right);
}
else
{
posListUnion(&left, &right, &writer);
dlrStep(&left);
dlrStep(&right);
}
}
dlrDestroy(&left);
dlrDestroy(&right);
dlwDestroy(&writer);
}
/*
** This function is used as part of the implementation of phrase and
** NEAR matching.
**
** pLeft and pRight are DLReaders positioned to the same docid in
** lists of type DL_POSITION. This function writes an entry to the
** DLWriter pOut for each position in pRight that is less than
** (nNear+1) greater (but not equal to or smaller) than a position
** in pLeft. For example, if nNear is 0, and the positions contained
** by pLeft and pRight are:
**
** pLeft: 5 10 15 20
** pRight: 6 9 17 21
**
** then the docid is added to pOut. If pOut is of type DL_POSITIONS,
** then a positionids "6" and "21" are also added to pOut.
**
** If boolean argument isSaveLeft is true, then positionids are copied
** from pLeft instead of pRight. In the example above, the positions "5"
** and "20" would be added instead of "6" and "21".
*/
static void
posListPhraseMerge(DLReader * pLeft, DLReader * pRight, int nNear, int isSaveLeft, DLWriter * pOut)
{
PLReader left, right;
PLWriter writer;
int match = 0;
assert(dlrDocid(pLeft) == dlrDocid(pRight));
assert(pOut->iType != DL_POSITIONS_OFFSETS);
plrInit(&left, pLeft);
plrInit(&right, pRight);
while (!plrAtEnd(&left) && !plrAtEnd(&right))
{
if(plrColumn(&left) < plrColumn(&right))
{
plrStep(&left);
}
else if(plrColumn(&left) > plrColumn(&right))
{
plrStep(&right);
}
else if(plrPosition(&left) >= plrPosition(&right))
{
plrStep(&right);
}
else
{
if((plrPosition(&right) - plrPosition(&left)) <= (nNear + 1))
{
if(!match)
{
plwInit(&writer, pOut, dlrDocid(pLeft));
match = 1;
}
if(!isSaveLeft)
{
plwAdd(&writer, plrColumn(&right), plrPosition(&right), 0,
0);
}
else
{
plwAdd(&writer, plrColumn(&left), plrPosition(&left), 0, 0);
}
plrStep(&right);
}
else
{
plrStep(&left);
}
}
}
if(match)
{
plwTerminate(&writer);
plwDestroy(&writer);
}
plrDestroy(&left);
plrDestroy(&right);
}
/*
** Compare the values pointed to by the PLReaders passed as arguments.
** Return -1 if the value pointed to by pLeft is considered less than
** the value pointed to by pRight, +1 if it is considered greater
** than it, or 0 if it is equal. i.e.
**
** (*pLeft - *pRight)
**
** A PLReader that is in the EOF condition is considered greater than
** any other. If neither argument is in EOF state, the return value of
** plrColumn() is used. If the plrColumn() values are equal, the
** comparison is on the basis of plrPosition().
*/
static int
plrCompare(PLReader * pLeft, PLReader * pRight)
{
assert(!plrAtEnd(pLeft) || !plrAtEnd(pRight));
if(plrAtEnd(pRight) || plrAtEnd(pLeft))
{
return (plrAtEnd(pRight) ? -1 : 1);
}
if(plrColumn(pLeft) != plrColumn(pRight))
{
return ((plrColumn(pLeft) < plrColumn(pRight)) ? -1 : 1);
}
if(plrPosition(pLeft) != plrPosition(pRight))
{
return ((plrPosition(pLeft) < plrPosition(pRight)) ? -1 : 1);
}
return 0;
}
/* We have two doclists with positions: pLeft and pRight. Depending
** on the value of the nNear parameter, perform either a phrase
** intersection (if nNear==0) or a NEAR intersection (if nNear>0)
** and write the results into pOut.
**
** A phrase intersection means that two documents only match
** if pLeft.iPos+1==pRight.iPos.
**
** A NEAR intersection means that two documents only match if
** (abs(pLeft.iPos-pRight.iPos)<nNear).
**
** If a NEAR intersection is requested, then the nPhrase argument should
** be passed the number of tokens in the two operands to the NEAR operator
** combined. For example:
**
** Query syntax nPhrase
** ------------------------------------
** "A B C" NEAR "D E" 5
** A NEAR B 2
**
** iType controls the type of data written to pOut. If iType is
** DL_POSITIONS, the positions are those from pRight.
*/
static void
docListPhraseMerge(const char *pLeft, int nLeft, const char *pRight, int nRight, int nNear, /* 0 for a phrase merge, non-zero for a NEAR merge */
int nPhrase, /* Number of tokens in left+right operands to NEAR */
DocListType iType, /* Type of doclist to write to pOut */
DataBuffer * pOut /* Write the combined doclist here */
)
{
DLReader left, right;
DLWriter writer;
if(nLeft == 0 || nRight == 0)
return;
assert(iType != DL_POSITIONS_OFFSETS);
dlrInit(&left, DL_POSITIONS, pLeft, nLeft);
dlrInit(&right, DL_POSITIONS, pRight, nRight);
dlwInit(&writer, iType, pOut);
while (!dlrAtEnd(&left) && !dlrAtEnd(&right))
{
if(dlrDocid(&left) < dlrDocid(&right))
{
dlrStep(&left);
}
else if(dlrDocid(&right) < dlrDocid(&left))
{
dlrStep(&right);
}
else
{
if(nNear == 0)
{
posListPhraseMerge(&left, &right, 0, 0, &writer);
}
else
{
/* This case occurs when two terms (simple terms or phrases) are
* connected by a NEAR operator, span (nNear+1). i.e.
*
* '"terrible company" NEAR widget'
*/
DataBuffer one = { 0, 0, 0 };
DataBuffer two = { 0, 0, 0 };
DLWriter dlwriter2;
DLReader dr1 = { 0, 0, 0, 0, 0 };
DLReader dr2 = { 0, 0, 0, 0, 0 };
dlwInit(&dlwriter2, iType, &one);
posListPhraseMerge(&right, &left, nNear - 3 + nPhrase, 1,
&dlwriter2);
dlwInit(&dlwriter2, iType, &two);
posListPhraseMerge(&left, &right, nNear - 1, 0, &dlwriter2);
if(one.nData)
dlrInit(&dr1, iType, one.pData, one.nData);
if(two.nData)
dlrInit(&dr2, iType, two.pData, two.nData);
if(!dlrAtEnd(&dr1) || !dlrAtEnd(&dr2))
{
PLReader pr1 = { 0 };
PLReader pr2 = { 0 };
PLWriter plwriter;
plwInit(&plwriter, &writer,
dlrDocid(dlrAtEnd(&dr1) ? &dr2 : &dr1));
if(one.nData)
plrInit(&pr1, &dr1);
if(two.nData)
plrInit(&pr2, &dr2);
while (!plrAtEnd(&pr1) || !plrAtEnd(&pr2))
{
int iCompare = plrCompare(&pr1, &pr2);
switch (iCompare)
{
case -1:
plwCopy(&plwriter, &pr1);
plrStep(&pr1);
break;
case 1:
plwCopy(&plwriter, &pr2);
plrStep(&pr2);
break;
case 0:
plwCopy(&plwriter, &pr1);
plrStep(&pr1);
plrStep(&pr2);
break;
}
}
plwTerminate(&plwriter);
}
dataBufferDestroy(&one);
dataBufferDestroy(&two);
}
dlrStep(&left);
dlrStep(&right);
}
}
dlrDestroy(&left);
dlrDestroy(&right);
dlwDestroy(&writer);
}
/* We have two DL_DOCIDS doclists: pLeft and pRight.
** Write the intersection of these two doclists into pOut as a
** DL_DOCIDS doclist.
*/
static void
docListAndMerge(const char *pLeft, int nLeft, const char *pRight, int nRight, DataBuffer * pOut /* Write the combined doclist here */
)
{
DLReader left, right;
DLWriter writer;
if(nLeft == 0 || nRight == 0)
return;
dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
dlrInit(&right, DL_DOCIDS, pRight, nRight);
dlwInit(&writer, DL_DOCIDS, pOut);
while (!dlrAtEnd(&left) && !dlrAtEnd(&right))
{
if(dlrDocid(&left) < dlrDocid(&right))
{
dlrStep(&left);
}
else if(dlrDocid(&right) < dlrDocid(&left))
{
dlrStep(&right);
}
else
{
dlwAdd(&writer, dlrDocid(&left));
dlrStep(&left);
dlrStep(&right);
}
}
dlrDestroy(&left);
dlrDestroy(&right);
dlwDestroy(&writer);
}
/* We have two DL_DOCIDS doclists: pLeft and pRight.
** Write the union of these two doclists into pOut as a
** DL_DOCIDS doclist.
*/
static void
docListOrMerge(const char *pLeft, int nLeft, const char *pRight, int nRight, DataBuffer * pOut /* Write the combined doclist here */
)
{
DLReader left, right;
DLWriter writer;
if(nLeft == 0)
{
if(nRight != 0)
dataBufferAppend(pOut, pRight, nRight);
return;
}
if(nRight == 0)
{
dataBufferAppend(pOut, pLeft, nLeft);
return;
}
dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
dlrInit(&right, DL_DOCIDS, pRight, nRight);
dlwInit(&writer, DL_DOCIDS, pOut);
while (!dlrAtEnd(&left) || !dlrAtEnd(&right))
{
if(dlrAtEnd(&right))
{
dlwAdd(&writer, dlrDocid(&left));
dlrStep(&left);
}
else if(dlrAtEnd(&left))
{
dlwAdd(&writer, dlrDocid(&right));
dlrStep(&right);
}
else if(dlrDocid(&left) < dlrDocid(&right))
{
dlwAdd(&writer, dlrDocid(&left));
dlrStep(&left);
}
else if(dlrDocid(&right) < dlrDocid(&left))
{
dlwAdd(&writer, dlrDocid(&right));
dlrStep(&right);
}
else
{
dlwAdd(&writer, dlrDocid(&left));
dlrStep(&left);
dlrStep(&right);
}
}
dlrDestroy(&left);
dlrDestroy(&right);
dlwDestroy(&writer);
}
/* We have two DL_DOCIDS doclists: pLeft and pRight.
** Write into pOut as DL_DOCIDS doclist containing all documents that
** occur in pLeft but not in pRight.
*/
static void
docListExceptMerge(const char *pLeft, int nLeft, const char *pRight, int nRight, DataBuffer * pOut /* Write the combined doclist here */
)
{
DLReader left, right;
DLWriter writer;
if(nLeft == 0)
return;
if(nRight == 0)
{
dataBufferAppend(pOut, pLeft, nLeft);
return;
}
dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
dlrInit(&right, DL_DOCIDS, pRight, nRight);
dlwInit(&writer, DL_DOCIDS, pOut);
while (!dlrAtEnd(&left))
{
while (!dlrAtEnd(&right) && dlrDocid(&right) < dlrDocid(&left))
{
dlrStep(&right);
}
if(dlrAtEnd(&right) || dlrDocid(&left) < dlrDocid(&right))
{
dlwAdd(&writer, dlrDocid(&left));
}
dlrStep(&left);
}
dlrDestroy(&left);
dlrDestroy(&right);
dlwDestroy(&writer);
}
static char *
string_dup_n(const char *s, int n)
{
char *str = sqlite3_malloc(n + 1);
memcpy(str, s, n);
str[n] = '\0';
return str;
}
/* Duplicate a string; the caller must free() the returned string.
* (We don't use strdup() since it is not part of the standard C library and
* may not be available everywhere.) */
static char *
string_dup(const char *s)
{
return string_dup_n(s, strlen(s));
}
/* Format a string, replacing each occurrence of the % character with
* zDb.zName. This may be more convenient than sqlite_mprintf()
* when one string is used repeatedly in a format string.
* The caller must free() the returned string. */
static char *
string_format(const char *zFormat, const char *zDb, const char *zName)
{
const char *p;
size_t len = 0;
size_t nDb = strlen(zDb);
size_t nName = strlen(zName);
size_t nFullTableName = nDb + 1 + nName;
char *result;
char *r;
/* first compute length needed */
for (p = zFormat; *p; ++p)
{
len += (*p == '%' ? nFullTableName : 1);
}
len += 1; /* for null terminator */
r = result = sqlite3_malloc(len);
for (p = zFormat; *p; ++p)
{
if(*p == '%')
{
memcpy(r, zDb, nDb);
r += nDb;
*r++ = '.';
memcpy(r, zName, nName);
r += nName;
}
else
{
*r++ = *p;
}
}
*r++ = '\0';
assert(r == result + len);
return result;
}
static int
sql_exec(sqlite3 * db, const char *zDb, const char *zName, const char *zFormat)
{
char *zCommand = string_format(zFormat, zDb, zName);
int rc;
FTSTRACE(("FTS3 sql: %s\n", zCommand));
rc = sqlite3_exec(db, zCommand, NULL, 0, NULL);
sqlite3_free(zCommand);
return rc;
}
static int
sql_prepare(sqlite3 * db, const char *zDb, const char *zName,
sqlite3_stmt ** ppStmt, const char *zFormat)
{
char *zCommand = string_format(zFormat, zDb, zName);
int rc;
FTSTRACE(("FTS3 prepare: %s\n", zCommand));
rc = sqlite3_prepare_v2(db, zCommand, -1, ppStmt, NULL);
sqlite3_free(zCommand);
return rc;
}
/* end utility functions */
/* Forward reference */
typedef struct fulltext_vtab fulltext_vtab;
/* A single term in a query is represented by an instances of
** the following structure. Each word which may match against
** document content is a term. Operators, like NEAR or OR, are
** not terms. Query terms are organized as a flat list stored
** in the Query.pTerms array.
**
** If the QueryTerm.nPhrase variable is non-zero, then the QueryTerm
** is the first in a contiguous string of terms that are either part
** of the same phrase, or connected by the NEAR operator.
**
** If the QueryTerm.nNear variable is non-zero, then the token is followed
** by a NEAR operator with span set to (nNear-1). For example, the
** following query:
**
** The QueryTerm.iPhrase variable stores the index of the token within
** its phrase, indexed starting at 1, or 1 if the token is not part
** of any phrase.
**
** For example, the data structure used to represent the following query:
**
** ... MATCH 'sqlite NEAR/5 google NEAR/2 "search engine"'
**
** is:
**
** {nPhrase=4, iPhrase=1, nNear=6, pTerm="sqlite"},
** {nPhrase=0, iPhrase=1, nNear=3, pTerm="google"},
** {nPhrase=0, iPhrase=1, nNear=0, pTerm="search"},
** {nPhrase=0, iPhrase=2, nNear=0, pTerm="engine"},
**
** compiling the FTS3 syntax to Query structures is done by the parseQuery()
** function.
*/
typedef struct QueryTerm
{
short int nPhrase; /* How many following terms are part of the same phrase */
short int iPhrase; /* This is the i-th term of a phrase. */
short int iColumn; /* Column of the index that must match this term */
signed char nNear; /* term followed by a NEAR operator with span=(nNear-1) */
signed char isOr; /* this term is preceded by "OR" */
signed char isNot; /* this term is preceded by "-" */
signed char isPrefix; /* this term is followed by "*" */
char *pTerm; /* text of the term. '\000' terminated. malloced */
int nTerm; /* Number of bytes in pTerm[] */
} QueryTerm;
/* A query string is parsed into a Query structure.
*
* We could, in theory, allow query strings to be complicated
* nested expressions with precedence determined by parentheses.
* But none of the major search engines do this. (Perhaps the
* feeling is that an parenthesized expression is two complex of
* an idea for the average user to grasp.) Taking our lead from
* the major search engines, we will allow queries to be a list
* of terms (with an implied AND operator) or phrases in double-quotes,
* with a single optional "-" before each non-phrase term to designate
* negation and an optional OR connector.
*
* OR binds more tightly than the implied AND, which is what the
* major search engines seem to do. So, for example:
*
* [one two OR three] ==> one AND (two OR three)
* [one OR two three] ==> (one OR two) AND three
*
* A "-" before a term matches all entries that lack that term.
* The "-" must occur immediately before the term with in intervening
* space. This is how the search engines do it.
*
* A NOT term cannot be the right-hand operand of an OR. If this
* occurs in the query string, the NOT is ignored:
*
* [one OR -two] ==> one OR two
*/
typedef struct Query
{
fulltext_vtab *pFts; /* The full text index */
int nTerms; /* Number of terms in the query */
QueryTerm *pTerms; /* Array of terms. Space obtained from malloc() */
int nextIsOr; /* Set the isOr flag on the next inserted term */
int nextIsNear; /* Set the isOr flag on the next inserted term */
int nextColumn; /* Next word parsed must be in this column */
int dfltColumn; /* The default column */
} Query;
/*
** An instance of the following structure keeps track of generated
** matching-word offset information and snippets.
*/
typedef struct Snippet
{
int nMatch; /* Total number of matches */
int nAlloc; /* Space allocated for aMatch[] */
struct snippetMatch
{ /* One entry for each matching term */
char snStatus; /* Status flag for use while constructing snippets */
short int iCol; /* The column that contains the match */
short int iTerm; /* The index in Query.pTerms[] of the matching term */
int iToken; /* The index of the matching document token */
short int nByte; /* Number of bytes in the term */
int iStart; /* The offset to the first character of the term */
} *aMatch; /* Points to space obtained from malloc */
char *zOffset; /* Text rendering of aMatch[] */
int nOffset; /* strlen(zOffset) */
char *zSnippet; /* Snippet text */
int nSnippet; /* strlen(zSnippet) */
} Snippet;
typedef enum QueryType
{
QUERY_GENERIC, /* table scan */
QUERY_DOCID, /* lookup by docid */
QUERY_FULLTEXT /* QUERY_FULLTEXT + [i] is a full-text search for column i */
} QueryType;
typedef enum fulltext_statement
{
CONTENT_INSERT_STMT,
CONTENT_SELECT_STMT,
CONTENT_UPDATE_STMT,
CONTENT_DELETE_STMT,
BLOCK_INSERT_STMT,
BLOCK_SELECT_STMT,
BLOCK_DELETE_STMT,
SEGDIR_MAX_INDEX_STMT,
SEGDIR_SET_STMT,
SEGDIR_SELECT_STMT,
SEGDIR_SPAN_STMT,
SEGDIR_DELETE_STMT,
SEGDIR_SELECT_ALL_STMT,
MAX_STMT /* Always at end! */
} fulltext_statement;
/* These must exactly match the enum above. */
/* TODO(shess): Is there some risk that a statement will be used in two
** cursors at once, e.g. if a query joins a virtual table to itself?
** If so perhaps we should move some of these to the cursor object.
*/
static const char *const fulltext_zStatement[MAX_STMT] = {
/* CONTENT_INSERT */ NULL,
/* generated in contentInsertStatement() */
/* CONTENT_SELECT */ NULL,
/* generated in contentSelectStatement() */
/* CONTENT_UPDATE */ NULL,
/* generated in contentUpdateStatement() */
/* CONTENT_DELETE */ "delete from %_content where docid = ?",
/* BLOCK_INSERT */
"insert into %_segments (blockid, block) values (null, ?)",
/* BLOCK_SELECT */ "select block from %_segments where blockid = ?",
/* BLOCK_DELETE */ "delete from %_segments where blockid between ? and ?",
/* SEGDIR_MAX_INDEX */ "select max(idx) from %_segdir where level = ?",
/* SEGDIR_SET */ "insert into %_segdir values (?, ?, ?, ?, ?, ?)",
/* SEGDIR_SELECT */
"select start_block, leaves_end_block, root from %_segdir " " where level = ? order by idx",
/* SEGDIR_SPAN */
"select min(start_block), max(end_block) from %_segdir "
" where level = ? and start_block <> 0",
/* SEGDIR_DELETE */ "delete from %_segdir where level = ?",
/* SEGDIR_SELECT_ALL */
"select root, leaves_end_block from %_segdir order by level desc, idx",
};
/*
** A connection to a fulltext index is an instance of the following
** structure. The xCreate and xConnect methods create an instance
** of this structure and xDestroy and xDisconnect free that instance.
** All other methods receive a pointer to the structure as one of their
** arguments.
*/
struct fulltext_vtab
{
sqlite3_vtab base; /* Base class used by SQLite core */
sqlite3 *db; /* The database connection */
const char *zDb; /* logical database name */
const char *zName; /* virtual table name */
int nColumn; /* number of columns in virtual table */
char **azColumn; /* column names. malloced */
char **azContentColumn; /* column names in content table; malloced */
sqlite3_tokenizer *pTokenizer; /* tokenizer for inserts and queries */
/* Precompiled statements which we keep as long as the table is
** open.
*/
sqlite3_stmt *pFulltextStatements[MAX_STMT];
/* Precompiled statements used for segment merges. We run a
** separate select across the leaf level of each tree being merged.
*/
sqlite3_stmt *pLeafSelectStmts[MERGE_COUNT];
/* The statement used to prepare pLeafSelectStmts. */
#define LEAF_SELECT \
"select block from %_segments where blockid between ? and ? order by blockid"
/* These buffer pending index updates during transactions.
** nPendingData estimates the memory size of the pending data. It
** doesn't include the hash-bucket overhead, nor any malloc
** overhead. When nPendingData exceeds kPendingThreshold, the
** buffer is flushed even before the transaction closes.
** pendingTerms stores the data, and is only valid when nPendingData
** is >=0 (nPendingData<0 means pendingTerms has not been
** initialized). iPrevDocid is the last docid written, used to make
** certain we're inserting in sorted order.
*/
int nPendingData;
#define kPendingThreshold (1*1024*1024)
sqlite_int64 iPrevDocid;
fts3Hash pendingTerms;
};
/*
** When the core wants to do a query, it create a cursor using a
** call to xOpen. This structure is an instance of a cursor. It
** is destroyed by xClose.
*/
typedef struct fulltext_cursor
{
sqlite3_vtab_cursor base; /* Base class used by SQLite core */
QueryType iCursorType; /* Copy of sqlite3_index_info.idxNum */
sqlite3_stmt *pStmt; /* Prepared statement in use by the cursor */
int eof; /* True if at End Of Results */
Query q; /* Parsed query string */
Snippet snippet; /* Cached snippet for the current row */
int iColumn; /* Column being searched */
DataBuffer result; /* Doclist results from fulltextQuery */
DLReader reader; /* Result reader if result not empty */
} fulltext_cursor;
static struct fulltext_vtab *
cursor_vtab(fulltext_cursor * c)
{
return (fulltext_vtab *) c->base.pVtab;
}
static const sqlite3_module fts3Module; /* forward declaration */
/* Return a dynamically generated statement of the form
* insert into %_content (docid, ...) values (?, ...)
*/
static const char *
contentInsertStatement(fulltext_vtab * v)
{
StringBuffer sb;
int i;
initStringBuffer(&sb);
append(&sb, "insert into %_content (docid, ");
appendList(&sb, v->nColumn, v->azContentColumn);
append(&sb, ") values (?");
for (i = 0; i < v->nColumn; ++i)
append(&sb, ", ?");
append(&sb, ")");
return stringBufferData(&sb);
}
/* Return a dynamically generated statement of the form
* select <content columns> from %_content where docid = ?
*/
static const char *
contentSelectStatement(fulltext_vtab * v)
{
StringBuffer sb;
initStringBuffer(&sb);
append(&sb, "SELECT ");
appendList(&sb, v->nColumn, v->azContentColumn);
append(&sb, " FROM %_content WHERE docid = ?");
return stringBufferData(&sb);
}
/* Return a dynamically generated statement of the form
* update %_content set [col_0] = ?, [col_1] = ?, ...
* where docid = ?
*/
static const char *
contentUpdateStatement(fulltext_vtab * v)
{
StringBuffer sb;
int i;
initStringBuffer(&sb);
append(&sb, "update %_content set ");
for (i = 0; i < v->nColumn; ++i)
{
if(i > 0)
{
append(&sb, ", ");
}
append(&sb, v->azContentColumn[i]);
append(&sb, " = ?");
}
append(&sb, " where docid = ?");
return stringBufferData(&sb);
}
/* Puts a freshly-prepared statement determined by iStmt in *ppStmt.
** If the indicated statement has never been prepared, it is prepared
** and cached, otherwise the cached version is reset.
*/
static int
sql_get_statement(fulltext_vtab * v, fulltext_statement iStmt, sqlite3_stmt ** ppStmt)
{
assert(iStmt < MAX_STMT);
if(v->pFulltextStatements[iStmt] == NULL)
{
const char *zStmt;
int rc;
switch (iStmt)
{
case CONTENT_INSERT_STMT:
zStmt = contentInsertStatement(v);
break;
case CONTENT_SELECT_STMT:
zStmt = contentSelectStatement(v);
break;
case CONTENT_UPDATE_STMT:
zStmt = contentUpdateStatement(v);
break;
default:
zStmt = fulltext_zStatement[iStmt];
}
rc = sql_prepare(v->db, v->zDb, v->zName, &v->pFulltextStatements[iStmt], zStmt);
if(zStmt != fulltext_zStatement[iStmt])
sqlite3_free((void *) zStmt);
if(rc != SQLITE_OK)
return rc;
}
else
{
int rc = sqlite3_reset(v->pFulltextStatements[iStmt]);
if(rc != SQLITE_OK)
return rc;
}
*ppStmt = v->pFulltextStatements[iStmt];
return SQLITE_OK;
}
/* Like sqlite3_step(), but convert SQLITE_DONE to SQLITE_OK and
** SQLITE_ROW to SQLITE_ERROR. Useful for statements like UPDATE,
** where we expect no results.
*/
static int
sql_single_step(sqlite3_stmt * s)
{
int rc = sqlite3_step(s);
return (rc == SQLITE_DONE) ? SQLITE_OK : rc;
}
/* Like sql_get_statement(), but for special replicated LEAF_SELECT
** statements.
*/
/* TODO(shess) Write version for generic statements and then share
** that between the cached-statement functions.
*/
static int
sql_get_leaf_statement(fulltext_vtab * v, int idx, sqlite3_stmt ** ppStmt)
{
assert(idx >= 0 && idx < MERGE_COUNT);
if(v->pLeafSelectStmts[idx] == NULL)
{
int rc = sql_prepare(v->db, v->zDb, v->zName, &v->pLeafSelectStmts[idx],
LEAF_SELECT);
if(rc != SQLITE_OK)
return rc;
}
else
{
int rc = sqlite3_reset(v->pLeafSelectStmts[idx]);
if(rc != SQLITE_OK)
return rc;
}
*ppStmt = v->pLeafSelectStmts[idx];
return SQLITE_OK;
}
/* insert into %_content (docid, ...) values ([docid], [pValues])
** If the docid contains SQL NULL, then a unique docid will be
** generated.
*/
static int
content_insert(fulltext_vtab * v, sqlite3_value * docid, sqlite3_value ** pValues)
{
sqlite3_stmt *s;
int i;
int rc = sql_get_statement(v, CONTENT_INSERT_STMT, &s);
if(rc != SQLITE_OK)
return rc;
rc = sqlite3_bind_value(s, 1, docid);
if(rc != SQLITE_OK)
return rc;
for (i = 0; i < v->nColumn; ++i)
{
rc = sqlite3_bind_value(s, 2 + i, pValues[i]);
if(rc != SQLITE_OK)
return rc;
}
return sql_single_step(s);
}
/* update %_content set col0 = pValues[0], col1 = pValues[1], ...
* where docid = [iDocid] */
static int
content_update(fulltext_vtab * v, sqlite3_value ** pValues, sqlite_int64 iDocid)
{
sqlite3_stmt *s;
int i;
int rc = sql_get_statement(v, CONTENT_UPDATE_STMT, &s);
if(rc != SQLITE_OK)
return rc;
for (i = 0; i < v->nColumn; ++i)
{
rc = sqlite3_bind_value(s, 1 + i, pValues[i]);
if(rc != SQLITE_OK)
return rc;
}
rc = sqlite3_bind_int64(s, 1 + v->nColumn, iDocid);
if(rc != SQLITE_OK)
return rc;
return sql_single_step(s);
}
static void
freeStringArray(int nString, const char **pString)
{
int i;
for (i = 0; i < nString; ++i)
{
if(pString[i] != NULL)
sqlite3_free((void *) pString[i]);
}
sqlite3_free((void *) pString);
}
/* select * from %_content where docid = [iDocid]
* The caller must delete the returned array and all strings in it.
* null fields will be NULL in the returned array.
*
* TODO: Perhaps we should return pointer/length strings here for consistency
* with other code which uses pointer/length. */
static int
content_select(fulltext_vtab * v, sqlite_int64 iDocid, const char ***pValues)
{
sqlite3_stmt *s;
const char **values;
int i;
int rc;
*pValues = NULL;
rc = sql_get_statement(v, CONTENT_SELECT_STMT, &s);
if(rc != SQLITE_OK)
return rc;
rc = sqlite3_bind_int64(s, 1, iDocid);
if(rc != SQLITE_OK)
return rc;
rc = sqlite3_step(s);
if(rc != SQLITE_ROW)
return rc;
values = (const char **) sqlite3_malloc(v->nColumn * sizeof(const char *));
for (i = 0; i < v->nColumn; ++i)
{
if(sqlite3_column_type(s, i) == SQLITE_NULL)
{
values[i] = NULL;
}
else
{
values[i] = string_dup((char *) sqlite3_column_text(s, i));
}
}
/* We expect only one row. We must execute another sqlite3_step()
* to complete the iteration; otherwise the table will remain locked. */
rc = sqlite3_step(s);
if(rc == SQLITE_DONE)
{
*pValues = values;
return SQLITE_OK;
}
freeStringArray(v->nColumn, values);
return rc;
}
/* delete from %_content where docid = [iDocid ] */
static int
content_delete(fulltext_vtab * v, sqlite_int64 iDocid)
{
sqlite3_stmt *s;
int rc = sql_get_statement(v, CONTENT_DELETE_STMT, &s);
if(rc != SQLITE_OK)
return rc;
rc = sqlite3_bind_int64(s, 1, iDocid);
if(rc != SQLITE_OK)
return rc;
return sql_single_step(s);
}
/* insert into %_segments values ([pData])
** returns assigned blockid in *piBlockid
*/
static int
block_insert(fulltext_vtab * v, const char *pData, int nData, sqlite_int64 * piBlockid)
{
sqlite3_stmt *s;
int rc = sql_get_statement(v, BLOCK_INSERT_STMT, &s);
if(rc != SQLITE_OK)
return rc;
rc = sqlite3_bind_blob(s, 1, pData, nData, SQLITE_STATIC);
if(rc != SQLITE_OK)
return rc;
rc = sqlite3_step(s);
if(rc == SQLITE_ROW)
return SQLITE_ERROR;
if(rc != SQLITE_DONE)
return rc;
/* blockid column is an alias for rowid. */
*piBlockid = sqlite3_last_insert_rowid(v->db);
return SQLITE_OK;
}
/* delete from %_segments
** where blockid between [iStartBlockid] and [iEndBlockid]
**
** Deletes the range of blocks, inclusive, used to delete the blocks
** which form a segment.
*/
static int
block_delete(fulltext_vtab * v, sqlite_int64 iStartBlockid, sqlite_int64 iEndBlockid)
{
sqlite3_stmt *s;
int rc = sql_get_statement(v, BLOCK_DELETE_STMT, &s);
if(rc != SQLITE_OK)
return rc;
rc = sqlite3_bind_int64(s, 1, iStartBlockid);
if(rc != SQLITE_OK)
return rc;
rc = sqlite3_bind_int64(s, 2, iEndBlockid);
if(rc != SQLITE_OK)
return rc;
return sql_single_step(s);
}
/* Returns SQLITE_ROW with *pidx set to the maximum segment idx found
** at iLevel. Returns SQLITE_DONE if there are no segments at
** iLevel. Otherwise returns an error.
*/
static int
segdir_max_index(fulltext_vtab * v, int iLevel, int *pidx)
{
sqlite3_stmt *s;
int rc = sql_get_statement(v, SEGDIR_MAX_INDEX_STMT, &s);
if(rc != SQLITE_OK)
return rc;
rc = sqlite3_bind_int(s, 1, iLevel);
if(rc != SQLITE_OK)
return rc;
rc = sqlite3_step(s);
/* Should always get at least one row due to how max() works. */
if(rc == SQLITE_DONE)
return SQLITE_DONE;
if(rc != SQLITE_ROW)
return rc;
/* NULL means that there were no inputs to max(). */
if(SQLITE_NULL == sqlite3_column_type(s, 0))
{
rc = sqlite3_step(s);
if(rc == SQLITE_ROW)
return SQLITE_ERROR;
return rc;
}
*pidx = sqlite3_column_int(s, 0);
/* We expect only one row. We must execute another sqlite3_step()
* to complete the iteration; otherwise the table will remain locked. */
rc = sqlite3_step(s);
if(rc == SQLITE_ROW)
return SQLITE_ERROR;
if(rc != SQLITE_DONE)
return rc;
return SQLITE_ROW;
}
/* insert into %_segdir values (
** [iLevel], [idx],
** [iStartBlockid], [iLeavesEndBlockid], [iEndBlockid],
** [pRootData]
** )
*/
static int
segdir_set(fulltext_vtab * v, int iLevel, int idx,
sqlite_int64 iStartBlockid,
sqlite_int64 iLeavesEndBlockid,
sqlite_int64 iEndBlockid, const char *pRootData, int nRootData)
{
sqlite3_stmt *s;
int rc = sql_get_statement(v, SEGDIR_SET_STMT, &s);
if(rc != SQLITE_OK)
return rc;
rc = sqlite3_bind_int(s, 1, iLevel);
if(rc != SQLITE_OK)
return rc;
rc = sqlite3_bind_int(s, 2, idx);
if(rc != SQLITE_OK)
return rc;
rc = sqlite3_bind_int64(s, 3, iStartBlockid);
if(rc != SQLITE_OK)
return rc;
rc = sqlite3_bind_int64(s, 4, iLeavesEndBlockid);
if(rc != SQLITE_OK)
return rc;
rc = sqlite3_bind_int64(s, 5, iEndBlockid);
if(rc != SQLITE_OK)
return rc;
rc = sqlite3_bind_blob(s, 6, pRootData, nRootData, SQLITE_STATIC);
if(rc != SQLITE_OK)
return rc;
return sql_single_step(s);
}
/* Queries %_segdir for the block span of the segments in level
** iLevel. Returns SQLITE_DONE if there are no blocks for iLevel,
** SQLITE_ROW if there are blocks, else an error.
*/
static int
segdir_span(fulltext_vtab * v, int iLevel,
sqlite_int64 * piStartBlockid, sqlite_int64 * piEndBlockid)
{
sqlite3_stmt *s;
int rc = sql_get_statement(v, SEGDIR_SPAN_STMT, &s);
if(rc != SQLITE_OK)
return rc;
rc = sqlite3_bind_int(s, 1, iLevel);
if(rc != SQLITE_OK)
return rc;
rc = sqlite3_step(s);
if(rc == SQLITE_DONE)
return SQLITE_DONE; /* Should never happen */
if(rc != SQLITE_ROW)
return rc;
/* This happens if all segments at this level are entirely inline. */
if(SQLITE_NULL == sqlite3_column_type(s, 0))
{
/* We expect only one row. We must execute another sqlite3_step()
* to complete the iteration; otherwise the table will remain locked. */
int rc2 = sqlite3_step(s);
if(rc2 == SQLITE_ROW)
return SQLITE_ERROR;
return rc2;
}
*piStartBlockid = sqlite3_column_int64(s, 0);
*piEndBlockid = sqlite3_column_int64(s, 1);
/* We expect only one row. We must execute another sqlite3_step()
* to complete the iteration; otherwise the table will remain locked. */
rc = sqlite3_step(s);
if(rc == SQLITE_ROW)
return SQLITE_ERROR;
if(rc != SQLITE_DONE)
return rc;
return SQLITE_ROW;
}
/* Delete the segment blocks and segment directory records for all
** segments at iLevel.
*/
static int
segdir_delete(fulltext_vtab * v, int iLevel)
{
sqlite3_stmt *s;
sqlite_int64 iStartBlockid, iEndBlockid;
int rc = segdir_span(v, iLevel, &iStartBlockid, &iEndBlockid);
if(rc != SQLITE_ROW && rc != SQLITE_DONE)
return rc;
if(rc == SQLITE_ROW)
{
rc = block_delete(v, iStartBlockid, iEndBlockid);
if(rc != SQLITE_OK)
return rc;
}
/* Delete the segment directory itself. */
rc = sql_get_statement(v, SEGDIR_DELETE_STMT, &s);
if(rc != SQLITE_OK)
return rc;
rc = sqlite3_bind_int64(s, 1, iLevel);
if(rc != SQLITE_OK)
return rc;
return sql_single_step(s);
}
/* TODO(shess) clearPendingTerms() is far down the file because
** writeZeroSegment() is far down the file because LeafWriter is far
** down the file. Consider refactoring the code to move the non-vtab
** code above the vtab code so that we don't need this forward
** reference.
*/
static int clearPendingTerms(fulltext_vtab * v);
/*
** Free the memory used to contain a fulltext_vtab structure.
*/
static void
fulltext_vtab_destroy(fulltext_vtab * v)
{
int iStmt, i;
FTSTRACE(("FTS3 Destroy %p\n", v));
for (iStmt = 0; iStmt < MAX_STMT; iStmt++)
{
if(v->pFulltextStatements[iStmt] != NULL)
{
sqlite3_finalize(v->pFulltextStatements[iStmt]);
v->pFulltextStatements[iStmt] = NULL;
}
}
for (i = 0; i < MERGE_COUNT; i++)
{
if(v->pLeafSelectStmts[i] != NULL)
{
sqlite3_finalize(v->pLeafSelectStmts[i]);
v->pLeafSelectStmts[i] = NULL;
}
}
if(v->pTokenizer != NULL)
{
v->pTokenizer->pModule->xDestroy(v->pTokenizer);
v->pTokenizer = NULL;
}
clearPendingTerms(v);
sqlite3_free(v->azColumn);
for (i = 0; i < v->nColumn; ++i)
{
sqlite3_free(v->azContentColumn[i]);
}
sqlite3_free(v->azContentColumn);
sqlite3_free(v);
}
/*
** Token types for parsing the arguments to xConnect or xCreate.
*/
#define TOKEN_EOF 0 /* End of file */
#define TOKEN_SPACE 1 /* Any kind of whitespace */
#define TOKEN_ID 2 /* An identifier */
#define TOKEN_STRING 3 /* A string literal */
#define TOKEN_PUNCT 4 /* A single punctuation character */
/*
** If X is a character that can be used in an identifier then
** ftsIdChar(X) will be true. Otherwise it is false.
**
** For ASCII, any character with the high-order bit set is
** allowed in an identifier. For 7-bit characters,
** isFtsIdChar[X] must be 1.
**
** Ticket #1066. the SQL standard does not allow '$' in the
** middle of identfiers. But many SQL implementations do.
** SQLite will allow '$' in identifiers for compatibility.
** But the feature is undocumented.
*/
static const char isFtsIdChar[] = {
/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */
};
#define ftsIdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && isFtsIdChar[c-0x20]))
/*
** Return the length of the token that begins at z[0].
** Store the token type in *tokenType before returning.
*/
static int
ftsGetToken(const char *z, int *tokenType)
{
int i, c;
switch (*z)
{
case 0:
{
*tokenType = TOKEN_EOF;
return 0;
}
case ' ':
case '\t':
case '\n':
case '\f':
case '\r':
{
for (i = 1; safe_isspace(z[i]); i++)
{
}
*tokenType = TOKEN_SPACE;
return i;
}
case '`':
case '\'':
case '"':
{
int delim = z[0];
for (i = 1; (c = z[i]) != 0; i++)
{
if(c == delim)
{
if(z[i + 1] == delim)
{
i++;
}
else
{
break;
}
}
}
*tokenType = TOKEN_STRING;
return i + (c != 0);
}
case '[':
{
for (i = 1, c = z[0]; c != ']' && (c = z[i]) != 0; i++)
{
}
*tokenType = TOKEN_ID;
return i;
}
default:
{
if(!ftsIdChar(*z))
{
break;
}
for (i = 1; ftsIdChar(z[i]); i++)
{
}
*tokenType = TOKEN_ID;
return i;
}
}
*tokenType = TOKEN_PUNCT;
return 1;
}
/*
** A token extracted from a string is an instance of the following
** structure.
*/
typedef struct FtsToken
{
const char *z; /* Pointer to token text. Not '\000' terminated */
short int n; /* Length of the token text in bytes. */
} FtsToken;
/*
** Given a input string (which is really one of the argv[] parameters
** passed into xConnect or xCreate) split the string up into tokens.
** Return an array of pointers to '\000' terminated strings, one string
** for each non-whitespace token.
**
** The returned array is terminated by a single NULL pointer.
**
** Space to hold the returned array is obtained from a single
** malloc and should be freed by passing the return value to free().
** The individual strings within the token list are all a part of
** the single memory allocation and will all be freed at once.
*/
static char **
tokenizeString(const char *z, int *pnToken)
{
int nToken = 0;
FtsToken *aToken = sqlite3_malloc(strlen(z) * sizeof(aToken[0]));
int n = 1;
int e, i;
int totalSize = 0;
char **azToken;
char *zCopy;
while (n > 0)
{
n = ftsGetToken(z, &e);
if(e != TOKEN_SPACE)
{
aToken[nToken].z = z;
aToken[nToken].n = n;
nToken++;
totalSize += n + 1;
}
z += n;
}
azToken = (char **) sqlite3_malloc(nToken * sizeof(char *) + totalSize);
zCopy = (char *) &azToken[nToken];
nToken--;
for (i = 0; i < nToken; i++)
{
azToken[i] = zCopy;
n = aToken[i].n;
memcpy(zCopy, aToken[i].z, n);
zCopy[n] = 0;
zCopy += n + 1;
}
azToken[nToken] = 0;
sqlite3_free(aToken);
*pnToken = nToken;
return azToken;
}
/*
** Convert an SQL-style quoted string into a normal string by removing
** the quote characters. The conversion is done in-place. If the
** input does not begin with a quote character, then this routine
** is a no-op.
**
** Examples:
**
** "abc" becomes abc
** 'xyz' becomes xyz
** [pqr] becomes pqr
** `mno` becomes mno
*/
static void
dequoteString(char *z)
{
int quote;
int i, j;
if(z == 0)
return;
quote = z[0];
switch (quote)
{
case '\'':
break;
case '"':
break;
case '`':
break; /* For MySQL compatibility */
case '[':
quote = ']';
break; /* For MS SqlServer compatibility */
default:
return;
}
for (i = 1, j = 0; z[i]; i++)
{
if(z[i] == quote)
{
if(z[i + 1] == quote)
{
z[j++] = quote;
i++;
}
else
{
z[j++] = 0;
break;
}
}
else
{
z[j++] = z[i];
}
}
}
/*
** The input azIn is a NULL-terminated list of tokens. Remove the first
** token and all punctuation tokens. Remove the quotes from
** around string literal tokens.
**
** Example:
**
** input: tokenize chinese ( 'simplifed' , 'mixed' )
** output: chinese simplifed mixed
**
** Another example:
**
** input: delimiters ( '[' , ']' , '...' )
** output: [ ] ...
*/
static void
tokenListToIdList(char **azIn)
{
int i, j;
if(azIn)
{
for (i = 0, j = -1; azIn[i]; i++)
{
if(safe_isalnum(azIn[i][0]) || azIn[i][1])
{
dequoteString(azIn[i]);
if(j >= 0)
{
azIn[j] = azIn[i];
}
j++;
}
}
azIn[j] = 0;
}
}
/*
** Find the first alphanumeric token in the string zIn. Null-terminate
** this token. Remove any quotation marks. And return a pointer to
** the result.
*/
static char *
firstToken(char *zIn, char **pzTail)
{
int n, ttype;
while (1)
{
n = ftsGetToken(zIn, &ttype);
if(ttype == TOKEN_SPACE)
{
zIn += n;
}
else if(ttype == TOKEN_EOF)
{
*pzTail = zIn;
return 0;
}
else
{
zIn[n] = 0;
*pzTail = &zIn[1];
dequoteString(zIn);
return zIn;
}
}
/*NOTREACHED*/}
/* Return true if...
**
** * s begins with the string t, ignoring case
** * s is longer than t
** * The first character of s beyond t is not a alphanumeric
**
** Ignore leading space in *s.
**
** To put it another way, return true if the first token of
** s[] is t[].
*/
static int
startsWith(const char *s, const char *t)
{
while (safe_isspace(*s))
{
s++;
}
while (*t)
{
if(safe_tolower(*s++) != safe_tolower(*t++))
return 0;
}
return *s != '_' && !safe_isalnum(*s);
}
/*
** An instance of this structure defines the "spec" of a
** full text index. This structure is populated by parseSpec
** and use by fulltextConnect and fulltextCreate.
*/
typedef struct TableSpec
{
const char *zDb; /* Logical database name */
const char *zName; /* Name of the full-text index */
int nColumn; /* Number of columns to be indexed */
char **azColumn; /* Original names of columns to be indexed */
char **azContentColumn; /* Column names for %_content */
char **azTokenizer; /* Name of tokenizer and its arguments */
} TableSpec;
/*
** Reclaim all of the memory used by a TableSpec
*/
static void
clearTableSpec(TableSpec * p)
{
sqlite3_free(p->azColumn);
sqlite3_free(p->azContentColumn);
sqlite3_free(p->azTokenizer);
}
/* Parse a CREATE VIRTUAL TABLE statement, which looks like this:
*
* CREATE VIRTUAL TABLE email
* USING fts3(subject, body, tokenize mytokenizer(myarg))
*
* We return parsed information in a TableSpec structure.
*
*/
static int
parseSpec(TableSpec * pSpec, int argc, const char *const *argv, char **pzErr)
{
int i, n;
char *z, *zDummy;
char **azArg;
const char *zTokenizer = 0; /* argv[] entry describing the tokenizer */
assert(argc >= 3);
/* Current interface:
** argv[0] - module name
** argv[1] - database name
** argv[2] - table name
** argv[3..] - columns, optionally followed by tokenizer specification
** and snippet delimiters specification.
*/
/* Make a copy of the complete argv[][] array in a single allocation.
** The argv[][] array is read-only and transient. We can write to the
** copy in order to modify things and the copy is persistent.
*/
CLEAR(pSpec);
for (i = n = 0; i < argc; i++)
{
n += strlen(argv[i]) + 1;
}
azArg = sqlite3_malloc(sizeof(char *) * argc + n);
if(azArg == 0)
{
return SQLITE_NOMEM;
}
z = (char *) &azArg[argc];
for (i = 0; i < argc; i++)
{
azArg[i] = z;
strcpy(z, argv[i]);
z += strlen(z) + 1;
}
/* Identify the column names and the tokenizer and delimiter arguments
** in the argv[][] array.
*/
pSpec->zDb = azArg[1];
pSpec->zName = azArg[2];
pSpec->nColumn = 0;
pSpec->azColumn = azArg;
zTokenizer = "tokenize simple";
for (i = 3; i < argc; ++i)
{
if(startsWith(azArg[i], "tokenize"))
{
zTokenizer = azArg[i];
}
else
{
z = azArg[pSpec->nColumn] = firstToken(azArg[i], &zDummy);
pSpec->nColumn++;
}
}
if(pSpec->nColumn == 0)
{
azArg[0] = "content";
pSpec->nColumn = 1;
}
/*
** Construct the list of content column names.
**
** Each content column name will be of the form cNNAAAA
** where NN is the column number and AAAA is the sanitized
** column name. "sanitized" means that special characters are
** converted to "_". The cNN prefix guarantees that all column
** names are unique.
**
** The AAAA suffix is not strictly necessary. It is included
** for the convenience of people who might examine the generated
** %_content table and wonder what the columns are used for.
*/
pSpec->azContentColumn = sqlite3_malloc(pSpec->nColumn * sizeof(char *));
if(pSpec->azContentColumn == 0)
{
clearTableSpec(pSpec);
return SQLITE_NOMEM;
}
for (i = 0; i < pSpec->nColumn; i++)
{
char *p;
pSpec->azContentColumn[i] = sqlite3_mprintf("c%d%s", i, azArg[i]);
for (p = pSpec->azContentColumn[i]; *p; ++p)
{
if(!safe_isalnum(*p))
*p = '_';
}
}
/*
** Parse the tokenizer specification string.
*/
pSpec->azTokenizer = tokenizeString(zTokenizer, &n);
tokenListToIdList(pSpec->azTokenizer);
return SQLITE_OK;
}
/*
** Generate a CREATE TABLE statement that describes the schema of
** the virtual table. Return a pointer to this schema string.
**
** Space is obtained from sqlite3_mprintf() and should be freed
** using sqlite3_free().
*/
static char *
fulltextSchema(int nColumn, /* Number of columns */
const char *const *azColumn, /* List of columns */
const char *zTableName /* Name of the table */
)
{
int i;
char *zSchema, *zNext;
const char *zSep = "(";
zSchema = sqlite3_mprintf("CREATE TABLE x");
for (i = 0; i < nColumn; i++)
{
zNext = sqlite3_mprintf("%s%s%Q", zSchema, zSep, azColumn[i]);
sqlite3_free(zSchema);
zSchema = zNext;
zSep = ",";
}
zNext = sqlite3_mprintf("%s,%Q HIDDEN", zSchema, zTableName);
sqlite3_free(zSchema);
zSchema = zNext;
zNext = sqlite3_mprintf("%s,docid HIDDEN)", zSchema);
sqlite3_free(zSchema);
return zNext;
}
/*
** Build a new sqlite3_vtab structure that will describe the
** fulltext index defined by spec.
*/
static int
constructVtab(sqlite3 * db, /* The SQLite database connection */
fts3Hash * pHash, /* Hash table containing tokenizers */
TableSpec * spec, /* Parsed spec information from parseSpec() */
sqlite3_vtab ** ppVTab, /* Write the resulting vtab structure here */
char **pzErr /* Write any error message here */
)
{
int rc;
int n;
fulltext_vtab *v = 0;
const sqlite3_tokenizer_module *m = NULL;
char *schema;
char const *zTok; /* Name of tokenizer to use for this fts table */
int nTok; /* Length of zTok, including nul terminator */
v = (fulltext_vtab *) sqlite3_malloc(sizeof(fulltext_vtab));
if(v == 0)
return SQLITE_NOMEM;
CLEAR(v);
/* sqlite will initialize v->base */
v->db = db;
v->zDb = spec->zDb; /* Freed when azColumn is freed */
v->zName = spec->zName; /* Freed when azColumn is freed */
v->nColumn = spec->nColumn;
v->azContentColumn = spec->azContentColumn;
spec->azContentColumn = 0;
v->azColumn = spec->azColumn;
spec->azColumn = 0;
if(spec->azTokenizer == 0)
{
return SQLITE_NOMEM;
}
zTok = spec->azTokenizer[0];
if(!zTok)
{
zTok = "simple";
}
nTok = strlen(zTok) + 1;
m = (sqlite3_tokenizer_module *) sqlite3Fts3HashFind(pHash, zTok, nTok);
if(!m)
{
*pzErr = sqlite3_mprintf("unknown tokenizer: %s", spec->azTokenizer[0]);
rc = SQLITE_ERROR;
goto err;
}
for (n = 0; spec->azTokenizer[n]; n++)
{
}
if(n)
{
rc = m->xCreate(n - 1, (const char *const *) &spec->azTokenizer[1], &v->pTokenizer);
}
else
{
rc = m->xCreate(0, 0, &v->pTokenizer);
}
if(rc != SQLITE_OK)
goto err;
v->pTokenizer->pModule = m;
/* TODO: verify the existence of backing tables foo_content, foo_term */
schema = fulltextSchema(v->nColumn, (const char *const *) v->azColumn, spec->zName);
rc = sqlite3_declare_vtab(db, schema);
sqlite3_free(schema);
if(rc != SQLITE_OK)
goto err;
memset(v->pFulltextStatements, 0, sizeof(v->pFulltextStatements));
/* Indicate that the buffer is not live. */
v->nPendingData = -1;
*ppVTab = &v->base;
FTSTRACE(("FTS3 Connect %p\n", v));
return rc;
err:
fulltext_vtab_destroy(v);
return rc;
}
static int
fulltextConnect(sqlite3 * db,
void *pAux, int argc, const char *const *argv, sqlite3_vtab ** ppVTab, char **pzErr)
{
TableSpec spec;
int rc = parseSpec(&spec, argc, argv, pzErr);
if(rc != SQLITE_OK)
return rc;
rc = constructVtab(db, (fts3Hash *) pAux, &spec, ppVTab, pzErr);
clearTableSpec(&spec);
return rc;
}
/* The %_content table holds the text of each document, with
** the docid column exposed as the SQLite rowid for the table.
*/
/* TODO(shess) This comment needs elaboration to match the updated
** code. Work it into the top-of-file comment at that time.
*/
static int
fulltextCreate(sqlite3 * db, void *pAux,
int argc, const char *const *argv, sqlite3_vtab ** ppVTab, char **pzErr)
{
int rc;
TableSpec spec;
StringBuffer schema;
FTSTRACE(("FTS3 Create\n"));
rc = parseSpec(&spec, argc, argv, pzErr);
if(rc != SQLITE_OK)
return rc;
initStringBuffer(&schema);
append(&schema, "CREATE TABLE %_content(");
append(&schema, " docid INTEGER PRIMARY KEY,");
appendList(&schema, spec.nColumn, spec.azContentColumn);
append(&schema, ")");
rc = sql_exec(db, spec.zDb, spec.zName, stringBufferData(&schema));
stringBufferDestroy(&schema);
if(rc != SQLITE_OK)
goto out;
rc = sql_exec(db, spec.zDb, spec.zName,
"create table %_segments("
" blockid INTEGER PRIMARY KEY," " block blob" ");");
if(rc != SQLITE_OK)
goto out;
rc = sql_exec(db, spec.zDb, spec.zName,
"create table %_segdir("
" level integer,"
" idx integer,"
" start_block integer,"
" leaves_end_block integer,"
" end_block integer," " root blob," " primary key(level, idx)" ");");
if(rc != SQLITE_OK)
goto out;
rc = constructVtab(db, (fts3Hash *) pAux, &spec, ppVTab, pzErr);
out:
clearTableSpec(&spec);
return rc;
}
/* Decide how to handle an SQL query. */
static int
fulltextBestIndex(sqlite3_vtab * pVTab, sqlite3_index_info * pInfo)
{
fulltext_vtab *v = (fulltext_vtab *) pVTab;
int i;
FTSTRACE(("FTS3 BestIndex\n"));
for (i = 0; i < pInfo->nConstraint; ++i)
{
const struct sqlite3_index_constraint *pConstraint;
pConstraint = &pInfo->aConstraint[i];
if(pConstraint->usable)
{
if((pConstraint->iColumn == -1 || pConstraint->iColumn == v->nColumn + 1) &&
pConstraint->op == SQLITE_INDEX_CONSTRAINT_EQ)
{
pInfo->idxNum = QUERY_DOCID; /* lookup by docid */
FTSTRACE(("FTS3 QUERY_DOCID\n"));
}
else if(pConstraint->iColumn >= 0 && pConstraint->iColumn <= v->nColumn &&
pConstraint->op == SQLITE_INDEX_CONSTRAINT_MATCH)
{
/* full-text search */
pInfo->idxNum = QUERY_FULLTEXT + pConstraint->iColumn;
FTSTRACE(("FTS3 QUERY_FULLTEXT %d\n", pConstraint->iColumn));
}
else
continue;
pInfo->aConstraintUsage[i].argvIndex = 1;
pInfo->aConstraintUsage[i].omit = 1;
/* An arbitrary value for now.
* TODO: Perhaps docid matches should be considered cheaper than
* full-text searches. */
pInfo->estimatedCost = 1.0;
return SQLITE_OK;
}
}
pInfo->idxNum = QUERY_GENERIC;
return SQLITE_OK;
}
static int
fulltextDisconnect(sqlite3_vtab * pVTab)
{
FTSTRACE(("FTS3 Disconnect %p\n", pVTab));
fulltext_vtab_destroy((fulltext_vtab *) pVTab);
return SQLITE_OK;
}
static int
fulltextDestroy(sqlite3_vtab * pVTab)
{
fulltext_vtab *v = (fulltext_vtab *) pVTab;
int rc;
FTSTRACE(("FTS3 Destroy %p\n", pVTab));
rc = sql_exec(v->db, v->zDb, v->zName,
"drop table if exists %_content;"
"drop table if exists %_segments;" "drop table if exists %_segdir;");
if(rc != SQLITE_OK)
return rc;
fulltext_vtab_destroy((fulltext_vtab *) pVTab);
return SQLITE_OK;
}
static int
fulltextOpen(sqlite3_vtab * pVTab, sqlite3_vtab_cursor ** ppCursor)
{
fulltext_cursor *c;
c = (fulltext_cursor *) sqlite3_malloc(sizeof(fulltext_cursor));
if(c)
{
memset(c, 0, sizeof(fulltext_cursor));
/* sqlite will initialize c->base */
*ppCursor = &c->base;
FTSTRACE(("FTS3 Open %p: %p\n", pVTab, c));
return SQLITE_OK;
}
else
{
return SQLITE_NOMEM;
}
}
/* Free all of the dynamically allocated memory held by *q
*/
static void
queryClear(Query * q)
{
int i;
for (i = 0; i < q->nTerms; ++i)
{
sqlite3_free(q->pTerms[i].pTerm);
}
sqlite3_free(q->pTerms);
CLEAR(q);
}
/* Free all of the dynamically allocated memory held by the
** Snippet
*/
static void
snippetClear(Snippet * p)
{
sqlite3_free(p->aMatch);
sqlite3_free(p->zOffset);
sqlite3_free(p->zSnippet);
CLEAR(p);
}
/*
** Append a single entry to the p->aMatch[] log.
*/
static void
snippetAppendMatch(Snippet * p, /* Append the entry to this snippet */
int iCol, int iTerm, /* The column and query term */
int iToken, /* Matching token in document */
int iStart, int nByte /* Offset and size of the match */
)
{
int i;
struct snippetMatch *pMatch;
if(p->nMatch + 1 >= p->nAlloc)
{
p->nAlloc = p->nAlloc * 2 + 10;
p->aMatch = sqlite3_realloc(p->aMatch, p->nAlloc * sizeof(p->aMatch[0]));
if(p->aMatch == 0)
{
p->nMatch = 0;
p->nAlloc = 0;
return;
}
}
i = p->nMatch++;
pMatch = &p->aMatch[i];
pMatch->iCol = iCol;
pMatch->iTerm = iTerm;
pMatch->iToken = iToken;
pMatch->iStart = iStart;
pMatch->nByte = nByte;
}
/*
** Sizing information for the circular buffer used in snippetOffsetsOfColumn()
*/
#define FTS3_ROTOR_SZ (32)
#define FTS3_ROTOR_MASK (FTS3_ROTOR_SZ-1)
/*
** Add entries to pSnippet->aMatch[] for every match that occurs against
** document zDoc[0..nDoc-1] which is stored in column iColumn.
*/
static void
snippetOffsetsOfColumn(Query * pQuery, Snippet * pSnippet, int iColumn, const char *zDoc, int nDoc)
{
const sqlite3_tokenizer_module *pTModule; /* The tokenizer module */
sqlite3_tokenizer *pTokenizer; /* The specific tokenizer */
sqlite3_tokenizer_cursor *pTCursor; /* Tokenizer cursor */
fulltext_vtab *pVtab; /* The full text index */
int nColumn; /* Number of columns in the index */
const QueryTerm *aTerm; /* Query string terms */
int nTerm; /* Number of query string terms */
int i, j; /* Loop counters */
int rc; /* Return code */
unsigned int match, prevMatch; /* Phrase search bitmasks */
const char *zToken; /* Next token from the tokenizer */
int nToken; /* Size of zToken */
int iBegin, iEnd, iPos; /* Offsets of beginning and end */
/* The following variables keep a circular buffer of the last
** few tokens */
unsigned int iRotor = 0; /* Index of current token */
int iRotorBegin[FTS3_ROTOR_SZ]; /* Beginning offset of token */
int iRotorLen[FTS3_ROTOR_SZ]; /* Length of token */
pVtab = pQuery->pFts;
nColumn = pVtab->nColumn;
pTokenizer = pVtab->pTokenizer;
pTModule = pTokenizer->pModule;
rc = pTModule->xOpen(pTokenizer, zDoc, nDoc, &pTCursor);
if(rc)
return;
pTCursor->pTokenizer = pTokenizer;
aTerm = pQuery->pTerms;
nTerm = pQuery->nTerms;
if(nTerm >= FTS3_ROTOR_SZ)
{
nTerm = FTS3_ROTOR_SZ - 1;
}
prevMatch = 0;
while (1)
{
rc = pTModule->xNext(pTCursor, &zToken, &nToken, &iBegin, &iEnd, &iPos);
if(rc)
break;
iRotorBegin[iRotor & FTS3_ROTOR_MASK] = iBegin;
iRotorLen[iRotor & FTS3_ROTOR_MASK] = iEnd - iBegin;
match = 0;
for (i = 0; i < nTerm; i++)
{
int iCol;
iCol = aTerm[i].iColumn;
if(iCol >= 0 && iCol < nColumn && iCol != iColumn)
continue;
if(aTerm[i].nTerm > nToken)
continue;
if(!aTerm[i].isPrefix && aTerm[i].nTerm < nToken)
continue;
assert(aTerm[i].nTerm <= nToken);
if(memcmp(aTerm[i].pTerm, zToken, aTerm[i].nTerm))
continue;
if(aTerm[i].iPhrase > 1 && (prevMatch & (1 << i)) == 0)
continue;
match |= 1 << i;
if(i == nTerm - 1 || aTerm[i + 1].iPhrase == 1)
{
for (j = aTerm[i].iPhrase - 1; j >= 0; j--)
{
int k = (iRotor - j) & FTS3_ROTOR_MASK;
snippetAppendMatch(pSnippet, iColumn, i - j, iPos - j,
iRotorBegin[k], iRotorLen[k]);
}
}
}
prevMatch = match << 1;
iRotor++;
}
pTModule->xClose(pTCursor);
}
/*
** Remove entries from the pSnippet structure to account for the NEAR
** operator. When this is called, pSnippet contains the list of token
** offsets produced by treating all NEAR operators as AND operators.
** This function removes any entries that should not be present after
** accounting for the NEAR restriction. For example, if the queried
** document is:
**
** "A B C D E A"
**
** and the query is:
**
** A NEAR/0 E
**
** then when this function is called the Snippet contains token offsets
** 0, 4 and 5. This function removes the "0" entry (because the first A
** is not near enough to an E).
*/
static void
trimSnippetOffsetsForNear(Query * pQuery, Snippet * pSnippet)
{
int ii;
int iDir = 1;
while (iDir > -2)
{
assert(iDir == 1 || iDir == -1);
for (ii = 0; ii < pSnippet->nMatch; ii++)
{
int jj;
int nNear;
struct snippetMatch *pMatch = &pSnippet->aMatch[ii];
QueryTerm *pQueryTerm = &pQuery->pTerms[pMatch->iTerm];
if((pMatch->iTerm + iDir) < 0 || (pMatch->iTerm + iDir) >= pQuery->nTerms)
{
continue;
}
nNear = pQueryTerm->nNear;
if(iDir < 0)
{
nNear = pQueryTerm[-1].nNear;
}
if(pMatch->iTerm >= 0 && nNear)
{
int isOk = 0;
int iNextTerm = pMatch->iTerm + iDir;
int iPrevTerm = iNextTerm;
int iEndToken;
int iStartToken;
if(iDir < 0)
{
int nPhrase = 1;
iStartToken = pMatch->iToken;
while ((pMatch->iTerm + nPhrase) < pQuery->nTerms
&& pQuery->pTerms[pMatch->iTerm + nPhrase].iPhrase >
1)
{
nPhrase++;
}
iEndToken = iStartToken + nPhrase - 1;
}
else
{
iEndToken = pMatch->iToken;
iStartToken = pMatch->iToken + 1 - pQueryTerm->iPhrase;
}
while (pQuery->pTerms[iNextTerm].iPhrase > 1)
{
iNextTerm--;
}
while ((iPrevTerm + 1) < pQuery->nTerms &&
pQuery->pTerms[iPrevTerm + 1].iPhrase > 1)
{
iPrevTerm++;
}
for (jj = 0; isOk == 0 && jj < pSnippet->nMatch; jj++)
{
struct snippetMatch *p = &pSnippet->aMatch[jj];
if(p->iCol == pMatch->iCol && ((p->iTerm == iNextTerm &&
p->iToken > iEndToken &&
p->iToken <=
iEndToken + nNear)
|| (p->iTerm == iPrevTerm
&& p->iToken <
iStartToken
&& p->iToken >=
iStartToken - nNear)))
{
isOk = 1;
}
}
if(!isOk)
{
for (jj = 1 - pQueryTerm->iPhrase; jj <= 0; jj++)
{
pMatch[jj].iTerm = -1;
}
ii = -1;
iDir = 1;
}
}
}
iDir -= 2;
}
}
/*
** Compute all offsets for the current row of the query.
** If the offsets have already been computed, this routine is a no-op.
*/
static void
snippetAllOffsets(fulltext_cursor * p)
{
int nColumn;
int iColumn, i;
int iFirst, iLast;
fulltext_vtab *pFts;
if(p->snippet.nMatch)
return;
if(p->q.nTerms == 0)
return;
pFts = p->q.pFts;
nColumn = pFts->nColumn;
iColumn = (p->iCursorType - QUERY_FULLTEXT);
if(iColumn < 0 || iColumn >= nColumn)
{
iFirst = 0;
iLast = nColumn - 1;
}
else
{
iFirst = iColumn;
iLast = iColumn;
}
for (i = iFirst; i <= iLast; i++)
{
const char *zDoc;
int nDoc;
zDoc = (const char *) sqlite3_column_text(p->pStmt, i + 1);
nDoc = sqlite3_column_bytes(p->pStmt, i + 1);
snippetOffsetsOfColumn(&p->q, &p->snippet, i, zDoc, nDoc);
}
trimSnippetOffsetsForNear(&p->q, &p->snippet);
}
/*
** Convert the information in the aMatch[] array of the snippet
** into the string zOffset[0..nOffset-1].
*/
static void
snippetOffsetText(Snippet * p)
{
int i;
int cnt = 0;
StringBuffer sb;
char zBuf[200];
if(p->zOffset)
return;
initStringBuffer(&sb);
for (i = 0; i < p->nMatch; i++)
{
struct snippetMatch *pMatch = &p->aMatch[i];
if(pMatch->iTerm >= 0)
{
/* If snippetMatch.iTerm is less than 0, then the match was
** discarded as part of processing the NEAR operator (see the
** trimSnippetOffsetsForNear() function for details). Ignore
** it in this case
*/
zBuf[0] = ' ';
sqlite3_snprintf(sizeof(zBuf) - 1, &zBuf[cnt > 0], "%d %d %d %d",
pMatch->iCol, pMatch->iTerm, pMatch->iStart,
pMatch->nByte);
append(&sb, zBuf);
cnt++;
}
}
p->zOffset = stringBufferData(&sb);
p->nOffset = stringBufferLength(&sb);
}
/*
** zDoc[0..nDoc-1] is phrase of text. aMatch[0..nMatch-1] are a set
** of matching words some of which might be in zDoc. zDoc is column
** number iCol.
**
** iBreak is suggested spot in zDoc where we could begin or end an
** excerpt. Return a value similar to iBreak but possibly adjusted
** to be a little left or right so that the break point is better.
*/
static int
wordBoundary(int iBreak, /* The suggested break point */
const char *zDoc, /* Document text */
int nDoc, /* Number of bytes in zDoc[] */
struct snippetMatch *aMatch, /* Matching words */
int nMatch, /* Number of entries in aMatch[] */
int iCol /* The column number for zDoc[] */
)
{
int i;
if(iBreak <= 10)
{
return 0;
}
if(iBreak >= nDoc - 10)
{
return nDoc;
}
for (i = 0; i < nMatch && aMatch[i].iCol < iCol; i++)
{
}
while (i < nMatch && aMatch[i].iStart + aMatch[i].nByte < iBreak)
{
i++;
}
if(i < nMatch)
{
if(aMatch[i].iStart < iBreak + 10)
{
return aMatch[i].iStart;
}
if(i > 0 && aMatch[i - 1].iStart + aMatch[i - 1].nByte >= iBreak)
{
return aMatch[i - 1].iStart;
}
}
for (i = 1; i <= 10; i++)
{
if(safe_isspace(zDoc[iBreak - i]))
{
return iBreak - i + 1;
}
if(safe_isspace(zDoc[iBreak + i]))
{
return iBreak + i + 1;
}
}
return iBreak;
}
/*
** Allowed values for Snippet.aMatch[].snStatus
*/
#define SNIPPET_IGNORE 0 /* It is ok to omit this match from the snippet */
#define SNIPPET_DESIRED 1 /* We want to include this match in the snippet */
/*
** Generate the text of a snippet.
*/
static void
snippetText(fulltext_cursor * pCursor, /* The cursor we need the snippet for */
const char *zStartMark, /* Markup to appear before each match */
const char *zEndMark, /* Markup to appear after each match */
const char *zEllipsis /* Ellipsis mark */
)
{
int i, j;
struct snippetMatch *aMatch;
int nMatch;
int nDesired;
StringBuffer sb;
int tailCol;
int tailOffset;
int iCol;
int nDoc;
const char *zDoc;
int iStart, iEnd;
int tailEllipsis = 0;
int iMatch;
sqlite3_free(pCursor->snippet.zSnippet);
pCursor->snippet.zSnippet = 0;
aMatch = pCursor->snippet.aMatch;
nMatch = pCursor->snippet.nMatch;
initStringBuffer(&sb);
for (i = 0; i < nMatch; i++)
{
aMatch[i].snStatus = SNIPPET_IGNORE;
}
nDesired = 0;
for (i = 0; i < pCursor->q.nTerms; i++)
{
for (j = 0; j < nMatch; j++)
{
if(aMatch[j].iTerm == i)
{
aMatch[j].snStatus = SNIPPET_DESIRED;
nDesired++;
break;
}
}
}
iMatch = 0;
tailCol = -1;
tailOffset = 0;
for (i = 0; i < nMatch && nDesired > 0; i++)
{
if(aMatch[i].snStatus != SNIPPET_DESIRED)
continue;
nDesired--;
iCol = aMatch[i].iCol;
zDoc = (const char *) sqlite3_column_text(pCursor->pStmt, iCol + 1);
nDoc = sqlite3_column_bytes(pCursor->pStmt, iCol + 1);
iStart = aMatch[i].iStart - 40;
iStart = wordBoundary(iStart, zDoc, nDoc, aMatch, nMatch, iCol);
if(iStart <= 10)
{
iStart = 0;
}
if(iCol == tailCol && iStart <= tailOffset + 20)
{
iStart = tailOffset;
}
if((iCol != tailCol && tailCol >= 0) || iStart != tailOffset)
{
trimWhiteSpace(&sb);
appendWhiteSpace(&sb);
append(&sb, zEllipsis);
appendWhiteSpace(&sb);
}
iEnd = aMatch[i].iStart + aMatch[i].nByte + 40;
iEnd = wordBoundary(iEnd, zDoc, nDoc, aMatch, nMatch, iCol);
if(iEnd >= nDoc - 10)
{
iEnd = nDoc;
tailEllipsis = 0;
}
else
{
tailEllipsis = 1;
}
while (iMatch < nMatch && aMatch[iMatch].iCol < iCol)
{
iMatch++;
}
while (iStart < iEnd)
{
while (iMatch < nMatch && aMatch[iMatch].iStart < iStart
&& aMatch[iMatch].iCol <= iCol)
{
iMatch++;
}
if(iMatch < nMatch && aMatch[iMatch].iStart < iEnd
&& aMatch[iMatch].iCol == iCol)
{
nappend(&sb, &zDoc[iStart], aMatch[iMatch].iStart - iStart);
iStart = aMatch[iMatch].iStart;
append(&sb, zStartMark);
nappend(&sb, &zDoc[iStart], aMatch[iMatch].nByte);
append(&sb, zEndMark);
iStart += aMatch[iMatch].nByte;
for (j = iMatch + 1; j < nMatch; j++)
{
if(aMatch[j].iTerm == aMatch[iMatch].iTerm
&& aMatch[j].snStatus == SNIPPET_DESIRED)
{
nDesired--;
aMatch[j].snStatus = SNIPPET_IGNORE;
}
}
}
else
{
nappend(&sb, &zDoc[iStart], iEnd - iStart);
iStart = iEnd;
}
}
tailCol = iCol;
tailOffset = iEnd;
}
trimWhiteSpace(&sb);
if(tailEllipsis)
{
appendWhiteSpace(&sb);
append(&sb, zEllipsis);
}
pCursor->snippet.zSnippet = stringBufferData(&sb);
pCursor->snippet.nSnippet = stringBufferLength(&sb);
}
/*
** Close the cursor. For additional information see the documentation
** on the xClose method of the virtual table interface.
*/
static int
fulltextClose(sqlite3_vtab_cursor * pCursor)
{
fulltext_cursor *c = (fulltext_cursor *) pCursor;
FTSTRACE(("FTS3 Close %p\n", c));
sqlite3_finalize(c->pStmt);
queryClear(&c->q);
snippetClear(&c->snippet);
if(c->result.nData != 0)
dlrDestroy(&c->reader);
dataBufferDestroy(&c->result);
sqlite3_free(c);
return SQLITE_OK;
}
static int
fulltextNext(sqlite3_vtab_cursor * pCursor)
{
fulltext_cursor *c = (fulltext_cursor *) pCursor;
int rc;
FTSTRACE(("FTS3 Next %p\n", pCursor));
snippetClear(&c->snippet);
if(c->iCursorType < QUERY_FULLTEXT)
{
/* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */
rc = sqlite3_step(c->pStmt);
switch (rc)
{
case SQLITE_ROW:
c->eof = 0;
return SQLITE_OK;
case SQLITE_DONE:
c->eof = 1;
return SQLITE_OK;
default:
c->eof = 1;
return rc;
}
}
else
{ /* full-text query */
rc = sqlite3_reset(c->pStmt);
if(rc != SQLITE_OK)
return rc;
if(c->result.nData == 0 || dlrAtEnd(&c->reader))
{
c->eof = 1;
return SQLITE_OK;
}
rc = sqlite3_bind_int64(c->pStmt, 1, dlrDocid(&c->reader));
dlrStep(&c->reader);
if(rc != SQLITE_OK)
return rc;
/* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */
rc = sqlite3_step(c->pStmt);
if(rc == SQLITE_ROW)
{ /* the case we expect */
c->eof = 0;
return SQLITE_OK;
}
/* an error occurred; abort */
return rc == SQLITE_DONE ? SQLITE_ERROR : rc;
}
}
/* TODO(shess) If we pushed LeafReader to the top of the file, or to
** another file, term_select() could be pushed above
** docListOfTerm().
*/
static int termSelect(fulltext_vtab * v, int iColumn,
const char *pTerm, int nTerm, int isPrefix,
DocListType iType, DataBuffer * out);
/* Return a DocList corresponding to the query term *pTerm. If *pTerm
** is the first term of a phrase query, go ahead and evaluate the phrase
** query and return the doclist for the entire phrase query.
**
** The resulting DL_DOCIDS doclist is stored in pResult, which is
** overwritten.
*/
static int
docListOfTerm(fulltext_vtab * v, /* The full text index */
int iColumn, /* column to restrict to. No restriction if >=nColumn */
QueryTerm * pQTerm, /* Term we are looking for, or 1st term of a phrase */
DataBuffer * pResult /* Write the result here */
)
{
DataBuffer left, right, new;
int i, rc;
/* No phrase search if no position info. */
assert(pQTerm->nPhrase == 0 || DL_DEFAULT != DL_DOCIDS);
/* This code should never be called with buffered updates. */
assert(v->nPendingData < 0);
dataBufferInit(&left, 0);
rc = termSelect(v, iColumn, pQTerm->pTerm, pQTerm->nTerm, pQTerm->isPrefix,
(0 < pQTerm->nPhrase ? DL_POSITIONS : DL_DOCIDS), &left);
if(rc)
return rc;
for (i = 1; i <= pQTerm->nPhrase && left.nData > 0; i++)
{
/* If this token is connected to the next by a NEAR operator, and
** the next token is the start of a phrase, then set nPhraseRight
** to the number of tokens in the phrase. Otherwise leave it at 1.
*/
int nPhraseRight = 1;
while ((i + nPhraseRight) <= pQTerm->nPhrase && pQTerm[i + nPhraseRight].nNear == 0)
{
nPhraseRight++;
}
dataBufferInit(&right, 0);
rc = termSelect(v, iColumn, pQTerm[i].pTerm, pQTerm[i].nTerm,
pQTerm[i].isPrefix, DL_POSITIONS, &right);
if(rc)
{
dataBufferDestroy(&left);
return rc;
}
dataBufferInit(&new, 0);
docListPhraseMerge(left.pData, left.nData, right.pData, right.nData,
pQTerm[i - 1].nNear, pQTerm[i - 1].iPhrase + nPhraseRight,
((i < pQTerm->nPhrase) ? DL_POSITIONS : DL_DOCIDS), &new);
dataBufferDestroy(&left);
dataBufferDestroy(&right);
left = new;
}
*pResult = left;
return SQLITE_OK;
}
/* Add a new term pTerm[0..nTerm-1] to the query *q.
*/
static void
queryAdd(Query * q, const char *pTerm, int nTerm)
{
QueryTerm *t;
++q->nTerms;
q->pTerms = sqlite3_realloc(q->pTerms, q->nTerms * sizeof(q->pTerms[0]));
if(q->pTerms == 0)
{
q->nTerms = 0;
return;
}
t = &q->pTerms[q->nTerms - 1];
CLEAR(t);
t->pTerm = sqlite3_malloc(nTerm + 1);
memcpy(t->pTerm, pTerm, nTerm);
t->pTerm[nTerm] = 0;
t->nTerm = nTerm;
t->isOr = q->nextIsOr;
t->isPrefix = 0;
q->nextIsOr = 0;
t->iColumn = q->nextColumn;
q->nextColumn = q->dfltColumn;
}
/*
** Check to see if the string zToken[0...nToken-1] matches any
** column name in the virtual table. If it does,
** return the zero-indexed column number. If not, return -1.
*/
static int
checkColumnSpecifier(fulltext_vtab * pVtab, /* The virtual table */
const char *zToken, /* Text of the token */
int nToken /* Number of characters in the token */
)
{
int i;
for (i = 0; i < pVtab->nColumn; i++)
{
if(memcmp(pVtab->azColumn[i], zToken, nToken) == 0
&& pVtab->azColumn[i][nToken] == 0)
{
return i;
}
}
return -1;
}
/*
** Parse the text at pSegment[0..nSegment-1]. Add additional terms
** to the query being assemblied in pQuery.
**
** inPhrase is true if pSegment[0..nSegement-1] is contained within
** double-quotes. If inPhrase is true, then the first term
** is marked with the number of terms in the phrase less one and
** OR and "-" syntax is ignored. If inPhrase is false, then every
** term found is marked with nPhrase=0 and OR and "-" syntax is significant.
*/
static int
tokenizeSegment(sqlite3_tokenizer * pTokenizer, /* The tokenizer to use */
const char *pSegment, int nSegment, /* Query expression being parsed */
int inPhrase, /* True if within "..." */
Query * pQuery /* Append results here */
)
{
const sqlite3_tokenizer_module *pModule = pTokenizer->pModule;
sqlite3_tokenizer_cursor *pCursor;
int firstIndex = pQuery->nTerms;
int iCol;
int nTerm = 1;
int rc = pModule->xOpen(pTokenizer, pSegment, nSegment, &pCursor);
if(rc != SQLITE_OK)
return rc;
pCursor->pTokenizer = pTokenizer;
while (1)
{
const char *pToken;
int nToken, iBegin, iEnd, iPos;
rc = pModule->xNext(pCursor, &pToken, &nToken, &iBegin, &iEnd, &iPos);
if(rc != SQLITE_OK)
break;
if(!inPhrase &&
pSegment[iEnd] == ':' &&
(iCol = checkColumnSpecifier(pQuery->pFts, pToken, nToken)) >= 0)
{
pQuery->nextColumn = iCol;
continue;
}
if(!inPhrase && pQuery->nTerms > 0 && nToken == 2
&& pSegment[iBegin + 0] == 'O' && pSegment[iBegin + 1] == 'R')
{
pQuery->nextIsOr = 1;
continue;
}
if(!inPhrase && pQuery->nTerms > 0 && !pQuery->nextIsOr && nToken == 4
&& pSegment[iBegin + 0] == 'N'
&& pSegment[iBegin + 1] == 'E'
&& pSegment[iBegin + 2] == 'A' && pSegment[iBegin + 3] == 'R')
{
QueryTerm *pTerm = &pQuery->pTerms[pQuery->nTerms - 1];
if((iBegin + 6) < nSegment
&& pSegment[iBegin + 4] == '/'
&& pSegment[iBegin + 5] >= '0' && pSegment[iBegin + 5] <= '9')
{
pTerm->nNear = (pSegment[iBegin + 5] - '0');
nToken += 2;
if(pSegment[iBegin + 6] >= '0' && pSegment[iBegin + 6] <= 9)
{
pTerm->nNear =
pTerm->nNear * 10 + (pSegment[iBegin + 6] - '0');
iEnd++;
}
pModule->xNext(pCursor, &pToken, &nToken, &iBegin, &iEnd, &iPos);
}
else
{
pTerm->nNear = SQLITE_FTS3_DEFAULT_NEAR_PARAM;
}
pTerm->nNear++;
continue;
}
queryAdd(pQuery, pToken, nToken);
if(!inPhrase && iBegin > 0 && pSegment[iBegin - 1] == '-')
{
pQuery->pTerms[pQuery->nTerms - 1].isNot = 1;
}
if(iEnd < nSegment && pSegment[iEnd] == '*')
{
pQuery->pTerms[pQuery->nTerms - 1].isPrefix = 1;
}
pQuery->pTerms[pQuery->nTerms - 1].iPhrase = nTerm;
if(inPhrase)
{
nTerm++;
}
}
if(inPhrase && pQuery->nTerms > firstIndex)
{
pQuery->pTerms[firstIndex].nPhrase = pQuery->nTerms - firstIndex - 1;
}
return pModule->xClose(pCursor);
}
/* Parse a query string, yielding a Query object pQuery.
**
** The calling function will need to queryClear() to clean up
** the dynamically allocated memory held by pQuery.
*/
static int
parseQuery(fulltext_vtab * v, /* The fulltext index */
const char *zInput, /* Input text of the query string */
int nInput, /* Size of the input text */
int dfltColumn, /* Default column of the index to match against */
Query * pQuery /* Write the parse results here. */
)
{
int iInput, inPhrase = 0;
int ii;
QueryTerm *aTerm;
if(zInput == 0)
nInput = 0;
if(nInput < 0)
nInput = strlen(zInput);
pQuery->nTerms = 0;
pQuery->pTerms = NULL;
pQuery->nextIsOr = 0;
pQuery->nextColumn = dfltColumn;
pQuery->dfltColumn = dfltColumn;
pQuery->pFts = v;
for (iInput = 0; iInput < nInput; ++iInput)
{
int i;
for (i = iInput; i < nInput && zInput[i] != '"'; ++i)
{
}
if(i > iInput)
{
tokenizeSegment(v->pTokenizer, zInput + iInput, i - iInput, inPhrase,
pQuery);
}
iInput = i;
if(i < nInput)
{
assert(zInput[i] == '"');
inPhrase = !inPhrase;
}
}
if(inPhrase)
{
/* unmatched quote */
queryClear(pQuery);
return SQLITE_ERROR;
}
/* Modify the values of the QueryTerm.nPhrase variables to account for
** the NEAR operator. For the purposes of QueryTerm.nPhrase, phrases
** and tokens connected by the NEAR operator are handled as a single
** phrase. See comments above the QueryTerm structure for details.
*/
aTerm = pQuery->pTerms;
for (ii = 0; ii < pQuery->nTerms; ii++)
{
if(aTerm[ii].nNear || aTerm[ii].nPhrase)
{
while (aTerm[ii + aTerm[ii].nPhrase].nNear)
{
aTerm[ii].nPhrase +=
(1 + aTerm[ii + aTerm[ii].nPhrase + 1].nPhrase);
}
}
}
return SQLITE_OK;
}
/* TODO(shess) Refactor the code to remove this forward decl. */
static int flushPendingTerms(fulltext_vtab * v);
/* Perform a full-text query using the search expression in
** zInput[0..nInput-1]. Return a list of matching documents
** in pResult.
**
** Queries must match column iColumn. Or if iColumn>=nColumn
** they are allowed to match against any column.
*/
static int
fulltextQuery(fulltext_vtab * v, /* The full text index */
int iColumn, /* Match against this column by default */
const char *zInput, /* The query string */
int nInput, /* Number of bytes in zInput[] */
DataBuffer * pResult, /* Write the result doclist here */
Query * pQuery /* Put parsed query string here */
)
{
int i, iNext, rc;
DataBuffer left, right, or, new;
int nNot = 0;
QueryTerm *aTerm;
/* TODO(shess) Instead of flushing pendingTerms, we could query for
** the relevant term and merge the doclist into what we receive from
** the database. Wait and see if this is a common issue, first.
**
** A good reason not to flush is to not generate update-related
** error codes from here.
*/
/* Flush any buffered updates before executing the query. */
rc = flushPendingTerms(v);
if(rc != SQLITE_OK)
return rc;
/* TODO(shess) I think that the queryClear() calls below are not
** necessary, because fulltextClose() already clears the query.
*/
rc = parseQuery(v, zInput, nInput, iColumn, pQuery);
if(rc != SQLITE_OK)
return rc;
/* Empty or NULL queries return no results. */
if(pQuery->nTerms == 0)
{
dataBufferInit(pResult, 0);
return SQLITE_OK;
}
/* Merge AND terms. */
/* TODO(shess) I think we can early-exit if( i>nNot && left.nData==0 ). */
aTerm = pQuery->pTerms;
for (i = 0; i < pQuery->nTerms; i = iNext)
{
if(aTerm[i].isNot)
{
/* Handle all NOT terms in a separate pass */
nNot++;
iNext = i + aTerm[i].nPhrase + 1;
continue;
}
iNext = i + aTerm[i].nPhrase + 1;
rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right);
if(rc)
{
if(i != nNot)
dataBufferDestroy(&left);
queryClear(pQuery);
return rc;
}
while (iNext < pQuery->nTerms && aTerm[iNext].isOr)
{
rc = docListOfTerm(v, aTerm[iNext].iColumn, &aTerm[iNext], &or);
iNext += aTerm[iNext].nPhrase + 1;
if(rc)
{
if(i != nNot)
dataBufferDestroy(&left);
dataBufferDestroy(&right);
queryClear(pQuery);
return rc;
}
dataBufferInit(&new, 0);
docListOrMerge(right.pData, right.nData, or.pData, or.nData, &new);
dataBufferDestroy(&right);
dataBufferDestroy(&or);
right = new;
}
if(i == nNot)
{ /* first term processed. */
left = right;
}
else
{
dataBufferInit(&new, 0);
docListAndMerge(left.pData, left.nData, right.pData, right.nData, &new);
dataBufferDestroy(&right);
dataBufferDestroy(&left);
left = new;
}
}
if(nNot == pQuery->nTerms)
{
/* We do not yet know how to handle a query of only NOT terms */
return SQLITE_ERROR;
}
/* Do the EXCEPT terms */
for (i = 0; i < pQuery->nTerms; i += aTerm[i].nPhrase + 1)
{
if(!aTerm[i].isNot)
continue;
rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right);
if(rc)
{
queryClear(pQuery);
dataBufferDestroy(&left);
return rc;
}
dataBufferInit(&new, 0);
docListExceptMerge(left.pData, left.nData, right.pData, right.nData, &new);
dataBufferDestroy(&right);
dataBufferDestroy(&left);
left = new;
}
*pResult = left;
return rc;
}
/*
** This is the xFilter interface for the virtual table. See
** the virtual table xFilter method documentation for additional
** information.
**
** If idxNum==QUERY_GENERIC then do a full table scan against
** the %_content table.
**
** If idxNum==QUERY_DOCID then do a docid lookup for a single entry
** in the %_content table.
**
** If idxNum>=QUERY_FULLTEXT then use the full text index. The
** column on the left-hand side of the MATCH operator is column
** number idxNum-QUERY_FULLTEXT, 0 indexed. argv[0] is the right-hand
** side of the MATCH operator.
*/
/* TODO(shess) Upgrade the cursor initialization and destruction to
** account for fulltextFilter() being called multiple times on the
** same cursor. The current solution is very fragile. Apply fix to
** fts3 as appropriate.
*/
static int
fulltextFilter(sqlite3_vtab_cursor * pCursor, /* The cursor used for this query */
int idxNum, const char *idxStr, /* Which indexing scheme to use */
int argc, sqlite3_value ** argv /* Arguments for the indexing scheme */
)
{
fulltext_cursor *c = (fulltext_cursor *) pCursor;
fulltext_vtab *v = cursor_vtab(c);
int rc;
StringBuffer sb;
FTSTRACE(("FTS3 Filter %p\n", pCursor));
initStringBuffer(&sb);
append(&sb, "SELECT docid, ");
appendList(&sb, v->nColumn, v->azContentColumn);
append(&sb, " FROM %_content");
if(idxNum != QUERY_GENERIC)
append(&sb, " WHERE docid = ?");
sqlite3_finalize(c->pStmt);
rc = sql_prepare(v->db, v->zDb, v->zName, &c->pStmt, stringBufferData(&sb));
stringBufferDestroy(&sb);
if(rc != SQLITE_OK)
return rc;
c->iCursorType = idxNum;
switch (idxNum)
{
case QUERY_GENERIC:
break;
case QUERY_DOCID:
rc = sqlite3_bind_int64(c->pStmt, 1, sqlite3_value_int64(argv[0]));
if(rc != SQLITE_OK)
return rc;
break;
default: /* full-text search */
{
const char *zQuery = (const char *) sqlite3_value_text(argv[0]);
assert(idxNum <= QUERY_FULLTEXT + v->nColumn);
assert(argc == 1);
queryClear(&c->q);
if(c->result.nData != 0)
{
/* This case happens if the same cursor is used repeatedly. */
dlrDestroy(&c->reader);
dataBufferReset(&c->result);
}
else
{
dataBufferInit(&c->result, 0);
}
rc = fulltextQuery(v, idxNum - QUERY_FULLTEXT, zQuery, -1, &c->result,
&c->q);
if(rc != SQLITE_OK)
return rc;
if(c->result.nData != 0)
{
dlrInit(&c->reader, DL_DOCIDS, c->result.pData, c->result.nData);
}
break;
}
}
return fulltextNext(pCursor);
}
/* This is the xEof method of the virtual table. The SQLite core
** calls this routine to find out if it has reached the end of
** a query's results set.
*/
static int
fulltextEof(sqlite3_vtab_cursor * pCursor)
{
fulltext_cursor *c = (fulltext_cursor *) pCursor;
return c->eof;
}
/* This is the xColumn method of the virtual table. The SQLite
** core calls this method during a query when it needs the value
** of a column from the virtual table. This method needs to use
** one of the sqlite3_result_*() routines to store the requested
** value back in the pContext.
*/
static int
fulltextColumn(sqlite3_vtab_cursor * pCursor, sqlite3_context * pContext, int idxCol)
{
fulltext_cursor *c = (fulltext_cursor *) pCursor;
fulltext_vtab *v = cursor_vtab(c);
if(idxCol < v->nColumn)
{
sqlite3_value *pVal = sqlite3_column_value(c->pStmt, idxCol + 1);
sqlite3_result_value(pContext, pVal);
}
else if(idxCol == v->nColumn)
{
/* The extra column whose name is the same as the table.
** Return a blob which is a pointer to the cursor
*/
sqlite3_result_blob(pContext, &c, sizeof(c), SQLITE_TRANSIENT);
}
else if(idxCol == v->nColumn + 1)
{
/* The docid column, which is an alias for rowid. */
sqlite3_value *pVal = sqlite3_column_value(c->pStmt, 0);
sqlite3_result_value(pContext, pVal);
}
return SQLITE_OK;
}
/* This is the xRowid method. The SQLite core calls this routine to
** retrieve the rowid for the current row of the result set. fts3
** exposes %_content.docid as the rowid for the virtual table. The
** rowid should be written to *pRowid.
*/
static int
fulltextRowid(sqlite3_vtab_cursor * pCursor, sqlite_int64 * pRowid)
{
fulltext_cursor *c = (fulltext_cursor *) pCursor;
*pRowid = sqlite3_column_int64(c->pStmt, 0);
return SQLITE_OK;
}
/* Add all terms in [zText] to pendingTerms table. If [iColumn] > 0,
** we also store positions and offsets in the hash table using that
** column number.
*/
static int
buildTerms(fulltext_vtab * v, sqlite_int64 iDocid, const char *zText, int iColumn)
{
sqlite3_tokenizer *pTokenizer = v->pTokenizer;
sqlite3_tokenizer_cursor *pCursor;
const char *pToken;
int nTokenBytes;
int iStartOffset, iEndOffset, iPosition;
int rc;
rc = pTokenizer->pModule->xOpen(pTokenizer, zText, -1, &pCursor);
if(rc != SQLITE_OK)
return rc;
pCursor->pTokenizer = pTokenizer;
while (SQLITE_OK == (rc = pTokenizer->pModule->xNext(pCursor,
&pToken, &nTokenBytes,
&iStartOffset, &iEndOffset,
&iPosition)))
{
DLCollector *p;
int nData; /* Size of doclist before our update. */
/* Positions can't be negative; we use -1 as a terminator
* internally. Token can't be NULL or empty. */
if(iPosition < 0 || pToken == NULL || nTokenBytes == 0)
{
rc = SQLITE_ERROR;
break;
}
p = fts3HashFind(&v->pendingTerms, pToken, nTokenBytes);
if(p == NULL)
{
nData = 0;
p = dlcNew(iDocid, DL_DEFAULT);
fts3HashInsert(&v->pendingTerms, pToken, nTokenBytes, p);
/* Overhead for our hash table entry, the key, and the value. */
v->nPendingData += sizeof(struct fts3HashElem) + sizeof(*p) + nTokenBytes;
}
else
{
nData = p->b.nData;
if(p->dlw.iPrevDocid != iDocid)
dlcNext(p, iDocid);
}
if(iColumn >= 0)
{
dlcAddPos(p, iColumn, iPosition, iStartOffset, iEndOffset);
}
/* Accumulate data added by dlcNew or dlcNext, and dlcAddPos. */
v->nPendingData += p->b.nData - nData;
}
/* TODO(shess) Check return? Should this be able to cause errors at
** this point? Actually, same question about sqlite3_finalize(),
** though one could argue that failure there means that the data is
** not durable. *ponder*
*/
pTokenizer->pModule->xClose(pCursor);
if(SQLITE_DONE == rc)
return SQLITE_OK;
return rc;
}
/* Add doclists for all terms in [pValues] to pendingTerms table. */
static int
insertTerms(fulltext_vtab * v, sqlite_int64 iDocid, sqlite3_value ** pValues)
{
int i;
for (i = 0; i < v->nColumn; ++i)
{
char *zText = (char *) sqlite3_value_text(pValues[i]);
int rc = buildTerms(v, iDocid, zText, i);
if(rc != SQLITE_OK)
return rc;
}
return SQLITE_OK;
}
/* Add empty doclists for all terms in the given row's content to
** pendingTerms.
*/
static int
deleteTerms(fulltext_vtab * v, sqlite_int64 iDocid)
{
const char **pValues;
int i, rc;
/* TODO(shess) Should we allow such tables at all? */
if(DL_DEFAULT == DL_DOCIDS)
return SQLITE_ERROR;
rc = content_select(v, iDocid, &pValues);
if(rc != SQLITE_OK)
return rc;
for (i = 0; i < v->nColumn; ++i)
{
rc = buildTerms(v, iDocid, pValues[i], -1);
if(rc != SQLITE_OK)
break;
}
freeStringArray(v->nColumn, pValues);
return SQLITE_OK;
}
/* TODO(shess) Refactor the code to remove this forward decl. */
static int initPendingTerms(fulltext_vtab * v, sqlite_int64 iDocid);
/* Insert a row into the %_content table; set *piDocid to be the ID of the
** new row. Add doclists for terms to pendingTerms.
*/
static int
index_insert(fulltext_vtab * v, sqlite3_value * pRequestDocid,
sqlite3_value ** pValues, sqlite_int64 * piDocid)
{
int rc;
rc = content_insert(v, pRequestDocid, pValues); /* execute an SQL INSERT */
if(rc != SQLITE_OK)
return rc;
/* docid column is an alias for rowid. */
*piDocid = sqlite3_last_insert_rowid(v->db);
rc = initPendingTerms(v, *piDocid);
if(rc != SQLITE_OK)
return rc;
return insertTerms(v, *piDocid, pValues);
}
/* Delete a row from the %_content table; add empty doclists for terms
** to pendingTerms.
*/
static int
index_delete(fulltext_vtab * v, sqlite_int64 iRow)
{
int rc = initPendingTerms(v, iRow);
if(rc != SQLITE_OK)
return rc;
rc = deleteTerms(v, iRow);
if(rc != SQLITE_OK)
return rc;
return content_delete(v, iRow); /* execute an SQL DELETE */
}
/* Update a row in the %_content table; add delete doclists to
** pendingTerms for old terms not in the new data, add insert doclists
** to pendingTerms for terms in the new data.
*/
static int
index_update(fulltext_vtab * v, sqlite_int64 iRow, sqlite3_value ** pValues)
{
int rc = initPendingTerms(v, iRow);
if(rc != SQLITE_OK)
return rc;
/* Generate an empty doclist for each term that previously appeared in this
* row. */
rc = deleteTerms(v, iRow);
if(rc != SQLITE_OK)
return rc;
rc = content_update(v, pValues, iRow); /* execute an SQL UPDATE */
if(rc != SQLITE_OK)
return rc;
/* Now add positions for terms which appear in the updated row. */
return insertTerms(v, iRow, pValues);
}
/*******************************************************************/
/* InteriorWriter is used to collect terms and block references into
** interior nodes in %_segments. See commentary at top of file for
** format.
*/
/* How large interior nodes can grow. */
#define INTERIOR_MAX 2048
/* Minimum number of terms per interior node (except the root). This
** prevents large terms from making the tree too skinny - must be >0
** so that the tree always makes progress. Note that the min tree
** fanout will be INTERIOR_MIN_TERMS+1.
*/
#define INTERIOR_MIN_TERMS 7
#if INTERIOR_MIN_TERMS<1
# error INTERIOR_MIN_TERMS must be greater than 0.
#endif
/* ROOT_MAX controls how much data is stored inline in the segment
** directory.
*/
/* TODO(shess) Push ROOT_MAX down to whoever is writing things. It's
** only here so that interiorWriterRootInfo() and leafWriterRootInfo()
** can both see it, but if the caller passed it in, we wouldn't even
** need a define.
*/
#define ROOT_MAX 1024
#if ROOT_MAX<VARINT_MAX*2
# error ROOT_MAX must have enough space for a header.
#endif
/* InteriorBlock stores a linked-list of interior blocks while a lower
** layer is being constructed.
*/
typedef struct InteriorBlock
{
DataBuffer term; /* Leftmost term in block's subtree. */
DataBuffer data; /* Accumulated data for the block. */
struct InteriorBlock *next;
} InteriorBlock;
static InteriorBlock *
interiorBlockNew(int iHeight, sqlite_int64 iChildBlock, const char *pTerm, int nTerm)
{
InteriorBlock *block = sqlite3_malloc(sizeof(InteriorBlock));
char c[VARINT_MAX + VARINT_MAX];
int n;
if(block)
{
memset(block, 0, sizeof(*block));
dataBufferInit(&block->term, 0);
dataBufferReplace(&block->term, pTerm, nTerm);
n = fts3PutVarint(c, iHeight);
n += fts3PutVarint(c + n, iChildBlock);
dataBufferInit(&block->data, INTERIOR_MAX);
dataBufferReplace(&block->data, c, n);
}
return block;
}
#ifndef NDEBUG
/* Verify that the data is readable as an interior node. */
static void
interiorBlockValidate(InteriorBlock * pBlock)
{
const char *pData = pBlock->data.pData;
int nData = pBlock->data.nData;
int n, iDummy;
sqlite_int64 iBlockid;
assert(nData > 0);
assert(pData != 0);
assert(pData + nData > pData);
/* Must lead with height of node as a varint(n), n>0 */
n = fts3GetVarint32(pData, &iDummy);
assert(n > 0);
assert(iDummy > 0);
assert(n < nData);
pData += n;
nData -= n;
/* Must contain iBlockid. */
n = fts3GetVarint(pData, &iBlockid);
assert(n > 0);
assert(n <= nData);
pData += n;
nData -= n;
/* Zero or more terms of positive length */
if(nData != 0)
{
/* First term is not delta-encoded. */
n = fts3GetVarint32(pData, &iDummy);
assert(n > 0);
assert(iDummy > 0);
assert(n + iDummy > 0);
assert(n + iDummy <= nData);
pData += n + iDummy;
nData -= n + iDummy;
/* Following terms delta-encoded. */
while (nData != 0)
{
/* Length of shared prefix. */
n = fts3GetVarint32(pData, &iDummy);
assert(n > 0);
assert(iDummy >= 0);
assert(n < nData);
pData += n;
nData -= n;
/* Length and data of distinct suffix. */
n = fts3GetVarint32(pData, &iDummy);
assert(n > 0);
assert(iDummy > 0);
assert(n + iDummy > 0);
assert(n + iDummy <= nData);
pData += n + iDummy;
nData -= n + iDummy;
}
}
}
#define ASSERT_VALID_INTERIOR_BLOCK(x) interiorBlockValidate(x)
#else
#define ASSERT_VALID_INTERIOR_BLOCK(x) assert( 1 )
#endif
typedef struct InteriorWriter
{
int iHeight; /* from 0 at leaves. */
InteriorBlock *first, *last;
struct InteriorWriter *parentWriter;
DataBuffer term; /* Last term written to block "last". */
sqlite_int64 iOpeningChildBlock; /* First child block in block "last". */
#ifndef NDEBUG
sqlite_int64 iLastChildBlock; /* for consistency checks. */
#endif
} InteriorWriter;
/* Initialize an interior node where pTerm[nTerm] marks the leftmost
** term in the tree. iChildBlock is the leftmost child block at the
** next level down the tree.
*/
static void
interiorWriterInit(int iHeight, const char *pTerm, int nTerm,
sqlite_int64 iChildBlock, InteriorWriter * pWriter)
{
InteriorBlock *block;
assert(iHeight > 0);
CLEAR(pWriter);
pWriter->iHeight = iHeight;
pWriter->iOpeningChildBlock = iChildBlock;
#ifndef NDEBUG
pWriter->iLastChildBlock = iChildBlock;
#endif
block = interiorBlockNew(iHeight, iChildBlock, pTerm, nTerm);
pWriter->last = pWriter->first = block;
ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
dataBufferInit(&pWriter->term, 0);
}
/* Append the child node rooted at iChildBlock to the interior node,
** with pTerm[nTerm] as the leftmost term in iChildBlock's subtree.
*/
static void
interiorWriterAppend(InteriorWriter * pWriter,
const char *pTerm, int nTerm, sqlite_int64 iChildBlock)
{
char c[VARINT_MAX + VARINT_MAX];
int n, nPrefix = 0;
ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
/* The first term written into an interior node is actually
** associated with the second child added (the first child was added
** in interiorWriterInit, or in the if clause at the bottom of this
** function). That term gets encoded straight up, with nPrefix left
** at 0.
*/
if(pWriter->term.nData == 0)
{
n = fts3PutVarint(c, nTerm);
}
else
{
while (nPrefix < pWriter->term.nData &&
pTerm[nPrefix] == pWriter->term.pData[nPrefix])
{
nPrefix++;
}
n = fts3PutVarint(c, nPrefix);
n += fts3PutVarint(c + n, nTerm - nPrefix);
}
#ifndef NDEBUG
pWriter->iLastChildBlock++;
#endif
assert(pWriter->iLastChildBlock == iChildBlock);
/* Overflow to a new block if the new term makes the current block
** too big, and the current block already has enough terms.
*/
if(pWriter->last->data.nData + n + nTerm - nPrefix > INTERIOR_MAX &&
iChildBlock - pWriter->iOpeningChildBlock > INTERIOR_MIN_TERMS)
{
pWriter->last->next = interiorBlockNew(pWriter->iHeight, iChildBlock, pTerm, nTerm);
pWriter->last = pWriter->last->next;
pWriter->iOpeningChildBlock = iChildBlock;
dataBufferReset(&pWriter->term);
}
else
{
dataBufferAppend2(&pWriter->last->data, c, n, pTerm + nPrefix, nTerm - nPrefix);
dataBufferReplace(&pWriter->term, pTerm, nTerm);
}
ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
}
/* Free the space used by pWriter, including the linked-list of
** InteriorBlocks, and parentWriter, if present.
*/
static int
interiorWriterDestroy(InteriorWriter * pWriter)
{
InteriorBlock *block = pWriter->first;
while (block != NULL)
{
InteriorBlock *b = block;
block = block->next;
dataBufferDestroy(&b->term);
dataBufferDestroy(&b->data);
sqlite3_free(b);
}
if(pWriter->parentWriter != NULL)
{
interiorWriterDestroy(pWriter->parentWriter);
sqlite3_free(pWriter->parentWriter);
}
dataBufferDestroy(&pWriter->term);
SCRAMBLE(pWriter);
return SQLITE_OK;
}
/* If pWriter can fit entirely in ROOT_MAX, return it as the root info
** directly, leaving *piEndBlockid unchanged. Otherwise, flush
** pWriter to %_segments, building a new layer of interior nodes, and
** recursively ask for their root into.
*/
static int
interiorWriterRootInfo(fulltext_vtab * v, InteriorWriter * pWriter,
char **ppRootInfo, int *pnRootInfo, sqlite_int64 * piEndBlockid)
{
InteriorBlock *block = pWriter->first;
sqlite_int64 iBlockid = 0;
int rc;
/* If we can fit the segment inline */
if(block == pWriter->last && block->data.nData < ROOT_MAX)
{
*ppRootInfo = block->data.pData;
*pnRootInfo = block->data.nData;
return SQLITE_OK;
}
/* Flush the first block to %_segments, and create a new level of
** interior node.
*/
ASSERT_VALID_INTERIOR_BLOCK(block);
rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid);
if(rc != SQLITE_OK)
return rc;
*piEndBlockid = iBlockid;
pWriter->parentWriter = sqlite3_malloc(sizeof(*pWriter->parentWriter));
interiorWriterInit(pWriter->iHeight + 1,
block->term.pData, block->term.nData, iBlockid, pWriter->parentWriter);
/* Flush additional blocks and append to the higher interior
** node.
*/
for (block = block->next; block != NULL; block = block->next)
{
ASSERT_VALID_INTERIOR_BLOCK(block);
rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid);
if(rc != SQLITE_OK)
return rc;
*piEndBlockid = iBlockid;
interiorWriterAppend(pWriter->parentWriter,
block->term.pData, block->term.nData, iBlockid);
}
/* Parent node gets the chance to be the root. */
return interiorWriterRootInfo(v, pWriter->parentWriter,
ppRootInfo, pnRootInfo, piEndBlockid);
}
/****************************************************************/
/* InteriorReader is used to read off the data from an interior node
** (see comment at top of file for the format).
*/
typedef struct InteriorReader
{
const char *pData;
int nData;
DataBuffer term; /* previous term, for decoding term delta. */
sqlite_int64 iBlockid;
} InteriorReader;
static void
interiorReaderDestroy(InteriorReader * pReader)
{
dataBufferDestroy(&pReader->term);
SCRAMBLE(pReader);
}
/* TODO(shess) The assertions are great, but what if we're in NDEBUG
** and the blob is empty or otherwise contains suspect data?
*/
static void
interiorReaderInit(const char *pData, int nData, InteriorReader * pReader)
{
int n, nTerm;
/* Require at least the leading flag byte */
assert(nData > 0);
assert(pData[0] != '\0');
CLEAR(pReader);
/* Decode the base blockid, and set the cursor to the first term. */
n = fts3GetVarint(pData + 1, &pReader->iBlockid);
assert(1 + n <= nData);
pReader->pData = pData + 1 + n;
pReader->nData = nData - (1 + n);
/* A single-child interior node (such as when a leaf node was too
** large for the segment directory) won't have any terms.
** Otherwise, decode the first term.
*/
if(pReader->nData == 0)
{
dataBufferInit(&pReader->term, 0);
}
else
{
n = fts3GetVarint32(pReader->pData, &nTerm);
dataBufferInit(&pReader->term, nTerm);
dataBufferReplace(&pReader->term, pReader->pData + n, nTerm);
assert(n + nTerm <= pReader->nData);
pReader->pData += n + nTerm;
pReader->nData -= n + nTerm;
}
}
static int
interiorReaderAtEnd(InteriorReader * pReader)
{
return pReader->term.nData == 0;
}
static sqlite_int64
interiorReaderCurrentBlockid(InteriorReader * pReader)
{
return pReader->iBlockid;
}
static int
interiorReaderTermBytes(InteriorReader * pReader)
{
assert(!interiorReaderAtEnd(pReader));
return pReader->term.nData;
}
static const char *
interiorReaderTerm(InteriorReader * pReader)
{
assert(!interiorReaderAtEnd(pReader));
return pReader->term.pData;
}
/* Step forward to the next term in the node. */
static void
interiorReaderStep(InteriorReader * pReader)
{
assert(!interiorReaderAtEnd(pReader));
/* If the last term has been read, signal eof, else construct the
** next term.
*/
if(pReader->nData == 0)
{
dataBufferReset(&pReader->term);
}
else
{
int n, nPrefix, nSuffix;
n = fts3GetVarint32(pReader->pData, &nPrefix);
n += fts3GetVarint32(pReader->pData + n, &nSuffix);
/* Truncate the current term and append suffix data. */
pReader->term.nData = nPrefix;
dataBufferAppend(&pReader->term, pReader->pData + n, nSuffix);
assert(n + nSuffix <= pReader->nData);
pReader->pData += n + nSuffix;
pReader->nData -= n + nSuffix;
}
pReader->iBlockid++;
}
/* Compare the current term to pTerm[nTerm], returning strcmp-style
** results. If isPrefix, equality means equal through nTerm bytes.
*/
static int
interiorReaderTermCmp(InteriorReader * pReader, const char *pTerm, int nTerm, int isPrefix)
{
const char *pReaderTerm = interiorReaderTerm(pReader);
int nReaderTerm = interiorReaderTermBytes(pReader);
int c, n = nReaderTerm < nTerm ? nReaderTerm : nTerm;
if(n == 0)
{
if(nReaderTerm > 0)
return -1;
if(nTerm > 0)
return 1;
return 0;
}
c = memcmp(pReaderTerm, pTerm, n);
if(c != 0)
return c;
if(isPrefix && n == nTerm)
return 0;
return nReaderTerm - nTerm;
}
/****************************************************************/
/* LeafWriter is used to collect terms and associated doclist data
** into leaf blocks in %_segments (see top of file for format info).
** Expected usage is:
**
** LeafWriter writer;
** leafWriterInit(0, 0, &writer);
** while( sorted_terms_left_to_process ){
** // data is doclist data for that term.
** rc = leafWriterStep(v, &writer, pTerm, nTerm, pData, nData);
** if( rc!=SQLITE_OK ) goto err;
** }
** rc = leafWriterFinalize(v, &writer);
**err:
** leafWriterDestroy(&writer);
** return rc;
**
** leafWriterStep() may write a collected leaf out to %_segments.
** leafWriterFinalize() finishes writing any buffered data and stores
** a root node in %_segdir. leafWriterDestroy() frees all buffers and
** InteriorWriters allocated as part of writing this segment.
**
** TODO(shess) Document leafWriterStepMerge().
*/
/* Put terms with data this big in their own block. */
#define STANDALONE_MIN 1024
/* Keep leaf blocks below this size. */
#define LEAF_MAX 2048
typedef struct LeafWriter
{
int iLevel;
int idx;
sqlite_int64 iStartBlockid; /* needed to create the root info */
sqlite_int64 iEndBlockid; /* when we're done writing. */
DataBuffer term; /* previous encoded term */
DataBuffer data; /* encoding buffer */
/* bytes of first term in the current node which distinguishes that
** term from the last term of the previous node.
*/
int nTermDistinct;
InteriorWriter parentWriter; /* if we overflow */
int has_parent;
} LeafWriter;
static void
leafWriterInit(int iLevel, int idx, LeafWriter * pWriter)
{
CLEAR(pWriter);
pWriter->iLevel = iLevel;
pWriter->idx = idx;
dataBufferInit(&pWriter->term, 32);
/* Start out with a reasonably sized block, though it can grow. */
dataBufferInit(&pWriter->data, LEAF_MAX);
}
#ifndef NDEBUG
/* Verify that the data is readable as a leaf node. */
static void
leafNodeValidate(const char *pData, int nData)
{
int n, iDummy;
if(nData == 0)
return;
assert(nData > 0);
assert(pData != 0);
assert(pData + nData > pData);
/* Must lead with a varint(0) */
n = fts3GetVarint32(pData, &iDummy);
assert(iDummy == 0);
assert(n > 0);
assert(n < nData);
pData += n;
nData -= n;
/* Leading term length and data must fit in buffer. */
n = fts3GetVarint32(pData, &iDummy);
assert(n > 0);
assert(iDummy > 0);
assert(n + iDummy > 0);
assert(n + iDummy < nData);
pData += n + iDummy;
nData -= n + iDummy;
/* Leading term's doclist length and data must fit. */
n = fts3GetVarint32(pData, &iDummy);
assert(n > 0);
assert(iDummy > 0);
assert(n + iDummy > 0);
assert(n + iDummy <= nData);
ASSERT_VALID_DOCLIST(DL_DEFAULT, pData + n, iDummy, NULL);
pData += n + iDummy;
nData -= n + iDummy;
/* Verify that trailing terms and doclists also are readable. */
while (nData != 0)
{
n = fts3GetVarint32(pData, &iDummy);
assert(n > 0);
assert(iDummy >= 0);
assert(n < nData);
pData += n;
nData -= n;
n = fts3GetVarint32(pData, &iDummy);
assert(n > 0);
assert(iDummy > 0);
assert(n + iDummy > 0);
assert(n + iDummy < nData);
pData += n + iDummy;
nData -= n + iDummy;
n = fts3GetVarint32(pData, &iDummy);
assert(n > 0);
assert(iDummy > 0);
assert(n + iDummy > 0);
assert(n + iDummy <= nData);
ASSERT_VALID_DOCLIST(DL_DEFAULT, pData + n, iDummy, NULL);
pData += n + iDummy;
nData -= n + iDummy;
}
}
#define ASSERT_VALID_LEAF_NODE(p, n) leafNodeValidate(p, n)
#else
#define ASSERT_VALID_LEAF_NODE(p, n) assert( 1 )
#endif
/* Flush the current leaf node to %_segments, and adding the resulting
** blockid and the starting term to the interior node which will
** contain it.
*/
static int
leafWriterInternalFlush(fulltext_vtab * v, LeafWriter * pWriter, int iData, int nData)
{
sqlite_int64 iBlockid = 0;
const char *pStartingTerm;
int nStartingTerm, rc, n;
/* Must have the leading varint(0) flag, plus at least some
** valid-looking data.
*/
assert(nData > 2);
assert(iData >= 0);
assert(iData + nData <= pWriter->data.nData);
ASSERT_VALID_LEAF_NODE(pWriter->data.pData + iData, nData);
rc = block_insert(v, pWriter->data.pData + iData, nData, &iBlockid);
if(rc != SQLITE_OK)
return rc;
assert(iBlockid != 0);
/* Reconstruct the first term in the leaf for purposes of building
** the interior node.
*/
n = fts3GetVarint32(pWriter->data.pData + iData + 1, &nStartingTerm);
pStartingTerm = pWriter->data.pData + iData + 1 + n;
assert(pWriter->data.nData > iData + 1 + n + nStartingTerm);
assert(pWriter->nTermDistinct > 0);
assert(pWriter->nTermDistinct <= nStartingTerm);
nStartingTerm = pWriter->nTermDistinct;
if(pWriter->has_parent)
{
interiorWriterAppend(&pWriter->parentWriter,
pStartingTerm, nStartingTerm, iBlockid);
}
else
{
interiorWriterInit(1, pStartingTerm, nStartingTerm, iBlockid,
&pWriter->parentWriter);
pWriter->has_parent = 1;
}
/* Track the span of this segment's leaf nodes. */
if(pWriter->iEndBlockid == 0)
{
pWriter->iEndBlockid = pWriter->iStartBlockid = iBlockid;
}
else
{
pWriter->iEndBlockid++;
assert(iBlockid == pWriter->iEndBlockid);
}
return SQLITE_OK;
}
static int
leafWriterFlush(fulltext_vtab * v, LeafWriter * pWriter)
{
int rc = leafWriterInternalFlush(v, pWriter, 0, pWriter->data.nData);
if(rc != SQLITE_OK)
return rc;
/* Re-initialize the output buffer. */
dataBufferReset(&pWriter->data);
return SQLITE_OK;
}
/* Fetch the root info for the segment. If the entire leaf fits
** within ROOT_MAX, then it will be returned directly, otherwise it
** will be flushed and the root info will be returned from the
** interior node. *piEndBlockid is set to the blockid of the last
** interior or leaf node written to disk (0 if none are written at
** all).
*/
static int
leafWriterRootInfo(fulltext_vtab * v, LeafWriter * pWriter,
char **ppRootInfo, int *pnRootInfo, sqlite_int64 * piEndBlockid)
{
/* we can fit the segment entirely inline */
if(!pWriter->has_parent && pWriter->data.nData < ROOT_MAX)
{
*ppRootInfo = pWriter->data.pData;
*pnRootInfo = pWriter->data.nData;
*piEndBlockid = 0;
return SQLITE_OK;
}
/* Flush remaining leaf data. */
if(pWriter->data.nData > 0)
{
int rc = leafWriterFlush(v, pWriter);
if(rc != SQLITE_OK)
return rc;
}
/* We must have flushed a leaf at some point. */
assert(pWriter->has_parent);
/* Tenatively set the end leaf blockid as the end blockid. If the
** interior node can be returned inline, this will be the final
** blockid, otherwise it will be overwritten by
** interiorWriterRootInfo().
*/
*piEndBlockid = pWriter->iEndBlockid;
return interiorWriterRootInfo(v, &pWriter->parentWriter,
ppRootInfo, pnRootInfo, piEndBlockid);
}
/* Collect the rootInfo data and store it into the segment directory.
** This has the effect of flushing the segment's leaf data to
** %_segments, and also flushing any interior nodes to %_segments.
*/
static int
leafWriterFinalize(fulltext_vtab * v, LeafWriter * pWriter)
{
sqlite_int64 iEndBlockid;
char *pRootInfo;
int rc, nRootInfo;
rc = leafWriterRootInfo(v, pWriter, &pRootInfo, &nRootInfo, &iEndBlockid);
if(rc != SQLITE_OK)
return rc;
/* Don't bother storing an entirely empty segment. */
if(iEndBlockid == 0 && nRootInfo == 0)
return SQLITE_OK;
return segdir_set(v, pWriter->iLevel, pWriter->idx,
pWriter->iStartBlockid, pWriter->iEndBlockid,
iEndBlockid, pRootInfo, nRootInfo);
}
static void
leafWriterDestroy(LeafWriter * pWriter)
{
if(pWriter->has_parent)
interiorWriterDestroy(&pWriter->parentWriter);
dataBufferDestroy(&pWriter->term);
dataBufferDestroy(&pWriter->data);
}
/* Encode a term into the leafWriter, delta-encoding as appropriate.
** Returns the length of the new term which distinguishes it from the
** previous term, which can be used to set nTermDistinct when a node
** boundary is crossed.
*/
static int
leafWriterEncodeTerm(LeafWriter * pWriter, const char *pTerm, int nTerm)
{
char c[VARINT_MAX + VARINT_MAX];
int n, nPrefix = 0;
assert(nTerm > 0);
while (nPrefix < pWriter->term.nData && pTerm[nPrefix] == pWriter->term.pData[nPrefix])
{
nPrefix++;
/* Failing this implies that the terms weren't in order. */
assert(nPrefix < nTerm);
}
if(pWriter->data.nData == 0)
{
/* Encode the node header and leading term as:
** varint(0)
** varint(nTerm)
** char pTerm[nTerm]
*/
n = fts3PutVarint(c, '\0');
n += fts3PutVarint(c + n, nTerm);
dataBufferAppend2(&pWriter->data, c, n, pTerm, nTerm);
}
else
{
/* Delta-encode the term as:
** varint(nPrefix)
** varint(nSuffix)
** char pTermSuffix[nSuffix]
*/
n = fts3PutVarint(c, nPrefix);
n += fts3PutVarint(c + n, nTerm - nPrefix);
dataBufferAppend2(&pWriter->data, c, n, pTerm + nPrefix, nTerm - nPrefix);
}
dataBufferReplace(&pWriter->term, pTerm, nTerm);
return nPrefix + 1;
}
/* Used to avoid a memmove when a large amount of doclist data is in
** the buffer. This constructs a node and term header before
** iDoclistData and flushes the resulting complete node using
** leafWriterInternalFlush().
*/
static int
leafWriterInlineFlush(fulltext_vtab * v, LeafWriter * pWriter,
const char *pTerm, int nTerm, int iDoclistData)
{
char c[VARINT_MAX + VARINT_MAX];
int iData, n = fts3PutVarint(c, 0);
n += fts3PutVarint(c + n, nTerm);
/* There should always be room for the header. Even if pTerm shared
** a substantial prefix with the previous term, the entire prefix
** could be constructed from earlier data in the doclist, so there
** should be room.
*/
assert(iDoclistData >= n + nTerm);
iData = iDoclistData - (n + nTerm);
memcpy(pWriter->data.pData + iData, c, n);
memcpy(pWriter->data.pData + iData + n, pTerm, nTerm);
return leafWriterInternalFlush(v, pWriter, iData, pWriter->data.nData - iData);
}
/* Push pTerm[nTerm] along with the doclist data to the leaf layer of
** %_segments.
*/
static int
leafWriterStepMerge(fulltext_vtab * v, LeafWriter * pWriter,
const char *pTerm, int nTerm, DLReader * pReaders, int nReaders)
{
char c[VARINT_MAX + VARINT_MAX];
int iTermData = pWriter->data.nData, iDoclistData;
int i, nData, n, nActualData, nActual, rc, nTermDistinct;
ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData);
nTermDistinct = leafWriterEncodeTerm(pWriter, pTerm, nTerm);
/* Remember nTermDistinct if opening a new node. */
if(iTermData == 0)
pWriter->nTermDistinct = nTermDistinct;
iDoclistData = pWriter->data.nData;
/* Estimate the length of the merged doclist so we can leave space
** to encode it.
*/
for (i = 0, nData = 0; i < nReaders; i++)
{
nData += dlrAllDataBytes(&pReaders[i]);
}
n = fts3PutVarint(c, nData);
dataBufferAppend(&pWriter->data, c, n);
docListMerge(&pWriter->data, pReaders, nReaders);
ASSERT_VALID_DOCLIST(DL_DEFAULT,
pWriter->data.pData + iDoclistData + n,
pWriter->data.nData - iDoclistData - n, NULL);
/* The actual amount of doclist data at this point could be smaller
** than the length we encoded. Additionally, the space required to
** encode this length could be smaller. For small doclists, this is
** not a big deal, we can just use memmove() to adjust things.
*/
nActualData = pWriter->data.nData - (iDoclistData + n);
nActual = fts3PutVarint(c, nActualData);
assert(nActualData <= nData);
assert(nActual <= n);
/* If the new doclist is big enough for force a standalone leaf
** node, we can immediately flush it inline without doing the
** memmove().
*/
/* TODO(shess) This test matches leafWriterStep(), which does this
** test before it knows the cost to varint-encode the term and
** doclist lengths. At some point, change to
** pWriter->data.nData-iTermData>STANDALONE_MIN.
*/
if(nTerm + nActualData > STANDALONE_MIN)
{
/* Push leaf node from before this term. */
if(iTermData > 0)
{
rc = leafWriterInternalFlush(v, pWriter, 0, iTermData);
if(rc != SQLITE_OK)
return rc;
pWriter->nTermDistinct = nTermDistinct;
}
/* Fix the encoded doclist length. */
iDoclistData += n - nActual;
memcpy(pWriter->data.pData + iDoclistData, c, nActual);
/* Push the standalone leaf node. */
rc = leafWriterInlineFlush(v, pWriter, pTerm, nTerm, iDoclistData);
if(rc != SQLITE_OK)
return rc;
/* Leave the node empty. */
dataBufferReset(&pWriter->data);
return rc;
}
/* At this point, we know that the doclist was small, so do the
** memmove if indicated.
*/
if(nActual < n)
{
memmove(pWriter->data.pData + iDoclistData + nActual,
pWriter->data.pData + iDoclistData + n,
pWriter->data.nData - (iDoclistData + n));
pWriter->data.nData -= n - nActual;
}
/* Replace written length with actual length. */
memcpy(pWriter->data.pData + iDoclistData, c, nActual);
/* If the node is too large, break things up. */
/* TODO(shess) This test matches leafWriterStep(), which does this
** test before it knows the cost to varint-encode the term and
** doclist lengths. At some point, change to
** pWriter->data.nData>LEAF_MAX.
*/
if(iTermData + nTerm + nActualData > LEAF_MAX)
{
/* Flush out the leading data as a node */
rc = leafWriterInternalFlush(v, pWriter, 0, iTermData);
if(rc != SQLITE_OK)
return rc;
pWriter->nTermDistinct = nTermDistinct;
/* Rebuild header using the current term */
n = fts3PutVarint(pWriter->data.pData, 0);
n += fts3PutVarint(pWriter->data.pData + n, nTerm);
memcpy(pWriter->data.pData + n, pTerm, nTerm);
n += nTerm;
/* There should always be room, because the previous encoding
** included all data necessary to construct the term.
*/
assert(n < iDoclistData);
/* So long as STANDALONE_MIN is half or less of LEAF_MAX, the
** following memcpy() is safe (as opposed to needing a memmove).
*/
assert(2 * STANDALONE_MIN <= LEAF_MAX);
assert(n + pWriter->data.nData - iDoclistData < iDoclistData);
memcpy(pWriter->data.pData + n,
pWriter->data.pData + iDoclistData, pWriter->data.nData - iDoclistData);
pWriter->data.nData -= iDoclistData - n;
}
ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData);
return SQLITE_OK;
}
/* Push pTerm[nTerm] along with the doclist data to the leaf layer of
** %_segments.
*/
/* TODO(shess) Revise writeZeroSegment() so that doclists are
** constructed directly in pWriter->data.
*/
static int
leafWriterStep(fulltext_vtab * v, LeafWriter * pWriter,
const char *pTerm, int nTerm, const char *pData, int nData)
{
int rc;
DLReader reader;
dlrInit(&reader, DL_DEFAULT, pData, nData);
rc = leafWriterStepMerge(v, pWriter, pTerm, nTerm, &reader, 1);
dlrDestroy(&reader);
return rc;
}
/****************************************************************/
/* LeafReader is used to iterate over an individual leaf node. */
typedef struct LeafReader
{
DataBuffer term; /* copy of current term. */
const char *pData; /* data for current term. */
int nData;
} LeafReader;
static void
leafReaderDestroy(LeafReader * pReader)
{
dataBufferDestroy(&pReader->term);
SCRAMBLE(pReader);
}
static int
leafReaderAtEnd(LeafReader * pReader)
{
return pReader->nData <= 0;
}
/* Access the current term. */
static int
leafReaderTermBytes(LeafReader * pReader)
{
return pReader->term.nData;
}
static const char *
leafReaderTerm(LeafReader * pReader)
{
assert(pReader->term.nData > 0);
return pReader->term.pData;
}
/* Access the doclist data for the current term. */
static int
leafReaderDataBytes(LeafReader * pReader)
{
int nData;
assert(pReader->term.nData > 0);
fts3GetVarint32(pReader->pData, &nData);
return nData;
}
static const char *
leafReaderData(LeafReader * pReader)
{
int n, nData;
assert(pReader->term.nData > 0);
n = fts3GetVarint32(pReader->pData, &nData);
return pReader->pData + n;
}
static void
leafReaderInit(const char *pData, int nData, LeafReader * pReader)
{
int nTerm, n;
assert(nData > 0);
assert(pData[0] == '\0');
CLEAR(pReader);
/* Read the first term, skipping the header byte. */
n = fts3GetVarint32(pData + 1, &nTerm);
dataBufferInit(&pReader->term, nTerm);
dataBufferReplace(&pReader->term, pData + 1 + n, nTerm);
/* Position after the first term. */
assert(1 + n + nTerm < nData);
pReader->pData = pData + 1 + n + nTerm;
pReader->nData = nData - 1 - n - nTerm;
}
/* Step the reader forward to the next term. */
static void
leafReaderStep(LeafReader * pReader)
{
int n, nData, nPrefix, nSuffix;
assert(!leafReaderAtEnd(pReader));
/* Skip previous entry's data block. */
n = fts3GetVarint32(pReader->pData, &nData);
assert(n + nData <= pReader->nData);
pReader->pData += n + nData;
pReader->nData -= n + nData;
if(!leafReaderAtEnd(pReader))
{
/* Construct the new term using a prefix from the old term plus a
** suffix from the leaf data.
*/
n = fts3GetVarint32(pReader->pData, &nPrefix);
n += fts3GetVarint32(pReader->pData + n, &nSuffix);
assert(n + nSuffix < pReader->nData);
pReader->term.nData = nPrefix;
dataBufferAppend(&pReader->term, pReader->pData + n, nSuffix);
pReader->pData += n + nSuffix;
pReader->nData -= n + nSuffix;
}
}
/* strcmp-style comparison of pReader's current term against pTerm.
** If isPrefix, equality means equal through nTerm bytes.
*/
static int
leafReaderTermCmp(LeafReader * pReader, const char *pTerm, int nTerm, int isPrefix)
{
int c, n = pReader->term.nData < nTerm ? pReader->term.nData : nTerm;
if(n == 0)
{
if(pReader->term.nData > 0)
return -1;
if(nTerm > 0)
return 1;
return 0;
}
c = memcmp(pReader->term.pData, pTerm, n);
if(c != 0)
return c;
if(isPrefix && n == nTerm)
return 0;
return pReader->term.nData - nTerm;
}
/****************************************************************/
/* LeavesReader wraps LeafReader to allow iterating over the entire
** leaf layer of the tree.
*/
typedef struct LeavesReader
{
int idx; /* Index within the segment. */
sqlite3_stmt *pStmt; /* Statement we're streaming leaves from. */
int eof; /* we've seen SQLITE_DONE from pStmt. */
LeafReader leafReader; /* reader for the current leaf. */
DataBuffer rootData; /* root data for inline. */
} LeavesReader;
/* Access the current term. */
static int
leavesReaderTermBytes(LeavesReader * pReader)
{
assert(!pReader->eof);
return leafReaderTermBytes(&pReader->leafReader);
}
static const char *
leavesReaderTerm(LeavesReader * pReader)
{
assert(!pReader->eof);
return leafReaderTerm(&pReader->leafReader);
}
/* Access the doclist data for the current term. */
static int
leavesReaderDataBytes(LeavesReader * pReader)
{
assert(!pReader->eof);
return leafReaderDataBytes(&pReader->leafReader);
}
static const char *
leavesReaderData(LeavesReader * pReader)
{
assert(!pReader->eof);
return leafReaderData(&pReader->leafReader);
}
static int
leavesReaderAtEnd(LeavesReader * pReader)
{
return pReader->eof;
}
/* loadSegmentLeaves() may not read all the way to SQLITE_DONE, thus
** leaving the statement handle open, which locks the table.
*/
/* TODO(shess) This "solution" is not satisfactory. Really, there
** should be check-in function for all statement handles which
** arranges to call sqlite3_reset(). This most likely will require
** modification to control flow all over the place, though, so for now
** just punt.
**
** Note the the current system assumes that segment merges will run to
** completion, which is why this particular probably hasn't arisen in
** this case. Probably a brittle assumption.
*/
static int
leavesReaderReset(LeavesReader * pReader)
{
return sqlite3_reset(pReader->pStmt);
}
static void
leavesReaderDestroy(LeavesReader * pReader)
{
leafReaderDestroy(&pReader->leafReader);
dataBufferDestroy(&pReader->rootData);
SCRAMBLE(pReader);
}
/* Initialize pReader with the given root data (if iStartBlockid==0
** the leaf data was entirely contained in the root), or from the
** stream of blocks between iStartBlockid and iEndBlockid, inclusive.
*/
static int
leavesReaderInit(fulltext_vtab * v,
int idx,
sqlite_int64 iStartBlockid,
sqlite_int64 iEndBlockid,
const char *pRootData, int nRootData, LeavesReader * pReader)
{
CLEAR(pReader);
pReader->idx = idx;
dataBufferInit(&pReader->rootData, 0);
if(iStartBlockid == 0)
{
/* Entire leaf level fit in root data. */
dataBufferReplace(&pReader->rootData, pRootData, nRootData);
leafReaderInit(pReader->rootData.pData, pReader->rootData.nData,
&pReader->leafReader);
}
else
{
sqlite3_stmt *s;
int rc = sql_get_leaf_statement(v, idx, &s);
if(rc != SQLITE_OK)
return rc;
rc = sqlite3_bind_int64(s, 1, iStartBlockid);
if(rc != SQLITE_OK)
return rc;
rc = sqlite3_bind_int64(s, 2, iEndBlockid);
if(rc != SQLITE_OK)
return rc;
rc = sqlite3_step(s);
if(rc == SQLITE_DONE)
{
pReader->eof = 1;
return SQLITE_OK;
}
if(rc != SQLITE_ROW)
return rc;
pReader->pStmt = s;
leafReaderInit(sqlite3_column_blob(pReader->pStmt, 0),
sqlite3_column_bytes(pReader->pStmt, 0), &pReader->leafReader);
}
return SQLITE_OK;
}
/* Step the current leaf forward to the next term. If we reach the
** end of the current leaf, step forward to the next leaf block.
*/
static int
leavesReaderStep(fulltext_vtab * v, LeavesReader * pReader)
{
assert(!leavesReaderAtEnd(pReader));
leafReaderStep(&pReader->leafReader);
if(leafReaderAtEnd(&pReader->leafReader))
{
int rc;
if(pReader->rootData.pData)
{
pReader->eof = 1;
return SQLITE_OK;
}
rc = sqlite3_step(pReader->pStmt);
if(rc != SQLITE_ROW)
{
pReader->eof = 1;
return rc == SQLITE_DONE ? SQLITE_OK : rc;
}
leafReaderDestroy(&pReader->leafReader);
leafReaderInit(sqlite3_column_blob(pReader->pStmt, 0),
sqlite3_column_bytes(pReader->pStmt, 0), &pReader->leafReader);
}
return SQLITE_OK;
}
/* Order LeavesReaders by their term, ignoring idx. Readers at eof
** always sort to the end.
*/
static int
leavesReaderTermCmp(LeavesReader * lr1, LeavesReader * lr2)
{
if(leavesReaderAtEnd(lr1))
{
if(leavesReaderAtEnd(lr2))
return 0;
return 1;
}
if(leavesReaderAtEnd(lr2))
return -1;
return leafReaderTermCmp(&lr1->leafReader,
leavesReaderTerm(lr2), leavesReaderTermBytes(lr2), 0);
}
/* Similar to leavesReaderTermCmp(), with additional ordering by idx
** so that older segments sort before newer segments.
*/
static int
leavesReaderCmp(LeavesReader * lr1, LeavesReader * lr2)
{
int c = leavesReaderTermCmp(lr1, lr2);
if(c != 0)
return c;
return lr1->idx - lr2->idx;
}
/* Assume that pLr[1]..pLr[nLr] are sorted. Bubble pLr[0] into its
** sorted position.
*/
static void
leavesReaderReorder(LeavesReader * pLr, int nLr)
{
while (nLr > 1 && leavesReaderCmp(pLr, pLr + 1) > 0)
{
LeavesReader tmp = pLr[0];
pLr[0] = pLr[1];
pLr[1] = tmp;
nLr--;
pLr++;
}
}
/* Initializes pReaders with the segments from level iLevel, returning
** the number of segments in *piReaders. Leaves pReaders in sorted
** order.
*/
static int
leavesReadersInit(fulltext_vtab * v, int iLevel, LeavesReader * pReaders, int *piReaders)
{
sqlite3_stmt *s;
int i, rc = sql_get_statement(v, SEGDIR_SELECT_STMT, &s);
if(rc != SQLITE_OK)
return rc;
rc = sqlite3_bind_int(s, 1, iLevel);
if(rc != SQLITE_OK)
return rc;
i = 0;
while ((rc = sqlite3_step(s)) == SQLITE_ROW)
{
sqlite_int64 iStart = sqlite3_column_int64(s, 0);
sqlite_int64 iEnd = sqlite3_column_int64(s, 1);
const char *pRootData = sqlite3_column_blob(s, 2);
int nRootData = sqlite3_column_bytes(s, 2);
assert(i < MERGE_COUNT);
rc = leavesReaderInit(v, i, iStart, iEnd, pRootData, nRootData, &pReaders[i]);
if(rc != SQLITE_OK)
break;
i++;
}
if(rc != SQLITE_DONE)
{
while (i-- > 0)
{
leavesReaderDestroy(&pReaders[i]);
}
return rc;
}
*piReaders = i;
/* Leave our results sorted by term, then age. */
while (i--)
{
leavesReaderReorder(pReaders + i, *piReaders - i);
}
return SQLITE_OK;
}
/* Merge doclists from pReaders[nReaders] into a single doclist, which
** is written to pWriter. Assumes pReaders is ordered oldest to
** newest.
*/
/* TODO(shess) Consider putting this inline in segmentMerge(). */
static int
leavesReadersMerge(fulltext_vtab * v, LeavesReader * pReaders, int nReaders, LeafWriter * pWriter)
{
DLReader dlReaders[MERGE_COUNT];
const char *pTerm = leavesReaderTerm(pReaders);
int i, nTerm = leavesReaderTermBytes(pReaders);
assert(nReaders <= MERGE_COUNT);
for (i = 0; i < nReaders; i++)
{
dlrInit(&dlReaders[i], DL_DEFAULT,
leavesReaderData(pReaders + i), leavesReaderDataBytes(pReaders + i));
}
return leafWriterStepMerge(v, pWriter, pTerm, nTerm, dlReaders, nReaders);
}
/* Forward ref due to mutual recursion with segdirNextIndex(). */
static int segmentMerge(fulltext_vtab * v, int iLevel);
/* Put the next available index at iLevel into *pidx. If iLevel
** already has MERGE_COUNT segments, they are merged to a higher
** level to make room.
*/
static int
segdirNextIndex(fulltext_vtab * v, int iLevel, int *pidx)
{
int rc = segdir_max_index(v, iLevel, pidx);
if(rc == SQLITE_DONE)
{ /* No segments at iLevel. */
*pidx = 0;
}
else if(rc == SQLITE_ROW)
{
if(*pidx == (MERGE_COUNT - 1))
{
rc = segmentMerge(v, iLevel);
if(rc != SQLITE_OK)
return rc;
*pidx = 0;
}
else
{
(*pidx)++;
}
}
else
{
return rc;
}
return SQLITE_OK;
}
/* Merge MERGE_COUNT segments at iLevel into a new segment at
** iLevel+1. If iLevel+1 is already full of segments, those will be
** merged to make room.
*/
static int
segmentMerge(fulltext_vtab * v, int iLevel)
{
LeafWriter writer;
LeavesReader lrs[MERGE_COUNT];
int i, rc, idx = 0;
/* Determine the next available segment index at the next level,
** merging as necessary.
*/
rc = segdirNextIndex(v, iLevel + 1, &idx);
if(rc != SQLITE_OK)
return rc;
/* TODO(shess) This assumes that we'll always see exactly
** MERGE_COUNT segments to merge at a given level. That will be
** broken if we allow the developer to request preemptive or
** deferred merging.
*/
memset(&lrs, '\0', sizeof(lrs));
rc = leavesReadersInit(v, iLevel, lrs, &i);
if(rc != SQLITE_OK)
return rc;
assert(i == MERGE_COUNT);
leafWriterInit(iLevel + 1, idx, &writer);
/* Since leavesReaderReorder() pushes readers at eof to the end,
** when the first reader is empty, all will be empty.
*/
while (!leavesReaderAtEnd(lrs))
{
/* Figure out how many readers share their next term. */
for (i = 1; i < MERGE_COUNT && !leavesReaderAtEnd(lrs + i); i++)
{
if(0 != leavesReaderTermCmp(lrs, lrs + i))
break;
}
rc = leavesReadersMerge(v, lrs, i, &writer);
if(rc != SQLITE_OK)
goto err;
/* Step forward those that were merged. */
while (i-- > 0)
{
rc = leavesReaderStep(v, lrs + i);
if(rc != SQLITE_OK)
goto err;
/* Reorder by term, then by age. */
leavesReaderReorder(lrs + i, MERGE_COUNT - i);
}
}
for (i = 0; i < MERGE_COUNT; i++)
{
leavesReaderDestroy(&lrs[i]);
}
rc = leafWriterFinalize(v, &writer);
leafWriterDestroy(&writer);
if(rc != SQLITE_OK)
return rc;
/* Delete the merged segment data. */
return segdir_delete(v, iLevel);
err:
for (i = 0; i < MERGE_COUNT; i++)
{
leavesReaderDestroy(&lrs[i]);
}
leafWriterDestroy(&writer);
return rc;
}
/* Accumulate the union of *acc and *pData into *acc. */
static void
docListAccumulateUnion(DataBuffer * acc, const char *pData, int nData)
{
DataBuffer tmp = *acc;
dataBufferInit(acc, tmp.nData + nData);
docListUnion(tmp.pData, tmp.nData, pData, nData, acc);
dataBufferDestroy(&tmp);
}
/* TODO(shess) It might be interesting to explore different merge
** strategies, here. For instance, since this is a sorted merge, we
** could easily merge many doclists in parallel. With some
** comprehension of the storage format, we could merge all of the
** doclists within a leaf node directly from the leaf node's storage.
** It may be worthwhile to merge smaller doclists before larger
** doclists, since they can be traversed more quickly - but the
** results may have less overlap, making them more expensive in a
** different way.
*/
/* Scan pReader for pTerm/nTerm, and merge the term's doclist over
** *out (any doclists with duplicate docids overwrite those in *out).
** Internal function for loadSegmentLeaf().
*/
static int
loadSegmentLeavesInt(fulltext_vtab * v, LeavesReader * pReader,
const char *pTerm, int nTerm, int isPrefix, DataBuffer * out)
{
/* doclist data is accumulated into pBuffers similar to how one does
** increment in binary arithmetic. If index 0 is empty, the data is
** stored there. If there is data there, it is merged and the
** results carried into position 1, with further merge-and-carry
** until an empty position is found.
*/
DataBuffer *pBuffers = NULL;
int nBuffers = 0, nMaxBuffers = 0, rc;
assert(nTerm > 0);
for (rc = SQLITE_OK; rc == SQLITE_OK && !leavesReaderAtEnd(pReader);
rc = leavesReaderStep(v, pReader))
{
/* TODO(shess) Really want leavesReaderTermCmp(), but that name is
** already taken to compare the terms of two LeavesReaders. Think
** on a better name. [Meanwhile, break encapsulation rather than
** use a confusing name.]
*/
int c = leafReaderTermCmp(&pReader->leafReader, pTerm, nTerm, isPrefix);
if(c > 0)
break; /* Past any possible matches. */
if(c == 0)
{
const char *pData = leavesReaderData(pReader);
int iBuffer, nData = leavesReaderDataBytes(pReader);
/* Find the first empty buffer. */
for (iBuffer = 0; iBuffer < nBuffers; ++iBuffer)
{
if(0 == pBuffers[iBuffer].nData)
break;
}
/* Out of buffers, add an empty one. */
if(iBuffer == nBuffers)
{
if(nBuffers == nMaxBuffers)
{
DataBuffer *p;
nMaxBuffers += 20;
/* Manual realloc so we can handle NULL appropriately. */
p = sqlite3_malloc(nMaxBuffers * sizeof(*pBuffers));
if(p == NULL)
{
rc = SQLITE_NOMEM;
break;
}
if(nBuffers > 0)
{
assert(pBuffers != NULL);
memcpy(p, pBuffers, nBuffers * sizeof(*pBuffers));
sqlite3_free(pBuffers);
}
pBuffers = p;
}
dataBufferInit(&(pBuffers[nBuffers]), 0);
nBuffers++;
}
/* At this point, must have an empty at iBuffer. */
assert(iBuffer < nBuffers && pBuffers[iBuffer].nData == 0);
/* If empty was first buffer, no need for merge logic. */
if(iBuffer == 0)
{
dataBufferReplace(&(pBuffers[0]), pData, nData);
}
else
{
/* pAcc is the empty buffer the merged data will end up in. */
DataBuffer *pAcc = &(pBuffers[iBuffer]);
DataBuffer *p = &(pBuffers[0]);
/* Handle position 0 specially to avoid need to prime pAcc
** with pData/nData.
*/
dataBufferSwap(p, pAcc);
docListAccumulateUnion(pAcc, pData, nData);
/* Accumulate remaining doclists into pAcc. */
for (++p; p < pAcc; ++p)
{
docListAccumulateUnion(pAcc, p->pData, p->nData);
/* dataBufferReset() could allow a large doclist to blow up
** our memory requirements.
*/
if(p->nCapacity < 1024)
{
dataBufferReset(p);
}
else
{
dataBufferDestroy(p);
dataBufferInit(p, 0);
}
}
}
}
}
/* Union all the doclists together into *out. */
/* TODO(shess) What if *out is big? Sigh. */
if(rc == SQLITE_OK && nBuffers > 0)
{
int iBuffer;
for (iBuffer = 0; iBuffer < nBuffers; ++iBuffer)
{
if(pBuffers[iBuffer].nData > 0)
{
if(out->nData == 0)
{
dataBufferSwap(out, &(pBuffers[iBuffer]));
}
else
{
docListAccumulateUnion(out, pBuffers[iBuffer].pData,
pBuffers[iBuffer].nData);
}
}
}
}
while (nBuffers--)
{
dataBufferDestroy(&(pBuffers[nBuffers]));
}
if(pBuffers != NULL)
sqlite3_free(pBuffers);
return rc;
}
/* Call loadSegmentLeavesInt() with pData/nData as input. */
static int
loadSegmentLeaf(fulltext_vtab * v, const char *pData, int nData,
const char *pTerm, int nTerm, int isPrefix, DataBuffer * out)
{
LeavesReader reader;
int rc;
assert(nData > 1);
assert(*pData == '\0');
rc = leavesReaderInit(v, 0, 0, 0, pData, nData, &reader);
if(rc != SQLITE_OK)
return rc;
rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out);
leavesReaderReset(&reader);
leavesReaderDestroy(&reader);
return rc;
}
/* Call loadSegmentLeavesInt() with the leaf nodes from iStartLeaf to
** iEndLeaf (inclusive) as input, and merge the resulting doclist into
** out.
*/
static int
loadSegmentLeaves(fulltext_vtab * v,
sqlite_int64 iStartLeaf, sqlite_int64 iEndLeaf,
const char *pTerm, int nTerm, int isPrefix, DataBuffer * out)
{
int rc;
LeavesReader reader;
assert(iStartLeaf <= iEndLeaf);
rc = leavesReaderInit(v, 0, iStartLeaf, iEndLeaf, NULL, 0, &reader);
if(rc != SQLITE_OK)
return rc;
rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out);
leavesReaderReset(&reader);
leavesReaderDestroy(&reader);
return rc;
}
/* Taking pData/nData as an interior node, find the sequence of child
** nodes which could include pTerm/nTerm/isPrefix. Note that the
** interior node terms logically come between the blocks, so there is
** one more blockid than there are terms (that block contains terms >=
** the last interior-node term).
*/
/* TODO(shess) The calling code may already know that the end child is
** not worth calculating, because the end may be in a later sibling
** node. Consider whether breaking symmetry is worthwhile. I suspect
** it is not worthwhile.
*/
static void
getChildrenContaining(const char *pData, int nData,
const char *pTerm, int nTerm, int isPrefix,
sqlite_int64 * piStartChild, sqlite_int64 * piEndChild)
{
InteriorReader reader;
assert(nData > 1);
assert(*pData != '\0');
interiorReaderInit(pData, nData, &reader);
/* Scan for the first child which could contain pTerm/nTerm. */
while (!interiorReaderAtEnd(&reader))
{
if(interiorReaderTermCmp(&reader, pTerm, nTerm, 0) > 0)
break;
interiorReaderStep(&reader);
}
*piStartChild = interiorReaderCurrentBlockid(&reader);
/* Keep scanning to find a term greater than our term, using prefix
** comparison if indicated. If isPrefix is false, this will be the
** same blockid as the starting block.
*/
while (!interiorReaderAtEnd(&reader))
{
if(interiorReaderTermCmp(&reader, pTerm, nTerm, isPrefix) > 0)
break;
interiorReaderStep(&reader);
}
*piEndChild = interiorReaderCurrentBlockid(&reader);
interiorReaderDestroy(&reader);
/* Children must ascend, and if !prefix, both must be the same. */
assert(*piEndChild >= *piStartChild);
assert(isPrefix || *piStartChild == *piEndChild);
}
/* Read block at iBlockid and pass it with other params to
** getChildrenContaining().
*/
static int
loadAndGetChildrenContaining(fulltext_vtab * v,
sqlite_int64 iBlockid,
const char *pTerm, int nTerm, int isPrefix,
sqlite_int64 * piStartChild, sqlite_int64 * piEndChild)
{
sqlite3_stmt *s = NULL;
int rc;
assert(iBlockid != 0);
assert(pTerm != NULL);
assert(nTerm != 0); /* TODO(shess) Why not allow this? */
assert(piStartChild != NULL);
assert(piEndChild != NULL);
rc = sql_get_statement(v, BLOCK_SELECT_STMT, &s);
if(rc != SQLITE_OK)
return rc;
rc = sqlite3_bind_int64(s, 1, iBlockid);
if(rc != SQLITE_OK)
return rc;
rc = sqlite3_step(s);
if(rc == SQLITE_DONE)
return SQLITE_ERROR;
if(rc != SQLITE_ROW)
return rc;
getChildrenContaining(sqlite3_column_blob(s, 0), sqlite3_column_bytes(s, 0),
pTerm, nTerm, isPrefix, piStartChild, piEndChild);
/* We expect only one row. We must execute another sqlite3_step()
* to complete the iteration; otherwise the table will remain
* locked. */
rc = sqlite3_step(s);
if(rc == SQLITE_ROW)
return SQLITE_ERROR;
if(rc != SQLITE_DONE)
return rc;
return SQLITE_OK;
}
/* Traverse the tree represented by pData[nData] looking for
** pTerm[nTerm], placing its doclist into *out. This is internal to
** loadSegment() to make error-handling cleaner.
*/
static int
loadSegmentInt(fulltext_vtab * v, const char *pData, int nData,
sqlite_int64 iLeavesEnd,
const char *pTerm, int nTerm, int isPrefix, DataBuffer * out)
{
/* Special case where root is a leaf. */
if(*pData == '\0')
{
return loadSegmentLeaf(v, pData, nData, pTerm, nTerm, isPrefix, out);
}
else
{
int rc;
sqlite_int64 iStartChild, iEndChild;
/* Process pData as an interior node, then loop down the tree
** until we find the set of leaf nodes to scan for the term.
*/
getChildrenContaining(pData, nData, pTerm, nTerm, isPrefix,
&iStartChild, &iEndChild);
while (iStartChild > iLeavesEnd)
{
sqlite_int64 iNextStart, iNextEnd;
rc = loadAndGetChildrenContaining(v, iStartChild, pTerm, nTerm, isPrefix,
&iNextStart, &iNextEnd);
if(rc != SQLITE_OK)
return rc;
/* If we've branched, follow the end branch, too. */
if(iStartChild != iEndChild)
{
sqlite_int64 iDummy;
rc = loadAndGetChildrenContaining(v, iEndChild, pTerm, nTerm,
isPrefix, &iDummy, &iNextEnd);
if(rc != SQLITE_OK)
return rc;
}
assert(iNextStart <= iNextEnd);
iStartChild = iNextStart;
iEndChild = iNextEnd;
}
assert(iStartChild <= iLeavesEnd);
assert(iEndChild <= iLeavesEnd);
/* Scan through the leaf segments for doclists. */
return loadSegmentLeaves(v, iStartChild, iEndChild, pTerm, nTerm, isPrefix, out);
}
}
/* Call loadSegmentInt() to collect the doclist for pTerm/nTerm, then
** merge its doclist over *out (any duplicate doclists read from the
** segment rooted at pData will overwrite those in *out).
*/
/* TODO(shess) Consider changing this to determine the depth of the
** leaves using either the first characters of interior nodes (when
** ==1, we're one level above the leaves), or the first character of
** the root (which will describe the height of the tree directly).
** Either feels somewhat tricky to me.
*/
/* TODO(shess) The current merge is likely to be slow for large
** doclists (though it should process from newest/smallest to
** oldest/largest, so it may not be that bad). It might be useful to
** modify things to allow for N-way merging. This could either be
** within a segment, with pairwise merges across segments, or across
** all segments at once.
*/
static int
loadSegment(fulltext_vtab * v, const char *pData, int nData,
sqlite_int64 iLeavesEnd, const char *pTerm, int nTerm, int isPrefix, DataBuffer * out)
{
DataBuffer result;
int rc;
assert(nData > 1);
/* This code should never be called with buffered updates. */
assert(v->nPendingData < 0);
dataBufferInit(&result, 0);
rc = loadSegmentInt(v, pData, nData, iLeavesEnd, pTerm, nTerm, isPrefix, &result);
if(rc == SQLITE_OK && result.nData > 0)
{
if(out->nData == 0)
{
DataBuffer tmp = *out;
*out = result;
result = tmp;
}
else
{
DataBuffer merged;
DLReader readers[2];
dlrInit(&readers[0], DL_DEFAULT, out->pData, out->nData);
dlrInit(&readers[1], DL_DEFAULT, result.pData, result.nData);
dataBufferInit(&merged, out->nData + result.nData);
docListMerge(&merged, readers, 2);
dataBufferDestroy(out);
*out = merged;
dlrDestroy(&readers[0]);
dlrDestroy(&readers[1]);
}
}
dataBufferDestroy(&result);
return rc;
}
/* Scan the database and merge together the posting lists for the term
** into *out.
*/
static int
termSelect(fulltext_vtab * v, int iColumn,
const char *pTerm, int nTerm, int isPrefix, DocListType iType, DataBuffer * out)
{
DataBuffer doclist;
sqlite3_stmt *s;
int rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s);
if(rc != SQLITE_OK)
return rc;
/* This code should never be called with buffered updates. */
assert(v->nPendingData < 0);
dataBufferInit(&doclist, 0);
/* Traverse the segments from oldest to newest so that newer doclist
** elements for given docids overwrite older elements.
*/
while ((rc = sqlite3_step(s)) == SQLITE_ROW)
{
const char *pData = sqlite3_column_blob(s, 0);
const int nData = sqlite3_column_bytes(s, 0);
const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1);
rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, isPrefix, &doclist);
if(rc != SQLITE_OK)
goto err;
}
if(rc == SQLITE_DONE)
{
if(doclist.nData != 0)
{
/* TODO(shess) The old term_select_all() code applied the column
** restrict as we merged segments, leading to smaller buffers.
** This is probably worthwhile to bring back, once the new storage
** system is checked in.
*/
if(iColumn == v->nColumn)
iColumn = -1;
docListTrim(DL_DEFAULT, doclist.pData, doclist.nData, iColumn, iType, out);
}
rc = SQLITE_OK;
}
err:
dataBufferDestroy(&doclist);
return rc;
}
/****************************************************************/
/* Used to hold hashtable data for sorting. */
typedef struct TermData
{
const char *pTerm;
int nTerm;
DLCollector *pCollector;
} TermData;
/* Orders TermData elements in strcmp fashion ( <0 for less-than, 0
** for equal, >0 for greater-than).
*/
static int
termDataCmp(const void *av, const void *bv)
{
const TermData *a = (const TermData *) av;
const TermData *b = (const TermData *) bv;
int n = a->nTerm < b->nTerm ? a->nTerm : b->nTerm;
int c = memcmp(a->pTerm, b->pTerm, n);
if(c != 0)
return c;
return a->nTerm - b->nTerm;
}
/* Order pTerms data by term, then write a new level 0 segment using
** LeafWriter.
*/
static int
writeZeroSegment(fulltext_vtab * v, fts3Hash * pTerms)
{
fts3HashElem *e;
int idx, rc, i, n;
TermData *pData;
LeafWriter writer;
DataBuffer dl;
/* Determine the next index at level 0, merging as necessary. */
rc = segdirNextIndex(v, 0, &idx);
if(rc != SQLITE_OK)
return rc;
n = fts3HashCount(pTerms);
pData = sqlite3_malloc(n * sizeof(TermData));
for (i = 0, e = fts3HashFirst(pTerms); e; i++, e = fts3HashNext(e))
{
assert(i < n);
pData[i].pTerm = fts3HashKey(e);
pData[i].nTerm = fts3HashKeysize(e);
pData[i].pCollector = fts3HashData(e);
}
assert(i == n);
/* TODO(shess) Should we allow user-defined collation sequences,
** here? I think we only need that once we support prefix searches.
*/
if(n > 1)
qsort(pData, n, sizeof(*pData), termDataCmp);
/* TODO(shess) Refactor so that we can write directly to the segment
** DataBuffer, as happens for segment merges.
*/
leafWriterInit(0, idx, &writer);
dataBufferInit(&dl, 0);
for (i = 0; i < n; i++)
{
dataBufferReset(&dl);
dlcAddDoclist(pData[i].pCollector, &dl);
rc = leafWriterStep(v, &writer, pData[i].pTerm, pData[i].nTerm, dl.pData, dl.nData);
if(rc != SQLITE_OK)
goto err;
}
rc = leafWriterFinalize(v, &writer);
err:
dataBufferDestroy(&dl);
sqlite3_free(pData);
leafWriterDestroy(&writer);
return rc;
}
/* If pendingTerms has data, free it. */
static int
clearPendingTerms(fulltext_vtab * v)
{
if(v->nPendingData >= 0)
{
fts3HashElem *e;
for (e = fts3HashFirst(&v->pendingTerms); e; e = fts3HashNext(e))
{
dlcDelete(fts3HashData(e));
}
fts3HashClear(&v->pendingTerms);
v->nPendingData = -1;
}
return SQLITE_OK;
}
/* If pendingTerms has data, flush it to a level-zero segment, and
** free it.
*/
static int
flushPendingTerms(fulltext_vtab * v)
{
if(v->nPendingData >= 0)
{
int rc = writeZeroSegment(v, &v->pendingTerms);
if(rc == SQLITE_OK)
clearPendingTerms(v);
return rc;
}
return SQLITE_OK;
}
/* If pendingTerms is "too big", or docid is out of order, flush it.
** Regardless, be certain that pendingTerms is initialized for use.
*/
static int
initPendingTerms(fulltext_vtab * v, sqlite_int64 iDocid)
{
/* TODO(shess) Explore whether partially flushing the buffer on
** forced-flush would provide better performance. I suspect that if
** we ordered the doclists by size and flushed the largest until the
** buffer was half empty, that would let the less frequent terms
** generate longer doclists.
*/
if(iDocid <= v->iPrevDocid || v->nPendingData > kPendingThreshold)
{
int rc = flushPendingTerms(v);
if(rc != SQLITE_OK)
return rc;
}
if(v->nPendingData < 0)
{
fts3HashInit(&v->pendingTerms, FTS3_HASH_STRING, 1);
v->nPendingData = 0;
}
v->iPrevDocid = iDocid;
return SQLITE_OK;
}
/* This function implements the xUpdate callback; it is the top-level entry
* point for inserting, deleting or updating a row in a full-text table. */
static int
fulltextUpdate(sqlite3_vtab * pVtab, int nArg, sqlite3_value ** ppArg, sqlite_int64 * pRowid)
{
fulltext_vtab *v = (fulltext_vtab *) pVtab;
int rc;
FTSTRACE(("FTS3 Update %p\n", pVtab));
if(nArg < 2)
{
rc = index_delete(v, sqlite3_value_int64(ppArg[0]));
}
else if(sqlite3_value_type(ppArg[0]) != SQLITE_NULL)
{
/* An update:
* ppArg[0] = old rowid
* ppArg[1] = new rowid
* ppArg[2..2+v->nColumn-1] = values
* ppArg[2+v->nColumn] = value for magic column (we ignore this)
* ppArg[2+v->nColumn+1] = value for docid
*/
sqlite_int64 rowid = sqlite3_value_int64(ppArg[0]);
if(sqlite3_value_type(ppArg[1]) != SQLITE_INTEGER ||
sqlite3_value_int64(ppArg[1]) != rowid)
{
rc = SQLITE_ERROR; /* we don't allow changing the rowid */
}
else if(sqlite3_value_type(ppArg[2 + v->nColumn + 1]) != SQLITE_INTEGER ||
sqlite3_value_int64(ppArg[2 + v->nColumn + 1]) != rowid)
{
rc = SQLITE_ERROR; /* we don't allow changing the docid */
}
else
{
assert(nArg == 2 + v->nColumn + 2);
rc = index_update(v, rowid, &ppArg[2]);
}
}
else
{
/* An insert:
* ppArg[1] = requested rowid
* ppArg[2..2+v->nColumn-1] = values
* ppArg[2+v->nColumn] = value for magic column (we ignore this)
* ppArg[2+v->nColumn+1] = value for docid
*/
sqlite3_value *pRequestDocid = ppArg[2 + v->nColumn + 1];
assert(nArg == 2 + v->nColumn + 2);
if(SQLITE_NULL != sqlite3_value_type(pRequestDocid) &&
SQLITE_NULL != sqlite3_value_type(ppArg[1]))
{
/* TODO(shess) Consider allowing this to work if the values are
** identical. I'm inclined to discourage that usage, though,
** given that both rowid and docid are special columns. Better
** would be to define one or the other as the default winner,
** but should it be fts3-centric (docid) or SQLite-centric
** (rowid)?
*/
rc = SQLITE_ERROR;
}
else
{
if(SQLITE_NULL == sqlite3_value_type(pRequestDocid))
{
pRequestDocid = ppArg[1];
}
rc = index_insert(v, pRequestDocid, &ppArg[2], pRowid);
}
}
return rc;
}
static int
fulltextSync(sqlite3_vtab * pVtab)
{
FTSTRACE(("FTS3 xSync()\n"));
return flushPendingTerms((fulltext_vtab *) pVtab);
}
static int
fulltextBegin(sqlite3_vtab * pVtab)
{
fulltext_vtab *v = (fulltext_vtab *) pVtab;
FTSTRACE(("FTS3 xBegin()\n"));
/* Any buffered updates should have been cleared by the previous
** transaction.
*/
assert(v->nPendingData < 0);
return clearPendingTerms(v);
}
static int
fulltextCommit(sqlite3_vtab * pVtab)
{
fulltext_vtab *v = (fulltext_vtab *) pVtab;
FTSTRACE(("FTS3 xCommit()\n"));
/* Buffered updates should have been cleared by fulltextSync(). */
assert(v->nPendingData < 0);
return clearPendingTerms(v);
}
static int
fulltextRollback(sqlite3_vtab * pVtab)
{
FTSTRACE(("FTS3 xRollback()\n"));
return clearPendingTerms((fulltext_vtab *) pVtab);
}
/*
** Implementation of the snippet() function for FTS3
*/
static void
snippetFunc(sqlite3_context * pContext, int argc, sqlite3_value ** argv)
{
fulltext_cursor *pCursor;
if(argc < 1)
return;
if(sqlite3_value_type(argv[0]) != SQLITE_BLOB ||
sqlite3_value_bytes(argv[0]) != sizeof(pCursor))
{
sqlite3_result_error(pContext, "illegal first argument to html_snippet", -1);
}
else
{
const char *zStart = "<b>";
const char *zEnd = "</b>";
const char *zEllipsis = "<b>...</b>";
memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
if(argc >= 2)
{
zStart = (const char *) sqlite3_value_text(argv[1]);
if(argc >= 3)
{
zEnd = (const char *) sqlite3_value_text(argv[2]);
if(argc >= 4)
{
zEllipsis = (const char *) sqlite3_value_text(argv[3]);
}
}
}
snippetAllOffsets(pCursor);
snippetText(pCursor, zStart, zEnd, zEllipsis);
sqlite3_result_text(pContext, pCursor->snippet.zSnippet,
pCursor->snippet.nSnippet, SQLITE_STATIC);
}
}
/*
** Implementation of the offsets() function for FTS3
*/
static void
snippetOffsetsFunc(sqlite3_context * pContext, int argc, sqlite3_value ** argv)
{
fulltext_cursor *pCursor;
if(argc < 1)
return;
if(sqlite3_value_type(argv[0]) != SQLITE_BLOB ||
sqlite3_value_bytes(argv[0]) != sizeof(pCursor))
{
sqlite3_result_error(pContext, "illegal first argument to offsets", -1);
}
else
{
memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
snippetAllOffsets(pCursor);
snippetOffsetText(&pCursor->snippet);
sqlite3_result_text(pContext,
pCursor->snippet.zOffset, pCursor->snippet.nOffset,
SQLITE_STATIC);
}
}
/*
** This routine implements the xFindFunction method for the FTS3
** virtual table.
*/
static int
fulltextFindFunction(sqlite3_vtab * pVtab,
int nArg,
const char *zName,
void (**pxFunc) (sqlite3_context *, int, sqlite3_value **), void **ppArg)
{
if(strcmp(zName, "snippet") == 0)
{
*pxFunc = snippetFunc;
return 1;
}
else if(strcmp(zName, "offsets") == 0)
{
*pxFunc = snippetOffsetsFunc;
return 1;
}
return 0;
}
/*
** Rename an fts3 table.
*/
static int
fulltextRename(sqlite3_vtab * pVtab, const char *zName)
{
fulltext_vtab *p = (fulltext_vtab *) pVtab;
int rc = SQLITE_NOMEM;
char *zSql = sqlite3_mprintf("ALTER TABLE %Q.'%q_content' RENAME TO '%q_content';"
"ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';"
"ALTER TABLE %Q.'%q_segdir' RENAME TO '%q_segdir';", p->zDb,
p->zName, zName, p->zDb, p->zName, zName, p->zDb, p->zName,
zName);
if(zSql)
{
rc = sqlite3_exec(p->db, zSql, 0, 0, 0);
sqlite3_free(zSql);
}
return rc;
}
static const sqlite3_module fts3Module = {
/* iVersion */ 0,
/* xCreate */ fulltextCreate,
/* xConnect */ fulltextConnect,
/* xBestIndex */ fulltextBestIndex,
/* xDisconnect */ fulltextDisconnect,
/* xDestroy */ fulltextDestroy,
/* xOpen */ fulltextOpen,
/* xClose */ fulltextClose,
/* xFilter */ fulltextFilter,
/* xNext */ fulltextNext,
/* xEof */ fulltextEof,
/* xColumn */ fulltextColumn,
/* xRowid */ fulltextRowid,
/* xUpdate */ fulltextUpdate,
/* xBegin */ fulltextBegin,
/* xSync */ fulltextSync,
/* xCommit */ fulltextCommit,
/* xRollback */ fulltextRollback,
/* xFindFunction */ fulltextFindFunction,
/* xRename */ fulltextRename,
};
static void
hashDestroy(void *p)
{
fts3Hash *pHash = (fts3Hash *) p;
sqlite3Fts3HashClear(pHash);
sqlite3_free(pHash);
}
/*
** The fts3 built-in tokenizers - "simple" and "porter" - are implemented
** in files fts3_tokenizer1.c and fts3_porter.c respectively. The following
** two forward declarations are for functions declared in these files
** used to retrieve the respective implementations.
**
** Calling sqlite3Fts3SimpleTokenizerModule() sets the value pointed
** to by the argument to point a the "simple" tokenizer implementation.
** Function ...PorterTokenizerModule() sets *pModule to point to the
** porter tokenizer/stemmer implementation.
*/
SQLITE_PRIVATE void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const **ppModule);
SQLITE_PRIVATE void sqlite3Fts3PorterTokenizerModule(sqlite3_tokenizer_module const **ppModule);
SQLITE_PRIVATE void sqlite3Fts3IcuTokenizerModule(sqlite3_tokenizer_module const **ppModule);
SQLITE_PRIVATE int sqlite3Fts3InitHashTable(sqlite3 *, fts3Hash *, const char *);
/*
** Initialise the fts3 extension. If this extension is built as part
** of the sqlite library, then this function is called directly by
** SQLite. If fts3 is built as a dynamically loadable extension, this
** function is called by the sqlite3_extension_init() entry point.
*/
SQLITE_PRIVATE int
sqlite3Fts3Init(sqlite3 * db)
{
int rc = SQLITE_OK;
fts3Hash *pHash = 0;
const sqlite3_tokenizer_module *pSimple = 0;
const sqlite3_tokenizer_module *pPorter = 0;
const sqlite3_tokenizer_module *pIcu = 0;
sqlite3Fts3SimpleTokenizerModule(&pSimple);
sqlite3Fts3PorterTokenizerModule(&pPorter);
#ifdef SQLITE_ENABLE_ICU
sqlite3Fts3IcuTokenizerModule(&pIcu);
#endif
/* Allocate and initialise the hash-table used to store tokenizers. */
pHash = sqlite3_malloc(sizeof(fts3Hash));
if(!pHash)
{
rc = SQLITE_NOMEM;
}
else
{
sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1);
}
/* Load the built-in tokenizers into the hash table */
if(rc == SQLITE_OK)
{
if(sqlite3Fts3HashInsert(pHash, "simple", 7, (void *) pSimple)
|| sqlite3Fts3HashInsert(pHash, "porter", 7, (void *) pPorter)
|| (pIcu && sqlite3Fts3HashInsert(pHash, "icu", 4, (void *) pIcu)))
{
rc = SQLITE_NOMEM;
}
}
/* Create the virtual table wrapper around the hash-table and overload
** the two scalar functions. If this is successful, register the
** module with sqlite.
*/
if(SQLITE_OK == rc
&& SQLITE_OK == (rc = sqlite3Fts3InitHashTable(db, pHash, "fts3_tokenizer"))
&& SQLITE_OK == (rc = sqlite3_overload_function(db, "snippet", -1))
&& SQLITE_OK == (rc = sqlite3_overload_function(db, "offsets", -1)))
{
return sqlite3_create_module_v2(db, "fts3", &fts3Module, (void *) pHash,
hashDestroy);
}
/* An error has occured. Delete the hash table and return the error code. */
assert(rc != SQLITE_OK);
if(pHash)
{
sqlite3Fts3HashClear(pHash);
sqlite3_free(pHash);
}
return rc;
}
#if !SQLITE_CORE
SQLITE_API int
sqlite3_extension_init(sqlite3 * db, char **pzErrMsg, const sqlite3_api_routines * pApi)
{
SQLITE_EXTENSION_INIT2(pApi) return sqlite3Fts3Init(db);
}
#endif
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
/************** End of fts3.c ************************************************/
/************** Begin file fts3_hash.c ***************************************/
/*
** 2001 September 22
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This is the implementation of generic hash-tables used in SQLite.
** We've modified it slightly to serve as a standalone hash table
** implementation for the full-text indexing module.
*/
/*
** The code in this file is only compiled if:
**
** * The FTS3 module is being built as an extension
** (in which case SQLITE_CORE is not defined), or
**
** * The FTS3 module is being built into the core of
** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
*/
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
/*
** Malloc and Free functions
*/
static void *
fts3HashMalloc(int n)
{
void *p = sqlite3_malloc(n);
if(p)
{
memset(p, 0, n);
}
return p;
}
static void
fts3HashFree(void *p)
{
sqlite3_free(p);
}
/* Turn bulk memory into a hash table object by initializing the
** fields of the Hash structure.
**
** "pNew" is a pointer to the hash table that is to be initialized.
** keyClass is one of the constants
** FTS3_HASH_BINARY or FTS3_HASH_STRING. The value of keyClass
** determines what kind of key the hash table will use. "copyKey" is
** true if the hash table should make its own private copy of keys and
** false if it should just use the supplied pointer.
*/
SQLITE_PRIVATE void
sqlite3Fts3HashInit(fts3Hash * pNew, int keyClass, int copyKey)
{
assert(pNew != 0);
assert(keyClass >= FTS3_HASH_STRING && keyClass <= FTS3_HASH_BINARY);
pNew->keyClass = keyClass;
pNew->copyKey = copyKey;
pNew->first = 0;
pNew->count = 0;
pNew->htsize = 0;
pNew->ht = 0;
}
/* Remove all entries from a hash table. Reclaim all memory.
** Call this routine to delete a hash table or to reset a hash table
** to the empty state.
*/
SQLITE_PRIVATE void
sqlite3Fts3HashClear(fts3Hash * pH)
{
fts3HashElem *elem; /* For looping over all elements of the table */
assert(pH != 0);
elem = pH->first;
pH->first = 0;
fts3HashFree(pH->ht);
pH->ht = 0;
pH->htsize = 0;
while (elem)
{
fts3HashElem *next_elem = elem->next;
if(pH->copyKey && elem->pKey)
{
fts3HashFree(elem->pKey);
}
fts3HashFree(elem);
elem = next_elem;
}
pH->count = 0;
}
/*
** Hash and comparison functions when the mode is FTS3_HASH_STRING
*/
static int
fts3StrHash(const void *pKey, int nKey)
{
const char *z = (const char *) pKey;
int h = 0;
if(nKey <= 0)
nKey = (int) strlen(z);
while (nKey > 0)
{
h = (h << 3) ^ h ^ *z++;
nKey--;
}
return h & 0x7fffffff;
}
static int
fts3StrCompare(const void *pKey1, int n1, const void *pKey2, int n2)
{
if(n1 != n2)
return 1;
return strncmp((const char *) pKey1, (const char *) pKey2, n1);
}
/*
** Hash and comparison functions when the mode is FTS3_HASH_BINARY
*/
static int
fts3BinHash(const void *pKey, int nKey)
{
int h = 0;
const char *z = (const char *) pKey;
while (nKey-- > 0)
{
h = (h << 3) ^ h ^ *(z++);
}
return h & 0x7fffffff;
}
static int
fts3BinCompare(const void *pKey1, int n1, const void *pKey2, int n2)
{
if(n1 != n2)
return 1;
return memcmp(pKey1, pKey2, n1);
}
/*
** Return a pointer to the appropriate hash function given the key class.
**
** The C syntax in this function definition may be unfamilar to some
** programmers, so we provide the following additional explanation:
**
** The name of the function is "ftsHashFunction". The function takes a
** single parameter "keyClass". The return value of ftsHashFunction()
** is a pointer to another function. Specifically, the return value
** of ftsHashFunction() is a pointer to a function that takes two parameters
** with types "const void*" and "int" and returns an "int".
*/
static int (*ftsHashFunction(int keyClass)) (const void *, int)
{
if(keyClass == FTS3_HASH_STRING)
{
return &fts3StrHash;
}
else
{
assert(keyClass == FTS3_HASH_BINARY);
return &fts3BinHash;
}
}
/*
** Return a pointer to the appropriate hash function given the key class.
**
** For help in interpreted the obscure C code in the function definition,
** see the header comment on the previous function.
*/
static int (*ftsCompareFunction(int keyClass)) (const void *, int, const void *, int)
{
if(keyClass == FTS3_HASH_STRING)
{
return &fts3StrCompare;
}
else
{
assert(keyClass == FTS3_HASH_BINARY);
return &fts3BinCompare;
}
}
/* Link an element into the hash table
*/
static void
fts3HashInsertElement(fts3Hash * pH, /* The complete hash table */
struct _fts3ht *pEntry, /* The entry into which pNew is inserted */
fts3HashElem * pNew /* The element to be inserted */
)
{
fts3HashElem *pHead; /* First element already in pEntry */
pHead = pEntry->chain;
if(pHead)
{
pNew->next = pHead;
pNew->prev = pHead->prev;
if(pHead->prev)
{
pHead->prev->next = pNew;
}
else
{
pH->first = pNew;
}
pHead->prev = pNew;
}
else
{
pNew->next = pH->first;
if(pH->first)
{
pH->first->prev = pNew;
}
pNew->prev = 0;
pH->first = pNew;
}
pEntry->count++;
pEntry->chain = pNew;
}
/* Resize the hash table so that it cantains "new_size" buckets.
** "new_size" must be a power of 2. The hash table might fail
** to resize if sqliteMalloc() fails.
*/
static void
fts3Rehash(fts3Hash * pH, int new_size)
{
struct _fts3ht *new_ht; /* The new hash table */
fts3HashElem *elem, *next_elem; /* For looping over existing elements */
int (*xHash) (const void *, int); /* The hash function */
assert((new_size & (new_size - 1)) == 0);
new_ht = (struct _fts3ht *) fts3HashMalloc(new_size * sizeof(struct _fts3ht));
if(new_ht == 0)
return;
fts3HashFree(pH->ht);
pH->ht = new_ht;
pH->htsize = new_size;
xHash = ftsHashFunction(pH->keyClass);
for (elem = pH->first, pH->first = 0; elem; elem = next_elem)
{
int h = (*xHash) (elem->pKey, elem->nKey) & (new_size - 1);
next_elem = elem->next;
fts3HashInsertElement(pH, &new_ht[h], elem);
}
}
/* This function (for internal use only) locates an element in an
** hash table that matches the given key. The hash for this key has
** already been computed and is passed as the 4th parameter.
*/
static fts3HashElem *
fts3FindElementByHash(const fts3Hash * pH, /* The pH to be searched */
const void *pKey, /* The key we are searching for */
int nKey, int h /* The hash for this key. */
)
{
fts3HashElem *elem; /* Used to loop thru the element list */
int count; /* Number of elements left to test */
int (*xCompare) (const void *, int, const void *, int); /* comparison function */
if(pH->ht)
{
struct _fts3ht *pEntry = &pH->ht[h];
elem = pEntry->chain;
count = pEntry->count;
xCompare = ftsCompareFunction(pH->keyClass);
while (count-- && elem)
{
if((*xCompare) (elem->pKey, elem->nKey, pKey, nKey) == 0)
{
return elem;
}
elem = elem->next;
}
}
return 0;
}
/* Remove a single entry from the hash table given a pointer to that
** element and a hash on the element's key.
*/
static void
fts3RemoveElementByHash(fts3Hash * pH, /* The pH containing "elem" */
fts3HashElem * elem, /* The element to be removed from the pH */
int h /* Hash value for the element */
)
{
struct _fts3ht *pEntry;
if(elem->prev)
{
elem->prev->next = elem->next;
}
else
{
pH->first = elem->next;
}
if(elem->next)
{
elem->next->prev = elem->prev;
}
pEntry = &pH->ht[h];
if(pEntry->chain == elem)
{
pEntry->chain = elem->next;
}
pEntry->count--;
if(pEntry->count <= 0)
{
pEntry->chain = 0;
}
if(pH->copyKey && elem->pKey)
{
fts3HashFree(elem->pKey);
}
fts3HashFree(elem);
pH->count--;
if(pH->count <= 0)
{
assert(pH->first == 0);
assert(pH->count == 0);
fts3HashClear(pH);
}
}
/* Attempt to locate an element of the hash table pH with a key
** that matches pKey,nKey. Return the data for this element if it is
** found, or NULL if there is no match.
*/
SQLITE_PRIVATE void *
sqlite3Fts3HashFind(const fts3Hash * pH, const void *pKey, int nKey)
{
int h; /* A hash on key */
fts3HashElem *elem; /* The element that matches key */
int (*xHash) (const void *, int); /* The hash function */
if(pH == 0 || pH->ht == 0)
return 0;
xHash = ftsHashFunction(pH->keyClass);
assert(xHash != 0);
h = (*xHash) (pKey, nKey);
assert((pH->htsize & (pH->htsize - 1)) == 0);
elem = fts3FindElementByHash(pH, pKey, nKey, h & (pH->htsize - 1));
return elem ? elem->data : 0;
}
/* Insert an element into the hash table pH. The key is pKey,nKey
** and the data is "data".
**
** If no element exists with a matching key, then a new
** element is created. A copy of the key is made if the copyKey
** flag is set. NULL is returned.
**
** If another element already exists with the same key, then the
** new data replaces the old data and the old data is returned.
** The key is not copied in this instance. If a malloc fails, then
** the new data is returned and the hash table is unchanged.
**
** If the "data" parameter to this function is NULL, then the
** element corresponding to "key" is removed from the hash table.
*/
SQLITE_PRIVATE void *
sqlite3Fts3HashInsert(fts3Hash * pH, /* The hash table to insert into */
const void *pKey, /* The key */
int nKey, /* Number of bytes in the key */
void *data /* The data */
)
{
int hraw; /* Raw hash value of the key */
int h; /* the hash of the key modulo hash table size */
fts3HashElem *elem; /* Used to loop thru the element list */
fts3HashElem *new_elem; /* New element added to the pH */
int (*xHash) (const void *, int); /* The hash function */
assert(pH != 0);
xHash = ftsHashFunction(pH->keyClass);
assert(xHash != 0);
hraw = (*xHash) (pKey, nKey);
assert((pH->htsize & (pH->htsize - 1)) == 0);
h = hraw & (pH->htsize - 1);
elem = fts3FindElementByHash(pH, pKey, nKey, h);
if(elem)
{
void *old_data = elem->data;
if(data == 0)
{
fts3RemoveElementByHash(pH, elem, h);
}
else
{
elem->data = data;
}
return old_data;
}
if(data == 0)
return 0;
new_elem = (fts3HashElem *) fts3HashMalloc(sizeof(fts3HashElem));
if(new_elem == 0)
return data;
if(pH->copyKey && pKey != 0)
{
new_elem->pKey = fts3HashMalloc(nKey);
if(new_elem->pKey == 0)
{
fts3HashFree(new_elem);
return data;
}
memcpy((void *) new_elem->pKey, pKey, nKey);
}
else
{
new_elem->pKey = (void *) pKey;
}
new_elem->nKey = nKey;
pH->count++;
if(pH->htsize == 0)
{
fts3Rehash(pH, 8);
if(pH->htsize == 0)
{
pH->count = 0;
fts3HashFree(new_elem);
return data;
}
}
if(pH->count > pH->htsize)
{
fts3Rehash(pH, pH->htsize * 2);
}
assert(pH->htsize > 0);
assert((pH->htsize & (pH->htsize - 1)) == 0);
h = hraw & (pH->htsize - 1);
fts3HashInsertElement(pH, &pH->ht[h], new_elem);
new_elem->data = data;
return 0;
}
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
/************** End of fts3_hash.c *******************************************/
/************** Begin file fts3_porter.c *************************************/
/*
** 2006 September 30
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** Implementation of the full-text-search tokenizer that implements
** a Porter stemmer.
*/
/*
** The code in this file is only compiled if:
**
** * The FTS3 module is being built as an extension
** (in which case SQLITE_CORE is not defined), or
**
** * The FTS3 module is being built into the core of
** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
*/
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
/*
** Class derived from sqlite3_tokenizer
*/
typedef struct porter_tokenizer
{
sqlite3_tokenizer base; /* Base class */
} porter_tokenizer;
/*
** Class derived from sqlit3_tokenizer_cursor
*/
typedef struct porter_tokenizer_cursor
{
sqlite3_tokenizer_cursor base;
const char *zInput; /* input we are tokenizing */
int nInput; /* size of the input */
int iOffset; /* current position in zInput */
int iToken; /* index of next token to be returned */
char *zToken; /* storage for current token */
int nAllocated; /* space allocated to zToken buffer */
} porter_tokenizer_cursor;
/* Forward declaration */
static const sqlite3_tokenizer_module porterTokenizerModule;
/*
** Create a new tokenizer instance.
*/
static int
porterCreate(int argc, const char *const *argv, sqlite3_tokenizer ** ppTokenizer)
{
porter_tokenizer *t;
t = (porter_tokenizer *) sqlite3_malloc(sizeof(*t));
if(t == NULL)
return SQLITE_NOMEM;
memset(t, 0, sizeof(*t));
*ppTokenizer = &t->base;
return SQLITE_OK;
}
/*
** Destroy a tokenizer
*/
static int
porterDestroy(sqlite3_tokenizer * pTokenizer)
{
sqlite3_free(pTokenizer);
return SQLITE_OK;
}
/*
** Prepare to begin tokenizing a particular string. The input
** string to be tokenized is zInput[0..nInput-1]. A cursor
** used to incrementally tokenize this string is returned in
** *ppCursor.
*/
static int
porterOpen(sqlite3_tokenizer * pTokenizer, /* The tokenizer */
const char *zInput, int nInput, /* String to be tokenized */
sqlite3_tokenizer_cursor ** ppCursor /* OUT: Tokenization cursor */
)
{
porter_tokenizer_cursor *c;
c = (porter_tokenizer_cursor *) sqlite3_malloc(sizeof(*c));
if(c == NULL)
return SQLITE_NOMEM;
c->zInput = zInput;
if(zInput == 0)
{
c->nInput = 0;
}
else if(nInput < 0)
{
c->nInput = (int) strlen(zInput);
}
else
{
c->nInput = nInput;
}
c->iOffset = 0; /* start tokenizing at the beginning */
c->iToken = 0;
c->zToken = NULL; /* no space allocated, yet. */
c->nAllocated = 0;
*ppCursor = &c->base;
return SQLITE_OK;
}
/*
** Close a tokenization cursor previously opened by a call to
** porterOpen() above.
*/
static int
porterClose(sqlite3_tokenizer_cursor * pCursor)
{
porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
sqlite3_free(c->zToken);
sqlite3_free(c);
return SQLITE_OK;
}
/*
** Vowel or consonant
*/
static const char cType[] = {
0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0,
1, 1, 1, 2, 1
};
/*
** isConsonant() and isVowel() determine if their first character in
** the string they point to is a consonant or a vowel, according
** to Porter ruls.
**
** A consonate is any letter other than 'a', 'e', 'i', 'o', or 'u'.
** 'Y' is a consonant unless it follows another consonant,
** in which case it is a vowel.
**
** In these routine, the letters are in reverse order. So the 'y' rule
** is that 'y' is a consonant unless it is followed by another
** consonent.
*/
static int isVowel(const char *);
static int
isConsonant(const char *z)
{
int j;
char x = *z;
if(x == 0)
return 0;
assert(x >= 'a' && x <= 'z');
j = cType[x - 'a'];
if(j < 2)
return j;
return z[1] == 0 || isVowel(z + 1);
}
static int
isVowel(const char *z)
{
int j;
char x = *z;
if(x == 0)
return 0;
assert(x >= 'a' && x <= 'z');
j = cType[x - 'a'];
if(j < 2)
return 1 - j;
return isConsonant(z + 1);
}
/*
** Let any sequence of one or more vowels be represented by V and let
** C be sequence of one or more consonants. Then every word can be
** represented as:
**
** [C] (VC){m} [V]
**
** In prose: A word is an optional consonant followed by zero or
** vowel-consonant pairs followed by an optional vowel. "m" is the
** number of vowel consonant pairs. This routine computes the value
** of m for the first i bytes of a word.
**
** Return true if the m-value for z is 1 or more. In other words,
** return true if z contains at least one vowel that is followed
** by a consonant.
**
** In this routine z[] is in reverse order. So we are really looking
** for an instance of of a consonant followed by a vowel.
*/
static int
m_gt_0(const char *z)
{
while (isVowel(z))
{
z++;
}
if(*z == 0)
return 0;
while (isConsonant(z))
{
z++;
}
return *z != 0;
}
/* Like mgt0 above except we are looking for a value of m which is
** exactly 1
*/
static int
m_eq_1(const char *z)
{
while (isVowel(z))
{
z++;
}
if(*z == 0)
return 0;
while (isConsonant(z))
{
z++;
}
if(*z == 0)
return 0;
while (isVowel(z))
{
z++;
}
if(*z == 0)
return 1;
while (isConsonant(z))
{
z++;
}
return *z == 0;
}
/* Like mgt0 above except we are looking for a value of m>1 instead
** or m>0
*/
static int
m_gt_1(const char *z)
{
while (isVowel(z))
{
z++;
}
if(*z == 0)
return 0;
while (isConsonant(z))
{
z++;
}
if(*z == 0)
return 0;
while (isVowel(z))
{
z++;
}
if(*z == 0)
return 0;
while (isConsonant(z))
{
z++;
}
return *z != 0;
}
/*
** Return TRUE if there is a vowel anywhere within z[0..n-1]
*/
static int
hasVowel(const char *z)
{
while (isConsonant(z))
{
z++;
}
return *z != 0;
}
/*
** Return TRUE if the word ends in a double consonant.
**
** The text is reversed here. So we are really looking at
** the first two characters of z[].
*/
static int
doubleConsonant(const char *z)
{
return isConsonant(z) && z[0] == z[1] && isConsonant(z + 1);
}
/*
** Return TRUE if the word ends with three letters which
** are consonant-vowel-consonent and where the final consonant
** is not 'w', 'x', or 'y'.
**
** The word is reversed here. So we are really checking the
** first three letters and the first one cannot be in [wxy].
*/
static int
star_oh(const char *z)
{
return z[0] != 0 && isConsonant(z) &&
z[0] != 'w' && z[0] != 'x' && z[0] != 'y' &&
z[1] != 0 && isVowel(z + 1) && z[2] != 0 && isConsonant(z + 2);
}
/*
** If the word ends with zFrom and xCond() is true for the stem
** of the word that preceeds the zFrom ending, then change the
** ending to zTo.
**
** The input word *pz and zFrom are both in reverse order. zTo
** is in normal order.
**
** Return TRUE if zFrom matches. Return FALSE if zFrom does not
** match. Not that TRUE is returned even if xCond() fails and
** no substitution occurs.
*/
static int
stem(char **pz, /* The word being stemmed (Reversed) */
const char *zFrom, /* If the ending matches this... (Reversed) */
const char *zTo, /* ... change the ending to this (not reversed) */
int (*xCond) (const char *) /* Condition that must be true */
)
{
char *z = *pz;
while (*zFrom && *zFrom == *z)
{
z++;
zFrom++;
}
if(*zFrom != 0)
return 0;
if(xCond && !xCond(z))
return 1;
while (*zTo)
{
*(--z) = *(zTo++);
}
*pz = z;
return 1;
}
/*
** This is the fallback stemmer used when the porter stemmer is
** inappropriate. The input word is copied into the output with
** US-ASCII case folding. If the input word is too long (more
** than 20 bytes if it contains no digits or more than 6 bytes if
** it contains digits) then word is truncated to 20 or 6 bytes
** by taking 10 or 3 bytes from the beginning and end.
*/
static void
copy_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut)
{
int i, mx, j;
int hasDigit = 0;
for (i = 0; i < nIn; i++)
{
int c = zIn[i];
if(c >= 'A' && c <= 'Z')
{
zOut[i] = c - 'A' + 'a';
}
else
{
if(c >= '0' && c <= '9')
hasDigit = 1;
zOut[i] = c;
}
}
mx = hasDigit ? 3 : 10;
if(nIn > mx * 2)
{
for (j = mx, i = nIn - mx; i < nIn; i++, j++)
{
zOut[j] = zOut[i];
}
i = j;
}
zOut[i] = 0;
*pnOut = i;
}
/*
** Stem the input word zIn[0..nIn-1]. Store the output in zOut.
** zOut is at least big enough to hold nIn bytes. Write the actual
** size of the output word (exclusive of the '\0' terminator) into *pnOut.
**
** Any upper-case characters in the US-ASCII character set ([A-Z])
** are converted to lower case. Upper-case UTF characters are
** unchanged.
**
** Words that are longer than about 20 bytes are stemmed by retaining
** a few bytes from the beginning and the end of the word. If the
** word contains digits, 3 bytes are taken from the beginning and
** 3 bytes from the end. For long words without digits, 10 bytes
** are taken from each end. US-ASCII case folding still applies.
**
** If the input word contains not digits but does characters not
** in [a-zA-Z] then no stemming is attempted and this routine just
** copies the input into the input into the output with US-ASCII
** case folding.
**
** Stemming never increases the length of the word. So there is
** no chance of overflowing the zOut buffer.
*/
static void
porter_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut)
{
int i, j, c;
char zReverse[28];
char *z, *z2;
if(nIn < 3 || nIn >= sizeof(zReverse) - 7)
{
/* The word is too big or too small for the porter stemmer.
** Fallback to the copy stemmer */
copy_stemmer(zIn, nIn, zOut, pnOut);
return;
}
for (i = 0, j = sizeof(zReverse) - 6; i < nIn; i++, j--)
{
c = zIn[i];
if(c >= 'A' && c <= 'Z')
{
zReverse[j] = c + 'a' - 'A';
}
else if(c >= 'a' && c <= 'z')
{
zReverse[j] = c;
}
else
{
/* The use of a character not in [a-zA-Z] means that we fallback
** to the copy stemmer */
copy_stemmer(zIn, nIn, zOut, pnOut);
return;
}
}
memset(&zReverse[sizeof(zReverse) - 5], 0, 5);
z = &zReverse[j + 1];
/* Step 1a */
if(z[0] == 's')
{
if(!stem(&z, "sess", "ss", 0) &&
!stem(&z, "sei", "i", 0) && !stem(&z, "ss", "ss", 0))
{
z++;
}
}
/* Step 1b */
z2 = z;
if(stem(&z, "dee", "ee", m_gt_0))
{
/* Do nothing. The work was all in the test */
}
else if((stem(&z, "gni", "", hasVowel) || stem(&z, "de", "", hasVowel)) && z != z2)
{
if(stem(&z, "ta", "ate", 0) || stem(&z, "lb", "ble", 0) || stem(&z, "zi", "ize", 0))
{
/* Do nothing. The work was all in the test */
}
else if(doubleConsonant(z) && (*z != 'l' && *z != 's' && *z != 'z'))
{
z++;
}
else if(m_eq_1(z) && star_oh(z))
{
*(--z) = 'e';
}
}
/* Step 1c */
if(z[0] == 'y' && hasVowel(z + 1))
{
z[0] = 'i';
}
/* Step 2 */
switch (z[1])
{
case 'a':
stem(&z, "lanoita", "ate", m_gt_0) || stem(&z, "lanoit", "tion", m_gt_0);
break;
case 'c':
stem(&z, "icne", "ence", m_gt_0) || stem(&z, "icna", "ance", m_gt_0);
break;
case 'e':
stem(&z, "rezi", "ize", m_gt_0);
break;
case 'g':
stem(&z, "igol", "log", m_gt_0);
break;
case 'l':
stem(&z, "ilb", "ble", m_gt_0) ||
stem(&z, "illa", "al", m_gt_0) ||
stem(&z, "iltne", "ent", m_gt_0) ||
stem(&z, "ile", "e", m_gt_0) || stem(&z, "ilsuo", "ous", m_gt_0);
break;
case 'o':
stem(&z, "noitazi", "ize", m_gt_0) ||
stem(&z, "noita", "ate", m_gt_0) || stem(&z, "rota", "ate", m_gt_0);
break;
case 's':
stem(&z, "msila", "al", m_gt_0) ||
stem(&z, "ssenevi", "ive", m_gt_0) ||
stem(&z, "ssenluf", "ful", m_gt_0) || stem(&z, "ssensuo", "ous", m_gt_0);
break;
case 't':
stem(&z, "itila", "al", m_gt_0) ||
stem(&z, "itivi", "ive", m_gt_0) || stem(&z, "itilib", "ble", m_gt_0);
break;
}
/* Step 3 */
switch (z[0])
{
case 'e':
stem(&z, "etaci", "ic", m_gt_0) ||
stem(&z, "evita", "", m_gt_0) || stem(&z, "ezila", "al", m_gt_0);
break;
case 'i':
stem(&z, "itici", "ic", m_gt_0);
break;
case 'l':
stem(&z, "laci", "ic", m_gt_0) || stem(&z, "luf", "", m_gt_0);
break;
case 's':
stem(&z, "ssen", "", m_gt_0);
break;
}
/* Step 4 */
switch (z[1])
{
case 'a':
if(z[0] == 'l' && m_gt_1(z + 2))
{
z += 2;
}
break;
case 'c':
if(z[0] == 'e' && z[2] == 'n' && (z[3] == 'a' || z[3] == 'e') && m_gt_1(z + 4))
{
z += 4;
}
break;
case 'e':
if(z[0] == 'r' && m_gt_1(z + 2))
{
z += 2;
}
break;
case 'i':
if(z[0] == 'c' && m_gt_1(z + 2))
{
z += 2;
}
break;
case 'l':
if(z[0] == 'e' && z[2] == 'b' && (z[3] == 'a' || z[3] == 'i') && m_gt_1(z + 4))
{
z += 4;
}
break;
case 'n':
if(z[0] == 't')
{
if(z[2] == 'a')
{
if(m_gt_1(z + 3))
{
z += 3;
}
}
else if(z[2] == 'e')
{
stem(&z, "tneme", "", m_gt_1) ||
stem(&z, "tnem", "", m_gt_1) || stem(&z, "tne", "", m_gt_1);
}
}
break;
case 'o':
if(z[0] == 'u')
{
if(m_gt_1(z + 2))
{
z += 2;
}
}
else if(z[3] == 's' || z[3] == 't')
{
stem(&z, "noi", "", m_gt_1);
}
break;
case 's':
if(z[0] == 'm' && z[2] == 'i' && m_gt_1(z + 3))
{
z += 3;
}
break;
case 't':
stem(&z, "eta", "", m_gt_1) || stem(&z, "iti", "", m_gt_1);
break;
case 'u':
if(z[0] == 's' && z[2] == 'o' && m_gt_1(z + 3))
{
z += 3;
}
break;
case 'v':
case 'z':
if(z[0] == 'e' && z[2] == 'i' && m_gt_1(z + 3))
{
z += 3;
}
break;
}
/* Step 5a */
if(z[0] == 'e')
{
if(m_gt_1(z + 1))
{
z++;
}
else if(m_eq_1(z + 1) && !star_oh(z + 1))
{
z++;
}
}
/* Step 5b */
if(m_gt_1(z) && z[0] == 'l' && z[1] == 'l')
{
z++;
}
/* z[] is now the stemmed word in reverse order. Flip it back
** around into forward order and return.
*/
*pnOut = i = strlen(z);
zOut[i] = 0;
while (*z)
{
zOut[--i] = *(z++);
}
}
/*
** Characters that can be part of a token. We assume any character
** whose value is greater than 0x80 (any UTF character) can be
** part of a token. In other words, delimiters all must have
** values of 0x7f or lower.
*/
static const char porterIdChar[] = {
/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */
};
#define isDelim(C) (((ch=C)&0x80)==0 && (ch<0x30 || !porterIdChar[ch-0x30]))
/*
** Extract the next token from a tokenization cursor. The cursor must
** have been opened by a prior call to porterOpen().
*/
static int
porterNext(sqlite3_tokenizer_cursor * pCursor, /* Cursor returned by porterOpen */
const char **pzToken, /* OUT: *pzToken is the token text */
int *pnBytes, /* OUT: Number of bytes in token */
int *piStartOffset, /* OUT: Starting offset of token */
int *piEndOffset, /* OUT: Ending offset of token */
int *piPosition /* OUT: Position integer of token */
)
{
porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
const char *z = c->zInput;
while (c->iOffset < c->nInput)
{
int iStartOffset, ch;
/* Scan past delimiter characters */
while (c->iOffset < c->nInput && isDelim(z[c->iOffset]))
{
c->iOffset++;
}
/* Count non-delimiter characters. */
iStartOffset = c->iOffset;
while (c->iOffset < c->nInput && !isDelim(z[c->iOffset]))
{
c->iOffset++;
}
if(c->iOffset > iStartOffset)
{
int n = c->iOffset - iStartOffset;
if(n > c->nAllocated)
{
c->nAllocated = n + 20;
c->zToken = sqlite3_realloc(c->zToken, c->nAllocated);
if(c->zToken == NULL)
return SQLITE_NOMEM;
}
porter_stemmer(&z[iStartOffset], n, c->zToken, pnBytes);
*pzToken = c->zToken;
*piStartOffset = iStartOffset;
*piEndOffset = c->iOffset;
*piPosition = c->iToken++;
return SQLITE_OK;
}
}
return SQLITE_DONE;
}
/*
** The set of routines that implement the porter-stemmer tokenizer
*/
static const sqlite3_tokenizer_module porterTokenizerModule = {
0,
porterCreate,
porterDestroy,
porterOpen,
porterClose,
porterNext,
};
/*
** Allocate a new porter tokenizer. Return a pointer to the new
** tokenizer in *ppModule
*/
SQLITE_PRIVATE void
sqlite3Fts3PorterTokenizerModule(sqlite3_tokenizer_module const **ppModule)
{
*ppModule = &porterTokenizerModule;
}
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
/************** End of fts3_porter.c *****************************************/
/************** Begin file fts3_tokenizer.c **********************************/
/*
** 2007 June 22
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** This is part of an SQLite module implementing full-text search.
** This particular file implements the generic tokenizer interface.
*/
/*
** The code in this file is only compiled if:
**
** * The FTS3 module is being built as an extension
** (in which case SQLITE_CORE is not defined), or
**
** * The FTS3 module is being built into the core of
** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
*/
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
#ifndef SQLITE_CORE
SQLITE_EXTENSION_INIT1
#endif
/*
** Implementation of the SQL scalar function for accessing the underlying
** hash table. This function may be called as follows:
**
** SELECT <function-name>(<key-name>);
** SELECT <function-name>(<key-name>, <pointer>);
**
** where <function-name> is the name passed as the second argument
** to the sqlite3Fts3InitHashTable() function (e.g. 'fts3_tokenizer').
**
** If the <pointer> argument is specified, it must be a blob value
** containing a pointer to be stored as the hash data corresponding
** to the string <key-name>. If <pointer> is not specified, then
** the string <key-name> must already exist in the has table. Otherwise,
** an error is returned.
**
** Whether or not the <pointer> argument is specified, the value returned
** is a blob containing the pointer stored as the hash data corresponding
** to string <key-name> (after the hash-table is updated, if applicable).
*/
static void
scalarFunc(sqlite3_context * context, int argc, sqlite3_value ** argv)
{
fts3Hash *pHash;
void *pPtr = 0;
const unsigned char *zName;
int nName;
assert(argc == 1 || argc == 2);
pHash = (fts3Hash *) sqlite3_user_data(context);
zName = sqlite3_value_text(argv[0]);
nName = sqlite3_value_bytes(argv[0]) + 1;
if(argc == 2)
{
void *pOld;
int n = sqlite3_value_bytes(argv[1]);
if(n != sizeof(pPtr))
{
sqlite3_result_error(context, "argument type mismatch", -1);
return;
}
pPtr = *(void **) sqlite3_value_blob(argv[1]);
pOld = sqlite3Fts3HashInsert(pHash, (void *) zName, nName, pPtr);
if(pOld == pPtr)
{
sqlite3_result_error(context, "out of memory", -1);
return;
}
}
else
{
pPtr = sqlite3Fts3HashFind(pHash, zName, nName);
if(!pPtr)
{
char *zErr = sqlite3_mprintf("unknown tokenizer: %s", zName);
sqlite3_result_error(context, zErr, -1);
sqlite3_free(zErr);
return;
}
}
sqlite3_result_blob(context, (void *) &pPtr, sizeof(pPtr), SQLITE_TRANSIENT);
}
#ifdef SQLITE_TEST
/*
** Implementation of a special SQL scalar function for testing tokenizers
** designed to be used in concert with the Tcl testing framework. This
** function must be called with two arguments:
**
** SELECT <function-name>(<key-name>, <input-string>);
** SELECT <function-name>(<key-name>, <pointer>);
**
** where <function-name> is the name passed as the second argument
** to the sqlite3Fts3InitHashTable() function (e.g. 'fts3_tokenizer')
** concatenated with the string '_test' (e.g. 'fts3_tokenizer_test').
**
** The return value is a string that may be interpreted as a Tcl
** list. For each token in the <input-string>, three elements are
** added to the returned list. The first is the token position, the
** second is the token text (folded, stemmed, etc.) and the third is the
** substring of <input-string> associated with the token. For example,
** using the built-in "simple" tokenizer:
**
** SELECT fts_tokenizer_test('simple', 'I don't see how');
**
** will return the string:
**
** "{0 i I 1 dont don't 2 see see 3 how how}"
**
*/
static void
testFunc(sqlite3_context * context, int argc, sqlite3_value ** argv)
{
fts3Hash *pHash;
sqlite3_tokenizer_module *p;
sqlite3_tokenizer *pTokenizer = 0;
sqlite3_tokenizer_cursor *pCsr = 0;
const char *zErr = 0;
const char *zName;
int nName;
const char *zInput;
int nInput;
const char *zArg = 0;
const char *zToken;
int nToken;
int iStart;
int iEnd;
int iPos;
Tcl_Obj *pRet;
assert(argc == 2 || argc == 3);
nName = sqlite3_value_bytes(argv[0]);
zName = (const char *) sqlite3_value_text(argv[0]);
nInput = sqlite3_value_bytes(argv[argc - 1]);
zInput = (const char *) sqlite3_value_text(argv[argc - 1]);
if(argc == 3)
{
zArg = (const char *) sqlite3_value_text(argv[1]);
}
pHash = (fts3Hash *) sqlite3_user_data(context);
p = (sqlite3_tokenizer_module *) sqlite3Fts3HashFind(pHash, zName, nName + 1);
if(!p)
{
char *zErr = sqlite3_mprintf("unknown tokenizer: %s", zName);
sqlite3_result_error(context, zErr, -1);
sqlite3_free(zErr);
return;
}
pRet = Tcl_NewObj();
Tcl_IncrRefCount(pRet);
if(SQLITE_OK != p->xCreate(zArg ? 1 : 0, &zArg, &pTokenizer))
{
zErr = "error in xCreate()";
goto finish;
}
pTokenizer->pModule = p;
if(SQLITE_OK != p->xOpen(pTokenizer, zInput, nInput, &pCsr))
{
zErr = "error in xOpen()";
goto finish;
}
pCsr->pTokenizer = pTokenizer;
while (SQLITE_OK == p->xNext(pCsr, &zToken, &nToken, &iStart, &iEnd, &iPos))
{
Tcl_ListObjAppendElement(0, pRet, Tcl_NewIntObj(iPos));
Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj(zToken, nToken));
zToken = &zInput[iStart];
nToken = iEnd - iStart;
Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj(zToken, nToken));
}
if(SQLITE_OK != p->xClose(pCsr))
{
zErr = "error in xClose()";
goto finish;
}
if(SQLITE_OK != p->xDestroy(pTokenizer))
{
zErr = "error in xDestroy()";
goto finish;
}
finish:
if(zErr)
{
sqlite3_result_error(context, zErr, -1);
}
else
{
sqlite3_result_text(context, Tcl_GetString(pRet), -1, SQLITE_TRANSIENT);
}
Tcl_DecrRefCount(pRet);
}
static int
registerTokenizer(sqlite3 * db, char *zName, const sqlite3_tokenizer_module * p)
{
int rc;
sqlite3_stmt *pStmt;
const char zSql[] = "SELECT fts3_tokenizer(?, ?)";
rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
if(rc != SQLITE_OK)
{
return rc;
}
sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC);
sqlite3_bind_blob(pStmt, 2, &p, sizeof(p), SQLITE_STATIC);
sqlite3_step(pStmt);
return sqlite3_finalize(pStmt);
}
static int
queryTokenizer(sqlite3 * db, char *zName, const sqlite3_tokenizer_module ** pp)
{
int rc;
sqlite3_stmt *pStmt;
const char zSql[] = "SELECT fts3_tokenizer(?)";
*pp = 0;
rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
if(rc != SQLITE_OK)
{
return rc;
}
sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC);
if(SQLITE_ROW == sqlite3_step(pStmt))
{
if(sqlite3_column_type(pStmt, 0) == SQLITE_BLOB)
{
memcpy(pp, sqlite3_column_blob(pStmt, 0), sizeof(*pp));
}
}
return sqlite3_finalize(pStmt);
}
SQLITE_PRIVATE void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const **ppModule);
/*
** Implementation of the scalar function fts3_tokenizer_internal_test().
** This function is used for testing only, it is not included in the
** build unless SQLITE_TEST is defined.
**
** The purpose of this is to test that the fts3_tokenizer() function
** can be used as designed by the C-code in the queryTokenizer and
** registerTokenizer() functions above. These two functions are repeated
** in the README.tokenizer file as an example, so it is important to
** test them.
**
** To run the tests, evaluate the fts3_tokenizer_internal_test() scalar
** function with no arguments. An assert() will fail if a problem is
** detected. i.e.:
**
** SELECT fts3_tokenizer_internal_test();
**
*/
static void
intTestFunc(sqlite3_context * context, int argc, sqlite3_value ** argv)
{
int rc;
const sqlite3_tokenizer_module *p1;
const sqlite3_tokenizer_module *p2;
sqlite3 *db = (sqlite3 *) sqlite3_user_data(context);
/* Test the query function */
sqlite3Fts3SimpleTokenizerModule(&p1);
rc = queryTokenizer(db, "simple", &p2);
assert(rc == SQLITE_OK);
assert(p1 == p2);
rc = queryTokenizer(db, "nosuchtokenizer", &p2);
assert(rc == SQLITE_ERROR);
assert(p2 == 0);
assert(0 == strcmp(sqlite3_errmsg(db), "unknown tokenizer: nosuchtokenizer"));
/* Test the storage function */
rc = registerTokenizer(db, "nosuchtokenizer", p1);
assert(rc == SQLITE_OK);
rc = queryTokenizer(db, "nosuchtokenizer", &p2);
assert(rc == SQLITE_OK);
assert(p2 == p1);
sqlite3_result_text(context, "ok", -1, SQLITE_STATIC);
}
#endif
/*
** Set up SQL objects in database db used to access the contents of
** the hash table pointed to by argument pHash. The hash table must
** been initialised to use string keys, and to take a private copy
** of the key when a value is inserted. i.e. by a call similar to:
**
** sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1);
**
** This function adds a scalar function (see header comment above
** scalarFunc() in this file for details) and, if ENABLE_TABLE is
** defined at compilation time, a temporary virtual table (see header
** comment above struct HashTableVtab) to the database schema. Both
** provide read/write access to the contents of *pHash.
**
** The third argument to this function, zName, is used as the name
** of both the scalar and, if created, the virtual table.
*/
SQLITE_PRIVATE int
sqlite3Fts3InitHashTable(sqlite3 * db, fts3Hash * pHash, const char *zName)
{
int rc = SQLITE_OK;
void *p = (void *) pHash;
const int any = SQLITE_ANY;
char *zTest = 0;
char *zTest2 = 0;
#ifdef SQLITE_TEST
void *pdb = (void *) db;
zTest = sqlite3_mprintf("%s_test", zName);
zTest2 = sqlite3_mprintf("%s_internal_test", zName);
if(!zTest || !zTest2)
{
rc = SQLITE_NOMEM;
}
#endif
if(rc != SQLITE_OK
|| (rc = sqlite3_create_function(db, zName, 1, any, p, scalarFunc, 0, 0))
|| (rc = sqlite3_create_function(db, zName, 2, any, p, scalarFunc, 0, 0))
#ifdef SQLITE_TEST
|| (rc = sqlite3_create_function(db, zTest, 2, any, p, testFunc, 0, 0))
|| (rc = sqlite3_create_function(db, zTest, 3, any, p, testFunc, 0, 0))
|| (rc = sqlite3_create_function(db, zTest2, 0, any, pdb, intTestFunc, 0, 0))
#endif
);
sqlite3_free(zTest);
sqlite3_free(zTest2);
return rc;
}
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
/************** End of fts3_tokenizer.c **************************************/
/************** Begin file fts3_tokenizer1.c *********************************/
/*
** 2006 Oct 10
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** Implementation of the "simple" full-text-search tokenizer.
*/
/*
** The code in this file is only compiled if:
**
** * The FTS3 module is being built as an extension
** (in which case SQLITE_CORE is not defined), or
**
** * The FTS3 module is being built into the core of
** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
*/
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
typedef struct simple_tokenizer
{
sqlite3_tokenizer base;
char delim[128]; /* flag ASCII delimiters */
} simple_tokenizer;
typedef struct simple_tokenizer_cursor
{
sqlite3_tokenizer_cursor base;
const char *pInput; /* input we are tokenizing */
int nBytes; /* size of the input */
int iOffset; /* current position in pInput */
int iToken; /* index of next token to be returned */
char *pToken; /* storage for current token */
int nTokenAllocated; /* space allocated to zToken buffer */
} simple_tokenizer_cursor;
/* Forward declaration */
static const sqlite3_tokenizer_module simpleTokenizerModule;
static int
simpleDelim(simple_tokenizer * t, unsigned char c)
{
return c < 0x80 && t->delim[c];
}
/*
** Create a new tokenizer instance.
*/
static int
simpleCreate(int argc, const char *const *argv, sqlite3_tokenizer ** ppTokenizer)
{
simple_tokenizer *t;
t = (simple_tokenizer *) sqlite3_malloc(sizeof(*t));
if(t == NULL)
return SQLITE_NOMEM;
memset(t, 0, sizeof(*t));
/* TODO(shess) Delimiters need to remain the same from run to run,
** else we need to reindex. One solution would be a meta-table to
** track such information in the database, then we'd only want this
** information on the initial create.
*/
if(argc > 1)
{
int i, n = strlen(argv[1]);
for (i = 0; i < n; i++)
{
unsigned char ch = argv[1][i];
/* We explicitly don't support UTF-8 delimiters for now. */
if(ch >= 0x80)
{
sqlite3_free(t);
return SQLITE_ERROR;
}
t->delim[ch] = 1;
}
}
else
{
/* Mark non-alphanumeric ASCII characters as delimiters */
int i;
for (i = 1; i < 0x80; i++)
{
t->delim[i] = !isalnum(i);
}
}
*ppTokenizer = &t->base;
return SQLITE_OK;
}
/*
** Destroy a tokenizer
*/
static int
simpleDestroy(sqlite3_tokenizer * pTokenizer)
{
sqlite3_free(pTokenizer);
return SQLITE_OK;
}
/*
** Prepare to begin tokenizing a particular string. The input
** string to be tokenized is pInput[0..nBytes-1]. A cursor
** used to incrementally tokenize this string is returned in
** *ppCursor.
*/
static int
simpleOpen(sqlite3_tokenizer * pTokenizer, /* The tokenizer */
const char *pInput, int nBytes, /* String to be tokenized */
sqlite3_tokenizer_cursor ** ppCursor /* OUT: Tokenization cursor */
)
{
simple_tokenizer_cursor *c;
c = (simple_tokenizer_cursor *) sqlite3_malloc(sizeof(*c));
if(c == NULL)
return SQLITE_NOMEM;
c->pInput = pInput;
if(pInput == 0)
{
c->nBytes = 0;
}
else if(nBytes < 0)
{
c->nBytes = (int) strlen(pInput);
}
else
{
c->nBytes = nBytes;
}
c->iOffset = 0; /* start tokenizing at the beginning */
c->iToken = 0;
c->pToken = NULL; /* no space allocated, yet. */
c->nTokenAllocated = 0;
*ppCursor = &c->base;
return SQLITE_OK;
}
/*
** Close a tokenization cursor previously opened by a call to
** simpleOpen() above.
*/
static int
simpleClose(sqlite3_tokenizer_cursor * pCursor)
{
simple_tokenizer_cursor *c = (simple_tokenizer_cursor *) pCursor;
sqlite3_free(c->pToken);
sqlite3_free(c);
return SQLITE_OK;
}
/*
** Extract the next token from a tokenization cursor. The cursor must
** have been opened by a prior call to simpleOpen().
*/
static int
simpleNext(sqlite3_tokenizer_cursor * pCursor, /* Cursor returned by simpleOpen */
const char **ppToken, /* OUT: *ppToken is the token text */
int *pnBytes, /* OUT: Number of bytes in token */
int *piStartOffset, /* OUT: Starting offset of token */
int *piEndOffset, /* OUT: Ending offset of token */
int *piPosition /* OUT: Position integer of token */
)
{
simple_tokenizer_cursor *c = (simple_tokenizer_cursor *) pCursor;
simple_tokenizer *t = (simple_tokenizer *) pCursor->pTokenizer;
unsigned char *p = (unsigned char *) c->pInput;
while (c->iOffset < c->nBytes)
{
int iStartOffset;
/* Scan past delimiter characters */
while (c->iOffset < c->nBytes && simpleDelim(t, p[c->iOffset]))
{
c->iOffset++;
}
/* Count non-delimiter characters. */
iStartOffset = c->iOffset;
while (c->iOffset < c->nBytes && !simpleDelim(t, p[c->iOffset]))
{
c->iOffset++;
}
if(c->iOffset > iStartOffset)
{
int i, n = c->iOffset - iStartOffset;
if(n > c->nTokenAllocated)
{
c->nTokenAllocated = n + 20;
c->pToken = sqlite3_realloc(c->pToken, c->nTokenAllocated);
if(c->pToken == NULL)
return SQLITE_NOMEM;
}
for (i = 0; i < n; i++)
{
/* TODO(shess) This needs expansion to handle UTF-8
** case-insensitivity.
*/
unsigned char ch = p[iStartOffset + i];
c->pToken[i] = ch < 0x80 ? tolower(ch) : ch;
}
*ppToken = c->pToken;
*pnBytes = n;
*piStartOffset = iStartOffset;
*piEndOffset = c->iOffset;
*piPosition = c->iToken++;
return SQLITE_OK;
}
}
return SQLITE_DONE;
}
/*
** The set of routines that implement the simple tokenizer
*/
static const sqlite3_tokenizer_module simpleTokenizerModule = {
0,
simpleCreate,
simpleDestroy,
simpleOpen,
simpleClose,
simpleNext,
};
/*
** Allocate a new simple tokenizer. Return a pointer to the new
** tokenizer in *ppModule
*/
SQLITE_PRIVATE void
sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const **ppModule)
{
*ppModule = &simpleTokenizerModule;
}
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
/************** End of fts3_tokenizer1.c *************************************/